JPH048481B2 - - Google Patents

Info

Publication number
JPH048481B2
JPH048481B2 JP62282264A JP28226487A JPH048481B2 JP H048481 B2 JPH048481 B2 JP H048481B2 JP 62282264 A JP62282264 A JP 62282264A JP 28226487 A JP28226487 A JP 28226487A JP H048481 B2 JPH048481 B2 JP H048481B2
Authority
JP
Japan
Prior art keywords
alloy
alloy powder
casting
present
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62282264A
Other languages
Japanese (ja)
Other versions
JPS63266005A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP28226487A priority Critical patent/JPS63266005A/en
Publication of JPS63266005A publication Critical patent/JPS63266005A/en
Publication of JPH048481B2 publication Critical patent/JPH048481B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、常温から高温までの強度が優れた高
Siアルミニウム合金粉末に関するもので、特に内
燃機関のシリンダーライナーのような熱負荷が高
く、また耐摩耗性耐焼付性が要求される部品に最
適のものである。 〔従来の技術〕 最近、自動車の軽量化やフロントエンジン・フ
ロントドライブ(FF)方式のため、エンジンの
軽量化が必要とつており、そのためシリンダーブ
ロツクは鋳鉄からAl合金が使用されるように変
わつてきている。 その場合、鋳鉄性シリンダーライナーが鋳ぐる
まれて使用されている。このシリンダーライナー
をAl合金にすると、軽量化のほかに熱伝導率が
鋳鉄よりもはるかに良いことと、鋳鉄よりも熱膨
張係数が大きくシリンダーブロツクのAl合金に
近いので昇温時でもライナーとブロツクの密着性
が良いことから放熱性の良いエンジンとなり、ラ
イナーの内壁温度が低く出来ることから、潤滑油
の寿命を長く出来たり、低粘度の潤滑油の使用が
可能となり、燃費の向上が可能になるとされてい
る。又、熱膨張係数がピストン材料のアルミニウ
ム合金のそれと同程度であるので、ピストンとの
間のクリアランスを小さく設定できるために潤滑
油の消費量を押え燃費の向上も期待される。又、
高SiのAl合金は摩擦係数が低いため、シリンダ
ーライナーとして使用すればピストンリングとの
間のクリクシヨンロスが低減することから、燃費
の向上が期待される。 このようにシリンダーライナーにAl合金を使
用することによる効果は多いが、従来の公知の
Al合金では、鋳ぐるみ用シリンダーライナー材
としては高温特性が不十分である。 例えば、AA規格のA390.0(Si=16〜18%、Cu
=4〜5%、Mg=0.50〜0.65%、Fe=0.5%、Ti
=0.2%,Zn=0.1%、残Al)のような鋳造材は固
液共存域が広いため、健全な鋳物を得るために
は、大きな押湯を必要とするので歩留まりが悪く
コストの高い物となり、微細化処理や金型鋳造法
によつても初晶Siはなお粗大であるために被削性
が悪い。さらに致命的欠点は、シリンダーブロツ
クに鋳ぐるむ時に熱によつて材料が軟化する為
に、対摩耗性が著しく低下したり、被削面にビビ
リやムシレが生じやすく、またホーニング加工を
困難にしている。また近年、粉末冶金法により
A390.0に近い組成の合金を粉末にして、これを
熱間押出して、中空体とする技術が提案されてい
る(特開昭52−109415)。これは高Siのアルミニ
ウム合金溶湯をアトマイズ法または遠心鋳造法よ
る微細化手段により急冷された微粒または粉末と
し、これを熱間押出しすることにより中空体を得
る方法であつて、鋳造法に依り得られる中空体よ
りもはるかに歩留まりの優れた方法である。 また、この方法によると初晶Siが20μm以下の
大きさとなるために延性や機械加工性に優れ、更
には高Siアルミニウム合金特有の低摩擦係数の性
質をも備えている。 また、この製造法により15〜20%Si,1〜5%
Cu,0.5〜1.5%Mg,0.5〜1.5%Ni、残部Alの合
金や、或はこれにSiC,Sn、黒鉛を混合して押出
した中空体が提案されている(特開昭52−109415
参照)。 〔発明が解決すべき問題点〕 本発明者らはこれらのトレース実験をした結果
20.0Si−4.0Cu−0.8Mg−0.5Ni−Al残の組成とし
た粉末押出材をシリンダーライナー(外径73mm、
内径65mm、高さ105mm)として使用し、ADC−12
合金のシリンダーブロツク(重量3.4Kg)に溶湯
温度675℃でダイキヤスト法で鋳ぐるむテストを
おこなつた結果、鋳ぐるみ前にT6処理より硬さ
がHRB=80であつたものが、鋳ぐるみ後は硬さ
がHRB=40程度に軟化してしまうことが判明し
た。従つてこの中空体もアルミニウム合金製シリ
ンダーブロツクに鋳ぐるむ時には軟化してしま
い、鋳ぐるみ用シリンダーライナーとしての使用
は不可能である。 また、鋳ぐるみはダイキヤスト法や低圧鋳造法
によるが、ライナーはコスト面からもできるだけ
薄肉とすることが望ましく、薄肉化していくと鋳
ぐるみ時のライナー搬送工程や位置決め時に加わ
る機械的応力により変形しやすくなるために、高
剛性(高硬度)であることが必要である。 本発明はこれら欠点を全て解消し、鋳ぐるみ時
の熱負荷に対しても軟化することがなく、更に使
用時に負荷される温度域においても軟化せず、耐
摩耗性、耐焼付き性に優れたアルミニウム合金材
料を経済的にも安価に提供することを目的とす
る。 〔問題点を解決するための手段〕 本発明はAl−Si合金にFeまたはMnのうち少な
くとも1種を添加することにより、粗大な初晶Si
の晶出を抑制するとともに、高温における強度と
耐摩耗性を著しく改善せんとするものである。 本発明のアルミニウム合金粉末は、重量比でSi
15.0〜25.0%と、FeまたはMnのうち1種または
2種の重金属を含み、Si結晶粒の大きさが15μm
以下である耐熱耐摩耗性高力アルミニウム合金粉
末である。 本発明のもう一つの別のアルミニウム合金粉末
は、重量比でSi 15.0〜25.0%とFeまたはMnのう
ち少なくとも1種を含み、さらにCu0.5〜5.0%お
よびMg0.2〜3.0%を含み、Si結晶粒の大きさが
15μm以下である耐熱耐摩耗性高力アルミニウム
合金粉末である。 以下にこの発明を更に詳細に説明する。 一般に過共晶Al−Si合金はAlよりも小さな熱
膨張係数を有し、耐熱性耐摩耗性に優れているこ
とは広く知られている。過共晶Al−Si合金鋳造
材ではSiが初晶或は共晶としてマトリツクス中に
分散することにより、高温強度や耐摩耗性、耐焼
付き性に優れた効果を発揮する。しかしながら初
晶Siはしばしば粗大結晶として晶出するため、延
性や衝撃値を低下させ、被削性を悪する。また、
シリンダーライナー材などに使用する場合に相手
材を傷付けるので適当ではない。 これらの問題点を解決するため、過共晶Al−
Si合金を急冷凝固させて初晶Siを微細化した合金
粉末を作り、押出し成形により部材に加工して耐
熱性、耐摩耗性に優れた材料を得ることが提案さ
れている(特開昭52−109415)。しかしながら耐
熱性、特に高温強度に関してはなお十分ではな
い。そこで本発明ではAl−Si合金にFeまたはMn
を添加することにより、粗大な初晶Siの晶出を抑
制するとともに、高温における強度と耐摩耗性を
著しく改善するようにした。 次に本発明による合金粉末中の各成分の限定理
由を説明する。 Siは15%以下では分散量が少なく、耐熱性耐摩
耗性に及ぼす効果が不十分である。Si 10%近傍
の亜共晶域では初晶Siは晶出せず、微細な共晶組
織を有するものとなる。Siの添加量が増すととも
にSi初晶が晶出するようになり、耐熱性耐摩耗性
も向上してくる。 しかしながらSiが25%を越えると分散急冷凝固
法によつて粉末としても粗大なSi初晶が消失しな
くなる。粗大なSi初晶組織を有するアルミニウム
合金粉末は押出成形加工して使用するに粉体の圧
縮性を著しく悪化させ、圧粉体をつくりにくくす
るほか、熱間押出においても変形抵抗が大きくな
り、大きな押し出し力を必要とし、押出ダイスを
摩耗させて寿命を著しく短縮させる等の難点があ
る。このような製造上の問題の他に、材質特性に
おいても鋳造材の場合と同様な難点があるのでシ
リンダーライナー材としては不適当なものとなる
から、粗大な初晶Siは避けなければならない。 また、アルミニウム合金製シリンダーブロツク
材に鋳ぐるまれてシリンダーライナーとして使用
する場合Siの添加量とともに熱膨張係数は小さく
なりSiが25%を越えるとシリンダーブロツク材と
の密着状況が悪くなり、ピストンのクリアランス
を大きくする必要性が生じてくる。 したがつてSiの添加量は15.0〜25.0%とするの
が良い。 FeおよびMnは本発明においては重要な成分で
ありAl中への溶解度が低くかつ拡散速度が遅い
ことを利用して微細な化合物として分散させ、高
温強度を高める目的で添加する。さらに固溶限度
を越えてFeまたはMnを添加するとAl−(Fe,
Mn)−Si系の化合物として析出し、その形状は添
加量が多いほど、又冷却速度が遅いほど粗大とな
る。 これらの金属間化合物は本発明の製造方法の骨
子である分散急冷凝固法による合金粉末において
は棒状の組織として存在して、後の熱間押出工程
によつて分断され、基地中に微細に分散する。こ
れらの化合物は高温においても安定でかつ成長し
難く、長時間高温に保持しても強度の低下は起こ
らない。従つて鋳ぐるみ用シリンダーライナーの
ように高温にさらされた後も硬度の低下はなく、
耐摩耗性を保持することが可能である。 過共晶Al−Si合金中にFeまたはMnを添加して
いくと初晶Siは少なくなるが、代わつて析出する
Al−(Fe,Mn)−Si系金属間化合物によつて耐熱
性、耐摩耗性を維持し改善するものである。この
ようにFeとMnは同様の作用効果を有しているの
で、FeまたはMnのうちいずれか1種または2種
を使用することができる。FeまたはMnの添加量
はFe単独の場合は7.1〜15.0%、Mn単独の場合は
7.1〜15.0%、Fe及びMnを併せて使用する場合は
Fe,Mn2種合計で5.0%以上15.0%以下の範囲と
するのが適当である。Feの効果が顕著なのでま
ずFeを、4.1%以上添加し、これに0.9%以上の
Mnを加えてFe+Mnの合計が5%以上とするの
が良い。添加量が上記範囲より少ない場合は高温
強度を維持向上させるための金属間化合物の析出
量が不足するので効果が上がらない。また添加量
が上記範囲を越えた場合は硬さや耐摩耗性がかえ
つて低下するのでライナー材としては好ましくな
い。又、アルミニウム合金の有する軽量性も失わ
せ、粉末を押出加工する場合は圧縮性を悪くし、
押出変形抵抗を大きくし加工を困難にするので好
ましくない。従つてFeまたはMnの添加量の上限
は15%とした。 本発明のもう一つの合金粉末は上記組成にさら
に0.5〜5.0%のCuおよび0.2〜3.0%のMgを添加し
たものである。CuやMgはアルミニウム合金に時
効硬化を付与して材質を強化する成分として知ら
れている。本発明においても溶体化処理温度での
固溶限度以下の前記範囲内でCuおよびMgを添加
することは材質強化にも有効である。状態図から
Al中へのCu、Mgの溶解度はそれぞれ5.7%、14.9
%であるがMg量が多くなるとかえつて押びが低
下するのでMg量は3.0%に抑え、CuとMgを共用
して強度向上をはかることとした。したがつて
CuとMgの添加量の下限は時効硬化の表われる
Cu:0.5%、Mg:0.2%とし、上限はCu:5.0%、
Mg:3.0%とし、この範囲でAlマトリツクスが強
化される範囲を選択することとした。 Mnを使用する場合は(Cu+Mg)の合計が3
%以上すなわち(Mn+Cu+Mg)の合計で10%
を超える範囲で効果が著しい。 Feを使用する場合はFeが4.1%以上添加してあ
れば、Cu,Mgの前記範囲において時効硬化とと
もに耐熱性が向上する。 Si結晶粒の大きさを15μm以下としたのは、主
として初晶Si大きさが15μm以上になると、後続
の合金粉末の成形加工性が悪くなり、また、材料
特性としても悪化するからである。もちろんSiが
共晶として晶出する場合は微細結晶となるので問
題は起こらない。 本発明の合金粉末は上記合金組成を有する溶湯
をアトマイズ法、遠心力による微細化法等の通常
用いられている金属溶湯からの微粉末製造手段を
使用して102℃/sec以上の冷却速度で急冷分散凝
固させることによつて得ることができる。このよ
うにして得られた合金粉末は大きさが15μm以下
のSi結晶粒と成長を抑えられたFe,Mn等を含む
金属間化合物の棒状晶を有しており、従来の高Si
系Al合金粉末には見られなかつた新規な合金粉
末である。またこのような組織を有する合金を鋳
造法で得ることは困難である。参考までに23.4%
Si−4.8%Cu−1.2Mg−8.7%Fe−残Alの組成を有
する本発明よるAl合金粉末の顕微鏡組織写真を
第1図に示す。第2図は20.6Si−2.7Cu−1.1Mg
−7.8Mn−残Alの組成を有する本発明によるアル
ミニユウム合金粉末の顕微鏡組織写真である。な
お比較のため、第1図と同一組成を有する鋳造材
の組織写真を第3図に、第2図と同一組成を有す
る鋳造材の組織写真を第4図に示した。また第5
図は従来知られている21.1Si−3.1Cu−1.0Mg−
残Alの組成を有する高Siアルミニユウム合金粉
末の顕微鏡組織写真を示した。第1図、および第
2図において塊状を呈しているのが初晶Siで、棒
状を呈しているのがAl−(Fe,Mn)−Si系金属間
化合物である。第3図、第4図では粗大な多角形
をした初晶Siが見られ、大きな棒状の金属間化合
物が認められる。第5図では粒状の初晶Siと共晶
組織を呈している。 本発明の合金粉末は熱間押出し加工に適したも
のであり、特に耐熱耐摩耗性を有する高力Al合
金成形体用として適したものである。 次に実施例をあげて本発明を説明する。 実施例 表−1に示す組成の高Siアルミニウム合金溶湯
を媒体に空気を用いてガスアトマイズし、103
℃/sec以上の冷却速度で分散凝固させて−
48meshの粉末を得た。次いで250℃の温度に予熱
したこれらの粉末を、同じ温度に加熱保持した金
型中に充填し1.5ton/cm2の圧力で圧縮成形して直
径100mm、長さ200mmの圧粉体を得た。次に圧粉体
を450℃に加熱し、同じ温度に加熱保持された内
径104mmのコンテナー中に挿入し、直径30mmのダ
イスで間接押出法により押出比12により押出し
て、供試材No.1〜No.26の成形体を得た。 押出のまま(F)またはT6処理や300℃×
100Hr(O)処理を施こしたのち、標点間距離50
mm、平行部直径6mm引つ張り試験片に加工して常
温から250℃迄の間で引張試験を行つた。なお、
引張試験は各試験温度で、100Hr保持後におこな
つた。また、硬さを各温度での引張試験の試験片
のチヤキング部の端部について測定した。さらに
鋳造との比較のためA390.0合金の金型鋳造材を
比較材(鋳造)として500℃×10Hr保持後水冷
し、175℃×10Hrの時効処理を行つたものについ
て同様の試験を行つた。これらの結果を表−1に
示す。表−1中熱処理区分の記号Fは押出のま
ま、記号T6は480℃×2Hr保持後水冷し175℃×
10Hrの時効処理、記号Oは300℃×100Hr保持の
処理を示す。
[Industrial Field of Application] The present invention is a high-grade steel with excellent strength from room temperature to high temperature.
It relates to Si aluminum alloy powder, and is particularly suitable for parts such as cylinder liners of internal combustion engines, which are subject to high heat loads and require wear and seizure resistance. [Conventional technology] Recently, there has been a need to reduce the weight of engines due to the weight reduction of automobiles and the use of front engine/front drive (FF) systems, and for this reason the cylinder block has changed from cast iron to Al alloy. It's coming. In that case, a cast iron cylinder liner is used. If the cylinder liner is made of Al alloy, in addition to being lighter, it has a much better thermal conductivity than cast iron, and has a higher coefficient of thermal expansion than cast iron, which is close to that of the Al alloy used in the cylinder block, so the liner and block remain stable even when the temperature rises. The good adhesion of the liner results in an engine with good heat dissipation, and the inner wall temperature of the liner can be kept low, which extends the life of the lubricating oil and allows the use of low-viscosity lubricating oil, improving fuel efficiency. It is said that Furthermore, since the coefficient of thermal expansion is comparable to that of the aluminum alloy of the piston material, the clearance between the piston and the piston can be set small, which is expected to reduce the consumption of lubricating oil and improve fuel efficiency. or,
High-Si Al alloy has a low coefficient of friction, so when used as a cylinder liner, friction loss between it and the piston ring is reduced, which is expected to improve fuel efficiency. Although there are many effects of using Al alloy for cylinder liners, conventionally known
Al alloys have insufficient high-temperature properties as cylinder liner materials for castings. For example, AA standard A390.0 (Si = 16-18%, Cu
=4~5%, Mg=0.50~0.65%, Fe=0.5%, Ti
Casting materials such as Zn = 0.2%, Zn = 0.1%, residual Al) have a wide solid-liquid coexistence range, so a large feeder is required to obtain a sound casting, resulting in poor yield and high cost. Therefore, even with refinement treatment and mold casting, primary Si is still coarse and has poor machinability. Another fatal drawback is that the material is softened by heat when it is cast into the cylinder block, which significantly reduces wear resistance, tends to cause chattering and cracking on the machined surface, and makes honing difficult. There is. In addition, in recent years, powder metallurgy
A technique has been proposed in which an alloy having a composition close to A390.0 is powdered and then hot extruded to form a hollow body (Japanese Patent Application Laid-Open No. 109415/1983). This is a method of obtaining a hollow body by hot extruding a high-Si molten aluminum alloy into fine particles or powder that is rapidly cooled by atomization or centrifugal casting. This method has a much better yield than hollow bodies. Furthermore, according to this method, the size of the primary Si crystals is 20 μm or less, so it has excellent ductility and machinability, and also has the low coefficient of friction characteristic of high-Si aluminum alloys. In addition, with this manufacturing method, 15-20% Si, 1-5%
An alloy of Cu, 0.5 to 1.5% Mg, 0.5 to 1.5% Ni, and the balance Al, or a hollow body made by extruding a mixture of SiC, Sn, and graphite has been proposed (Japanese Patent Laid-Open No. 52-109415
reference). [Problems to be solved by the invention] As a result of these tracing experiments, the present inventors
A cylinder liner (outer diameter 73 mm,
(inner diameter 65mm, height 105mm), ADC−12
As a result of a test in which an alloy cylinder block (weighing 3.4 kg) was cast using the die-casting method at a molten metal temperature of 675℃, it was found that the hardness was HRB = 80 compared to T 6 treatment before casting. After that, it was found that the hardness softened to about HRB = 40. Therefore, this hollow body also becomes soft when it is cast into an aluminum alloy cylinder block, making it impossible to use it as a cylinder liner for casting. In addition, die-casting or low-pressure casting is used to make the liner, but it is desirable to make the liner as thin as possible from a cost perspective.As the wall thickness becomes thinner, the liner becomes deformed due to the mechanical stress applied during the liner transportation process and positioning during casting. In order to be easy to use, it is necessary to have high rigidity (high hardness). The present invention eliminates all of these drawbacks, does not soften under the heat load during casting, does not soften even in the temperature range that is applied during use, and has excellent wear resistance and seizure resistance. The purpose is to provide aluminum alloy materials economically and at low cost. [Means for solving the problem] The present invention improves coarse primary Si by adding at least one of Fe or Mn to an Al-Si alloy.
The aim is to suppress the crystallization of , and to significantly improve strength and wear resistance at high temperatures. The aluminum alloy powder of the present invention has a weight ratio of Si
Contains 15.0 to 25.0% of one or two heavy metals among Fe or Mn, and the size of Si crystal grains is 15 μm
It is a heat-resistant, wear-resistant, high-strength aluminum alloy powder that is: Another aluminum alloy powder of the present invention contains 15.0 to 25.0% Si and at least one of Fe or Mn by weight, and further contains 0.5 to 5.0% Cu and 0.2 to 3.0% Mg, The size of Si crystal grains is
It is a heat-resistant, wear-resistant, high-strength aluminum alloy powder with a diameter of 15 μm or less. This invention will be explained in more detail below. It is widely known that hypereutectic Al--Si alloys generally have a smaller coefficient of thermal expansion than Al and are superior in heat resistance and wear resistance. In hypereutectic Al-Si alloy casting materials, Si is dispersed in the matrix as primary or eutectic crystals, thereby exhibiting excellent high-temperature strength, wear resistance, and seizure resistance. However, since primary Si often crystallizes as coarse crystals, it reduces ductility and impact value, resulting in poor machinability. Also,
It is not suitable for use in cylinder liner materials, etc., as it will damage the other material. In order to solve these problems, hypereutectic Al−
It has been proposed to rapidly solidify a Si alloy to produce an alloy powder with fine primary Si crystals, and process it into parts by extrusion molding to obtain a material with excellent heat resistance and wear resistance. −109415). However, heat resistance, especially high temperature strength, is still insufficient. Therefore, in the present invention, Fe or Mn is added to the Al-Si alloy.
By adding , we suppressed the crystallization of coarse primary Si and significantly improved the strength and wear resistance at high temperatures. Next, the reason for limiting each component in the alloy powder according to the present invention will be explained. When Si is less than 15%, the amount of dispersion is small and the effect on heat resistance and wear resistance is insufficient. In the hypoeutectic region near 10% Si, primary Si cannot crystallize and has a fine eutectic structure. As the amount of Si added increases, Si primary crystals begin to crystallize, and heat resistance and wear resistance also improve. However, if the Si content exceeds 25%, the coarse Si primary crystals will not disappear even as a powder by the dispersion and rapid solidification method. When aluminum alloy powder with a coarse Si primary crystal structure is extruded and used, it significantly deteriorates the compressibility of the powder, making it difficult to make a green compact, and also increases deformation resistance during hot extrusion. It requires a large extrusion force, which causes wear on the extrusion die and significantly shortens its life. In addition to these manufacturing problems, coarse primary crystal Si must be avoided because it has the same problems with material properties as cast materials, making it unsuitable as a cylinder liner material. Furthermore, when it is cast into an aluminum alloy cylinder block material and used as a cylinder liner, the coefficient of thermal expansion decreases with the amount of Si added, and if the Si content exceeds 25%, the adhesion with the cylinder block material deteriorates, causing the piston to deteriorate. It becomes necessary to increase the clearance. Therefore, the amount of Si added is preferably 15.0 to 25.0%. Fe and Mn are important components in the present invention, and are dispersed as fine compounds by taking advantage of their low solubility in Al and slow diffusion rate, and are added for the purpose of increasing high-temperature strength. Furthermore, if Fe or Mn is added beyond the solid solubility limit, Al−(Fe,
It precipitates as a Mn)-Si type compound, and its shape becomes coarser as the amount added is larger and the cooling rate is slower. These intermetallic compounds exist as rod-shaped structures in the alloy powder produced by the dispersion and rapid solidification method, which is the mainstay of the production method of the present invention, and are fragmented in the subsequent hot extrusion process and finely dispersed in the matrix. do. These compounds are stable and difficult to grow even at high temperatures, and do not lose strength even when kept at high temperatures for long periods of time. Therefore, unlike cylinder liners for castings, there is no decrease in hardness even after exposure to high temperatures.
It is possible to maintain wear resistance. When Fe or Mn is added to a hypereutectic Al-Si alloy, the amount of primary Si decreases, but it precipitates instead.
The Al-(Fe, Mn)-Si intermetallic compound maintains and improves heat resistance and wear resistance. As described above, since Fe and Mn have similar effects, either one or both of Fe and Mn can be used. The amount of Fe or Mn added is 7.1 to 15.0% for Fe alone, and for Mn alone
7.1~15.0%, when using Fe and Mn together
It is appropriate that the total of the two types of Fe and Mn be in the range of 5.0% or more and 15.0% or less. Since the effect of Fe is remarkable, first add 4.1% or more Fe, then add 0.9% or more Fe.
It is preferable to add Mn so that the total of Fe+Mn is 5% or more. If the amount added is less than the above range, the effect will not be improved because the amount of intermetallic compound precipitated to maintain and improve high temperature strength will be insufficient. Furthermore, if the amount added exceeds the above range, the hardness and abrasion resistance will deteriorate, which is not preferable as a liner material. In addition, it also loses the lightweight properties of aluminum alloys, and when extruding powder, it makes the compressibility worse.
This is not preferable because it increases extrusion deformation resistance and makes processing difficult. Therefore, the upper limit of the amount of Fe or Mn added was set at 15%. Another alloy powder of the present invention has the above composition to which 0.5 to 5.0% Cu and 0.2 to 3.0% Mg are further added. Cu and Mg are known as components that impart age hardening to aluminum alloys and strengthen the material. Also in the present invention, adding Cu and Mg within the above-mentioned range below the solid solubility limit at the solution treatment temperature is effective for strengthening the material. From the state diagram
The solubility of Cu and Mg in Al is 5.7% and 14.9, respectively.
%, but as the amount of Mg increases, the push strength actually decreases, so we decided to keep the amount of Mg to 3.0% and use both Cu and Mg to improve strength. Therefore
The lower limit of the amount of Cu and Mg added indicates age hardening.
Cu: 0.5%, Mg: 0.2%, upper limit is Cu: 5.0%,
Mg: 3.0%, and the range in which the Al matrix was strengthened was selected. When using Mn, the total of (Cu + Mg) is 3
% or more, that is, the total of (Mn + Cu + Mg) is 10%
The effect is significant in the range exceeding . When Fe is used, if Fe is added in an amount of 4.1% or more, age hardening and heat resistance improve within the above ranges of Cu and Mg. The reason why the size of the Si crystal grains is set to be 15 μm or less is mainly because if the primary Si size is 15 μm or more, the moldability of the subsequent alloy powder deteriorates, and the material properties also deteriorate. Of course, if Si crystallizes as a eutectic, it becomes fine crystals, so no problem occurs. The alloy powder of the present invention is produced by cooling a molten metal having the above-mentioned alloy composition at a cooling rate of 10 2 °C/sec or more using commonly used methods for producing fine powder from molten metal, such as atomizing or micronization using centrifugal force. It can be obtained by rapid cooling and dispersion solidification. The alloy powder obtained in this way has Si crystal grains with a size of 15 μm or less and rod-shaped crystals of intermetallic compounds containing Fe, Mn, etc. whose growth has been suppressed, and it is different from conventional high-Si crystal grains.
This is a new alloy powder that has not been found in Al alloy powders. Further, it is difficult to obtain an alloy having such a structure by a casting method. For reference, 23.4%
FIG. 1 shows a micrograph of an Al alloy powder according to the present invention having a composition of Si-4.8% Cu-1.2Mg-8.7% Fe-remaining Al. Figure 2 shows 20.6Si−2.7Cu−1.1Mg
1 is a micrograph of an aluminum alloy powder according to the present invention having a composition of -7.8Mn-residual Al. For comparison, FIG. 3 shows a photograph of the structure of a cast material having the same composition as in FIG. 1, and FIG. 4 shows a photograph of the structure of a cast material having the same composition as in FIG. 2. Also the fifth
The figure shows the conventionally known 21.1Si−3.1Cu−1.0Mg−
A microscopic photograph of a high-Si aluminum alloy powder having a composition of residual Al is shown. In FIGS. 1 and 2, primary Si crystals are in the form of blocks, and Al-(Fe, Mn)-Si intermetallic compounds are in the form of rods. In Figures 3 and 4, coarse polygonal primary Si crystals are seen, and large rod-shaped intermetallic compounds are recognized. In Figure 5, it exhibits a eutectic structure with granular primary Si. The alloy powder of the present invention is suitable for hot extrusion processing, and is particularly suitable for forming high-strength Al alloy compacts having heat and wear resistance. Next, the present invention will be explained with reference to Examples. Example A high-Si aluminum alloy molten metal having the composition shown in Table 1 was gas atomized using air as a medium, and 10 3
Disperse and solidify at a cooling rate of ℃/sec or higher.
48mesh powder was obtained. These powders, which had been preheated to a temperature of 250°C, were then filled into a mold heated and maintained at the same temperature and compression molded at a pressure of 1.5 ton/cm 2 to obtain a green compact with a diameter of 100 mm and a length of 200 mm. . Next, the green compact was heated to 450°C, inserted into a container with an inner diameter of 104 mm kept at the same temperature, and extruded using an indirect extrusion method at an extrusion ratio of 12 using a die with a diameter of 30 mm. A molded article No. 26 was obtained. As extruded (F) or T6 treated or 300℃×
After 100Hr(O) treatment, gauge distance 50
mm, and the parallel part diameter was 6 mm, and tensile test pieces were processed at temperatures from room temperature to 250°C. In addition,
The tensile test was conducted at each test temperature after holding for 100 hours. Further, the hardness was measured at the end of the chewing part of the test piece in the tensile test at each temperature. Furthermore, for comparison with casting, similar tests were conducted using A390.0 alloy mold casting material as a comparison material (casting), which was held at 500°C for 10 hours, water-cooled, and then aged at 175°C for 10 hours. . These results are shown in Table-1. In Table 1, the heat treatment category symbol F is as extruded, and symbol T 6 is 480℃ x 2 hours and then water-cooled at 175℃
Aging treatment for 10 hours; symbol O indicates treatment at 300°C x 100 hours.

【表】 表−1から明らかなとおり比較材(鋳造)やNo.
1〜6までのものと比べて、本発明によるNo.7〜
No.26の成形体は、高温強度および高温に保持後の
硬度が高い。次に前記熱間押出成形体を切断し、
熱間鍛造により直径70mm、厚さ10mmの素材を作
り、機械加工により試験片とした後、対焼付性試
験、対摩耗性試験、摩擦係数の測定を行なつた。 Γ対焼付性試験 試験装置は第9図及び第10図に概要を図解的
に示すものであつて、ステータ1に取外し可能に
取付けられた直径70mmの円板2の中央には、裏側
から中油孔3を通じて潤滑油が注油される。ステ
ータ1には油圧装置(図示せず)によつて右方に
向けて所定圧力Pが作用するようにしてある。円
板2に相対してロータ4があり、駆動装置(図示
せず)によつて所定速度で回転するようにしてあ
る。ロータ4の円板2に対する端面に取付けられ
た試料支持具4aには、5mm×5mm×10mmの角柱
状試験片(相手材)5が同心円状に等間隔に3個
取外し可能にかつ正方形端面が円板2に対して摺
動自在に取付けてある。このような装置において
ステータ1に所定の圧力Pをかけ所定の面圧で円
板2と試験片(相手材)5とが接触するようにし
ておいて、注油孔3から摺動面に所定給油速度で
給油しながらロータ4を回転させる。 一定時間ごとにステータ1に作用する圧力を段
階的に増加してゆき、ロータ4の回転によつて相
手の試験片5と円板B2との摩擦によつて、ステ
ータ1に生ずるトルク(摩擦力によつて生ずるト
ルク)Tをスピンドル6を介してロードセル7に
作用せしめ、その変化を動歪計8で読み、記録計
9に記録させる。トルクTが急激に上昇するとき
に焼付が生じたものとして、その時の接触面圧を
もつて焼付面圧としこの大小をもつて耐焼付性の
良否を判断する。 試験に供した円板状試験片2は、300℃×10hr
の熱処理後研磨仕上げをしたものを使用し、相手
の試験片5は球状黒鉛鋳鉄で摺動面に硬質クロム
メツキを施したものと、平均粒径0.8μmのSiCを
面積率で15〜20%基地中に分散させた鉄メツキの
2種類を使用し、研磨仕上げを行なつた。比較材
としては、シリンダーライナー用として使用され
ている片状黒鉛鋳鉄についてもおこなつた。試験
条件は、速度8m/sec、潤滑油はエンジンオイル
(SAE20、ベースオイル)で温度90℃、油量
300ml/minとし、接触圧力は20Kg/cm2で20分間
の馴らし運転後、30Kg/cm2で3分間、その後3分
経過毎に10Kg/cm2ずつ上昇させていく。結果を表
−2に示す。 結果から明らかなように、現在多くのガソリン
エンジンでの組合わせに見られる片状黒鉛鋳鉄
(シリンダーライナー材)とCrメツキ(ピストン
リング表面)の組合わせよりも、本発明によるも
のは優れた耐焼付性を示している。
[Table] As is clear from Table 1, comparative materials (casting) and No.
Compared to Nos. 1 to 6, Nos. 7 to 6 according to the present invention
The molded product No. 26 has high high-temperature strength and high hardness after being held at high temperatures. Next, the hot extrusion molded body is cut,
A material with a diameter of 70 mm and a thickness of 10 mm was made by hot forging, and after being machined into test pieces, anti-seizure tests, anti-wear tests, and measurements of friction coefficients were conducted. Γ Seizure Resistance Test The test device is schematically shown in Figs. 9 and 10, and the center of a 70 mm diameter disc 2, which is removably attached to the stator 1, is filled with medium oil from the back side. Lubricating oil is supplied through the hole 3. A predetermined pressure P is applied to the stator 1 toward the right by a hydraulic system (not shown). A rotor 4 is located opposite the disc 2 and is rotated at a predetermined speed by a drive device (not shown). A sample support 4a attached to the end face of the rotor 4 relative to the disc 2 has three removable 5 mm x 5 mm x 10 mm prismatic test pieces (counter material) 5 arranged concentrically at equal intervals and has a square end face. It is slidably attached to the disc 2. In such a device, a predetermined pressure P is applied to the stator 1 so that the disk 2 and the test piece (mate material) 5 come into contact with each other with a predetermined surface pressure, and a predetermined amount of oil is supplied to the sliding surface from the oil filling hole 3. The rotor 4 is rotated while being refueled at high speed. The pressure acting on the stator 1 is increased stepwise at regular intervals, and torque (frictional force) is generated on the stator 1 due to the friction between the mating test piece 5 and the disk B2 due to the rotation of the rotor 4. Torque) T generated by the load cell is applied to the load cell 7 via the spindle 6, and its change is read by the dynamic strain meter 8 and recorded by the recorder 9. Assuming that seizure occurs when the torque T suddenly increases, the contact surface pressure at that time is taken as the seizure surface pressure, and the quality of the seizure resistance is determined based on the magnitude of this pressure. The disk-shaped test piece 2 used for the test was heated at 300℃×10hr.
The test piece 5 was made of spheroidal graphite cast iron with hard chrome plating on the sliding surface, and SiC with an average grain size of 0.8 μm was used as a base material with an area ratio of 15 to 20%. Polishing was done using two types of iron plating dispersed inside. As a comparison material, flake graphite cast iron, which is used for cylinder liners, was also tested. The test conditions were a speed of 8 m/sec, lubricating oil was engine oil (SAE20, base oil), a temperature of 90°C, and an oil amount.
The contact pressure was set at 300 ml/min, and after a 20-minute break-in operation at 20 Kg/cm 2 , the contact pressure was 30 Kg/cm 2 for 3 minutes, and then increased by 10 Kg/cm 2 every 3 minutes. The results are shown in Table-2. As is clear from the results, the present invention has superior durability compared to the combination of flake graphite cast iron (cylinder liner material) and Cr plating (piston ring surface) currently found in many gasoline engines. Indicates seizure property.

【表】 また、比較材(鋳造)や、No.1,No.2に見られ
るようにSiC分散鉄メツキに比べ、硬質クロムメ
ツキとの組合わせの場合は、焼付発生面圧が大幅
に低くなつているが、本発明による場合は、相手
表面処理の違いによる差が小さくなる結果となつ
ている点が注目される。 さらに比較材(鋳造)やNo.1,No.2に比べ本発
明の実施例の成形体の焼付発生面圧が高いが、こ
れはAl基地中に分散する硬質相の量が多く微小
な凹凸となつて油膜の保持作用として働くほか
に、基地が分散強化されているので摩擦表面が塑
性流動によつて相手材に凝着しようとするのを防
ぐためと考えられる。 ◎摩耗試験及び摩擦係数の測定 耐焼付試験に使用したのと同じ試験機により研
磨仕上げを行なつた円板状の試験片2に、球状黒
鉛鋳鉄の摺動面に硬質Crメツキを施したものと、
平均粒径0.8μmのSiCを面積率で15〜20%施した
ものを、各々研磨仕上げして相手材試験片5とし
て、次の条件でテストした。
[Table] Also, compared to the comparison material (casting) and SiC dispersed iron plating as seen in No. 1 and No. 2, when combined with hard chrome plating, the surface pressure at which seizure occurs is significantly lower. However, in the case of the present invention, it is noteworthy that the difference due to the difference in the surface treatment of the other side is reduced. Furthermore, compared to the comparison material (casting) and No. 1 and No. 2, the surface pressure at which seizure occurred in the molded body of the example of the present invention is higher, but this is due to the large amount of hard phase dispersed in the Al matrix, which causes minute irregularities. In addition to acting as a retainer for the oil film, the dispersion-strengthened base is thought to prevent the friction surface from adhering to the mating material due to plastic flow. ◎Wear test and measurement of friction coefficient Disc-shaped test piece 2 was polished using the same testing machine used for the anti-seizure test, and hard Cr plating was applied to the sliding surface of spheroidal graphite cast iron. and,
Each piece to which SiC with an average particle size of 0.8 μm was applied in an area ratio of 15 to 20% was polished and finished as a mating material test piece 5, and tested under the following conditions.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上のように本明合金粉末は、アルミニウム合
金製シリンダーブロツクに鋳ぐるまれて、かつ使
用時に比較的高い温度域で使用されるシリンダー
ライナーのような用途に適するものである。な
お、本発明合金粉末は、Ti,Cr,V,Mo,Zr等
を含んでも急冷凝固による粉末を出発原料として
いるため、耐熱性に寄与するものと考えられる。 また、ZrをCu,Mgの代わりに用いて時効硬化
性の向上を計ることも可能である。 従つて、本発明合金は従来鋳造用または展伸用
合金としては、脆い化合物をつくるために使用で
きなかつたようなFeやNi,Mnを多量に含む低級
スクラツプの使用も可能となるため、経済的効果
も大である。
As described above, the alloy powder of the present invention is suitable for applications such as cylinder liners that are cast into aluminum alloy cylinder blocks and are used in a relatively high temperature range. Furthermore, even though the alloy powder of the present invention contains Ti, Cr, V, Mo, Zr, etc., it is considered that it contributes to heat resistance because it uses a rapidly solidified powder as a starting material. It is also possible to improve age hardenability by using Zr in place of Cu or Mg. Therefore, the alloy of the present invention is economical because it allows the use of low-grade scrap containing large amounts of Fe, Ni, and Mn, which conventionally could not be used as alloys for casting or drawing due to the creation of brittle compounds. The effect is also large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明になる23.4Si−4.8Cu−1.2Mg
−8.7Fe−残Alの組成を有するAl合金粉末の金属
組織写真(倍率740倍)である。第2図は本発明
になる20.6Si−2.7Cu−1.1Mg−7.8Mn−残Alの組
成を有するAl合金粉末の金属組織写真(倍率740
倍)である。第3図は第1図と同一組成の鋳造材
料の金属組織写真である(倍率97倍)。第4図は
第2図と同一組成の鋳造材料の金属組織写真であ
る(倍率97倍)。第5図は21.1Si−3.1Cu−1.0Mg
−残Alの組成を有する公知の合金粉末の金属組
織写真である。第6図、第7図は本発明による合
金粉末成形体の押出方向に平行な断面の顕微鏡組
織写真(倍率740倍)であつて、第6図は第1図
と、第7図は第2図と、それぞれ同一組成のもの
である。第8図は、第5図と同一組成を有する公
知のアルミニユウム合金粉末を使用した成形体
の、押出方向に平行な断面の金属組織写真(倍率
740倍)である。第9図、第10図は対焼付性試
験装置の概要を示す図で、第10図は第9図の
−矢視側面図である。
Figure 1 shows 23.4Si−4.8Cu−1.2Mg according to the present invention.
This is a metallographic photograph (magnification: 740x) of an Al alloy powder having a composition of -8.7Fe-residual Al. Figure 2 is a metallographic photograph (magnification: 740
times). Figure 3 is a photograph of the metallographic structure of a cast material having the same composition as Figure 1 (97x magnification). Figure 4 is a photograph of the metallographic structure of a cast material with the same composition as Figure 2 (97x magnification). Figure 5 shows 21.1Si−3.1Cu−1.0Mg
- It is a metallographic photograph of a known alloy powder having a composition of residual Al. 6 and 7 are micrographs (magnification: 740x) of the cross section of the alloy powder compact according to the present invention parallel to the extrusion direction, and FIG. 6 is the same as FIG. 1, and FIG. They have the same composition as in the figure. Figure 8 is a photograph of the metallographic structure of a cross section parallel to the extrusion direction (magnification:
740 times). 9 and 10 are diagrams showing an outline of the anti-seizure test device, and FIG. 10 is a side view taken in the direction of the - arrow in FIG. 9.

Claims (1)

【特許請求の範囲】 1 重量比でSi 15.0〜25.0%と、FeまたはMnの
うち1種または2種の重金属を7.1〜15.0%(た
だし2種の場合はFe 4.1%以上でFe+Mnの合計
が7.1〜15.0%)含み、残部が不可避的不純物を
含むAlからなり、Si結晶粒の大きさが15μm以下
であることを特徴とする耐熱耐摩耗性高力アルミ
ニウム合金粉末。 2 重量比でSi 15.0〜25.0%と、FeまたはMnの
うち1種または2種の重金属を7.1〜15.0%(た
だし2種の場合はFe 4.1%以上でFe+Mnの合計
が7.1〜15.0%)含み、さらにCu0.5〜5.0%および
Mg0.2〜3.0%とを含み、残部が不可避的不純物
を含むAlからなり、Si結晶粒の大きさが15μm以
下であることを特徴とする耐熱耐摩耗性高力アル
ミニウム合金粉末。
[Claims] 1 15.0 to 25.0% Si and 7.1 to 15.0% of one or two heavy metals among Fe or Mn (however, in the case of two types, Fe is 4.1% or more and the total of Fe + Mn is 7.1 to 15.0%), the balance is Al containing inevitable impurities, and the heat-resistant and wear-resistant high-strength aluminum alloy powder is characterized by having a Si crystal grain size of 15 μm or less. 2 Contains 15.0 to 25.0% Si by weight and 7.1 to 15.0% of one or two heavy metals among Fe or Mn (however, in the case of two types, Fe is 4.1% or more and the total of Fe + Mn is 7.1 to 15.0%) , further Cu0.5~5.0% and
A heat-resistant, wear-resistant, high-strength aluminum alloy powder, characterized in that it contains 0.2 to 3.0% Mg, the remainder is Al containing inevitable impurities, and the size of Si crystal grains is 15 μm or less.
JP28226487A 1987-11-10 1987-11-10 High strength aluminum alloy powder having heat and wear resistances Granted JPS63266005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28226487A JPS63266005A (en) 1987-11-10 1987-11-10 High strength aluminum alloy powder having heat and wear resistances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28226487A JPS63266005A (en) 1987-11-10 1987-11-10 High strength aluminum alloy powder having heat and wear resistances

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP57119902A Division JPS5913041A (en) 1982-07-12 1982-07-12 Aluminum alloy powder having high resistance to heat and abrasion and high strength and molding of said alloy powder and its production

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2243708A Division JPH072961B2 (en) 1990-09-17 1990-09-17 Heat and wear resistance High strength aluminum alloy powder

Publications (2)

Publication Number Publication Date
JPS63266005A JPS63266005A (en) 1988-11-02
JPH048481B2 true JPH048481B2 (en) 1992-02-17

Family

ID=17650188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28226487A Granted JPS63266005A (en) 1987-11-10 1987-11-10 High strength aluminum alloy powder having heat and wear resistances

Country Status (1)

Country Link
JP (1) JPS63266005A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2781131B2 (en) * 1993-08-30 1998-07-30 住友軽金属工業株式会社 Low linear expansion rapidly solidified aluminum alloy and method for producing the same
JP6738212B2 (en) 2016-06-13 2020-08-12 昭和電工株式会社 Aluminum alloy forged product and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57198237A (en) * 1981-05-29 1982-12-04 Riken Corp Sliding member made of aluminum alloy and its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57198237A (en) * 1981-05-29 1982-12-04 Riken Corp Sliding member made of aluminum alloy and its manufacture

Also Published As

Publication number Publication date
JPS63266005A (en) 1988-11-02

Similar Documents

Publication Publication Date Title
US4938810A (en) Heat-resistant, wear-resistant, and high-strength aluminum alloy powder and body shaped therefrom
JPS61291941A (en) Cast al alloy having high si content
JPH0118982B2 (en)
EP0577062B1 (en) Oil pump made of aluminum alloys
JPS6210237A (en) Aluminum alloy for hot forging
JPS6320298B2 (en)
JPH0137464B2 (en)
JP2017078213A (en) Aluminum alloy powder for hot forging for slide component, method for producing the same, aluminum alloy forging for slide component, and method for producing the same
JPS6121295B2 (en)
JPH0118981B2 (en)
JPS6320297B2 (en)
JPH0118983B2 (en)
JPS6150132B2 (en)
JPH048481B2 (en)
JPH0610086A (en) Wear resistant aluminum alloy and working method therefor
JPH0256401B2 (en)
JPH0261023A (en) Heat-resistant and wear-resistant aluminum alloy material and its manufacture
JPH0120218B2 (en)
JPH0118984B2 (en)
JPH072961B2 (en) Heat and wear resistance High strength aluminum alloy powder
JPH0637682B2 (en) Heat resistant and abrasion resistant high strength aluminum alloy powder compact having excellent lubricity and method for producing the same
JPS62255591A (en) Combination of sliding members
JPH0543772B2 (en)
JPS61295301A (en) Heat-resistant high-power aluminum alloy powder and its molding
JP3336631B2 (en) Aluminum alloy oil pump