JPS6210237A - Aluminum alloy for hot forging - Google Patents

Aluminum alloy for hot forging

Info

Publication number
JPS6210237A
JPS6210237A JP60149192A JP14919285A JPS6210237A JP S6210237 A JPS6210237 A JP S6210237A JP 60149192 A JP60149192 A JP 60149192A JP 14919285 A JP14919285 A JP 14919285A JP S6210237 A JPS6210237 A JP S6210237A
Authority
JP
Japan
Prior art keywords
alloy
less
alloy powder
billet
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60149192A
Other languages
Japanese (ja)
Inventor
Fumio Kiyota
清田 文夫
Tatsuo Fujita
達夫 藤田
Tadao Hirano
忠夫 平野
Takumi Ui
右井 巧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Resonac Holdings Corp
Original Assignee
Riken Corp
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp, Showa Denko KK filed Critical Riken Corp
Priority to JP60149192A priority Critical patent/JPS6210237A/en
Publication of JPS6210237A publication Critical patent/JPS6210237A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To obtain an Al alloy having superior sorgeability at high temp. by forming the billet of Al alloy powder and heating it in vacuum or an inert gas to lower the gas content. CONSTITUTION:The composition of a molten Al alloy is composed of, by weight, 10-30% Si, 1-15% in total of one or more among 1-15% each of Fe, Mn and Ni and the balance Al with inevitable impurities. The composition may further contain 0.5-5% Cu and 0.2-3% Mg. The molten Al alloy is scattere and solidified by rapid cooling and the resulting powder is compacted to form a billet having a structure contg. finely dispersed Si grains of <=15mum grain size and intermetallic compounds of <=20mum grain size. The total gas content in the billet is lowered to <=5cc/100g by heating in vacuum or an inert gas.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高温鍛造性が優れ、耐摩耗性を有するアルミニ
ウム合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an aluminum alloy that has excellent high-temperature forgeability and wear resistance.

(従来の技術) 従来耐摩耗性の良好なアルミニウム(A1)合金として
は、例えばJIS AC3A、 AC4A、 AC8A
などの鋳物用A1合金や、JIS ADCl、 ADC
3、ADCIO5ADC12等のダイカスト用A1合金
が知られている。
(Prior art) Examples of conventional aluminum (A1) alloys with good wear resistance include JIS AC3A, AC4A, and AC8A.
A1 alloy for casting such as JIS ADCl, ADC
3. A1 alloys for die casting such as ADCIO5ADC12 are known.

しかしながらこれらの高ケイ素Al合金は通常の方法で
鋳塊にした場合は組織が粗大で内部欠陥が多く、また内
部欠陥のため割れが発生し易く、強度や加工性に難点が
あった。
However, when these high-silicon Al alloys are made into ingots by conventional methods, they have coarse structures and many internal defects, and cracks are likely to occur due to internal defects, resulting in difficulties in strength and workability.

また、耐摩耗性を有するA1合金としてケイ素(Si)
以外の第3元素(例えばCu、 Mg等)を添加したA
380合金等が知られているが、これらは鋳造合金であ
り、#摩耗性はある程度満足できるが、耐熱性や加工性
の点で充分満足いくものは得られていない。
In addition, silicon (Si) is used as an A1 alloy that has wear resistance.
A containing a third element (e.g. Cu, Mg, etc.) other than
380 alloy is known, but these are cast alloys, and although they are somewhat satisfactory in terms of abrasion resistance, they have not yet been fully satisfactory in terms of heat resistance and workability.

以上のような鋳造A1合金の欠点を克服すべく、A1合
金粉末の押出し成形法によってA1合金粉末成形体を得
る方法が提案されている(例えば、特開昭52−109
415公報参照)、この方法によれば内燃機関用のシリ
ンダーライナーや、各種コンプレッサーのベーンに使用
すれば耐摩耗性と潤滑性に優れ、さらに高温強度にも優
れた材料が得られることから機関の寿命や効率を著しく
高め、軽量化に役立つことから最近とくに注目を集めて
いる。
In order to overcome the above-mentioned drawbacks of cast A1 alloy, a method of obtaining an A1 alloy powder compact by extrusion molding of A1 alloy powder has been proposed (for example, Japanese Patent Laid-Open No. 52-109
(Refer to Publication No. 415), this method can be used for cylinder liners for internal combustion engines and vanes of various compressors to obtain materials with excellent wear resistance and lubricity, as well as excellent high-temperature strength. It has recently attracted particular attention because it significantly increases lifespan and efficiency, and helps reduce weight.

これらの過共晶SiA1合金粉末成形体にかかわる公知
技術としては特開昭57−54203  、特開昭57
−112922 、特開昭57−177953 、特開
昭59−110702等がある。
Known techniques related to these hypereutectic SiA1 alloy powder compacts include JP-A-57-54203 and JP-A-57.
-112922, JP-A-57-177953, and JP-A-59-110702.

(発明が解決しようとする問題点) しかしながら従来公知のA1合金粉末成形体では、熱間
鍛造によってピストン、コンロッドなどの複雑な形状に
加工しようとすると、鍛造割れが発生し易く満足のゆく
形状に加工出来なかったり、あるいは鍛造がうまく出来
た場合でも製品の熱処理時にブリスターと呼ばれる気泡
が発生し充分な強度をもった製品が得られない欠点があ
った。
(Problems to be Solved by the Invention) However, in conventionally known A1 alloy powder compacts, when hot forging is attempted to form complex shapes such as pistons and connecting rods, forging cracks tend to occur, resulting in unsatisfactory shapes. Even if the product could not be processed or forged successfully, bubbles called blisters were generated during the heat treatment of the product, making it difficult to obtain a product with sufficient strength.

本発明者らは、これらの原因について調査研究を行った
ところ、押出素材が多量のガス成分を含有し、これが原
因となって鍛造性を悪化させていることを見出し本発明
に至った。
The present inventors investigated and researched these causes and found that the extruded material contained a large amount of gas components, which caused deterioration in forgeability, leading to the present invention.

A1合金粉末成形体の脱カス方法としては、いわゆるC
anning法が知られている。(USP−39544
58、USP−41040131) Lかしながらこの
方法では操作が煩雑で生産工程には適していない。
The so-called C
The annning method is known. (USP-39544
58, USP-41040131) However, this method requires complicated operations and is not suitable for production processes.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、上記問題点を解決するためA1合金粉末
成形体の脱ガス方法を詳細に検討した結果、A1合金粉
末のビレットを作成した後にこれを真空中又は不活性ガ
ス中で加熱し、含有ガス量を5cc/ 100 g以下
と極めて少なくすれば鍛造に適した材料が生産出来るこ
とを見出し本発明に至ったものである。
In order to solve the above-mentioned problems, the present inventors investigated in detail a method for degassing an A1 alloy powder compact, and found that after creating a billet of A1 alloy powder, it was heated in a vacuum or in an inert gas. The inventors discovered that a material suitable for forging could be produced by reducing the gas content to an extremely small amount of 5 cc/100 g or less, leading to the present invention.

本発明のA1合金は1重量比でSil0.0〜30.0
%、Fe、 NiあるいはMnが1.0〜15.0%(
ただし、2種以上使用の場合は合計で1.0〜15.0
%)を含み、さらに必要に応じてCu 0.5〜5.0
%、Mg0.2〜3.0%を含み、残部が不可避的不純
物を含むAlから成り、Si結晶粒の大きさが15gm
以下であり。
The A1 alloy of the present invention has a Sil of 0.0 to 30.0 at a weight ratio of 1.
%, Fe, Ni or Mn is 1.0-15.0% (
However, if two or more types are used, the total will be 1.0 to 15.0.
%), and further contains Cu 0.5 to 5.0 as necessary.
%, Mg 0.2 to 3.0%, the remainder is Al containing unavoidable impurities, and the size of Si crystal grains is 15 gm.
It is below.

かつ金属間化合物の大きさが20ル腸以下に微細化分散
しかつ全ガス量が5cc/100 g以下であるA1合
金粉末成形体を要旨とするものである。
The object of the present invention is to provide an A1 alloy powder compact in which the intermetallic compound is finely dispersed to a size of 20 μm or less and the total gas amount is 5 cc/100 g or less.

以下この発明をさらに詳細に説明する。This invention will be explained in more detail below.

まず、本発明の合金組成について説明する。First, the alloy composition of the present invention will be explained.

一般に過共晶SiのAl−Si合金はAlよりも小さな
熱膨張係数を有し、耐熱性耐摩耗性に優れていることは
良く知られている。過共晶Al −Si合金鋳造材では
Siが初晶あるいは共晶としてマトリックス中に分散す
ることにより、高温強度や耐摩耗性、耐焼付性に優れた
効果を発揮する。しかし初晶Siはしばしば粗大結晶と
して晶出するため、延性や衝撃値を低下させ機械加工性
を悪化させる。また摺動材などに使用する場合は相手材
を傷付けるので粗大Si晶は避けなければならない。
It is well known that an Al-Si alloy of hypereutectic Si generally has a smaller coefficient of thermal expansion than Al and is superior in heat resistance and wear resistance. In hypereutectic Al--Si alloy casting materials, Si is dispersed in the matrix as primary crystals or eutectics, thereby exhibiting excellent high-temperature strength, wear resistance, and seizure resistance. However, since primary Si often crystallizes as coarse crystals, it lowers ductility and impact value and deteriorates machinability. Furthermore, when used in sliding materials, coarse Si crystals must be avoided as they will damage the mating material.

粗大Si晶を防ぐ手段として過共晶Al−Si合金を急
冷凝固させて初晶Siを微細化分散させた合金粉末をつ
くり、押出成形により機械部材に加工する技術が知られ
ている。
As a means of preventing coarse Si crystals, a technique is known in which a hypereutectic Al--Si alloy is rapidly solidified to produce an alloy powder in which primary crystal Si is finely dispersed, and the alloy powder is processed into a mechanical member by extrusion molding.

本発明で使用する過共晶Al−Si合金粉末はFe又は
MnあるいはNiを添加したものを急冷凝固させたもの
であり、初晶Siの粗大晶出を抑制すると共にFe又は
MnあるいはNiを含む金属間化合物の晶出により耐摩
耗性と高温強度をかね備えたものである。
The hypereutectic Al-Si alloy powder used in the present invention is rapidly solidified by adding Fe, Mn, or Ni, and suppresses coarse crystallization of primary Si and also contains Fe, Mn, or Ni. It has both wear resistance and high temperature strength due to the crystallization of intermetallic compounds.

本発明における成分限定理由は次のとおりである。The reasons for limiting the ingredients in the present invention are as follows.

Siは10%以下では分散量が少なく、耐熱性や耐摩耗
性に及ぼす効果が不充分である。 SilO%程度の亜
共晶領域では初晶Siは晶出せず、微細な共晶組織を呈
するものとなる。Si量が増すと共にSi初晶が晶出す
るようになり、耐熱性や耐摩耗性が向上するようになる
。しかしながらSiが30%を越えるといかなる急冷凝
固法を採用して粉末化しても、粗大なSi初晶が消失し
難くなる。急冷速度が103℃/see程度では初晶S
iを微細化するにはSi量を25%以下にする必要があ
る。
If Si is less than 10%, the amount of dispersion is small and the effect on heat resistance and wear resistance is insufficient. In a hypoeutectic region of approximately SilO%, primary Si cannot be crystallized and a fine eutectic structure is exhibited. As the amount of Si increases, primary crystals of Si begin to crystallize, resulting in improved heat resistance and wear resistance. However, if the Si content exceeds 30%, coarse Si primary crystals will be difficult to disappear no matter what rapid solidification method is employed for powdering. When the quenching rate is about 103℃/see, primary S
In order to miniaturize i, it is necessary to reduce the amount of Si to 25% or less.

粗大な初晶Si組織を有するA1合金粉末は押出成形加
工して使用するに際しては、粉体の圧縮性を著しく悪化
させ圧粉体が作り難くなるほか、熱間押出においても変
形抵抗が大きくなり、大きな押出力を必要とするほか、
押出ダイスの寿命を著しく短縮する結果をもたらす。
When A1 alloy powder, which has a coarse primary Si structure, is extruded and used, the compressibility of the powder is significantly deteriorated, making it difficult to form a green compact, and the deformation resistance is also increased during hot extrusion. , in addition to requiring large extrusion force,
This results in a significant reduction in the life of the extrusion die.

従ってSi含有量は10.0〜30.0%、゛好ましく
はSi15.0〜25.0%とするのが良い。
Therefore, the Si content is preferably 10.0 to 30.0%, preferably 15.0 to 25.0%.

Fe、 Mn、 Niは本発明においては重要な成分で
ある。FeまたはMnあるいはNiはAl中への溶解度
が低くかつ拡散速度が遅いことを利用して微細な化合物
として分散晶出させ高温強度を嵩める目的で添加する。
Fe, Mn, and Ni are important components in the present invention. Fe, Mn, or Ni is added for the purpose of increasing high-temperature strength by crystallizing it as a fine compound in a dispersed manner, taking advantage of its low solubility in Al and slow diffusion rate.

Fe、 Mn、 Ni等を固溶限界を越えて添加すると
、Al−Si −(Fe、 Mn、)系あるいはAl 
−Nt系の金属間化合物として析出し、その形状は添加
量が多いほど、また冷却速度が遅いほど粗大化する。こ
の金属間化合物は分散急冷凝固法による合金粉末におい
ては棒状組織として存在し、後続の熱間押出工程におい
て分断され、マトリックス中に微細に分散する。この化
合物は高温においても安定でかつ粗大化成長することも
なく、長時間高温保持しても強度の低下はおこらない。
When Fe, Mn, Ni, etc. are added beyond the solid solution limit, Al-Si-(Fe, Mn,) system or Al
It precipitates as a -Nt-based intermetallic compound, and its shape becomes coarser as the amount added is larger and the cooling rate is slower. This intermetallic compound exists as a rod-like structure in the alloy powder produced by the dispersion rapid solidification method, and is fragmented in the subsequent hot extrusion step and finely dispersed in the matrix. This compound is stable even at high temperatures, does not grow coarse, and does not lose strength even when kept at high temperatures for a long time.

従ってシリンダーライナー、コンロッド、ロッカーアー
ム、コンプレッサー用ベーン等高温にさらされ、しかも
強度を要求される機械部品用材料として適したものとな
る。
Therefore, it is suitable as a material for mechanical parts that are exposed to high temperatures and require strength, such as cylinder liners, connecting rods, rocker arms, and compressor vanes.

Fe、 Mn、 Niの添加量は1.0〜15.0%、
(ただし2種以−ヒの場合は合計で1.0〜15.0%
)が適当である。FeまたはMn又は旧添加量が1.0
%以下では高温強度や耐摩耗性に及ぼす効果が認められ
ず、15%を越えた場合は硬さや耐摩耗性がかえって低
くなり、成形体を作った場合には材質が脆くなる傾向が
ある。
The amount of Fe, Mn, and Ni added is 1.0 to 15.0%,
(However, in the case of species 2 or more, the total amount is 1.0 to 15.0%.
) is appropriate. Fe or Mn or old addition amount is 1.0
If it is less than 15%, no effect on high temperature strength or abrasion resistance is observed, and if it exceeds 15%, the hardness and abrasion resistance are rather low, and when a molded article is made, the material tends to become brittle.

本発明におけるA1合金では必要に応じてCuやMgを
添加しても良い、 CuやMgはA1合金において時効
硬化性を付与して材質を強化する成分として広く使用さ
れており、適正な添加−量はCuは0.5〜5.0%、
Mgは0.2〜3.0%の範囲である0本発明において
も溶体化処理温度での固溶限度内の範囲でCuやMgを
添加することは材質を強化するのに有効である。
In the A1 alloy of the present invention, Cu and Mg may be added as necessary. Cu and Mg are widely used in the A1 alloy as ingredients that impart age hardenability and strengthen the material, and appropriate addition. The amount of Cu is 0.5-5.0%,
Mg is in the range of 0.2 to 3.0%. Also in the present invention, adding Cu and Mg within the solid solubility limit at the solution treatment temperature is effective for strengthening the material.

本発明の合金においては高温強度を改善する目的で、さ
らにTi、 Zr、MOlV、 Co、 Zn、 Li
等を少量添加することは何ら支障はない、しかし添加量
があまり多くなると成分管理、溶解温度の上昇など製造
上の問題が生じてくる。
In the alloy of the present invention, for the purpose of improving high temperature strength, Ti, Zr, MOLV, Co, Zn, Li
There is no problem in adding a small amount of the same, but if the amount added is too large, manufacturing problems such as component control and increase in melting temperature will arise.

次にA1合金中の全ガス量を5cc7100 g以下と
したのは、鍛造割れを防止するためである。全ガス量は
41合金粉末を圧縮成形した段階で5cc/100g以
下となっていれば充分である。圧縮成形体の大きさにも
よるが、直径300ff1層、長さ500mm程度のビ
レットまではビレットの平均値が5cc/100 g以
下となっていれば、後続の熱間鍛造や熱処理においてふ
くれや割れが発生することはない。
Next, the reason why the total amount of gas in the A1 alloy was set to 5cc7100g or less was to prevent forging cracks. It is sufficient that the total gas amount is 5 cc/100 g or less at the stage of compression molding the 41 alloy powder. Although it depends on the size of the compression molded product, if the average value of the billet is 5cc/100g or less for up to a billet with a diameter of 300ff and 1 layer and a length of about 500mm, there will be no blistering or cracking during subsequent hot forging or heat treatment. will never occur.

A1合金中のSi結晶粒の大きさを15JJ、I以下と
したのは、主として初晶Siの大きさが15pLff1
以上になると後続の合金粉末の成形加工性が悪くなり、
材料特性が悪化するからである。
The reason why the size of the Si crystal grains in the A1 alloy is set to 15JJ,I or less is mainly because the size of the primary Si is 15pLff1.
If the temperature exceeds that level, the moldability of the subsequent alloy powder will deteriorate.
This is because the material properties deteriorate.

A1合金中の金属間化合物の大きさを204 ra以下
としたのは、高温強度とm摩耗性を改善するためである
。Al−Si −(Fe、 Ni)系あるいはAl−N
i系金属間化合物の大きさを実質的には5ALm以下、
大きなものでも20gm以下に微細かつ均一に分散させ
ることにより機械的特性を著しく改善することができる
。金属間化合物とSiの微細結晶が混ざり合って均一に
分布していると一段と潰れた効果を発揮する0本発明の
A1合金は先で前記目標組成を有する合金溶湯をアトマ
イズ法、遠心力による微粉化法等の通常用いられている
金属溶湯からの微粉末製造手段を利用して0.5+am
以下の粒子サイズに急速分散凝固させて41合金粉末を
得る。冷却速度は103℃7sec程度以上あれば充分
であり、合金成分量が多くなるほど冷却速度を早くしな
いと微細組織は得られない、このようにして得られたA
1合金粉末は大きさが151Lm以下のS1結晶と成長
を抑制された金属化合物品を有しており、このような組
織の合金を鋳造法で得ることは困難である。
The reason why the size of the intermetallic compound in the A1 alloy is set to 204 ra or less is to improve high temperature strength and m-abrasion resistance. Al-Si-(Fe, Ni) system or Al-N
The size of the i-based intermetallic compound is substantially 5 ALm or less,
By finely and uniformly dispersing even large particles to 20 gm or less, mechanical properties can be significantly improved. When the intermetallic compound and Si microcrystals are mixed and distributed uniformly, the effect of crushing is further enhanced.The A1 alloy of the present invention is produced by first atomizing a molten alloy having the target composition, and finely powdering it by centrifugal force. 0.5+am using commonly used means of producing fine powder from molten metal such as
41 alloy powder is obtained by rapid dispersion and solidification to the following particle size. A cooling rate of about 7 seconds or more at 103°C is sufficient, and as the amount of alloy components increases, a microstructure cannot be obtained unless the cooling rate is increased.
1 alloy powder has S1 crystals with a size of 151 Lm or less and metal compound articles whose growth is suppressed, and it is difficult to obtain an alloy with such a structure by a casting method.

次に本発明のA1合金は前記41合金粉末を成形加工し
、脱ガス処理して得られるものである。成形加工に際し
て高温強度、耐摩耗性、耐焼付性を良くするためには、
初晶Siの大きさ七金属間化合物の大きさが重要な因子
であり、この両者をできる限り微細にする必要がある。
Next, the A1 alloy of the present invention is obtained by molding the 41 alloy powder and degassing it. In order to improve high-temperature strength, wear resistance, and seizure resistance during molding,
The size of the primary Si crystal and the size of the seven intermetallic compounds are important factors, and both need to be made as fine as possible.

このような組織を有するA1合金粉末成形体は、前記発
明によるA1合金粉末を予め圧粉成形し、脱ガスを行っ
た後熱間押出することにより得られる。
The A1 alloy powder compact having such a structure can be obtained by compacting the A1 alloy powder according to the invention in advance, degassing it, and then hot extruding it.

圧粉成形は熱間押出の為の準備作業としておこなうもの
であり冷間静水圧プレスあるいは油圧プレス等を用いる
通常の方法で何ら支障はない、油圧プレスを用いる一例
を示せば、合金粉末を200〜300℃程度に加熱して
おこなうのが好ましい。
Powder compaction is performed as a preparatory work for hot extrusion, and there is no problem with normal methods using cold isostatic presses or hydraulic presses.An example of using a hydraulic press is to compress alloy powder into It is preferable to carry out heating to about 300°C.

300℃を越えると酸化が著しくなるのでN やAr等
の雰囲気中で加工する必要が生じるが、低温では大気中
で可能である。
If the temperature exceeds 300°C, oxidation will become significant and processing will need to be carried out in an atmosphere of N2, Ar, etc., but processing can be carried out in the air at low temperatures.

成形圧力は0.5w 5  ton/ c rn’程度
が適当で、圧粉体密度が真密度の70%以上となるよう
にする。
Appropriate compacting pressure is about 0.5 w 5 ton/c rn', and the green compact density is set to be 70% or more of the true density.

脱ガス工程は1本発明において最も重要な工程である。The degassing step is the most important step in the present invention.

ガス成分はA1合金粉末を製造する工程において、たと
えばエアー7トマイズ法によった場合、膨大な表面積を
もった粉末は空気中の水蒸気により約50cc/ (1
00g A1合金)もの大量のガスを含有している。こ
のアトマイズ粉を加熱し、ついで圧粉成形を行い、ビレ
ットとし従来法の如く大気中で熱間押出を行ったA1合
金材料中のガス量は10〜20cc7100 gと低下
はするが、この値は鍛造Al中のガス量が0.t 〜0
.3 cc7100 gとくらべると約100倍にも達
する。
In the process of producing A1 alloy powder, for example, when the air totomization method is used, the gas component is reduced to about 50 cc/(1
00g A1 alloy). This atomized powder is heated, then compacted, and made into a billet. The amount of gas in the A1 alloy material, which is hot extruded in the atmosphere as in the conventional method, is 10 to 20 cc7100 g, although this value is The amount of gas in forged Al is 0. t~0
.. Compared to 3cc7100g, it is about 100 times larger.

10〜20cc/ 100 gのガス量をもつA1合金
は、450℃以上に加熱すると合金表面にガス成分によ
るフクレ(ブリスター)が発生したり1合金内部に数周
〜数100ILの空孔を発生する。このためこの合金を
鍛造する場合、約450℃−以上に加熱するとこのブリ
スターのため製品表面に割れが発生したり、あるいは形
が壊れたりして製品を得ることが出来ない6本発明は、
この鍛造割れの原因となるガス成分を除去することによ
る鍛造用A1合金に関するものである。
When an A1 alloy with a gas amount of 10 to 20 cc/100 g is heated above 450°C, blisters will occur on the alloy surface due to the gas component, and pores of several circles to several hundred IL will be generated inside the alloy. . Therefore, when forging this alloy, if it is heated above about 450°C, cracks will occur on the surface of the product due to the blisters, or the shape will break, making it impossible to obtain the product.
This invention relates to an A1 alloy for forging by removing gas components that cause forging cracks.

本発明に使用する脱ガス法は、カンの中に粉末を入れて
真空とし脱ガスするキャニング法が良く知られている。
The degassing method used in the present invention is a well-known canning method in which powder is placed in a can and evacuated to degas it.

その他の方法としては真空中又はAr、  N2中のよ
うな不活性雰囲気中にて圧粉成形ビレットを400〜5
20℃に加熱する方法も利用できる。400℃以下では
付着したガス成分(主としてN20とN2)は、温度が
低過ぎて脱ガスは期待出来ない、又520℃以上では合
金組成によっては溶融する場合もあり溶融しない場合で
も急冷凝固により微細化したSi晶、金属間化合物粒子
の粗大化が起り好ましくはない。
Another method is to compress the powder-formed billet in vacuum or in an inert atmosphere such as Ar or N2.
A method of heating to 20°C can also be used. At temperatures below 400℃, the adhered gas components (mainly N20 and N2) cannot be expected to degas because the temperature is too low, and above 520℃, depending on the alloy composition, they may melt, and even if they do not melt, they become fine due to rapid solidification. This is not preferable because the resulting Si crystals and intermetallic compound particles become coarse.

真空の場合、真空度は0.1気圧以下、好ましくは0.
O1気圧以下にする必要がある。
In the case of vacuum, the degree of vacuum is 0.1 atmosphere or less, preferably 0.1 atmosphere.
It is necessary to keep the O pressure below 1 atmosphere.

固な成形体に加工するための工程である。This is a process for processing into a hard molded body.

熱間押出は合金粉末中に晶出している初晶Si相、共晶
相、金属間化合物相の結晶相を微細化し、材料としての
機械的特性を改善すると同時に、強固な成形体に加工す
るための工程である。
Hot extrusion refines the primary Si phase, eutectic phase, and intermetallic compound phase crystallized in the alloy powder, improves the mechanical properties of the material, and at the same time processes it into a strong compact. This is a process for

熱間押出は350℃以上の温度領域でおこなう。Hot extrusion is performed in a temperature range of 350°C or higher.

これは圧粉体の加工が容易な範囲で粒子間結合を促進さ
せて強固な成形体にするためである。さらに過飽和固溶
分の元素を微細析出させるとともに、初晶Siや金属間
化合物の棒状組織を分断して微細化し、成形体の強度と
耐摩耗性を改善するためである。
This is to promote interparticle bonding within a range where the green compact can be easily processed to form a strong compact. Furthermore, the purpose is to finely precipitate the elements in the supersaturated solid solution, and to divide and refine the rod-like structure of primary crystal Si and intermetallic compounds, thereby improving the strength and wear resistance of the compact.

本発明により得られた合金粉末成形体に各種の熱処理を
施し、材料特性をさらに改善することは何ら支障はない
、また1本発明により得られた成形体はシリンダーライ
ナーやスリーブのごとき部材としてそのまま使用しても
良いし、この成形体を素材として更に機械加工や熱間鍛
造あるいは冷間鍛造を施こして機械部品としても良い。
There is no problem in further improving the material properties by subjecting the alloy powder compact obtained by the present invention to various heat treatments. The molded body may be used as a raw material and further subjected to machining, hot forging, or cold forging to be made into a mechanical part.

本発明による脱ガス処理を行って生産されたA1合金粉
末成形体のガス量は1〜5 cc/ 100 gであり
、未処理のものにくらべ1/2〜l/20に減少してい
る。WI造Alにくらべると依然として10倍から50
倍程度となっているが500℃に加熱してもブリスター
の発生もなく何ら実用上問題もない、脱ガス押出材は従
来の未脱ガス材にくらべると特に高温での伸びが改善さ
れており、このため熱間鍛造時の材料流れを容易とし割
れの発生を防止する。また本発明によるA1合金粉末成
形体は従来のAl合金粉末成形体品に比較して高温強度
も若干ではあるが改善されており、耐摩耗性、耐焼付性
、耐応力腐食割性にも優れたものである。ざらに庁擦係
数が小さいので高温で使用され、かつ耐摩耗性が要求さ
れる摺動部材として最適なものである。用途としてはシ
リンダーライナーやコンロッド、ピストン、ロッカーア
ーム等の自動車部品、コンプレッサー用ベーン、ライナ
ー、バルブプレート等の油・空圧機器部品、VTR用ド
ラム、軸受等の家電用部品、事務機器用のギヤー、スイ
ッチ、カム、クラッチハブ等の精密部品などのほか、航
空機や宇宙産業用の広範囲の用途が期待される。
The gas amount of the A1 alloy powder compact produced by performing the degassing treatment according to the present invention is 1 to 5 cc/100 g, which is reduced to 1/2 to 1/20 of that of the untreated compact. It is still 10 to 50 times cheaper than WI-built aluminum.
Although the temperature is about twice as high, there is no problem in practical use, with no blistering occurring even when heated to 500℃.Degassed extruded materials have particularly improved elongation at high temperatures compared to conventional non-degassed materials. This facilitates material flow during hot forging and prevents cracks from occurring. In addition, the A1 alloy powder compact according to the present invention has slightly improved high-temperature strength compared to conventional Al alloy powder compacts, and has excellent wear resistance, seizure resistance, and stress corrosion cracking resistance. It is something that Since it has a relatively small coefficient of friction, it is ideal for sliding members that are used at high temperatures and require wear resistance. Applications include automobile parts such as cylinder liners, connecting rods, pistons, and rocker arms, oil and pneumatic equipment parts such as compressor vanes, liners, and valve plates, home appliance parts such as VTR drums and bearings, and gears for office equipment. In addition to precision parts such as switches, cams, and clutch hubs, it is expected to have a wide range of applications in the aircraft and space industries.

次に実施例をあげて本発明を説明する。Next, the present invention will be explained with reference to Examples.

実施例 表−1に示す組成の高Siアルミニウム合金溶湯をエア
ーアトマイズして一48seghの粉末とした。
Example A molten high-Si aluminum alloy having the composition shown in Table 1 was air atomized to form a powder of 148 segh.

次にこれらのA1合金粉末を加熱して1.5ton /
crn’の圧力で圧縮成形して直径204謬■、長さ2
00I!mのビレットとした。
Next, these A1 alloy powders are heated to 1.5 tons/
Compression molded at crn' pressure, diameter 204mm, length 2
00I! It was made into a billet of m.

(以下余白) 次にこれらのビレット10本を脱ガス炉に入れ、アルゴ
ンガス流量2(IfL/a+in中で480℃、80分
加熱して脱ガスを行った。
(Left below) Next, these 10 billets were placed in a degassing furnace, and degassed by heating at 480° C. for 80 minutes in an argon gas flow rate of 2 (IfL/a+in).

次にこれらのビレットを400℃にし、同温度に予熱保
持された内径206IIl11のコンテナー中に挿入し
、直径50a+mのダイスで間接押出法により押出(押
出比=17)して成形体を得た。これらの成形体をT 
処理あるいは300℃X100Hrの熱処理(0)を施
こした後、標点間距離50mm、平行部直径6IImの
引張試験片に加工して室温から250℃までの温度で引
張試験を実施した。引張試験は各試験温度で試料を10
0Hr保持した後に実施した。さらに各温度での引張試
験終了後の試験片のチャック部の端部を使用して硬さ測
定を行った。また室温試験の試片を切断し顕微値組−観
察をして結晶組織の大きさを測定した。これらの結果を
表−1にまとめて示す。
Next, these billets were heated to 400° C., inserted into a container with an inner diameter of 206II11 and preheated at the same temperature, and extruded by indirect extrusion (extrusion ratio = 17) using a die with a diameter of 50a+m to obtain a molded body. These molded bodies are T
After treatment or heat treatment (0) at 300° C. for 100 hours, it was processed into a tensile test piece with a gage distance of 50 mm and a parallel part diameter of 6 II m, and a tensile test was conducted at temperatures from room temperature to 250° C. The tensile test was conducted by testing 10 samples at each test temperature.
It was carried out after holding for 0 hours. Further, after the tensile test at each temperature, the hardness was measured using the end of the chuck part of the test piece. In addition, specimens tested at room temperature were cut and microscopically observed to measure the size of the crystal structure. These results are summarized in Table-1.

また同じ試験片を真空溶融抽出法(ステンレスパイプ使
用)にてガス分析を行ったところ表−2の結果となった
When the same test piece was subjected to gas analysis using a vacuum melt extraction method (using a stainless steel pipe), the results shown in Table 2 were obtained.

表−2 次に前記熱間押出成形体を切断し、熱間鍛造により直径
70mm、長さ10III11の素−材を作り、機械加
工により各種試験片を作って耐摩耗性試験、耐焼付性試
験、摩擦係数測定を実施した。
Table 2 Next, the hot extrusion molded body was cut, and a material with a diameter of 70 mm and a length of 10III11 was made by hot forging, and various test pieces were made by machining to perform wear resistance tests and seizure resistance tests. , the friction coefficient was measured.

耐摩耗性試験は直径70mmの円板状試片に5×5X1
0mmのCrメッキを施こした球状黒鉛鋳鉄を相手材と
して使用し、速度5m/sec 、押圧100Kg/c
 rn’ 、摺動圧gi 500Kmとして摩耗量を測
定した。
The abrasion resistance test was performed using a 5x5x1 disk-shaped specimen with a diameter of 70mm.
Spheroidal graphite cast iron with 0mm Cr plating was used as the mating material, speed 5m/sec, pressing force 100Kg/c.
The amount of wear was measured with rn' and a sliding pressure gi of 500 Km.

なお、潤滑油として摺動面に5AE20エンジンオイル
(温度90℃)を500m1/min滴下した。
Note that 5AE20 engine oil (temperature 90° C.) was dropped onto the sliding surface as a lubricating oil at a rate of 500 ml/min.

耐焼付性テストは前記耐摩耗性試験と同様にして抑圧を
 100Kg/ c m”から5Kg/ c m” *
 l1inの割合で増加させ焼付が発生する時の面押圧
を測定した。
The seizure resistance test was conducted in the same way as the wear resistance test above, and the suppression was from 100Kg/cm" to 5Kg/cm" *
The surface pressure when seizure occurred was measured by increasing the pressure at a rate of 1 inch.

摩擦係数は耐摩耗性試験において200Km走行時点で
のトルクを測定し算出した。
The friction coefficient was calculated by measuring the torque at the time of running 200 km in the wear resistance test.

これらの結果を表−3に示す。These results are shown in Table 3.

(以下余白) 表         3 また供試材No1〜5について熱間鍛造を行った。直径
50mmの押出材を長さ100mmに切断し、480℃
に加熱した。これを350°C加熱した金型により 1
00mm/secの速度にて直径80mmの自動車用ピ
ストンを作成した。押出素材中のガス成分が少ないため
480℃に加熱してもブリスターの発生がなく、かつサ
ンプルが高温状態で良好な伸びを持つため、Not〜N
O5の5コのピストンは割れの発生のない良好なものが
得られた。
(The following is a blank space) Table 3 Hot forging was also performed on sample materials Nos. 1 to 5. Extruded material with a diameter of 50 mm was cut into lengths of 100 mm and heated at 480°C.
heated to. This is heated to 350°C in a mold. 1
An automobile piston with a diameter of 80 mm was produced at a speed of 0.00 mm/sec. Because the extruded material has a small gas component, no blisters occur even when heated to 480°C, and the sample has good elongation at high temperatures, resulting in Not~N
Five O5 pistons were found to be in good condition with no cracking.

以上の結果から本発明のA1合金粉末成形体は高温強度
、耐摩耗性、耐焼付性に優れ、しかも熱間鍛造性が良好
な材料であることは明らかである。
From the above results, it is clear that the A1 alloy powder compact of the present invention is a material that has excellent high temperature strength, wear resistance, and seizure resistance, and also has good hot forgeability.

Claims (1)

【特許請求の範囲】[Claims]  重量比でSi10.0〜30.0%、Fe1.0〜1
5.0%またはMn1.0〜15.0%またはNi1.
0〜15.0%のうち1種または2種以上(2種以上の
場合は合計で1.0〜15.0%)と、さらに必要に応
じてCu0.5〜5.0%およびMg0.2〜3.0%
残部が不可避的不純物を含むAlとからなる合金溶湯の
分散急冷凝固粉末押出材であり、Si結晶粒の大きさが
15μm以下であり、かつ金属間化合物の大きさが20
μm以下に微細化分散した組織を有し、全ガス量が5c
c/100g以下であることを特徴とする熱間鍛造用ア
ルミニウム合金。
Weight ratio: Si10.0-30.0%, Fe1.0-1
5.0% or Mn1.0-15.0% or Ni1.
One or more of 0 to 15.0% (in the case of two or more, the total is 1.0 to 15.0%), and if necessary, Cu0.5 to 5.0% and Mg0. 2-3.0%
This is a dispersed rapidly solidified powder extruded material of a molten alloy consisting of Al, the remainder of which contains unavoidable impurities, in which the size of Si crystal grains is 15 μm or less, and the size of intermetallic compounds is 20 μm or less.
It has a finely dispersed structure of less than μm, and the total gas amount is 5c.
An aluminum alloy for hot forging, characterized in that it is less than c/100g.
JP60149192A 1985-07-09 1985-07-09 Aluminum alloy for hot forging Pending JPS6210237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60149192A JPS6210237A (en) 1985-07-09 1985-07-09 Aluminum alloy for hot forging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60149192A JPS6210237A (en) 1985-07-09 1985-07-09 Aluminum alloy for hot forging

Publications (1)

Publication Number Publication Date
JPS6210237A true JPS6210237A (en) 1987-01-19

Family

ID=15469816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60149192A Pending JPS6210237A (en) 1985-07-09 1985-07-09 Aluminum alloy for hot forging

Country Status (1)

Country Link
JP (1) JPS6210237A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230839A (en) * 1985-07-30 1987-02-09 Sumitomo Light Metal Ind Ltd Heat-and wear-resisting aluminum alloy stock suitable for hot working
JPS62185857A (en) * 1986-02-12 1987-08-14 Honda Motor Co Ltd Heat resistant and high strength aluminum alloy
JPH01123245A (en) * 1987-11-06 1989-05-16 Minolta Camera Co Ltd Organic lamination type photosensitive body
JPH01180938A (en) * 1988-01-12 1989-07-18 Ryobi Ltd Wear-resistant aluminum alloy
JPH01247546A (en) * 1988-03-30 1989-10-03 Showa Denko Kk Aluminum-based composite material and its manufacture
JPH01255640A (en) * 1988-04-01 1989-10-12 Honda Motor Co Ltd Sliding member made of sintered al alloy
JPH01255641A (en) * 1988-04-01 1989-10-12 Honda Motor Co Ltd Sliding member made of sintered al alloy
JPH0254737A (en) * 1988-08-18 1990-02-23 Hiroshima Alum Kogyo Kk Forgings made of al alloy and its manufacture
JPH02149632A (en) * 1988-11-30 1990-06-08 Showa Alum Corp Low thermal expansion aluminum alloy having excellent wear resistance and heat conductivity
JPH04323343A (en) * 1991-04-24 1992-11-12 Showa Alum Corp Aluminum alloy excellent in wear resistance
JPH04365833A (en) * 1991-06-14 1992-12-17 Mitsubishi Materials Corp Hot forged al-si alloy member having high toughness
JPH055146A (en) * 1991-06-26 1993-01-14 Showa Alum Corp Aluminum alloy excellent in wear resistance and thermal conductivity
JPH055147A (en) * 1991-06-26 1993-01-14 Showa Alum Corp Low thermal expansion aluminum alloy excellent in wear resistance
JPH07138614A (en) * 1993-06-03 1995-05-30 Mazda Motor Corp Production of plastically worked and molded goods
US5545487A (en) * 1994-02-12 1996-08-13 Hitachi Powdered Metals Co., Ltd. Wear-resistant sintered aluminum alloy and method for producing the same
JPH08246087A (en) * 1994-10-28 1996-09-24 Mercedes Benz Ag Cylinder bush made of hyper-eutectic aluminum/ silicon alloy and used for casting into crank case of reciprocating piston engine and preparation thereof
US6096143A (en) * 1994-10-28 2000-08-01 Daimlerchrysler Ag Cylinder liner of a hypereutectic aluminum/silicon alloy for use in a crankcase of a reciprocating piston engine and process for producing such a cylinder liner
JP2006328482A (en) * 2005-05-26 2006-12-07 Honda Motor Co Ltd Forged piston
JP2017078213A (en) * 2015-10-21 2017-04-27 昭和電工株式会社 Aluminum alloy powder for hot forging for slide component, method for producing the same, aluminum alloy forging for slide component, and method for producing the same
JP2017222893A (en) * 2016-06-13 2017-12-21 昭和電工株式会社 Aluminum alloy forging article and manufacturing method therefor
JP2019026859A (en) * 2017-07-25 2019-02-21 昭和電工株式会社 Aluminum alloy forging article for high speed moving component, and manufacturing method therefor
JP2021008651A (en) * 2019-07-01 2021-01-28 スズキ株式会社 Aluminum alloy working material and method for manufacturing the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913040A (en) * 1982-07-12 1984-01-23 Showa Denko Kk Heat- and wear-resistant high-strength aluminum alloy powder and molded body of said alloy powder and their manufacture
JPS5913041A (en) * 1982-07-12 1984-01-23 Showa Denko Kk Aluminum alloy powder having high resistance to heat and abrasion and high strength and molding of said alloy powder and its production
JPS5966918A (en) * 1982-10-12 1984-04-16 Showa Denko Kk Double layer structure hollow member made of aluminum alloy
JPS60121203A (en) * 1983-12-02 1985-06-28 Sumitomo Electric Ind Ltd Manufacture of aluminum alloy material
JPS60125345A (en) * 1983-12-09 1985-07-04 Sumitomo Electric Ind Ltd Aluminum alloy having high heat resistance and wear resistance and manufacture thereof
JPS60204805A (en) * 1984-03-29 1985-10-16 Nissan Motor Co Ltd Locking bolt for component parts of aluminum alloy engine
JPS60208443A (en) * 1984-03-31 1985-10-21 Sumitomo Light Metal Ind Ltd Aluminum alloy material
JPS61166931A (en) * 1985-01-17 1986-07-28 Sumitomo Light Metal Ind Ltd Method for molding al-si alloy powder

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913040A (en) * 1982-07-12 1984-01-23 Showa Denko Kk Heat- and wear-resistant high-strength aluminum alloy powder and molded body of said alloy powder and their manufacture
JPS5913041A (en) * 1982-07-12 1984-01-23 Showa Denko Kk Aluminum alloy powder having high resistance to heat and abrasion and high strength and molding of said alloy powder and its production
JPS5966918A (en) * 1982-10-12 1984-04-16 Showa Denko Kk Double layer structure hollow member made of aluminum alloy
JPS60121203A (en) * 1983-12-02 1985-06-28 Sumitomo Electric Ind Ltd Manufacture of aluminum alloy material
JPS60125345A (en) * 1983-12-09 1985-07-04 Sumitomo Electric Ind Ltd Aluminum alloy having high heat resistance and wear resistance and manufacture thereof
JPS60204805A (en) * 1984-03-29 1985-10-16 Nissan Motor Co Ltd Locking bolt for component parts of aluminum alloy engine
JPS60208443A (en) * 1984-03-31 1985-10-21 Sumitomo Light Metal Ind Ltd Aluminum alloy material
JPS61166931A (en) * 1985-01-17 1986-07-28 Sumitomo Light Metal Ind Ltd Method for molding al-si alloy powder

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230839A (en) * 1985-07-30 1987-02-09 Sumitomo Light Metal Ind Ltd Heat-and wear-resisting aluminum alloy stock suitable for hot working
JPS62185857A (en) * 1986-02-12 1987-08-14 Honda Motor Co Ltd Heat resistant and high strength aluminum alloy
JPH01123245A (en) * 1987-11-06 1989-05-16 Minolta Camera Co Ltd Organic lamination type photosensitive body
JPH01180938A (en) * 1988-01-12 1989-07-18 Ryobi Ltd Wear-resistant aluminum alloy
JPH01247546A (en) * 1988-03-30 1989-10-03 Showa Denko Kk Aluminum-based composite material and its manufacture
JPH01255640A (en) * 1988-04-01 1989-10-12 Honda Motor Co Ltd Sliding member made of sintered al alloy
JPH01255641A (en) * 1988-04-01 1989-10-12 Honda Motor Co Ltd Sliding member made of sintered al alloy
JPH0254737A (en) * 1988-08-18 1990-02-23 Hiroshima Alum Kogyo Kk Forgings made of al alloy and its manufacture
JPH02149632A (en) * 1988-11-30 1990-06-08 Showa Alum Corp Low thermal expansion aluminum alloy having excellent wear resistance and heat conductivity
JPH0480108B2 (en) * 1988-11-30 1992-12-17 Showa Aluminium Co Ltd
JPH04323343A (en) * 1991-04-24 1992-11-12 Showa Alum Corp Aluminum alloy excellent in wear resistance
JPH04365833A (en) * 1991-06-14 1992-12-17 Mitsubishi Materials Corp Hot forged al-si alloy member having high toughness
JPH055146A (en) * 1991-06-26 1993-01-14 Showa Alum Corp Aluminum alloy excellent in wear resistance and thermal conductivity
JPH055147A (en) * 1991-06-26 1993-01-14 Showa Alum Corp Low thermal expansion aluminum alloy excellent in wear resistance
JPH07138614A (en) * 1993-06-03 1995-05-30 Mazda Motor Corp Production of plastically worked and molded goods
US5545487A (en) * 1994-02-12 1996-08-13 Hitachi Powdered Metals Co., Ltd. Wear-resistant sintered aluminum alloy and method for producing the same
JPH08246087A (en) * 1994-10-28 1996-09-24 Mercedes Benz Ag Cylinder bush made of hyper-eutectic aluminum/ silicon alloy and used for casting into crank case of reciprocating piston engine and preparation thereof
US6096143A (en) * 1994-10-28 2000-08-01 Daimlerchrysler Ag Cylinder liner of a hypereutectic aluminum/silicon alloy for use in a crankcase of a reciprocating piston engine and process for producing such a cylinder liner
US6309480B1 (en) * 1994-10-28 2001-10-30 Daimlerchrysler Ag Cylinder liner comprising a supereutectic aluminum/silicon alloy for sealing into a crankcase of a reciprocating piston engine
JP2006328482A (en) * 2005-05-26 2006-12-07 Honda Motor Co Ltd Forged piston
JP2017078213A (en) * 2015-10-21 2017-04-27 昭和電工株式会社 Aluminum alloy powder for hot forging for slide component, method for producing the same, aluminum alloy forging for slide component, and method for producing the same
JP2017222893A (en) * 2016-06-13 2017-12-21 昭和電工株式会社 Aluminum alloy forging article and manufacturing method therefor
JP2019026859A (en) * 2017-07-25 2019-02-21 昭和電工株式会社 Aluminum alloy forging article for high speed moving component, and manufacturing method therefor
JP2021008651A (en) * 2019-07-01 2021-01-28 スズキ株式会社 Aluminum alloy working material and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JPS6210237A (en) Aluminum alloy for hot forging
US4867806A (en) Heat-resisting high-strength Al-alloy and method for manufacturing a structural member made of the same alloy
EP0669404B1 (en) Wear-resistant sintered aluminum alloy and method for producing the same
JPH0118982B2 (en)
JPS6320298B2 (en)
JPS6316459B2 (en)
US4889557A (en) Aluminium alloy having an excellent forgiability
JPH07197165A (en) High wear resistant free cutting aluminum alloy and its production
JPH0118981B2 (en)
JPS6320297B2 (en)
JPS6326188B2 (en)
JPH0261023A (en) Heat-resistant and wear-resistant aluminum alloy material and its manufacture
JPS61295301A (en) Heat-resistant high-power aluminum alloy powder and its molding
JPS5966918A (en) Double layer structure hollow member made of aluminum alloy
JP2000001731A (en) Hypereutectic aluminum-silicon alloy diecast member and its production
JPH0261021A (en) Heat-resistant and wear-resistant aluminum alloy material and its manufacture
JPS5959855A (en) High strength powder moldings of aluminum alloy having excellent lubricity resistance to heat and wear and its production
JPH0256401B2 (en)
JPS61243138A (en) Production of structural member made of heat-resistant high-strength al sintered alloy
JPS6230839A (en) Heat-and wear-resisting aluminum alloy stock suitable for hot working
JPH11269592A (en) Aluminum-hyper-eutectic silicon alloy low in hardening sensitivity, and its manufacture
JPH0121856B2 (en)
JPS60131945A (en) High-strength aluminum alloy having superior heat resistance
JPH01159345A (en) Heat-resistant and wear-resistant aluminum alloy powder molded body and its manufacture
JP2004099996A (en) Process for manufacturing component part of internal-combustion engine