JP7356983B2 - UV element package - Google Patents

UV element package Download PDF

Info

Publication number
JP7356983B2
JP7356983B2 JP2020538408A JP2020538408A JP7356983B2 JP 7356983 B2 JP7356983 B2 JP 7356983B2 JP 2020538408 A JP2020538408 A JP 2020538408A JP 2020538408 A JP2020538408 A JP 2020538408A JP 7356983 B2 JP7356983 B2 JP 7356983B2
Authority
JP
Japan
Prior art keywords
optical member
pedestal
ultraviolet
glass
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020538408A
Other languages
Japanese (ja)
Other versions
JPWO2020040143A1 (en
Inventor
悠樹 藤田
嗣 佐野
克子 津守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ADY CO., LTD.
Original Assignee
ADY CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ADY CO., LTD. filed Critical ADY CO., LTD.
Publication of JPWO2020040143A1 publication Critical patent/JPWO2020040143A1/en
Application granted granted Critical
Publication of JP7356983B2 publication Critical patent/JP7356983B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/06Containers; Seals characterised by the material of the container or its electrical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/10Containers; Seals characterised by the material or arrangement of seals between parts, e.g. between cap and base of the container or between leads and walls of the container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Led Device Packages (AREA)
  • Joining Of Glass To Other Materials (AREA)

Description

本発明は、例えば、紫外線殺菌、浄水、空気浄化、又は接着剤や樹脂の硬化等に用いられる深紫外線を含む近紫外線LED等の発光素子と、この発光素子と対向する位置に設けられる光学部材とを備えた紫外線素子パッケージに関する。 The present invention relates to a light-emitting element such as a near-ultraviolet LED containing deep ultraviolet light used for, for example, ultraviolet sterilization, water purification, air purification, or curing of adhesives and resins, and an optical member provided at a position facing the light-emitting element. The present invention relates to an ultraviolet element package comprising:

紫外線殺菌に際しては、従来から広く水銀灯が使用されてきたが、「水銀に関する水俣条約」の発効により、2020年以降、水銀製品の製造や輸出入が制限される。そのため、現在使用されている水銀灯の寿命が尽きた後の代替光源として、紫外線LED(Light Emitting Diode)、特に波長280nm以下の深紫外線LEDが注目されている。 Mercury lamps have traditionally been widely used for ultraviolet sterilization, but with the entry into force of the Minamata Convention on Mercury, the manufacture, import and export of mercury products will be restricted from 2020 onwards. Therefore, ultraviolet LEDs (Light Emitting Diodes), particularly deep ultraviolet LEDs with a wavelength of 280 nm or less, are attracting attention as an alternative light source after the life of currently used mercury lamps has expired.

この種のものとして、波長200nm~360nmの紫外光を出力する発光モジュールが開示されている(例えば、特許文献1参照)。この発光モジュールは、発光素子が実装される有底凹部を有する基板と、有底凹部の開口を覆うように取り付けられた窓部材と、を備えている。この発光モジュールは、紫外線LEDから出射された光の配光を制御するためのレンズ部を備えており、レンズ部は、窓部材のうち発光素子と対向する部分に形成され、レンズ部の周囲には、基板に接合するためのフランジ部が、レンズ部と共に一体的に形成されている。 As a device of this type, a light emitting module that outputs ultraviolet light with a wavelength of 200 nm to 360 nm has been disclosed (see, for example, Patent Document 1). This light emitting module includes a substrate having a bottomed recess on which a light emitting element is mounted, and a window member attached to cover the opening of the bottomed recess. This light emitting module is equipped with a lens section for controlling the light distribution of light emitted from the ultraviolet LED. The flange portion for bonding to the substrate is integrally formed with the lens portion.

上記特許文献1では、窓部材は、石英ガラスのペレット等を材料とする溶融石英を金型に流し込むことで形成される(段落0034参照)。しかしながら、石英ガラスの軟化点が約1700℃と非常に高温であり、1900℃に加熱しても非常に固く、加工するのが困難である。また、石英ガラスは、気体の蒸気圧が大きいために固体から直接気体に移行するので融液状態にはならないこともあり、溶融石英から所望するレンズ形状を得ることは非常に困難である。そのため、一般的には、インゴット状で供給される石英ガラスを所定形状に切削、研削し、更に表面を鏡面研磨する、伝統的なガラスレンズの製造方法が用いられており、非常に高価なレンズとなってしまう。 In Patent Document 1, the window member is formed by pouring fused quartz made of quartz glass pellets or the like into a mold (see paragraph 0034). However, quartz glass has a very high softening point of about 1700°C, and even when heated to 1900°C, it remains very hard and difficult to process. Furthermore, since silica glass has a high vapor pressure, it directly changes from a solid state to a gas state, so it may not be in a molten state, and it is very difficult to obtain a desired lens shape from fused silica. Therefore, the traditional manufacturing method of glass lenses is generally used, which involves cutting and grinding quartz glass supplied in ingot form into a predetermined shape, and then polishing the surface to a mirror finish, resulting in very expensive lenses. It becomes.

一方、波長300nm以下の深紫外線を高透過率で透過させる物質として、従来は石英ガラスが用いられていたが、波長300nm以下の深紫外線を高透過率で透過させるガラスも開発されている。この種のガラスの軟化点は、1000℃以下であり、上記のような伝統的なガラスレンズの製造方法以外の製造方法によって所望するレンズ形状が得られる可能性がある(例えば、特許文献2参照)。 On the other hand, although quartz glass has conventionally been used as a material that transmits deep ultraviolet rays with a wavelength of 300 nm or less with high transmittance, glasses that transmit deep ultraviolet rays with a wavelength of 300 nm or less with high transmittance have also been developed. The softening point of this type of glass is 1000°C or lower, and it is possible that a desired lens shape can be obtained by a manufacturing method other than the traditional glass lens manufacturing method described above (for example, see Patent Document 2). ).

特開2017-59716号公報JP2017-59716A 特開2006-310375号公報Japanese Patent Application Publication No. 2006-310375

ところで、上記特許文献1の発光モジュールでは、窓部材のうち、レンズ部やフランジ部の所定部分にマスキングが施され、マスキングされていない部分に対して、真空蒸着やスパッタリング等の方法によりチタン(Ti)、銅(Cu)、ニッケル(Ni)、金(Au)を順に積層した多層膜で形成されたメタライズ処理が施されている。しかしながら、微細な立体形状のレンズ部やフランジ部をマスキングすることには容易でない。ところが、マスキングが不十分となって適切なメタライズ処理が施されなければ、基板と窓部材との接合及び封止が不完全となる虞がある。紫外線、特に波長の短い深紫外線は、樹脂材料等を著しく劣化させるので、深紫外線を取り扱う発光素子を含む光モジュールのパッケージから深紫外線の漏れを防止する必要があり、パッケージの接合及び封止は、製品の信頼性に大きく影響する。 By the way, in the light emitting module of Patent Document 1, predetermined portions of the lens portion and the flange portion of the window member are masked, and titanium (Ti) is applied to the unmasked portions by a method such as vacuum evaporation or sputtering. ), copper (Cu), nickel (Ni), and gold (Au) are laminated in this order. However, it is not easy to mask a lens portion or a flange portion having a minute three-dimensional shape. However, if masking is insufficient and appropriate metallization processing is not performed, there is a risk that the bonding and sealing between the substrate and the window member will be incomplete. Ultraviolet rays, especially deep ultraviolet rays with short wavelengths, can significantly deteriorate resin materials, etc. Therefore, it is necessary to prevent the leakage of deep ultraviolet rays from the package of an optical module containing a light emitting element that handles deep ultraviolet rays. , which greatly affects product reliability.

本発明は、上記課題を解決するためになされたものであり、石英ガラスよりも軟化点が低く、波長250~400nm以下の光の平均透過率が高いガラスを用い、安価で簡易な工程で基板と光学部材とを接合させることができ、しかも封止性能が高い紫外線素子パッケージを提供することを目的とする。 The present invention was made to solve the above problems, and uses glass that has a lower softening point than quartz glass and a higher average transmittance for light with a wavelength of 250 to 400 nm or less, and can be used to fabricate a substrate using an inexpensive and simple process. An object of the present invention is to provide an ultraviolet element package that can bond an optical member with an optical member and has high sealing performance.

上記目的を達成するために、本発明は、紫外線を発光する発光素子と、前記発光素子が実装される基板と、前記発光素子と対向する位置に設けられる光学部材と、を備えた紫外線素子パッケージであって、前記光学部材は、軟化点が1000℃以下で波長250~400nmの光に対する平均透過率が80%以上であるガラスで形成されており、前記光学部材と封止接合された金属製の台座を介して前記基板と接合され、前記台座は、前記光学部材が嵌装される平面視円形の上面開口部と、前記発光素子が収容される底面視略矩形の下面開口部と、を有し、前記下面開口部の上面側周縁と前記上面開口部の底面側周縁との間には、前記台座の上面及び底面と平行な平面から成り、前記光学部材を保持する保持部が形成されていることを特徴とする。 In order to achieve the above object, the present invention provides an ultraviolet element package including a light emitting element that emits ultraviolet light, a substrate on which the light emitting element is mounted, and an optical member provided at a position facing the light emitting element. The optical member is made of glass having a softening point of 1000° C. or less and an average transmittance of 80% or more for light with a wavelength of 250 to 400 nm, and the optical member is made of metal sealed and bonded to the optical member. is joined to the substrate via a pedestal, and the pedestal has an upper opening that is circular in plan view into which the optical member is fitted, and a lower opening that is approximately rectangular in bottom view in which the light emitting element is accommodated. A holding part is formed between the top side periphery of the bottom opening and the bottom side periphery of the top opening, and is formed of a plane parallel to the top and bottom surfaces of the pedestal and holds the optical member. It is characterized by

上記紫外線素子パッケージにおいて、前記台座は、前記ガラスの熱膨張係数と略等しい熱膨張係数を有する金属で形成されていることが好ましい。 In the above ultraviolet element package, it is preferable that the pedestal is formed of a metal having a coefficient of thermal expansion substantially equal to a coefficient of thermal expansion of the glass.

上記紫外線素子パッケージにおいて、前記台座は、その表面に形成された酸化膜により前記光学部材と封止接合されていることが好ましい。 In the above ultraviolet element package, it is preferable that the pedestal is sealed and bonded to the optical member by an oxide film formed on the surface of the pedestal.

上記紫外線素子パッケージにおいて、前記基板のうち前記台座との接合部には、メタライズ処理が施されたメタライズ部が形成されており、前記台座と前記メタライズ部とが金属プリフォームにより接合されることが好ましい。 In the ultraviolet device package, a metallized portion subjected to a metallization treatment is formed at a joint portion of the substrate with the pedestal, and the pedestal and the metallized portion are bonded by a metal preform. preferable.

上記紫外線素子パッケージにおいて、前記光学部材は、光出射面が突出したドームレンズであることが好ましい。 In the above ultraviolet element package, it is preferable that the optical member is a dome lens with a protruding light exit surface.

上記紫外線素子パッケージにおいて、前記光学部材は、光出射面が平坦なフラットレンズであってもよい。 In the above ultraviolet element package, the optical member may be a flat lens having a flat light exit surface.

本発明によれば、溶融又は軟化したガラスペレットで光学部材を成形しているので、石英ガラスのインゴットを切削、研削する伝統的なガラスレンズの製造方法に比べて、製造工程を安価で、簡易化することができる。また、光学部材は、基板と対峙する面の外形形状が円形であり、光学部材が嵌装される台座の上面開口部は平面視円形なので、光学部材を構成するガラスを溶かして接合する際に、放射線状に広がるガラスを均等に引っ張り、保持する事により均一な厚みのガラスが成形され、その結果、封止性能の高い気密ガラスシール部を得ることができる。更に、光学部材の成形と同時に、金属の台座に光学部材を一体的に封止接合させるので、メタライズ処理のためのマスキングや金属蒸着工程が不要になる。また、光学部材と一体化された台座と、メタライズ処理された基板のメタライズ部を、金属プリフォームで接合することで、基板と光学部材とを気密接合させることができる。結果的に、低コストで、信頼性の高い紫外線素子パッケージを提供することができる。 According to the present invention, since the optical member is molded from molten or softened glass pellets, the manufacturing process is cheaper and simpler than the traditional method of manufacturing glass lenses, which involves cutting and grinding quartz glass ingots. can be converted into In addition, the optical member has a circular outer shape on the surface facing the substrate, and the opening on the top surface of the pedestal into which the optical member is fitted is circular in plan view. By uniformly pulling and holding the radially spread glass, glass of uniform thickness is formed, and as a result, an airtight glass seal portion with high sealing performance can be obtained. Furthermore, since the optical member is integrally sealed and bonded to the metal pedestal at the same time as the optical member is molded, masking for metallization treatment and metal vapor deposition processes are not necessary. Further, by joining the pedestal integrated with the optical member and the metallized portion of the metallized substrate using a metal preform, the substrate and the optical member can be brought into airtight contact. As a result, a highly reliable ultraviolet light device package can be provided at low cost.

(a)は本発明の一実施形態に係る紫外線素子パッケージの構成を示す分解斜視図、(b)は完成斜視図。(a) is an exploded perspective view showing the configuration of an ultraviolet device package according to an embodiment of the present invention, and (b) is a completed perspective view. (a)は上記実施形態の変形例に係る紫外線素子パッケージの構成を示す分解斜視図、(b)は完成斜視図。(a) is an exploded perspective view showing the structure of an ultraviolet element package according to a modification of the above embodiment, and (b) is a completed perspective view. 上記紫外線素子パッケージに用いられる光学部材を構成するガラスの透過率分布を示すグラフ。3 is a graph showing a transmittance distribution of glass constituting an optical member used in the ultraviolet device package. (a)は上記紫外線素子パッケージに用いられる台座の斜視図、(b)は平面図、(c)は(b)のA-A線断面図。(a) is a perspective view of a pedestal used in the above-mentioned ultraviolet element package, (b) is a plan view, and (c) is a sectional view taken along the line AA in (b). (a)~(f)は上記紫外線素子パッケージの製造方法を示す工程図であり、特に台座と一体化された光学部材の製造工程を示す図。(a) to (f) are process diagrams illustrating a method for manufacturing the ultraviolet element package, and in particular, diagrams illustrating a process for manufacturing an optical member integrated with a pedestal. (a)は上記紫外線素子パッケージの製造方法を示す工程図であり、(b)は特に第2段階としての基板と台座と一体化された光学部材の接合工程を示す図。(a) is a process diagram showing the manufacturing method of the ultraviolet element package, and (b) is a diagram specifically showing a second step of joining the optical member integrated with the substrate and the pedestal.

本発明の一実施形態に係る紫外線素子パッケージについて、図面を参照して説明する。図1は、本発明の一実施形態に係る紫外線素子パッケージ1の構成を示す。図1(a)(b)に示すように、紫外線素子パッケージ1は、深紫外線を発光する発光素子2と、発光素子2が実装される基板3と、発光素子2と対向する位置に設けられる光学部材4と、を備える。光学部材4は、光学部材4と封止接合された金属製の台座5を介して基板3と接合される。 An ultraviolet device package according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows the configuration of an ultraviolet device package 1 according to an embodiment of the present invention. As shown in FIGS. 1(a) and 1(b), the ultraviolet element package 1 is provided with a light emitting element 2 that emits deep ultraviolet light, a substrate 3 on which the light emitting element 2 is mounted, and a position facing the light emitting element 2. An optical member 4 is provided. The optical member 4 is joined to the substrate 3 via a metal pedestal 5 which is sealed and joined to the optical member 4 .

発光素子2は、波長400nm以下の紫外線を発光する紫外線素子であり、好ましくは、紫外線殺菌に高い効果を有する波長280nm以下の深紫外線を発光する深紫外線素子である。また、発光素子2は、例えば、サファイア基板上に単一のLED構造が形成された単一のチップであってもよいし、サファイア基板上に複数のLED構造が形成された集積型のチップであってもよい(図例)。 The light emitting element 2 is an ultraviolet element that emits ultraviolet light with a wavelength of 400 nm or less, and preferably a deep ultraviolet element that emits deep ultraviolet light with a wavelength of 280 nm or less, which is highly effective in ultraviolet sterilization. Further, the light emitting element 2 may be, for example, a single chip in which a single LED structure is formed on a sapphire substrate, or an integrated chip in which a plurality of LED structures are formed on a sapphire substrate. May be present (example).

基板3は、平面視で略正方形であり、例えば、窒化アルミに回路を形成したサブマウント基板を母材31とし、回路は、発光素子2の形態に応じて形成されており、例えば、フリップチップ型、ワイヤボンディング型等が挙げられる。なお、図例では、母材31上にメタライズ処理が施された素子接合部32が形成されており、2つの素子接合部32を跨ぐように発光素子2が配置される構成を示している。また、基板3の周縁に台座5が接合され、この接合部には、金メッキ又は金蒸着等によるメタライズ処理が施されたメタライズ部33が形成されている。素子接合部32とメタライズ部33との間には、絶縁部分が存在する。 The substrate 3 is approximately square in plan view, and the base material 31 is, for example, a submount substrate in which a circuit is formed on aluminum nitride, and the circuit is formed according to the form of the light emitting element 2, for example, a flip chip. Examples include molds, wire bonding molds, and the like. Note that the illustrated example shows a configuration in which element bonding portions 32 subjected to metallization treatment are formed on a base material 31, and the light emitting element 2 is arranged so as to straddle the two element bonding portions 32. Further, a pedestal 5 is bonded to the peripheral edge of the substrate 3, and a metallized portion 33 is formed at this bonded portion, which is subjected to a metallization process such as gold plating or gold vapor deposition. An insulating portion exists between the element bonding portion 32 and the metallized portion 33.

光学部材4は、基板3と対峙する面の外形形状が円形であり、図1(a)(b)に示す構成では、発光素子2からの光が入射する光入射面41が平坦であり、光が出射される光出射面42が突出したドームレンズとなっている(後述する図6(a)も参照)。図例では、光出射面42を球面形状とした構成を示すが、非球面であってもよい。なお、光学部材4は、基板3と対峙する面の外形形状が円形であればよく、例えば、図2(a)(b)に示す変形例のように、光学部材4の光出射面42が平坦であるフラットレンズであってもよい。ドームレンズは、集光的に作用するので、発光素子2から出射された光(深紫外線)の配光が狭い器具等に適した紫外線素子パッケージで用いられる。一方、フラットレンズは、集光的に作用しないので、発光素子2から出射された光(深紫外線)の配光が広い器具等に適した紫外線素子パッケージで用いられる。 The optical member 4 has a circular outer shape on the surface facing the substrate 3, and in the configuration shown in FIGS. A light emitting surface 42 from which light is emitted is a protruding dome lens (see also FIG. 6(a) to be described later). Although the illustrated example shows a configuration in which the light exit surface 42 has a spherical shape, it may be an aspherical surface. Note that the optical member 4 only needs to have a circular outer shape on the surface facing the substrate 3. For example, as in the modified example shown in FIGS. It may be a flat lens. Since the dome lens acts in a condensing manner, it is used in an ultraviolet element package suitable for devices in which the light (deep ultraviolet rays) emitted from the light emitting element 2 has a narrow distribution. On the other hand, since a flat lens does not act as a light condenser, it is used in an ultraviolet element package suitable for a device or the like in which the light (deep ultraviolet rays) emitted from the light emitting element 2 has a wide light distribution.

光学部材4は、例えば、軟化点が1000℃以下で、図3に示すように、波長250~400nmの光に対して、厚み0.4mmの資料における平均透過率が80%以上であるガラスで形成されている。このガラスの成分としては、SiO及びBを主体とし、更に、例えば、Al、LiO、NaO、KO、CaO、BaO、ZnO、Y、ZrO、La、SbO等、を含有する。The optical member 4 is made of glass, for example, which has a softening point of 1000° C. or lower and, as shown in FIG. It is formed. The components of this glass are mainly SiO 2 and B 2 O 3 and further includes, for example, Al 2 O 3 , Li 2 O, Na 2 O, K 2 O, CaO, BaO, ZnO, Y 2 O 3 , Contains ZrO 2 , La 2 O 3 , Sb 2 O, etc.

図4(a)乃至(c)に示すように、台座5は、その外形形状として平面視略矩形であり、所定の厚みを有する板状の金属部材であり、光学部材4が嵌装される平面視円形の上面開口部51と、基板3に実装された発光素子2が収容される底面視略矩形の下面開口部52と、を有する。台座5は、上面、底面及び4側面を有し、隣り合う側面により成される稜角部は、緩やかな丸みを帯びるように面取りされている。 As shown in FIGS. 4(a) to 4(c), the pedestal 5 is a plate-shaped metal member having a substantially rectangular outer shape in a plan view and having a predetermined thickness, into which the optical member 4 is fitted. It has an upper opening 51 that is circular in plan view, and a lower opening 52 that is approximately rectangular in bottom view, in which the light emitting element 2 mounted on the substrate 3 is accommodated. The pedestal 5 has a top surface, a bottom surface, and four side surfaces, and the edges formed by the adjacent side surfaces are chamfered to have a gentle roundness.

上面開口部51は、台座5の上面から円筒状に彫り込まれた穴により形成され、下面開口部52は、台座5の底面から略角筒状に彫り込まれた穴により形成される。上面開口部51と下面開口部52とは、断面視において、台座5の厚みの略中間位置よりも上面に近い位置で繋がっている。また、平面視において、上面開口部51の開口径は、下面開口部52の開口の対角線の長さと概ね等しく、下面開口部52の開口の向かい合う辺の間隔よりも短い。そのため、下面開口部52の上面側周縁と上面開口部51の底面側周縁との間には、上面及び底面と平行な平面から成り、前記光学部材を保持する保持部53が形成され、光学部材4の光入射面41側の周縁が、この保持部53によって下支えされる(図6(a)も参照)。 The upper surface opening 51 is formed by a cylindrical hole carved from the upper surface of the pedestal 5, and the lower surface opening 52 is formed by a substantially rectangular cylindrical hole carved from the bottom surface of the pedestal 5. The upper surface opening 51 and the lower surface opening 52 are connected at a position closer to the upper surface of the pedestal 5 than at a substantially mid-thickness position in a cross-sectional view. Further, in a plan view, the opening diameter of the upper surface opening 51 is approximately equal to the length of the diagonal line of the opening of the lower surface opening 52, and is shorter than the interval between the opposing sides of the opening of the lower surface opening 52. Therefore, between the upper surface side periphery of the lower surface opening 52 and the bottom surface side periphery of the upper surface opening 51, a holding portion 53 is formed which is made of a plane parallel to the upper surface and the bottom surface and holds the optical member. 4 on the light incident surface 41 side is supported by this holding portion 53 (see also FIG. 6(a)).

台座5は、光学部材4を構成するガラスの熱膨張係数と略等しい熱膨張係数を有する金属で形成されている。ガラス及び台座5の熱膨張係数は、例えば、常温で4.5×10-6K-1程度であり、台座5の材料としては、例えば、厚さ0.1~0.2mm程度のコバール(Korver)を使用することができる。コバールは、鉄とニッケル及びコバルト等の合金であり、硬質ガラスの接着に使用される一般的な材料である。コバールの融点は1450℃程度であり、ガラスの融点よりも高い。基板3と光学部材4とは、金属の台座5と、基板3の周縁のメタライズ部33とを、金属プリフォーム6で溶接することで接合される。金属プリフォーム6は、金・スズといった貴金属を含む薄い金属(合金)を接合部分の形状に成形したものである。 The pedestal 5 is made of metal having a coefficient of thermal expansion substantially equal to the coefficient of thermal expansion of the glass constituting the optical member 4 . The coefficient of thermal expansion of the glass and the pedestal 5 is, for example, about 4.5 x 10-6 K-1 at room temperature, and the material of the pedestal 5 is, for example, Korver with a thickness of about 0.1 to 0.2 mm. ) can be used. Kovar is an alloy of iron, nickel, cobalt, etc., and is a common material used for bonding hard glass. The melting point of Kovar is about 1450°C, which is higher than the melting point of glass. The substrate 3 and the optical member 4 are joined by welding the metal pedestal 5 and the metallized portion 33 at the peripheral edge of the substrate 3 using a metal preform 6. The metal preform 6 is a thin metal (alloy) containing noble metals such as gold and tin that is formed into the shape of the joint portion.

次に、紫外線素子パッケージ1の製造方法について、図5及び図6を参照しつつ説明する。図5は、紫外線素子パッケージ1の製造方法における第1段階として、紫外線素子パッケージ1に用いられる光学部材4の製造方法であり、台座5と一体的に封止接合された光学部材4の製造工程を示す。また、図6は、紫外線素子パッケージ1の製造方法における第2段階として、基板3と光学部材4との接合工程を示す。 Next, a method for manufacturing the ultraviolet element package 1 will be described with reference to FIGS. 5 and 6. FIG. 5 shows a method of manufacturing the optical member 4 used in the ultraviolet element package 1 as the first step in the method of manufacturing the ultraviolet element package 1, and the manufacturing process of the optical member 4 integrally sealed with the pedestal 5. shows. Further, FIG. 6 shows a step of bonding the substrate 3 and the optical member 4 as the second step in the method of manufacturing the ultraviolet element package 1.

紫外線素子パッケージ1の製造方法において、光学部材4は、ガラスを加熱し、溶融又は軟化させた後、所定の型(治具)で圧縮成形される。図5(a)に示すように、固定された治具20の上面には、台座5の下面開口部52に対応する窪み21が形成されている。この窪み21は、周縁が台座5の内周面に対応するように、大きく彫り込まれ、中央部は、台座5の保持部53と同平面を成すように平坦になっており、この中央部の平坦面が、光学部材4の光入射面41の形状として転写される。 In the method for manufacturing the ultraviolet element package 1, the optical member 4 is compression-molded using a predetermined mold (jig) after glass is heated and melted or softened. As shown in FIG. 5A, a recess 21 corresponding to the lower opening 52 of the pedestal 5 is formed on the upper surface of the fixed jig 20. As shown in FIG. This recess 21 is carved in a large size so that its peripheral edge corresponds to the inner circumferential surface of the pedestal 5, and its central part is flat so as to be flush with the holding part 53 of the pedestal 5. The flat surface is transferred as the shape of the light entrance surface 41 of the optical member 4.

そして、図5(b)に示すように、台座5が、この窪み21に嵌装される。ここで、台座5には酸化処理が施され、その表面には酸化膜が形成されている。治具20は、例えば、カーボンパウダーを図示したような所定形状に圧縮成形したものである。次に、棒状で供給されるガラスを、所定サイズ(所定体積又は所定重量)のガラスペレット10に切断し、図5(c)に示すように、台座5の中心とガラスペレット10の中心が一致するように、台座5の上面開口部51及び治具20上にガラスペレット10を載置する。 Then, as shown in FIG. 5(b), the pedestal 5 is fitted into the recess 21. Here, the pedestal 5 is subjected to oxidation treatment, and an oxide film is formed on its surface. The jig 20 is, for example, compression molded carbon powder into a predetermined shape as shown in the figure. Next, the glass supplied in the form of a rod is cut into glass pellets 10 of a predetermined size (predetermined volume or predetermined weight), and as shown in FIG. 5(c), the center of the pedestal 5 and the center of the glass pellet 10 are aligned. The glass pellet 10 is placed on the upper surface opening 51 of the pedestal 5 and the jig 20 so as to do so.

次に、図5(d)に示すように、台座5及びガラスペレット10が載置された治具20と、成形すべきレンズ形状に対応する曲面を有する窪み22が形成された可動式の治具23とを、第1加熱炉40内に収納し、窒素ガス環境下においてガラスの軟化点よりも高い第1の温度(例えば1000℃)に加熱する。なお、図5(d)では、ガラスペレット10が溶融又は軟化した状態を描いている。治具23も、例えば、カーボンパウダーを図示のような所定形状に圧縮成形したものであり、治具20の窪み21の中心と治具23の窪み22の中心が一致するように、治具20及び治具23が夫々配置されている。 Next, as shown in FIG. 5(d), a jig 20 on which the pedestal 5 and the glass pellet 10 are placed, and a movable jig in which a recess 22 having a curved surface corresponding to the shape of the lens to be molded is formed. The components 23 are housed in the first heating furnace 40 and heated to a first temperature (for example, 1000° C.) higher than the softening point of glass in a nitrogen gas environment. Note that FIG. 5(d) depicts a state in which the glass pellet 10 is melted or softened. The jig 23 is also made by compression molding carbon powder into a predetermined shape as shown in the figure, and the jig 20 is made such that the center of the recess 21 of the jig 20 and the center of the recess 22 of the jig 23 coincide with each other. and a jig 23 are arranged, respectively.

ガラスペレット10が、コンプレッション成形可能な程度に溶融又は軟化されると、図5(e)に示すように、可動式の治具23を治具20に向かって徐々に下降させ、窪み22の表面によってガラスペレット10を加圧変形させる。それによって、溶融したガラスペレット10の表面に窪み22の曲面が転写され、これが光学部材4の光出射面42となる(図6(a)参照)。また、ガラスペレット10が溶融した時、台座5の表面に形成された酸化膜により、台座5とガラスとの濡れ性が良くなり、ガラス・金属界面の密着性が向上し、封止(ハーメチック)接合され、これらの境界線が、気密ガラスシール部GSとなる。なお、気密ガラスシール部GSは、それ自体には殆ど厚みが無く、図6(a)では、説明のために気密ガラスシール部GSを誇張して図示しておいる。 When the glass pellet 10 is melted or softened to the extent that compression molding is possible, the movable jig 23 is gradually lowered toward the jig 20, as shown in FIG. The glass pellet 10 is deformed under pressure. As a result, the curved surface of the depression 22 is transferred to the surface of the molten glass pellet 10, and this becomes the light exit surface 42 of the optical member 4 (see FIG. 6(a)). In addition, when the glass pellet 10 is melted, the oxide film formed on the surface of the pedestal 5 improves the wettability between the pedestal 5 and the glass, improving the adhesion of the glass-metal interface, resulting in sealing (hermetic sealing). They are joined, and their boundary line becomes an airtight glass seal part GS. Note that the airtight glass seal portion GS itself has almost no thickness, and the airtight glass seal portion GS is exaggerated in FIG. 6(a) for the sake of explanation.

次に、治具23を所定時間所定圧力で治具20に押しつけて光学部材4を圧縮成形した後、第1加熱炉40内の温度を低下させ、治具20、治具23、成形された光学部材4及び台座5が冷却される。ここで、上述したように、台座5の材料と光学部材4の熱膨張係数が略同じなので、冷却の際、光学部材4と台座5とは略同じ割合で収縮する。そのため、光学部材4と台座5とが分離することはなく、冷却後であっても光学部材4と台座5は一体的に封止接合されている。そして、常温に冷却した後、第1加熱炉40から治具20、治具23及び光学部材4及び台座5を取り出し、治具23を治具20から分離する。それによって、図5(f)に示すように、封止接合された光学部材4及び台座5が得られる。 Next, after compression molding the optical member 4 by pressing the jig 23 against the jig 20 for a predetermined time and under a predetermined pressure, the temperature in the first heating furnace 40 is lowered, and the jig 20, the jig 23, and the molded The optical member 4 and the pedestal 5 are cooled. Here, as described above, since the material of the pedestal 5 and the coefficient of thermal expansion of the optical member 4 are substantially the same, the optical member 4 and the pedestal 5 contract at substantially the same rate during cooling. Therefore, the optical member 4 and the pedestal 5 are not separated, and the optical member 4 and the pedestal 5 are integrally sealed and joined even after cooling. After cooling to room temperature, the jig 20, the jig 23, the optical member 4, and the pedestal 5 are taken out from the first heating furnace 40, and the jig 23 is separated from the jig 20. Thereby, as shown in FIG. 5(f), the optical member 4 and the pedestal 5 which are sealed and bonded are obtained.

ここで、本実施形態の紫外線素子パッケージ1においては、光学部材4は、基板3と対峙する面の外形形状が円形であり、台座5は、光学部材4が嵌装される平面視円形の上面開口部51を有する。すなわち、台座5とガラスとの境界線である気密ガラスシール部GSが円形になる。そのため、円盤状(円柱)のガラスペレットを酸化させた台座5(治具20)に乗せて、ガラスを溶かして接合する際に、上面開口部51が円形であれば、放射線状に広がるガラスを均等に引っ張り、保持することによって、均一な厚みのガラスが成形される。これは、潜水艦や航空機では、水圧や気圧に耐えるために胴体が丸く設計されていることからも、容易に想像できよう。仮に、上面開口部51が、円形でない、例えば、四角形であれば、例え断面が四角形になるよう加工したガラスペレットを用いたとしても、ガラスが溶けた時に均一に引っ張られないので、ガラスの厚みが不均一になり、気密ガラスシール部に穴が空くこともあり得る。これに対して、本実施形態では、台座5の上面開口部51が円形なので、均一な厚みでガラスが成形され、穴が無く封止性能の高い気密ガラスシール部GSを得ることができる。 Here, in the ultraviolet element package 1 of the present embodiment, the optical member 4 has a circular outer shape on the surface facing the substrate 3, and the pedestal 5 has a circular upper surface in plan view into which the optical member 4 is fitted. It has an opening 51. That is, the airtight glass seal portion GS, which is the boundary line between the pedestal 5 and the glass, becomes circular. Therefore, when placing a disk-shaped (cylindrical) glass pellet on the oxidized pedestal 5 (jig 20) and melting and joining the glass, if the top opening 51 is circular, the glass spreads out in a radial manner. By pulling and holding it evenly, a glass of uniform thickness is formed. This can be easily imagined from the fact that the bodies of submarines and aircraft are designed to be round in order to withstand water and atmospheric pressure. If the top opening 51 is not circular, for example, square, even if a glass pellet processed to have a square cross section is used, the glass will not be pulled uniformly when melted, so the thickness of the glass will vary. This may cause unevenness and holes in the airtight glass seal. On the other hand, in this embodiment, since the upper surface opening 51 of the pedestal 5 is circular, the glass is molded to have a uniform thickness, and an airtight glass seal part GS having no holes and high sealing performance can be obtained.

気密ガラスシール部GSは、台座5の上面開口部51の内側面と、これと接する光学部材4の外側面との境界に形成される。また、本実施形態では、台座5は、下面開口部52の上面側周縁と上面開口部51の底面側周縁との間には保持部53が設けられているので、気密ガラスシール部GSは、この保持部53の上面と光学部材4の底面との境界にも形成される。すなわち、気密ガラスシール部GSが、上面開口部51の内側面に沿った鉛直面だけでなく、保持部53に沿った水平面にも形成されるので、封止性能を更に高めることができる。また、光学部材4が保持部53で支持されるので、光学部材4が外部から押圧されても、光学部材4が発光素子2側へ押し込まれることもなく、耐久性を向上させることができる。 The airtight glass seal portion GS is formed at the boundary between the inner surface of the upper surface opening 51 of the pedestal 5 and the outer surface of the optical member 4 in contact with the inner surface. Further, in the present embodiment, since the pedestal 5 is provided with the holding portion 53 between the upper surface side periphery of the lower surface opening 52 and the bottom surface side periphery of the upper surface opening 51, the airtight glass seal portion GS is It is also formed at the boundary between the top surface of the holding portion 53 and the bottom surface of the optical member 4. That is, since the airtight glass seal portion GS is formed not only on the vertical surface along the inner surface of the upper surface opening 51 but also on the horizontal surface along the holding portion 53, the sealing performance can be further improved. Further, since the optical member 4 is supported by the holding portion 53, even if the optical member 4 is pressed from the outside, the optical member 4 will not be pushed toward the light emitting element 2 side, and durability can be improved.

また、光学部材4及び台座5は、別途の加熱炉(不図示)に収納し、酸素を含む空気環境下においてガラスの軟化点よりも高く、第1の温度(例えば、1000℃)よりも低い第2の温度(例えば、800℃)に再加熱されることが好ましい。この再加熱処理により、カーボンパウダーの転写によるシボ加工状の光学部材4の表面が、再溶融又は再軟化されると、表面張力によって溶融又は軟化したガラスが凸部から凹部に異動し、光学部材4の表面の凹凸が徐々に均され、平滑化される。すなわち、簡易な再加熱処理により、レンズの表面を熱研磨することで、レンズの表面を鏡面仕上げとすることができる。 Further, the optical member 4 and the pedestal 5 are housed in a separate heating furnace (not shown), and the temperature is higher than the softening point of glass and lower than the first temperature (for example, 1000° C.) in an oxygen-containing air environment. Preferably, it is reheated to a second temperature (eg 800°C). By this reheating treatment, the surface of the optical member 4, which is textured by transferring the carbon powder, is remelted or softened again, and the molten or softened glass moves from the convex portion to the concave portion due to surface tension, and the optical member The unevenness of the surface of 4 is gradually leveled and smoothed. That is, by thermally polishing the surface of the lens through a simple reheating process, the surface of the lens can be given a mirror finish.

光学部材4及び台座5を接合させた後、台座5のうちガラスと接合していない面の酸化膜が、洗浄、除去される。また、コバールによって形成された台座5は、錆防止のために、ニッケルメッキが施され、更に、基板3との接合のために、金メッキが施される。なお、これらのメッキ処理は、台座5が光学部材4と封止接合された後に行われるが、ガラス製の光学部材4は絶縁体なので、光学部材4の表面にめっきが施されることはない。しかし、光学部材4もめっき液に浸されるので、光学部材4を構成するガラスは、耐酸性に優れたもの等の薬剤耐性の高いものであることが好ましい。台座5と接合された光学部材4は、それ自体が独立して製造及び商取引され得るものであり、以下に説明する基板3との接合工程は、光学部材4の製造者と異なる製造者によって実施されてもよい。 After the optical member 4 and the pedestal 5 are bonded, the oxide film on the surface of the pedestal 5 that is not bonded to the glass is cleaned and removed. Furthermore, the pedestal 5 made of Kovar is plated with nickel to prevent rust, and further plated with gold for bonding to the substrate 3. Note that these plating treatments are performed after the pedestal 5 is sealed and joined to the optical member 4, but since the optical member 4 made of glass is an insulator, no plating is applied to the surface of the optical member 4. . However, since the optical member 4 is also immersed in the plating solution, the glass constituting the optical member 4 is preferably one with high chemical resistance, such as one with excellent acid resistance. The optical member 4 joined to the pedestal 5 can be independently manufactured and sold commercially, and the joining process with the substrate 3 described below may be performed by a manufacturer different from the manufacturer of the optical member 4. may be done.

次に、図6(a)に示すように、発光素子2が実装された基板3を用意し、この基板3と、上述した工程で形成された台座5と封止接合された光学部材4との間に、金・錫又は金・ゲルマニウムといった貴金属を含む合金等で形成された金属プリフォーム6を配置し、基板3側のメタライズ部33及び台座5の下面とが略密着するように、位置合わせを行う。そして、図6(b)に示すように、基板3、金属プリフォーム6及び光学部材4を、第2の加熱炉50内で、少なくとも金属プリフォーム6の溶融温度(200~400℃)以上の温度まで加熱し、それらを溶接する。そして、金属プリフォーム6の溶融温度以下の温度まで冷却することで、金属プリフォーム6が硬化して、光学部材4と一体化された台座5と、及び基板3の周壁のメタライズ部33とが無機材料(プリフォーム)により接合される。 Next, as shown in FIG. 6(a), a substrate 3 on which a light emitting element 2 is mounted is prepared, and this substrate 3 and an optical member 4 sealed and bonded to a pedestal 5 formed in the above-described process are combined. A metal preform 6 made of an alloy containing a noble metal such as gold/tin or gold/germanium is placed between the metal preforms 6 and positioned so that the metallized portion 33 on the substrate 3 side and the lower surface of the pedestal 5 are in close contact with each other. Make adjustments. Then, as shown in FIG. 6(b), the substrate 3, metal preform 6, and optical member 4 are heated in a second heating furnace 50 to a temperature higher than at least the melting temperature of the metal preform 6 (200 to 400°C). Heat to temperature and weld them. Then, by cooling the metal preform 6 to a temperature below the melting temperature, the metal preform 6 is hardened, and the pedestal 5 integrated with the optical member 4 and the metallized portion 33 of the peripheral wall of the substrate 3 are formed. Bonded using inorganic material (preform).

台座5は、光学部材4の基板3に対向する側の下面のうち、基板3のメタライズ部33に接合される部分に一体的に封止接合されている。そのため、台座5の下面と基板3のメタライズ部33とが、金属プリフォーム6により密着接合されると、基板3、台座5の下面開口部52と光学部材4の光入射面41とで形成される空間は、密閉されて外部とは遮断される。その結果、発光素子2から出力される深紫外線は、基板3と光学部材4の接合部の隙間から漏れることもなく、外部からのガス、水分等の侵入を防止でき、発光素子2を保護し、製品寿命を長くすることができる。また、紫外線素子パッケージ1の周囲に存在する樹脂製品等に悪影響を与えることもない。 The pedestal 5 is integrally and sealingly bonded to a portion of the lower surface of the optical member 4 on the side facing the substrate 3 that is bonded to the metallized portion 33 of the substrate 3 . Therefore, when the lower surface of the pedestal 5 and the metallized portion 33 of the substrate 3 are closely bonded by the metal preform 6, the lower surface opening 52 of the substrate 3, the pedestal 5, and the light incident surface 41 of the optical member 4 form a The space is sealed and isolated from the outside world. As a result, the deep ultraviolet light emitted from the light emitting element 2 does not leak through the gap between the joint between the substrate 3 and the optical member 4, preventing gas, moisture, etc. from entering from the outside, and protecting the light emitting element 2. , the product life can be extended. Moreover, resin products and the like existing around the ultraviolet element package 1 are not adversely affected.

ところで、図5に示す台座5と一体的に接合された光学部材4の製造工程において、治具20及び治具23は、それぞれカーボンパウダーを圧縮して形成されたものを用いている。そのため、図5(f)において成形された光学部材4の表面には、微小なカーボンパウダーの形状が転写されてシボ加工状になっており、いわゆるつや消し処理がなされたような状態になっている。また、光学部材4の表面に、剥離したカーボンパウダーが付着している場合もあり得る。そこで、図5(f)に示す工程の後、成形された光学部材4の表面を洗浄し付着したカーボンパウダーを除去する洗浄工程を設けてもよい。具体的には、塩酸、フッ化水素水、脱イオン水等を用いて光学部材4の表面を洗浄する。洗浄後に光学部材4の表面を研磨するために再度加熱し表面を溶かして、熱研磨(サーマルポリッシュ)を行うことが望ましい(不図示)。 By the way, in the manufacturing process of the optical member 4 integrally joined to the pedestal 5 shown in FIG. 5, the jig 20 and the jig 23 are each formed by compressing carbon powder. Therefore, the shape of the minute carbon powder is transferred to the surface of the optical member 4 molded in FIG. 5(f), resulting in a textured surface, giving the surface a so-called matte finish. . Further, there may be cases where peeled carbon powder adheres to the surface of the optical member 4. Therefore, after the step shown in FIG. 5(f), a cleaning step may be provided to clean the surface of the molded optical member 4 and remove the attached carbon powder. Specifically, the surface of the optical member 4 is cleaned using hydrochloric acid, hydrogen fluoride water, deionized water, or the like. In order to polish the surface of the optical member 4 after cleaning, it is desirable to heat it again to melt the surface and perform thermal polishing (not shown).

なお、発光素子2から出射された深紫外線を拡散して照射したい場合、光学部材4の表面に凹凸が残っていた方がよい場合もある。その場合は、図5(f)で示した熱研磨を中止することによって表面に凹凸の残った状態になる。 Note that if it is desired to diffuse and irradiate the deep ultraviolet rays emitted from the light emitting element 2, it may be better for the surface of the optical member 4 to remain uneven. In that case, by discontinuing the thermal polishing shown in FIG. 5(f), the surface will remain uneven.

以上説明したように、本発明によれば、軟化点が1000℃以下で、波長250~400nmの光に対する平均透過率が80%以上であるガラスを用い、溶融又は軟化したガラスペレット10に治具23を押しつけて光学部材4を加圧成形しているので、製造工程数が少なく、且つ、工程自体が簡単である。また、光学部材4の成形と同時に、台座5が光学部材4に一体的に接合されているため、メタライズ処理のためのマスキングや蒸着工程が不要になる。更に、光学部材4と一体化された台座5と、メタライズ処理された基板3の周壁のメタライズ部33とは、互いの接合面が金属となるので、金属プリフォーム6を用いることで、容易に無機材料(プリフォーム)で接合でき、製造工程を更に簡単にすることができる。結果的に、低コストで、信頼性の高い紫外線素子パッケージ1を提供することができる。また、ガラスの材料は、上記で例示したものに限定されず、更に波長の短い深紫外線(例えば265nm)等に対する透過率が80%よりも低くても、実用上十分な透過率(例えば70%以上)を有するものであってもよい。 As explained above, according to the present invention, glass having a softening point of 1000° C. or less and an average transmittance of 80% or more for light with a wavelength of 250 to 400 nm is used, and a jig is used to attach the molten or softened glass pellet 10 to the glass pellet 10. Since the optical member 4 is pressure-molded by pressing 23, the number of manufacturing steps is small and the process itself is simple. Further, since the pedestal 5 is integrally joined to the optical member 4 at the same time as the optical member 4 is molded, masking and vapor deposition steps for metallization processing are not necessary. Furthermore, since the joint surfaces of the pedestal 5 integrated with the optical member 4 and the metallized portion 33 of the metallized peripheral wall of the substrate 3 are metal, the use of the metal preform 6 makes it easy to It can be bonded with an inorganic material (preform), which further simplifies the manufacturing process. As a result, a highly reliable ultraviolet device package 1 can be provided at low cost. Furthermore, the material of the glass is not limited to those exemplified above, and even if the transmittance to deep ultraviolet rays with shorter wavelengths (e.g. 265 nm) is lower than 80%, it still has a practically sufficient transmittance (e.g. 70%). above).

1 紫外線素子パッケージ
2 発光素子
3 基板
33 メタライズ部
4 光学部材(ドームレンズ、フラットレンズ)
42 光出射面
5 台座
51 上面開口部
52 下面開口部
53 保持部
6 金属プリフォーム
1 UV element package 2 Light emitting element 3 Substrate 33 Metallized part 4 Optical member (dome lens, flat lens)
42 Light exit surface 5 Pedestal 51 Top opening 52 Bottom opening 53 Holding part 6 Metal preform

Claims (6)

紫外線を発光する発光素子と、前記発光素子が実装される基板と、前記発光素子と対向する位置に設けられる光学部材と、を備えた紫外線素子パッケージであって、
前記光学部材は、軟化点が1000℃以下で波長250~400nmの光に対する平均透過率が80%以上であるガラスで形成されており、前記光学部材と封止接合された金属製の台座を介して前記基板と接合され、
前記台座は、前記光学部材が嵌装される平面視円形の上面開口部と、前記発光素子が収容される底面視略矩形の下面開口部と、を有し、
前記下面開口部の上面側周縁と前記上面開口部の底面側周縁との間には、前記台座の上面及び底面と平行な平面から成り、前記光学部材を保持する保持部が形成されていることを特徴とする紫外線素子パッケージ。
An ultraviolet element package comprising a light emitting element that emits ultraviolet light, a substrate on which the light emitting element is mounted, and an optical member provided at a position facing the light emitting element,
The optical member is made of glass having a softening point of 1000° C. or less and an average transmittance of 80% or more for light with a wavelength of 250 to 400 nm. is bonded to the substrate by
The pedestal has an upper opening that is circular in plan view into which the optical member is fitted, and a lower opening that is approximately rectangular in bottom view and in which the light emitting element is housed .
A holding part is formed between the top side periphery of the bottom opening and the bottom side periphery of the top opening, and is made of a plane parallel to the top and bottom surfaces of the pedestal and holds the optical member. A UV element package featuring:
前記台座は、前記ガラスの熱膨張係数と略等しい熱膨張係数を有する金属で形成されていることを特徴とする請求項1に記載の紫外線素子パッケージ。 2. The ultraviolet device package according to claim 1, wherein the pedestal is made of metal having a coefficient of thermal expansion substantially equal to a coefficient of thermal expansion of the glass. 前記台座は、その表面に形成された酸化膜により前記光学部材と封止接合されていることを特徴とする請求項1又は請求項2に記載の紫外線素子パッケージ。 3. The ultraviolet device package according to claim 1, wherein the pedestal is sealingly bonded to the optical member by an oxide film formed on the surface of the pedestal. 前記基板のうち前記台座との接合部には、メタライズ処理が施されたメタライズ部が形成されており、
前記台座と前記メタライズ部とが金属プリフォームにより接合されることを特徴とする請求項1乃至請求項3のいずれか一項に記載の紫外線素子パッケージ。
A metallized portion subjected to metallization treatment is formed at a joint portion of the substrate with the pedestal,
The ultraviolet device package according to any one of claims 1 to 3, wherein the pedestal and the metallized portion are joined by a metal preform.
前記光学部材は、光出射面が突出したドームレンズであることを特徴とする請求項1乃至請求項4のいずれか一項に記載の紫外線素子パッケージ。 The ultraviolet element package according to any one of claims 1 to 4, wherein the optical member is a dome lens with a protruding light exit surface . 前記光学部材は、光出射面が平坦なフラットレンズであることを特徴とする請求項1乃至請求項5のいずれか一項に記載の紫外線素子パッケージ。 The ultraviolet device package according to any one of claims 1 to 5, wherein the optical member is a flat lens having a flat light exit surface.
JP2020538408A 2018-08-22 2019-08-20 UV element package Active JP7356983B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018155798 2018-08-22
JP2018155798 2018-08-22
PCT/JP2019/032460 WO2020040143A1 (en) 2018-08-22 2019-08-20 Ultraviolet light device package

Publications (2)

Publication Number Publication Date
JPWO2020040143A1 JPWO2020040143A1 (en) 2021-08-26
JP7356983B2 true JP7356983B2 (en) 2023-10-05

Family

ID=69593236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020538408A Active JP7356983B2 (en) 2018-08-22 2019-08-20 UV element package

Country Status (2)

Country Link
JP (1) JP7356983B2 (en)
WO (1) WO2020040143A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111244250A (en) * 2020-03-13 2020-06-05 桑尼维尔新材料科技(南京)有限公司 Ultraviolet LED lamp bead, packaging sleeve and packaging method
CN112018219B (en) * 2020-09-04 2022-06-07 广东省科学院半导体研究所 Ultraviolet light-emitting chip, preparation method and application thereof
CN113410373B (en) * 2021-06-02 2023-04-25 麦科勒(滁州)新材料科技有限公司 Concentrating ultraviolet LED lamp bead

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008300664A (en) 2007-05-31 2008-12-11 Shinko Electric Ind Co Ltd Packaging cap and package for mounting optical element
JP2014036226A (en) 2012-08-09 2014-02-24 Lg Innotek Co Ltd Light-emitting package
WO2016185675A1 (en) 2015-05-15 2016-11-24 パナソニックIpマネジメント株式会社 Interposer
JP2017147406A (en) 2016-02-19 2017-08-24 日機装株式会社 Light emitting device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4670251B2 (en) * 2004-04-13 2011-04-13 日亜化学工業株式会社 Light emitting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008300664A (en) 2007-05-31 2008-12-11 Shinko Electric Ind Co Ltd Packaging cap and package for mounting optical element
JP2014036226A (en) 2012-08-09 2014-02-24 Lg Innotek Co Ltd Light-emitting package
WO2016185675A1 (en) 2015-05-15 2016-11-24 パナソニックIpマネジメント株式会社 Interposer
JP2017147406A (en) 2016-02-19 2017-08-24 日機装株式会社 Light emitting device

Also Published As

Publication number Publication date
TW202013773A (en) 2020-04-01
JPWO2020040143A1 (en) 2021-08-26
WO2020040143A1 (en) 2020-02-27

Similar Documents

Publication Publication Date Title
JP7356983B2 (en) UV element package
US20210230041A1 (en) Method for producing glass wafers for packaging electronic devices, and electronic component produced according to the method
US9409811B2 (en) Optical converter system for (W)LEDs
US7517712B2 (en) Wafer-level hermetic micro-device packages
WO2017047358A1 (en) Light emitting module and method for manufacturing light emitting module
US6759590B2 (en) Hermetically sealed micro-device package with window
WO2014118838A1 (en) Ultraviolet light emitting device
TWI552467B (en) Optical module and optical module lens cap
JP6644745B2 (en) Ultraviolet light element, package for ultraviolet light element, optical member used for ultraviolet light element, and method of manufacturing the optical member
JP2011210963A (en) Method of manufacturing light-emitting device
JP2007103673A (en) Lid and manufacturing method thereof, and manufacturing method of glass molded body
WO2014115205A1 (en) Method for manufacturing lid with lens
US20220077369A1 (en) Optoelectronic Component with a Transparent Bond Between Two Joining Partners and Method of Manufacturing the Same
JP2022543633A (en) Hermetically sealed glass package
TWI840397B (en) Ultraviolet device package
US20180350704A1 (en) Housing for an optoelectronic device, and method for producing same, and lid for a housing
JPS5856482A (en) Semiconductor device
TWI773884B (en) Uv led package structure
JP4679264B2 (en) Lens cap manufacturing method
KR101428021B1 (en) Led package for manufacturing the same
TWI597867B (en) Led flip-chip packaging substrate and led package structure
TW202209707A (en) Packaged optoelectronic module and method for its production
CN215061395U (en) Airtight packaging structure integrating plane optical window and spherical lens
CN116438669A (en) Cover member, package, and glass substrate
JPS62105934A (en) Production of optical element

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210215

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230925

R150 Certificate of patent or registration of utility model

Ref document number: 7356983

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150