JP6899275B2 - Silver alloy powder and its manufacturing method - Google Patents

Silver alloy powder and its manufacturing method Download PDF

Info

Publication number
JP6899275B2
JP6899275B2 JP2017151240A JP2017151240A JP6899275B2 JP 6899275 B2 JP6899275 B2 JP 6899275B2 JP 2017151240 A JP2017151240 A JP 2017151240A JP 2017151240 A JP2017151240 A JP 2017151240A JP 6899275 B2 JP6899275 B2 JP 6899275B2
Authority
JP
Japan
Prior art keywords
alloy powder
silver alloy
silver
tin
conductive paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017151240A
Other languages
Japanese (ja)
Other versions
JP2018028145A (en
Inventor
吉田 昌弘
昌弘 吉田
良幸 道明
良幸 道明
井上 健一
健一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Publication of JP2018028145A publication Critical patent/JP2018028145A/en
Application granted granted Critical
Publication of JP6899275B2 publication Critical patent/JP6899275B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、銀合金粉末およびその製造方法に関し、特に、焼成型導電性ペーストの材料として使用するのに適した銀合金粉末およびその製造方法に関する。 The present invention relates to a silver alloy powder and a method for producing the same, and more particularly to a silver alloy powder suitable for use as a material for a calcined conductive paste and a method for producing the same.

従来、太陽電池の電極、低温焼成セラミック(LTCC)を使用した電子部品や積層セラミックインダクタ(MLCI)などの積層セラミック電子部品の内部電極、積層セラミックコンデンサや積層セラミックインダクタなどの外部電極などを形成する焼成型導電性ペーストの材料として、銀粉などの金属粉末が使用されている。 Conventionally, electrodes of solar cells, internal electrodes of electronic parts using low temperature co-fired ceramics (LTCC) and laminated ceramic electronic parts such as multilayer ceramic inductors (MLCI), external electrodes such as multilayer ceramic capacitors and multilayer ceramic inductors are formed. A metal powder such as silver powder is used as a material for the calcined conductive paste.

しかし、銀の融点は961℃と高く、銀粉を比較的低温で焼結する焼成型導電性ペーストに使用する場合には、十分に焼結が進まず、所望の電気特性が得られないおそれがある。また、銀粉は高価であり、さらに安価な金属粉末を使用することが望まれている。 However, the melting point of silver is as high as 961 ° C., and when it is used for a fired conductive paste that sinters silver powder at a relatively low temperature, the sintering may not proceed sufficiently and the desired electrical characteristics may not be obtained. is there. Further, silver powder is expensive, and it is desired to use a cheaper metal powder.

銀よりも焼結温度が低く且つ安価な金属として、銀およびSn、Sb、Zn、Biよりなる群から選ばれた1種または2種以上を主成分とし、かつ600℃以下の融点を有する、薄板状の溶湯急冷材、細線材、微粒材からなるろう材が提案されている(例えば、特許文献1参照)。 As a metal having a lower sintering temperature than silver and being inexpensive, one or more selected from the group consisting of silver and Sn, Sb, Zn, and Bi are the main components, and the metal has a melting point of 600 ° C. or lower. A brazing material composed of a thin plate-shaped molten metal quenching material, a fine wire material, and a fine grain material has been proposed (see, for example, Patent Document 1).

また、導電粒子および樹脂を含む導電性接着剤において、導電粒子の40重量%以上が、実質的に銀とスズからなり且つ銀:スズのモル比が2.5:1.5〜3.5:0.5の銀−スズ粉である導電性接着剤も提案されている(例えば、特許文献2参照)。 Further, in the conductive adhesive containing conductive particles and resin, 40% by weight or more of the conductive particles are substantially composed of silver and tin, and the molar ratio of silver: tin is 2.5: 1.5 to 3.5. A conductive adhesive which is a silver-tin powder of: 0.5 has also been proposed (see, for example, Patent Document 2).

特開昭58−6793号公報(第2頁)Japanese Unexamined Patent Publication No. 58-6793 (page 2) 特開2002−265920号公報(段落番号0009)JP-A-2002-265920 (paragraph number 0009)

しかし、特許文献1のろう材の微粒材は、粒子径が非常に小さい金属粉末でないため、焼成型導電性ペーストの材料として使用したとしても、焼結温度を十分に低下させることができず400〜500℃の比較的低い温度で焼成すると、良好な導電性を得ることができない。また、特許文献2の導電性接着剤の銀−スズ粉を焼成型導電性ペーストの材料として使用しても、比較的低い焼成温度で高い導電性の導電膜を得ることができない。 However, since the fine-grained brazing material of Patent Document 1 is not a metal powder having a very small particle size, the sintering temperature cannot be sufficiently lowered even if it is used as a material for a baking-type conductive paste. Good conductivity cannot be obtained when firing at a relatively low temperature of ~ 500 ° C. Further, even if the silver-tin powder of the conductive adhesive of Patent Document 2 is used as a material for the firing type conductive paste, a highly conductive conductive film cannot be obtained at a relatively low firing temperature.

したがって、本発明は、このような従来の問題点に鑑み、焼成型導電性ペーストの材料として使用した場合に比較的低い焼成温度でも高い導電性の導電膜を得ることができる安価な銀合金粉末およびその製造方法を提供することを目的とする。 Therefore, in view of such conventional problems, the present invention is an inexpensive silver alloy powder capable of obtaining a highly conductive conductive film even at a relatively low firing temperature when used as a material for a firing type conductive paste. And its manufacturing method.

本発明者らは、上記課題を解決するために鋭意研究した結果、ビスマス、インジウムおよび亜鉛からなる群から選ばれる1種以上の金属と銀と錫の合金粉末において、平均粒径を0.5〜20μmにし、熱機械的分析における200℃のときの収縮率を1%以上にすることにより、焼成型導電性ペーストの材料として使用した場合に比較的低い焼成温度でも高い導電性の導電膜を得ることができる安価な銀合金粉末を製造することができることを見出し、本発明を完成するに至った。 As a result of diligent research to solve the above problems, the present inventors have made an average particle size of 0.5 in an alloy powder of one or more metals selected from the group consisting of bismuth, indium and zinc, and silver and tin. By setting it to ~ 20 μm and setting the shrinkage rate at 200 ° C. in thermomechanical analysis to 1% or more, a conductive conductive film having high conductivity even at a relatively low firing temperature when used as a material for a firing type conductive paste can be obtained. They have found that it is possible to produce an inexpensive silver alloy powder that can be obtained, and have completed the present invention.

すなわち、本発明による銀合金粉末は、ビスマス、インジウムおよび亜鉛からなる群から選ばれる1種以上の金属と銀と錫の合金粉末において、平均粒径が0.5〜20μmであり、熱機械的分析における200℃のときの収縮率が1%以上であることを特徴とする。 That is, the silver alloy powder according to the present invention has an average particle size of 0.5 to 20 μm in an alloy powder of one or more metals selected from the group consisting of bismuth, indium and zinc, and silver and tin, and is thermomechanically mechanical. It is characterized in that the shrinkage rate at 200 ° C. in the analysis is 1% or more.

この銀合金粉末は、熱重量分析における200℃のときの重量増加率が0.4%以下であるのが好ましい。また、銀合金粉末中の酸素含有量が1.4質量%以下であるのが好ましく、炭素含有量が0.5質量%以下であるのが好ましい。また、銀合金粉末のBET比表面積が0.1〜3.5m/gであるのが好ましく、タップ密度が2.5g/cm以上であるのが好ましい。 The weight increase rate of this silver alloy powder at 200 ° C. in thermogravimetric analysis is preferably 0.4% or less. Further, the oxygen content in the silver alloy powder is preferably 1.4% by mass or less, and the carbon content is preferably 0.5% by mass or less. The BET specific surface area of the silver alloy powder is preferably 0.1 to 3.5 m 2 / g, and the tap density is preferably 2.5 g / cm 3 or more.

また、本発明による銀合金粉末の製造方法は、ビスマス、インジウムおよび亜鉛からなる群から選ばれる1種以上の金属と銀と錫を溶解した溶湯を落下させながら、高圧水を吹き付けて急冷凝固させることを特徴とする。 Further, in the method for producing a silver alloy powder according to the present invention, high-pressure water is sprayed to quench and solidify while dropping a molten metal in which one or more metals selected from the group consisting of bismuth, indium and zinc and silver and tin are dissolved. It is characterized by that.

この銀合金粉末の製造方法において、溶湯が、ビスマス、インジウムおよび亜鉛からなる群から選ばれる1種以上の金属と銀と錫を非酸化性雰囲気中において溶解した溶湯であるのが好ましい。また、高圧水が純水またはアルカリ水であるのが好ましく、高圧水が大気中または非酸化雰囲気中において吹き付けられるのが好ましい。 In this method for producing a silver alloy powder, it is preferable that the molten metal is a molten metal in which one or more metals selected from the group consisting of bismuth, indium and zinc, silver and tin are dissolved in a non-oxidizing atmosphere. Further, the high-pressure water is preferably pure water or alkaline water, and the high-pressure water is preferably sprayed in the atmosphere or a non-oxidizing atmosphere.

また、本発明による導電性ペーストは、上記の銀合金粉末が有機成分中に分散していることを特徴とする。この導電性ペーストは、焼成型導電性ペーストであるのが好ましい。 Further, the conductive paste according to the present invention is characterized in that the silver alloy powder described above is dispersed in an organic component. This conductive paste is preferably a baking type conductive paste.

さらに、本発明による導電膜の製造方法は、上記の焼成型導電性ペーストを基板上に塗布した後に焼成して導電膜を製造することを特徴とする。この導電膜の製造方法において、焼成を300〜700℃の温度で行うのが好ましい。 Further, the method for producing a conductive film according to the present invention is characterized in that the above-mentioned firing type conductive paste is applied onto a substrate and then fired to produce a conductive film. In this method for producing a conductive film, it is preferable to perform firing at a temperature of 300 to 700 ° C.

なお、本明細書中において、「平均粒径」とは、(ヘロス法によって)レーザー回折式粒度分布測定装置により測定した体積基準の累積50%粒子径(D50径)をいう。 In this specification, the "average particle diameter" refers to a (by Heroes method) 50% cumulative particle diameter on a volume basis as measured by a laser diffraction type particle size distribution measuring apparatus (D 50 diameter).

本発明によれば、焼成型導電性ペーストの材料として使用した場合に比較的低い焼成温度でも高い導電性の導電膜を得ることができる安価な銀合金粉末およびその製造方法を提供することができる。 According to the present invention, it is possible to provide an inexpensive silver alloy powder capable of obtaining a highly conductive conductive film even at a relatively low firing temperature when used as a material for a firing type conductive paste, and a method for producing the same. ..

実施例1〜3および比較例の銀合金粉末の熱機械的分析(TMA)における温度に対する膨張率の関係を示す図である。It is a figure which shows the relationship of the expansion coefficient with respect to the temperature in the thermomechanical analysis (TMA) of the silver alloy powder of Examples 1 to 3 and Comparative Example. 実施例1〜3および比較例の銀合金粉末の熱重量分析(TG)における温度に対する重量増加率の関係を示す図である。It is a figure which shows the relationship of the weight increase rate with respect to the temperature in the thermogravimetric analysis (TG) of the silver alloy powder of Examples 1 to 3 and Comparative Example. 実施例1、4、5および比較例の銀合金粉末のTMAにおける温度に対する膨張率の関係を示す図である。It is a figure which shows the relationship of the expansion coefficient with respect to the temperature in TMA of the silver alloy powder of Examples 1, 4, 5 and Comparative Example. 実施例1、4、5および比較例の銀合金粉末のTGにおける温度に対する重量増加率の関係を示す図である。It is a figure which shows the relationship of the weight increase rate with respect to the temperature in TG of the silver alloy powder of Examples 1, 4, 5 and the comparative example. 実施例2、6および比較例の銀合金粉末のTMAにおける温度に対する膨張率の関係を示す図である。It is a figure which shows the relationship of the expansion coefficient with respect to the temperature in TMA of the silver alloy powder of Examples 2 and 6 and the comparative example. 実施例2、6および比較例の銀合金粉末のTGにおける温度に対する重量増加率の関係を示す図である。It is a figure which shows the relationship of the weight increase rate with respect to the temperature in TG of the silver alloy powder of Examples 2 and 6 and the comparative example. 実施例1〜3および比較例の銀合金粉末のX線回折パターンのSn由来ピークを示す図である。It is a figure which shows the peak derived from Sn of the X-ray diffraction pattern of the silver alloy powder of Examples 1 to 3 and the comparative example. 実施例1、4、5および比較例の銀合金粉末のX線回折パターンのSn由来ピークを示す図である。It is a figure which shows the Sn-derived peak of the X-ray diffraction pattern of the silver alloy powder of Examples 1, 4, 5 and the comparative example. 実施例2、6および比較例の銀合金粉末のX線回折パターンのSn由来ピークを示す図である。It is a figure which shows the Sn-derived peak of the X-ray diffraction pattern of the silver alloy powder of Examples 2 and 6 and the comparative example. 実施例1〜3および比較例の銀合金粉末のX線回折パターンのAgSn由来ピークを示す図である。It is a figure which shows the peak derived from Ag 3 Sn of the X-ray diffraction pattern of the silver alloy powder of Examples 1 to 3 and the comparative example. 実施例1、4、5および比較例の銀合金粉末のX線回折パターンのAgSn由来ピークを示す図である。It is a figure which shows the peak derived from Ag 3 Sn of the X-ray diffraction pattern of the silver alloy powder of Examples 1, 4, 5 and the comparative example. 実施例2、6および比較例の銀合金粉末のX線回折パターンのAgSn由来ピークを示す図である。It is a figure which shows the peak derived from Ag 3 Sn of the X-ray diffraction pattern of the silver alloy powder of Examples 2 and 6 and the comparative example. 実施例1の銀合金粉末の走査型電子顕微鏡写真(左側の写真が10,000倍、中央の写真が5,000倍、右側の写真が1,000倍の写真)である。It is a scanning electron micrograph of the silver alloy powder of Example 1 (the photograph on the left is 10,000 times, the photograph in the center is 5,000 times, and the photograph on the right is 1,000 times). 実施例2の銀合金粉末の走査型電子顕微鏡写真(左側の写真が10,000倍、中央の写真が5,000倍、右側の写真が1,000倍の写真)である。It is a scanning electron micrograph of the silver alloy powder of Example 2 (the photograph on the left is 10,000 times, the photograph in the center is 5,000 times, and the photograph on the right is 1,000 times). 実施例3の銀合金粉末の走査型電子顕微鏡写真(左側の写真が10,000倍、中央の写真が5,000倍、右側の写真が1,000倍の写真)である。It is a scanning electron micrograph of the silver alloy powder of Example 3 (the photograph on the left is 10,000 times, the photograph in the center is 5,000 times, and the photograph on the right is 1,000 times). 比較例の銀合金粉末の走査型電子顕微鏡写真(左側の写真が10,000倍、中央の写真が5,000倍、右側の写真が1,000倍の写真)である。It is a scanning electron micrograph of a silver alloy powder of a comparative example (the photograph on the left is 10,000 times, the photograph in the center is 5,000 times, and the photograph on the right is 1,000 times). 実施例4の銀合金粉末の走査型電子顕微鏡写真(左側の写真が10,000倍、右側の写真が5,000倍の写真)である。It is a scanning electron micrograph of the silver alloy powder of Example 4 (the photograph on the left side is a photograph of 10,000 times, and the photograph on the right side is a photograph of 5,000 times). 実施例5の銀合金粉末の走査型電子顕微鏡写真(左側の写真が10,000倍、右側の写真が5,000倍の写真)である。It is a scanning electron micrograph of the silver alloy powder of Example 5 (the photograph on the left side is a photograph of 10,000 times, and the photograph on the right side is a photograph of 5,000 times). 実施例6の銀合金粉末の走査型電子顕微鏡写真(左側の写真が10,000倍、右側の写真が5,000倍の写真)である。It is a scanning electron micrograph of the silver alloy powder of Example 6 (the photograph on the left side is a photograph of 10,000 times, and the photograph on the right side is a photograph of 5,000 times). 実施例1〜3および比較例の銀合金粉末を使用して作製した導電性ペーストを基板上に塗布して大気中において400℃で焼成して得られた導電膜の体積抵抗率を示す図である。It is a figure which shows the volume resistivity of the conductive film obtained by applying the conductive paste prepared using the silver alloy powder of Examples 1 to 3 and Comparative Example on a substrate and firing at 400 degreeC in the air. is there. 実施例1〜3および比較例の銀合金粉末を使用して作製した導電性ペーストを基板上に塗布して窒素雰囲気中において500℃で焼成して得られた導電膜の体積抵抗率を示す図である。The figure which shows the volume resistivity of the conductive film obtained by applying the conductive paste prepared using the silver alloy powder of Examples 1 to 3 and Comparative Example on a substrate and firing at 500 degreeC in a nitrogen atmosphere. Is. 実施例1〜3および比較例の銀合金粉末を使用して作製した導電性ペーストを基板上に塗布して窒素雰囲気中において600℃で焼成して得られた導電膜の体積抵抗率を示す図である。The figure which shows the volume resistivity of the conductive film obtained by applying the conductive paste prepared using the silver alloy powder of Examples 1 to 3 and Comparative Example on a substrate and firing at 600 degreeC in a nitrogen atmosphere. Is.

本発明による銀合金粉末の実施の形態では、ビスマス、インジウムおよび亜鉛からなる群から選ばれる1種以上の金属と銀と錫の合金粉末において、平均粒径が0.5〜20μm(好ましくは0.5〜10μm、さらに好ましくは0.5〜4μm、最も好ましくは0.5〜3μm)であり、熱機械的分析における200℃のときの収縮率が1%以上(好ましくは1.1%以上、さらに好ましくは1.2%以上、最も好ましくは1.3%以上(ビスマス、インジウムおよび亜鉛からなる群から選ばれる1種以上の金属がビスマスの場合、好ましくは2.0%以上))である。なお、この収縮率は、5%以下であるのが好ましい。このような銀合金粉末は、400〜600℃程度の低温で十分に焼結して高い導電性の導電膜を形成することができる。 In the embodiment of the silver alloy powder according to the present invention, the average particle size of one or more metal-silver-tin alloy powders selected from the group consisting of bismuth, indium and zinc is 0.5 to 20 μm (preferably 0). .5 to 10 μm, more preferably 0.5 to 4 μm, most preferably 0.5 to 3 μm), and the shrinkage rate at 200 ° C. in thermomechanical analysis is 1% or more (preferably 1.1% or more). More preferably 1.2% or more, most preferably 1.3% or more (when one or more metals selected from the group consisting of bismuth, indium and zinc is bismuth, preferably 2.0% or more). is there. The shrinkage rate is preferably 5% or less. Such a silver alloy powder can be sufficiently sintered at a low temperature of about 400 to 600 ° C. to form a highly conductive conductive film.

なお、ビスマス、インジウムおよび亜鉛からなる群から選ばれる1種以上の金属と銀と錫の合金粉末は、銀粉や(銀より融点が低い錫を合金化して熱収縮開始温度を低くした)銀と錫の合金粉末と比べて、粉末の結晶構造を歪ませることができると考えられ、このような結晶構造の歪みによって粉末の反応性を高めることができると考えられる。また、粉末の平均粒径を0.5〜20μmと小さくすることによって、粉末の表面自由エネルギーを高くして反応性を高めることができると考えられ、それによって粉末の熱収縮開始温度を低くすることができると考えられる。また、このように熱収縮開始温度が低い粉末は、熱収縮開始温度が高い粉末と比べて、(熱収縮開始温度より高温の)焼成温度において融着し易く、焼成によってより強固に焼き締り、高い導電性の導電膜を形成することができると考えられる。 The alloy powder of one or more metals selected from the group consisting of bismuth, indium and zinc and silver and tin is silver powder or silver (which has a lower melting point than silver and has a lower thermal shrinkage start temperature). It is considered that the crystal structure of the powder can be distorted as compared with the tin alloy powder, and it is considered that the reactivity of the powder can be enhanced by such distortion of the crystal structure. Further, it is considered that the surface free energy of the powder can be increased and the reactivity can be enhanced by reducing the average particle size of the powder to 0.5 to 20 μm, thereby lowering the heat shrinkage start temperature of the powder. It is thought that it can be done. Further, the powder having such a low heat shrinkage start temperature is easier to fuse at the firing temperature (higher than the heat shrinkage start temperature) as compared with the powder having a high heat shrinkage start temperature, and is baked more firmly by firing. It is considered that a highly conductive conductive film can be formed.

また、錫は酸化し易い金属であるため、銀と錫の合金粉末は、耐酸化性が不十分であるが、ビスマス、インジウムおよび亜鉛からなる群から選ばれる1種以上の金属(第3金属元素)と銀と錫の合金粉末は、銀と錫の合金粉末と比べて、耐酸化性を高くすることができる。なお、粉末の製造の容易性の観点から、第3金属元素としてビスマス、インジウムまたは亜鉛の1種の金属を使用するのが好ましく、粉末の熱収縮開始温度の低下や耐酸化性の向上の観点から、第3金属元素としてビスマスを使用するのが好ましい。 Further, since tin is a metal that is easily oxidized, the silver-tin alloy powder has insufficient oxidation resistance, but one or more metals (third metal) selected from the group consisting of bismuth, indium and zinc. Element) and silver-tin alloy powder can have higher oxidation resistance than silver-tin alloy powder. From the viewpoint of ease of powder production, it is preferable to use one kind of metal such as bismuth, indium or zinc as the third metal element, and from the viewpoint of lowering the heat shrinkage start temperature of the powder and improving the oxidation resistance. Therefore, it is preferable to use bismuth as the third metal element.

また、ビスマス、インジウムおよび亜鉛からなる群から選ばれる1種以上の金属(第3金属元素)と銀と錫の合金粉末は、製造の際の各構成金属の仕込み量によって、銀と錫と第3金属元素の合金粉末のみの形態で存在するのではなく、その合金粉末と、銀と錫の合金粉末と、銀粉(銀単相の金属粉末)、錫粉(錫単相の金属粉末)と、第3金属元素が任意の割合で固溶した金属粉末などの混合粉末の状態で存在する場合もある。この合金粉末において、銀と錫と第3金属元素の合計に対する銀の割合は、合金粉末の導電性および製造コストの観点から、好ましくは20〜90質量%であり、さらに好ましくは30〜85質量%であり、最も好ましくは40〜80質量%である。また、銀と錫と第3金属元素の合計に対する錫の割合は、合金粉末の熱収縮開始温度の低下や耐酸化性の向上の観点から、好ましくは9〜78質量%であり、さらに好ましくは12〜68質量%であり、最も好ましくは18〜58質量%である。また、銀と錫と第3金属元素の合計に対する第3金属元素の割合は、合金粉末の熱収縮開始温度の低下や耐酸化性の向上の観点から、好ましくは0.01〜50質量%であり、さらに好ましくは0.015〜10質量%であり、最も好ましくは0.015〜8質量%(第3金属元素がビスマスの場合、好ましくは0.5〜8質量%、さらに好ましくは0.8〜5質量%)である。なお、ビスマス、インジウムおよび亜鉛からなる群から選ばれる1種以上の金属(第3金属元素)と銀と錫の合金粉末は、不可避不純物として、微量の銅、鉄、ニッケル、ナトリウム、カリウム、カルシウム、酸素、炭素、窒素、リン、ケイ素、塩素などを含んでもよい。 In addition, one or more metals (third metal element) selected from the group consisting of bismuth, indium and zinc, and silver and tin alloy powders are composed of silver, tin and the first, depending on the amount of each constituent metal charged at the time of production. It does not exist only in the form of an alloy powder of three metal elements, but the alloy powder, silver and tin alloy powder, silver powder (silver single phase metal powder), tin powder (tin single phase metal powder) , The third metal element may exist in the state of a mixed powder such as a metal powder in which a solid solution is dissolved in an arbitrary ratio. In this alloy powder, the ratio of silver to the total of silver, tin and the tertiary metal element is preferably 20 to 90% by mass, more preferably 30 to 85% by mass, from the viewpoint of the conductivity and manufacturing cost of the alloy powder. %, Most preferably 40 to 80% by mass. The ratio of tin to the total of silver, tin and the tertiary metal element is preferably 9 to 78% by mass, more preferably 9 to 78% by mass, from the viewpoint of lowering the heat shrinkage start temperature of the alloy powder and improving the oxidation resistance. It is 12 to 68% by mass, most preferably 18 to 58% by mass. The ratio of the tertiary metal element to the total of silver, tin, and the tertiary metal element is preferably 0.01 to 50% by mass from the viewpoint of lowering the heat shrinkage start temperature of the alloy powder and improving the oxidation resistance. Yes, more preferably 0.015 to 10% by mass, most preferably 0.015 to 8% by mass (when the third metal element is bismuth, preferably 0.5 to 8% by mass, still more preferably 0. 8 to 5% by mass). The alloy powder of one or more metals (third metal element) selected from the group consisting of bismuth, indium and zinc and silver and tin is unavoidable impurities such as trace amounts of copper, iron, nickel, sodium, potassium and calcium. , Oxygen, carbon, nitrogen, phosphorus, silicon, chlorine and the like.

上記の銀合金粉末は、熱重量分析における200℃のときの重量増加率が好ましくは0.4%以下、さらに好ましくは0.3%以下、最も好ましくは0.2%以下である。このような銀合金粉末は、耐酸化性が高く且つ400〜600℃程度の低温で十分に焼結して高い導電性の導電膜を形成することができる。 The weight increase rate of the silver alloy powder at 200 ° C. in thermogravimetric analysis is preferably 0.4% or less, more preferably 0.3% or less, and most preferably 0.2% or less. Such a silver alloy powder has high oxidation resistance and can be sufficiently sintered at a low temperature of about 400 to 600 ° C. to form a highly conductive conductive film.

上記の銀合金粉末中の酸素含有量は、好ましくは1.4質量%以下、さらに好ましくは1.3質量%以下、最も好ましくは1.25質量%以下である。このように銀合金粉末中の酸素含有量が低ければ、400〜600℃程度の低温で十分に焼結して高い導電性の導電膜を形成することができる。 The oxygen content in the silver alloy powder is preferably 1.4% by mass or less, more preferably 1.3% by mass or less, and most preferably 1.25% by mass or less. If the oxygen content in the silver alloy powder is low as described above, it is possible to sufficiently sinter at a low temperature of about 400 to 600 ° C. to form a highly conductive conductive film.

また、上記の銀合金粉末中の炭素含有量は、好ましくは0.5質量%以下、さらに好ましくは0.3質量%以下、最も好ましくは0.1質量%以下である。なお、銀合金粉末中の炭素含有量が低いと、焼成型導電性ペーストの材料として使用した場合に、焼成の際に炭素分から二酸化炭素などのガスが発生し難く、焼成型導電性ペーストを基板に塗布した後に焼成して導電膜を形成する場合に、基板との密着性に優れた導電膜を形成することができる。 The carbon content in the silver alloy powder is preferably 0.5% by mass or less, more preferably 0.3% by mass or less, and most preferably 0.1% by mass or less. If the carbon content in the silver alloy powder is low, it is difficult for gas such as carbon dioxide to be generated from the carbon content during firing when used as a material for the firing type conductive paste, and the firing type conductive paste is used as a substrate. When the conductive film is formed by firing after being applied to the substrate, it is possible to form a conductive film having excellent adhesion to the substrate.

また、上記の銀合金粉末のBET比表面積は、好ましくは0.1〜3.5m/g、さらに好ましくは0.5〜3m/g、最も好ましくは1〜2.5m/gである。銀合金粉末のタップ密度は、好ましくは2.5g/cm以上、さらに好ましくは3g/cm以上であり、7g/cm以下であるのが好ましい。 The BET specific surface area of the silver alloy powder is preferably 0.1 to 3.5 m 2 / g, more preferably 0.5 to 3 m 2 / g, and most preferably 1 to 2.5 m 2 / g. is there. The tap density of the silver alloy powder, preferably 2.5 g / cm 3 or more, still more preferably 3 g / cm 3 or more, preferably 7 g / cm 3 or less.

なお、上記の銀合金粉末の形状は、球状やフレーク状などの様々な粒状の形状のいずれの形状でもよく、形状が揃っていない不定形状でもよい。 The shape of the silver alloy powder may be any of various granular shapes such as spherical and flake, and may be an indefinite shape in which the shapes are not uniform.

上述した銀合金粉末の実施の形態は、本発明による銀合金粉末の製造方法の実施の形態により製造することができる。 The above-described embodiment of the silver alloy powder can be produced by the embodiment of the method for producing the silver alloy powder according to the present invention.

本発明による銀合金粉末の製造方法の実施の形態では、ビスマス、インジウムおよび亜鉛からなる群から選ばれる1種以上の金属と銀と錫を溶解した(好ましくは962〜約1600℃の)溶湯を落下させながら、(好ましくは、大気中または(アルゴンや窒素などの)非酸化性雰囲気中において水圧30〜200MPaで純水または(pH8〜12の)アルカリ水である)高圧水を吹き付けて急冷凝固させる。 In the embodiment of the method for producing a silver alloy powder according to the present invention, a molten metal (preferably at 962 to about 1600 ° C.) in which one or more metals selected from the group consisting of bismuth, indium and zinc, silver and tin are dissolved is prepared. Quench-coagulate by spraying pure water or high-pressure water (pH 8-12) at a water pressure of 30-200 MPa in the air or in a non-oxidizing atmosphere (preferably argon, nitrogen, etc.) while dropping. Let me.

高圧水を吹き付ける、所謂水アトマイズ法によって、ビスマス、インジウムおよび亜鉛からなる群から選ばれる1種以上の金属と銀と錫の合金粉末を製造すると、粒子径が小さい銀合金粉末を得ることができる。この合金粉末は、同じ方法で製造した銀と錫の合金粉末と比べて、粉末の結晶構造を歪ませることができると考えられ、このような(粒子径が小さい)銀合金粉末の結晶構造の歪みによって、焼成型導電性ペーストの材料に使用した場合に、粉末の熱収縮開始温度を低くすることができると考えられる。このように熱収縮開始温度が低い粉末は、熱収縮開始温度が高い粉末と比べて、(熱収縮開始温度より高温の)焼成温度において融着し易く(例えば、500℃程度の低温でも十分に焼結して)、高い導電性の導電膜を形成することができると考えられる。 By producing an alloy powder of one or more metals selected from the group consisting of bismuth, indium and zinc by the so-called water atomization method of spraying high-pressure water, a silver alloy powder having a small particle size can be obtained. .. It is considered that this alloy powder can distort the crystal structure of the powder as compared with the silver and tin alloy powder produced by the same method. It is considered that the strain can lower the heat shrinkage start temperature of the powder when used as a material for a calcined conductive paste. Such a powder having a low heat shrinkage start temperature is more likely to fuse at a firing temperature (higher than the heat shrinkage start temperature) than a powder having a high heat shrinkage start temperature (for example, even at a low temperature of about 500 ° C. is sufficient. It is considered that a highly conductive conductive film can be formed by sintering).

一方、錫、ビスマス、インジウムおよび亜鉛は、銀に比べて酸化し易いが、窒素、アルゴン、水素、一酸化炭素などの非酸化性雰囲気中においてビスマス、インジウムまたは亜鉛を錫および銀とともに溶解して水アトマイズ法により銀合金粉末を製造すれば、酸素含有量が低い銀合金粉末を製造することができる。このように酸素含有量が低い銀合金粉末は、酸素含有量が高い銀合金粉末と比べて、熱収縮開始温度が低くなり、導電性が高くなる。また、銀合金粉末中の酸素含有量を低下させるために、溶湯にカーボンブラックや木炭などの還元剤を添加してもよい。 On the other hand, tin, bismuth, indium and zinc are more easily oxidized than silver, but bismuth, indium or zinc is dissolved together with tin and silver in a non-oxidizing atmosphere such as nitrogen, argon, hydrogen and carbon monoxide. If the silver alloy powder is produced by the water atomization method, the silver alloy powder having a low oxygen content can be produced. As described above, the silver alloy powder having a low oxygen content has a lower heat shrinkage start temperature and higher conductivity than the silver alloy powder having a high oxygen content. Further, in order to reduce the oxygen content in the silver alloy powder, a reducing agent such as carbon black or charcoal may be added to the molten metal.

水アトマイズ法によって溶湯から銀合金粉末を製造する際に、溶湯中の各構成金属の仕込み量を調整することによって、銀合金粉末中の銀と錫と第3金属元素(ビスマス、インジウムおよび亜鉛からなる群から選ばれる1種以上の金属)の割合を調整することができる。なお、亜鉛の沸点は1000℃以下と低く、水アトマイズ法によって溶湯から銀合金粉末を製造する際に一定量の亜鉛が蒸発するので、第3金属元素として亜鉛を使用する場合には、蒸発分を考慮して亜鉛の仕込み量を決定するのが好ましい。 When producing silver alloy powder from molten metal by the water atomization method, by adjusting the amount of each constituent metal charged in the molten metal, silver, tin and tertiary metal elements (bismuth, indium and zinc) in the silver alloy powder are used. The proportion of one or more metals selected from the group) can be adjusted. The boiling point of zinc is as low as 1000 ° C or less, and a certain amount of zinc evaporates when the silver alloy powder is produced from the molten metal by the water atomization method. It is preferable to determine the amount of zinc charged in consideration of.

また、水アトマイズ法によって溶湯から銀合金粉末を製造する際に、溶湯の温度と高圧水の圧力を調整することによって、銀合金粉末の平均粒径を調整することができる。例えば、溶湯の温度を高くしたり、高圧水の圧力を高くすることにより、銀合金粉末の平均粒径を小さくすることができる。 Further, when the silver alloy powder is produced from the molten metal by the water atomizing method, the average particle size of the silver alloy powder can be adjusted by adjusting the temperature of the molten metal and the pressure of the high-pressure water. For example, the average particle size of the silver alloy powder can be reduced by increasing the temperature of the molten metal or increasing the pressure of the high-pressure water.

また、水アトマイズ法によって溶湯から銀合金粉末を製造する際に、溶湯を落下させながら高圧水を吹き付けて急冷凝固させて得られたスラリーを固液分離し、得られた固形物を乾燥して銀合金粉末を得ることができる。なお、必要に応じて、固液分離して得られた固形物を乾燥する前に水洗してもよいし、乾燥した後に解砕したり、分級して粒度を調整してもよい。 Further, when a silver alloy powder is produced from a molten metal by a water atomizing method, the slurry obtained by spraying high-pressure water while dropping the molten metal to quench and solidify is solid-liquid separated, and the obtained solid matter is dried. A silver alloy powder can be obtained. If necessary, the solid matter obtained by solid-liquid separation may be washed with water before drying, crushed after drying, or classified to adjust the particle size.

本発明による銀合金粉末の実施の形態は、(銀合金粉末を有機成分中に分散させた)導電性ペーストの材料などに使用することができる。特に、本発明による銀合金粉末の実施の形態は、熱収縮開始温度が低いことから、焼成温度が低い(好ましくは300〜700℃程度、さらに好ましくは400〜600℃程度の低温で焼成する)焼成型導電性ペーストの材料として使用するのが好ましい。なお、本発明による銀合金粉末の実施の形態は、焼成温度が低い焼成型導電性ペーストの材料として使用することができるので、(従来の焼成型導電性ペーストの焼成温度より低温で加熱して導電膜を形成する)樹脂硬化型導電性ペーストの材料として使用してもよい。 The embodiment of the silver alloy powder according to the present invention can be used as a material for a conductive paste (in which the silver alloy powder is dispersed in an organic component). In particular, in the embodiment of the silver alloy powder according to the present invention, since the heat shrinkage start temperature is low, the firing temperature is low (preferably firing at a low temperature of about 300 to 700 ° C., more preferably about 400 to 600 ° C.). It is preferably used as a material for a calcined conductive paste. In addition, since the embodiment of the silver alloy powder according to the present invention can be used as a material for the firing type conductive paste having a low firing temperature, it is heated at a temperature lower than the firing temperature of the conventional firing type conductive paste. It may be used as a material for a resin-curable conductive paste (which forms a conductive film).

本発明による銀合金粉末の実施の形態を(焼成型導電性ペーストなどの)導電性ペーストの材料として使用する場合、導電性ペーストの構成要素として、銀合金粉末と、(飽和脂肪族炭化水素類、不飽和脂肪族炭化水素類、ケトン類、芳香族炭化水素類、グリコールエーテル類、エステル類、アルコール類などの)有機溶剤が含まれる。また、必要に応じて、(エチルセルロースやアクリル樹脂などの)バインダ樹脂を有機溶剤に溶解したビヒクル、ガラスフリット、無機酸化物、分散剤などを含んでもよい。 When the embodiment of the silver alloy powder according to the present invention is used as a material for a conductive paste (such as a calcined conductive paste), the components of the conductive paste include the silver alloy powder and (saturated aliphatic hydrocarbons). Includes organic solvents (such as unsaturated aliphatic hydrocarbons, ketones, aromatic hydrocarbons, glycol ethers, esters, alcohols, etc.). Further, if necessary, a vehicle in which a binder resin (such as ethyl cellulose or acrylic resin) is dissolved in an organic solvent, a glass frit, an inorganic oxide, a dispersant, or the like may be contained.

導電性ペースト中の銀合金粉末の含有量は、導電性ペーストの導電性および製造コストの観点から、5〜98質量%であるのが好ましく、70〜95質量%であるのがさらに好ましい。また、導電性ペースト中の銀合金粉末は、Ag−Sn−Bi合金粉末、Ag−Sn−In合金粉末およびAg−Sn−Zn合金粉末の2種以上の混合粉末でもよく、(銀粉、銀と錫の合金粉末、錫粉などの)1種以上の他の金属粉末と混合して使用してもよい。この金属粉末は、本発明による銀合金粉末の実施の形態と形状や粒径が異なる金属粉末でもよい。この金属粉末の平均粒径は、導電性ペーストを400〜600℃程度の低温で焼成するために、0.5〜20μmであるのが好ましい。また、この金属粉末の導電性ペースト中の含有量は、1〜94質量%であるのが好ましく、4〜29質量%であるのがさらに好ましい。なお、導電性ペースト中の銀合金粉末と金属粉末の含有量の合計は、60〜98質量%であるのが好ましい。また、導電性ペースト中のバインダ樹脂の含有量は、導電性ペースト中の銀合金粉末の分散性や導電性ペーストの導電性の観点から、0.1〜10質量%であるのが好ましく、0.1〜6質量%であるのがさらに好ましい。このバインダ樹脂を有機溶剤に溶解したビヒクルは、2種以上を混合して使用してもよい。また、導電性ペースト中のガラスフリットの含有量は、導電性ペーストの焼結性の観点から、0.1〜20質量%であるのが好ましく、0.1〜10質量%であるのがさらに好ましい。このガラスフリットは、2種以上を混合して使用してもよい。また、導電性ペースト中の有機溶剤の含有量(導電性ペースト中にビヒクルが含まれる場合は、ビヒクルの有機溶剤を含む合計の有機溶剤の含有量)は、導電性ペースト中の銀合金粉末の分散性や導電性ペーストの適切な粘度を考慮して、0.8〜20質量%であるのが好ましく、0.8〜15質量%であるのがさらに好ましい。この有機溶剤は、2種以上を混合して使用してもよい。 The content of the silver alloy powder in the conductive paste is preferably 5 to 98% by mass, more preferably 70 to 95% by mass, from the viewpoint of the conductivity and the manufacturing cost of the conductive paste. Further, the silver alloy powder in the conductive paste may be a mixed powder of two or more kinds of Ag-Sn-Bi alloy powder, Ag-Sn-In alloy powder and Ag-Sn-Zn alloy powder (silver powder, silver and). It may be mixed with one or more other metal powders (such as tin alloy powder, tin powder, etc.). This metal powder may be a metal powder having a different shape and particle size from the embodiment of the silver alloy powder according to the present invention. The average particle size of the metal powder is preferably 0.5 to 20 μm in order to bake the conductive paste at a low temperature of about 400 to 600 ° C. The content of this metal powder in the conductive paste is preferably 1 to 94% by mass, more preferably 4 to 29% by mass. The total content of the silver alloy powder and the metal powder in the conductive paste is preferably 60 to 98% by mass. The content of the binder resin in the conductive paste is preferably 0.1 to 10% by mass, preferably 0.1 to 10% by mass, from the viewpoint of the dispersibility of the silver alloy powder in the conductive paste and the conductivity of the conductive paste. .1 to 6% by mass is more preferable. Two or more kinds of vehicles in which this binder resin is dissolved in an organic solvent may be mixed and used. Further, the content of the glass frit in the conductive paste is preferably 0.1 to 20% by mass, more preferably 0.1 to 10% by mass, from the viewpoint of the sinterability of the conductive paste. preferable. This glass frit may be used by mixing two or more kinds. Further, the content of the organic solvent in the conductive paste (when the vehicle is contained in the conductive paste, the total content of the organic solvent including the organic solvent in the vehicle) is the content of the silver alloy powder in the conductive paste. Considering the dispersibility and the appropriate viscosity of the conductive paste, it is preferably 0.8 to 20% by mass, more preferably 0.8 to 15% by mass. This organic solvent may be used as a mixture of two or more kinds.

このような導電性ペーストは、例えば、各構成要素を計量して所定の容器に入れ、らいかい機、万能攪拌機、ニーダーなどを用いて予備混練した後、3本ロールで本混練することによって作製することができる。また、必要に応じて、その後、有機溶剤を添加して、粘度調整を行ってもよい。また、ガラスフリットや無機酸化物とビヒクルのみを本混練して粒度を下げた後、最後に銀合金粉末を追加して本混練してもよい。 Such a conductive paste is produced, for example, by weighing each component, putting it in a predetermined container, pre-kneading it using a raker, a universal stirrer, a kneader, etc., and then main-kneading it with three rolls. can do. Further, if necessary, an organic solvent may be added thereafter to adjust the viscosity. Further, after main kneading only glass frit or inorganic oxide and vehicle to reduce the particle size, silver alloy powder may be added at the end for main kneading.

この導電性ペーストをディッピングや(メタルマスク印刷、スクリーン印刷、インクジェット印刷などの)印刷などにより基板上に所定パターン形状に塗布した後に焼成して導電膜を形成することができる。導電性ペーストをディッピングにより塗布する場合には、導電性ペースト中に基板をディッピングして塗膜を形成し、レジストを利用したフォトリソグラフィなどにより塗膜の不要な部分を除去することによって、基板上に所定パターン形状の塗膜を形成した後、基板上に所定パターン形状の導電膜を形成することができる。なお、塗膜の不要な部分を除去する代わりに、導電膜の不要な部分を除去して、基板上に所定パターン形状の導電膜を形成してもよい。 This conductive paste can be applied to a predetermined pattern shape on a substrate by dipping or printing (metal mask printing, screen printing, inkjet printing, etc.) and then fired to form a conductive film. When the conductive paste is applied by dipping, the substrate is dipped in the conductive paste to form a coating film, and unnecessary parts of the coating film are removed by photolithography using a resist on the substrate. After forming a coating film having a predetermined pattern shape on the substrate, a conductive film having a predetermined pattern shape can be formed on the substrate. Instead of removing the unnecessary portion of the coating film, the unnecessary portion of the conductive film may be removed to form a conductive film having a predetermined pattern shape on the substrate.

本発明による銀合金粉末の実施の形態を焼成型導電性ペーストの材料として使用する場合、基板上に塗布した焼成型導電性ペーストの焼成は、大気雰囲気下で行ってもよいし、窒素、アルゴン、水素、一酸化炭素などの非酸化性雰囲気下で行ってもよい。なお、本発明による銀合金粉末の実施の形態は、熱収縮開始温度が低いため、焼成型導電性ペーストの焼成温度を低く(好ましくは300〜700℃程度、さらに好ましくは400〜600℃程度の低温に)することができる。なお、焼成型導電性ペーストの焼成温度を一般的な焼成温度(700〜900℃程度)にしてもよい。また、本発明による銀合金粉末の実施の形態は、耐酸化性に優れているため、焼成型導電性ペーストの焼成を大気雰囲気下で行うことができるので、導電膜の製造コストを低くすることができる。なお、焼成型導電性ペーストの焼成の前に、真空乾燥などにより予備乾燥を行うことにより、焼成型導電性ペースト中の有機溶剤などの揮発成分を除去してもよい。 When the embodiment of the silver alloy powder according to the present invention is used as the material of the firing type conductive paste, the firing type conductive paste applied on the substrate may be fired in an air atmosphere, or nitrogen or argon. , Hydrogen, carbon monoxide, etc. may be used in a non-oxidizing atmosphere. In the embodiment of the silver alloy powder according to the present invention, since the heat shrinkage start temperature is low, the firing temperature of the firing type conductive paste is low (preferably about 300 to 700 ° C., more preferably about 400 to 600 ° C.). Can be (low temperature). The firing temperature of the firing type conductive paste may be a general firing temperature (about 700 to 900 ° C.). Further, since the embodiment of the silver alloy powder according to the present invention has excellent oxidation resistance, the firing type conductive paste can be fired in an air atmosphere, so that the manufacturing cost of the conductive film can be reduced. Can be done. Before the baking of the baking type conductive paste, volatile components such as an organic solvent may be removed from the baking type conductive paste by performing preliminary drying by vacuum drying or the like.

以下、本発明による銀合金粉末およびその製造方法の実施例について詳細に説明する。 Hereinafter, examples of the silver alloy powder according to the present invention and the method for producing the same will be described in detail.

[実施例1]
純度99.99質量%のショット銀1.34kgと、純度99.99質量%のショット錫1.64kgと、純度99.99質量%のショットビスマス0.03kgとを窒素雰囲気中において1100℃に加熱して溶解した溶湯をタンディッシュ下部から落下させながら、水アトマイズ装置により大気中において水圧150MPa、水量160L/分で高圧水を吹き付けて急冷凝固させ、得られたスラリーを固液分離し、固形物を水洗し、乾燥し、解砕し、風力分級して、銀合金粉末(Ag−Sn−Bi合金粉末)を得た。なお、高圧水として、純水21.6mに対して苛性ソーダ157.55gを添加したアルカリ水溶液(温度18.4℃、pH10.7)を使用した。
[Example 1]
1.34 kg of shot silver with a purity of 99.99% by mass, 1.64 kg of shot tin with a purity of 99.99% by mass, and 0.03 kg of shot bismuth with a purity of 99.99% by mass are heated to 1100 ° C. in a nitrogen atmosphere. While dropping the melted molten metal from the lower part of the tundish, high-pressure water was sprayed in the air at a water pressure of 150 MPa and a water volume of 160 L / min to quench and solidify, and the obtained slurry was solid-liquid separated to form a solid product. Was washed with water, dried, crushed, and classified by wind power to obtain a silver alloy powder (Ag-Sn-Bi alloy powder). As the high-pressure water, an alkaline aqueous solution (temperature 18.4 ° C., pH 10.7) in which 157.55 g of caustic soda was added to 21.6 m 3 of pure water was used.

このようにして得られた銀合金粉末について、BET比表面積、タップ密度、酸素含有量、炭素含有量および粒度分布を求め、合金組成分析を行うとともに、熱機械的分析(TMA)並びに熱重量分析(TG)を行った。 For the silver alloy powder thus obtained, the BET specific surface area, tap density, oxygen content, carbon content and particle size distribution are determined, the alloy composition is analyzed, and thermomechanical analysis (TMA) and thermogravimetric analysis are performed. (TG) was performed.

BET比表面積は、BET比表面積測定器(ユアサアイオニクス株式会社製の4ソーブUS)を使用して、測定器内に105℃で20分間窒素ガスを流して脱気した後、窒素とヘリウムの混合ガス(N:30体積%、He:70体積%)を流しながら、BET1点法により測定した。その結果、BET比表面積は1.98m/gであった。 The BET specific surface area is determined by using a BET specific surface area measuring device (4 Sorb US manufactured by Yuasa Ionics Co., Ltd.) to flow nitrogen gas into the measuring device at 105 ° C. for 20 minutes to degas, and then nitrogen and helium. It was measured by the BET 1-point method while flowing a mixed gas (N 2 : 30% by volume, He: 70% by volume). As a result, the BET specific surface area was 1.98 m 2 / g.

タップ密度(TAP)は、特開2007−263860号公報に記載された方法と同様に、銀合金粉末を内径6mm×高さ11.9mmの有底円筒形のダイに容積の80%まで充填して銀合金粉末層を形成し、この銀合金粉末層の上面に0.160N/mの圧力を均一に加えて、この圧力で銀合金粉末がこれ以上密に充填されなくなるまで銀合金粉末を圧縮した後、銀合金粉末層の高さを測定し、この銀合金粉末層の高さの測定値と、充填された銀合金粉末の重量とから、銀合金粉末の密度を求めて、銀合金粉末のタップ密度とした。その結果、タップ密度は3.2g/cmであった。 The tap density (TAP) is the same as the method described in JP-A-2007-263860, in which silver alloy powder is filled in a bottomed cylindrical die having an inner diameter of 6 mm and a height of 11.9 mm up to 80% of the volume. A silver alloy powder layer is formed, and a pressure of 0.160 N / m 2 is uniformly applied to the upper surface of the silver alloy powder layer, and the silver alloy powder is mixed until the silver alloy powder is no longer densely filled at this pressure. After compression, the height of the silver alloy powder layer is measured, and the density of the silver alloy powder is obtained from the measured value of the height of the silver alloy powder layer and the weight of the filled silver alloy powder to obtain the silver alloy. The tap density of the powder was used. As a result, the tap density was 3.2 g / cm 3 .

酸素含有量は、酸素・窒素・水素分析装置(株式会社堀場製作所製のEMGA−920)により測定した。その結果、酸素含有量は0.71質量%であった。 The oxygen content was measured with an oxygen / nitrogen / hydrogen analyzer (EMGA-920 manufactured by HORIBA, Ltd.). As a result, the oxygen content was 0.71% by mass.

炭素含有量は、炭素・硫黄分析装置(堀場製作所製のEMIA−220V)により測定した。その結果、炭素含有量は0.01質量%であった。 The carbon content was measured with a carbon / sulfur analyzer (EMIA-220V manufactured by HORIBA, Ltd.). As a result, the carbon content was 0.01% by mass.

粒度分布は、レーザー回折式粒度分布測定装置(SYMPATEC社製のへロス粒度分布測定装置(HELOS&RODOS(気流式の乾燥モジュール)))を使用して、分散圧5barで測定した。その結果、累積10%粒子径(D10)は0.6μm、累積50%粒子径(D50)は1.6μm、累積90%粒子径(D90)は3.3μmであった。 The particle size distribution was measured at a dispersion pressure of 5 bar using a laser diffraction type particle size distribution measuring device (a Heros particle size distribution measuring device (HELOS & RODOS (air flow type drying module)) manufactured by SYMPATEC). As a result, the cumulative 10% particle size (D 10 ) was 0.6 μm, the cumulative 50% particle size (D 50 ) was 1.6 μm, and the cumulative 90% particle size (D 90 ) was 3.3 μm.

合金組成分析は、誘導結合プラズマ(ICP)発光分析装置(株式会社日立ハイテクサイエンス製のSPS3520V)によって行った。その結果、合金粉末は、53質量%のSnと0.93質量%のBiを含み、残部がAgの銀合金粉末であった。 The alloy composition analysis was performed by an inductively coupled plasma (ICP) emission spectrometer (SPS3520V manufactured by Hitachi High-Tech Science Corporation). As a result, the alloy powder was a silver alloy powder containing 53% by mass of Sn and 0.93% by mass of Bi, and the balance was Ag.

銀合金粉末の熱機械的分析(TMA)では、銀合金粉末を直径5mm、高さ3mmのアルミナパンに詰めて、熱機械的分析(TMA)装置(セイコーインスツルメンツ株式会社製のTMA/SS6200)の試料ホルダ(シリンダ)にセットし、測定プローブにより荷重0.147Nで1分間押し固めて作製した測定試料について、200mL/分の流量で窒素ガスを流入しながら、測定荷重980mNで荷重を付与して、常温から昇温速度10℃/分で500℃まで昇温し、測定試料の収縮率(常温のときの測定試料の長さに対する収縮率)を測定した。その結果、100℃のときの収縮率は0.34%(膨張率−0.34%)、150℃のときの収縮率は0.81%(膨張率−0.81%)、200℃のときの収縮率は2.25%(膨張率−2.25%)であり、200℃より低い温度で収縮率が高い(熱収縮開始温度が低い)ことがわかった。 In the thermomechanical analysis (TMA) of silver alloy powder, the silver alloy powder is packed in an alumina pan having a diameter of 5 mm and a height of 3 mm, and the thermomechanical analysis (TMA) device (TMA / SS6200 manufactured by Seiko Instruments Co., Ltd.) is used. A measurement sample prepared by setting it in a sample holder (cylinder) and compacting it with a measurement probe at a load of 0.147 N for 1 minute is applied with a measurement load of 980 mN while flowing nitrogen gas at a flow rate of 200 mL / min. The temperature was raised from room temperature to 500 ° C. at a heating rate of 10 ° C./min, and the shrinkage rate of the measurement sample (the shrinkage rate with respect to the length of the measurement sample at room temperature) was measured. As a result, the shrinkage rate at 100 ° C. was 0.34% (expansion rate -0.34%), the shrinkage rate at 150 ° C. was 0.81% (expansion rate -0.81%), and 200 ° C. At that time, the coefficient of contraction was 2.25% (coefficient of expansion -2.25%), and it was found that the coefficient of contraction was high (the temperature at which the thermal shrinkage started was low) at a temperature lower than 200 ° C.

銀合金粉末の熱重量分析(TG)では、示差熱熱重量同時測定装置(SIIナノテクノロジー株式会社製のEXATERTG/DTA6300型)により、銀合金粉末を大気中において30℃から昇温速度5℃/分で650℃まで昇温させて計測された重量と加熱前の銀合金粉末の重量の差(加熱により増加した重量)の加熱前の銀合金粉末の重量に対する比率(重量増加率)(%)を測定した。その結果、100℃のときの重量増加率は−0.01%、150℃のときの重量増加率は0.00%、200℃のときの重量増加率は0.07%であり、耐酸化性に優れていた。 In the thermogravimetric analysis (TG) of silver alloy powder, the silver alloy powder is heated from 30 ° C to 5 ° C in the air by the differential thermogravimetric simultaneous measuring device (EXATERT G / DTA6300 type manufactured by SII Nanotechnology Co., Ltd.). Ratio (weight increase rate) (%) of the difference between the weight measured by raising the temperature to 650 ° C in minutes and the weight of the silver alloy powder before heating (weight increased by heating) to the weight of the silver alloy powder before heating (weight increase rate) Was measured. As a result, the weight increase rate at 100 ° C. was -0.01%, the weight increase rate at 150 ° C. was 0.00%, the weight increase rate at 200 ° C. was 0.07%, and oxidation resistance. It was excellent in sex.

[実施例2]
ショットビスマスの代わりに純度99.99質量%のショットインジウムを使用し、アルカリ水溶液の温度を14.3℃とした以外は、実施例1と同様の方法により、銀合金粉末(Ag−Sn−In合金粉末)を得た。
[Example 2]
A silver alloy powder (Ag-Sn-In) was used in the same manner as in Example 1 except that shot indium having a purity of 99.99% by mass was used instead of shot bismuth and the temperature of the alkaline aqueous solution was set to 14.3 ° C. Alloy powder) was obtained.

このようにして得られた銀合金粉末について、実施例1と同様の方法により、BET比表面積、タップ密度、酸素含有量、炭素含有量および粒度分布を求め、合金組成分析を行うとともに、熱機械的分析(TMA)並びに熱重量分析(TG)を行った。 With respect to the silver alloy powder thus obtained, the BET specific surface area, tap density, oxygen content, carbon content and particle size distribution are determined by the same method as in Example 1, the alloy composition is analyzed, and the thermogravimetric analysis is performed. Target analysis (TMA) and thermogravimetric analysis (TG) were performed.

その結果、BET比表面積は1.31m/g、タップ密度は3.2g/cm、酸素含有量は0.51質量%、炭素含有量は0.01質量%であり、累積10%粒子径(D10)は0.7μm、累積50%粒子径(D50)は1.8μm、累積90%粒子径(D90)は3.6μmであった。また、合金粉末は、54質量%のSnと0.99質量%のInを含み、残部がAgの銀合金粉末であった。また、銀合金粉末の熱機械的分析(TMA)において、100℃のときの収縮率は0.36%(膨張率−0.36%)、150℃のときの収縮率は0.76%(膨張率−0.76%)、200℃のときの収縮率は1.55%(膨張率−1.55%)であり、200℃より低い温度で収縮率が高い(熱収縮開始温度が低い)ことがわかった。さらに、銀合金粉末の熱重量分析(TG)において、100℃のときの重量増加率は0.03%、150℃のときの重量増加率は0.06%、200℃のときの重量増加率は0.13%であり、耐酸化性に優れていた。 As a result, the BET specific surface area was 1.31 m 2 / g, the tap density was 3.2 g / cm 3 , the oxygen content was 0.51% by mass, the carbon content was 0.01% by mass, and the cumulative 10% particles. The diameter (D 10 ) was 0.7 μm, the cumulative 50% particle size (D 50 ) was 1.8 μm, and the cumulative 90% particle size (D 90 ) was 3.6 μm. The alloy powder was a silver alloy powder containing 54% by mass of Sn and 0.99% by mass of In, and the balance was Ag. Further, in the thermomechanical analysis (TMA) of the silver alloy powder, the shrinkage rate at 100 ° C. was 0.36% (expansion rate −0.36%), and the shrinkage rate at 150 ° C. was 0.76% (expansion rate −0.36%). The coefficient of thermal expansion is -0.76%) and the coefficient of shrinkage at 200 ° C. is 1.55% (coefficient of expansion -1.55%). )I understood it. Further, in the thermogravimetric analysis (TG) of the silver alloy powder, the weight increase rate at 100 ° C. is 0.03%, the weight increase rate at 150 ° C. is 0.06%, and the weight increase rate at 200 ° C. is 0.03%. Was 0.13%, which was excellent in oxidation resistance.

[実施例3]
ショットビスマスの代わりに純度99.99質量%のショット亜鉛を使用し、アルカリ水溶液の温度を13.6℃とした以外は、実施例1と同様の方法により、銀合金粉末(Ag−Sn−Zn合金粉末)を得た。
[Example 3]
A silver alloy powder (Ag-Sn-Zn) was used in the same manner as in Example 1 except that shot zinc having a purity of 99.99% by mass was used instead of shot bismuth and the temperature of the alkaline aqueous solution was set to 13.6 ° C. Alloy powder) was obtained.

このようにして得られた銀合金粉末について、実施例1と同様の方法により、BET比表面積、タップ密度、酸素含有量、炭素含有量および粒度分布を求め、合金組成分析を行うとともに、熱機械的分析(TMA)並びに熱重量分析(TG)を行った。 With respect to the silver alloy powder thus obtained, the BET specific surface area, tap density, oxygen content, carbon content and particle size distribution are determined by the same method as in Example 1, the alloy composition is analyzed, and the thermogravimetric analysis is performed. Target analysis (TMA) and thermogravimetric analysis (TG) were performed.

その結果、BET比表面積は1.51m/g、タップ密度は3.2g/cm、酸素含有量は0.58質量%、炭素含有量は0.01質量%であり、累積10%粒子径(D10)は0.6μm、累積50%粒子径(D50)は1.7μm、累積90%粒子径(D90)は3.4μmであった。また、合金粉末は、54質量%のSnと0.015質量%のZnを含み、残部がAgの銀合金粉末であった。また、銀合金粉末の熱機械的分析(TMA)において、100℃のときの収縮率は0.35%(膨張率−0.35%)、150℃のときの収縮率は0.71%(膨張率−0.71%)、200℃のときの収縮率は1.33%(膨張率−1.33%)であり、200℃より低い温度で収縮率が高い(熱収縮開始温度が低い)ことがわかった。さらに、銀合金粉末の熱重量分析(TG)において、100℃のときの重量増加率は0.03%、150℃のときの重量増加率は0.07%、200℃のときの重量増加率は0.18%であり、耐酸化性に優れていた。 As a result, the BET specific surface area was 1.51 m 2 / g, the tap density was 3.2 g / cm 3 , the oxygen content was 0.58 mass%, the carbon content was 0.01 mass%, and the cumulative 10% particles. The diameter (D 10 ) was 0.6 μm, the cumulative 50% particle size (D 50 ) was 1.7 μm, and the cumulative 90% particle size (D 90 ) was 3.4 μm. The alloy powder was a silver alloy powder containing 54% by mass of Sn and 0.015% by mass of Zn, and the balance was Ag. Further, in the thermomechanical analysis (TMA) of the silver alloy powder, the shrinkage rate at 100 ° C. was 0.35% (expansion rate −0.35%), and the shrinkage rate at 150 ° C. was 0.71% (expansion rate −0.35%). The coefficient of thermal expansion is -0.71%) and the coefficient of contraction at 200 ° C. is 1.33% (coefficient of thermal expansion -1.33%). )I understood it. Further, in the thermogravimetric analysis (TG) of the silver alloy powder, the weight increase rate at 100 ° C. is 0.03%, the weight increase rate at 150 ° C. is 0.07%, and the weight increase rate at 200 ° C. is 0.03%. Was 0.18%, which was excellent in oxidation resistance.

[実施例4]
ショット銀の量を1.35kg、ショット錫の量を1.59kg、ショットビスマスの量を0.06kgとした以外は、実施例1と同様の方法により、銀合金粉末(Ag−Sn−Bi合金粉末)を得た。
[Example 4]
A silver alloy powder (Ag-Sn-Bi alloy) was produced in the same manner as in Example 1 except that the amount of shot silver was 1.35 kg, the amount of shot tin was 1.59 kg, and the amount of shot bismuth was 0.06 kg. Powder) was obtained.

このようにして得られた銀合金粉末について、実施例1と同様の方法により、BET比表面積、タップ密度、酸素含有量、炭素含有量および粒度分布を求め、合金組成分析を行うとともに、熱機械的分析(TMA)並びに熱重量分析(TG)を行った。 With respect to the silver alloy powder thus obtained, the BET specific surface area, tap density, oxygen content, carbon content and particle size distribution are determined by the same method as in Example 1, the alloy composition is analyzed, and the thermogravimetric analysis is performed. Target analysis (TMA) and thermogravimetric analysis (TG) were performed.

その結果、BET比表面積は2.88m/g、タップ密度は3.5g/cm、酸素含有量は1.21質量%、炭素含有量は0.01質量%であり、累積10%粒子径(D10)は0.6μm、累積50%粒子径(D50)は1.6μm、累積90%粒子径(D90)は3.3μmであった。また、合金粉末は、51.2質量%のSnと1.8質量%のBiを含み、残部がAgの銀合金粉末であった。また、銀合金粉末の熱機械的分析(TMA)において、100℃のときの収縮率は0.32%(膨張率−0.32%)、150℃のときの収縮率は0.70%(膨張率−0.70%)、200℃のときの収縮率は2.18%(膨張率−2.18%)であり、200℃より低い温度で収縮率が高い(熱収縮開始温度が低い)ことがわかった。さらに、銀合金粉末の熱重量分析(TG)において、100℃のときの重量増加率は0.03%、150℃のときの重量増加率は0.07%、200℃のときの重量増加率は0.17%であり、耐酸化性に優れていた。 As a result, the BET specific surface area was 2.88 m 2 / g, the tap density was 3.5 g / cm 3 , the oxygen content was 1.21% by mass, the carbon content was 0.01% by mass, and the cumulative 10% particles. The diameter (D 10 ) was 0.6 μm, the cumulative 50% particle size (D 50 ) was 1.6 μm, and the cumulative 90% particle size (D 90 ) was 3.3 μm. The alloy powder was a silver alloy powder containing 51.2% by mass of Sn and 1.8% by mass of Bi, and the balance was Ag. Further, in the thermomechanical analysis (TMA) of the silver alloy powder, the shrinkage rate at 100 ° C. was 0.32% (expansion rate −0.32%), and the shrinkage rate at 150 ° C. was 0.70% (expansion rate −0.32%). The coefficient of thermal expansion is -0.70%) and the coefficient of contraction at 200 ° C. is 2.18% (coefficient of thermal expansion -2.18%). )I understood it. Further, in the thermogravimetric analysis (TG) of the silver alloy powder, the weight increase rate at 100 ° C. is 0.03%, the weight increase rate at 150 ° C. is 0.07%, and the weight increase rate at 200 ° C. is 0.03%. Was 0.17%, which was excellent in oxidation resistance.

[実施例5]
ショット銀の量を1.35kg、ショット錫の量を1.56kg、ショットビスマスの量を0.09kgとした以外は、実施例1と同様の方法により、銀合金粉末(Ag−Sn−Bi合金粉末)を得た。
[Example 5]
A silver alloy powder (Ag-Sn-Bi alloy) was produced in the same manner as in Example 1 except that the amount of shot silver was 1.35 kg, the amount of shot tin was 1.56 kg, and the amount of shot bismuth was 0.09 kg. Powder) was obtained.

このようにして得られた銀合金粉末について、実施例1と同様の方法により、BET比表面積、タップ密度、酸素含有量、炭素含有量および粒度分布を求め、合金組成分析を行うとともに、熱機械的分析(TMA)並びに熱重量分析(TG)を行った。 With respect to the silver alloy powder thus obtained, the BET specific surface area, tap density, oxygen content, carbon content and particle size distribution are determined by the same method as in Example 1, the alloy composition is analyzed, and the thermogravimetric analysis is performed. Target analysis (TMA) and thermogravimetric analysis (TG) were performed.

その結果、BET比表面積は1.86m/g、タップ密度は3.4g/cm、酸素含有量は0.97質量%、炭素含有量は0.01質量%であり、累積10%粒子径(D10)は0.7μm、累積50%粒子径(D50)は1.7μm、累積90%粒子径(D90)は3.6μmであった。また、合金粉末は、50.8質量%のSnと2.7質量%のBiを含み、残部がAgの銀合金粉末であった。また、銀合金粉末の熱機械的分析(TMA)において、100℃のときの収縮率は0.37%(膨張率−0.37%)、150℃のときの収縮率は0.89%(膨張率−0.89%)、200℃のときの収縮率は4.05%(膨張率−4.05%)であり、200℃より低い温度で収縮率が高い(熱収縮開始温度が低い)ことがわかった。さらに、銀合金粉末の熱重量分析(TG)において、100℃のときの重量増加率は0.01%、150℃のときの重量増加率は0.04%、200℃のときの重量増加率は0.14%であり、耐酸化性に優れていた。 As a result, the BET specific surface area was 1.86 m 2 / g, the tap density was 3.4 g / cm 3 , the oxygen content was 0.97 mass%, the carbon content was 0.01 mass%, and the cumulative 10% particles. The diameter (D 10 ) was 0.7 μm, the cumulative 50% particle size (D 50 ) was 1.7 μm, and the cumulative 90% particle size (D 90 ) was 3.6 μm. The alloy powder was a silver alloy powder containing 50.8% by mass of Sn and 2.7% by mass of Bi, and the balance was Ag. Further, in the thermomechanical analysis (TMA) of the silver alloy powder, the shrinkage rate at 100 ° C. was 0.37% (expansion rate −0.37%), and the shrinkage rate at 150 ° C. was 0.89% (expansion rate −0.37%). The coefficient of thermal expansion is -0.89%) and the coefficient of shrinkage at 200 ° C. is 4.05% (coefficient of thermal expansion-4.05%). )I understood it. Further, in the thermogravimetric analysis (TG) of the silver alloy powder, the weight increase rate at 100 ° C. is 0.01%, the weight increase rate at 150 ° C. is 0.04%, and the weight increase rate at 200 ° C. is 0.04%. Was 0.14%, which was excellent in oxidation resistance.

[実施例6]
ショット銀の量を1.35kg、ショット錫の量を1.41kg、ショットインジウムの量を0.24kgとした以外は、実施例2と同様の方法により、銀合金粉末(Ag−Sn−In合金粉末)を得た。
[Example 6]
A silver alloy powder (Ag-Sn-In alloy) was produced in the same manner as in Example 2 except that the amount of shot silver was 1.35 kg, the amount of shot tin was 1.41 kg, and the amount of shot indium was 0.24 kg. Powder) was obtained.

このようにして得られた銀合金粉末について、実施例1と同様の方法により、BET比表面積、タップ密度、酸素含有量、炭素含有量および粒度分布を求め、合金組成分析を行うとともに、熱機械的分析(TMA)並びに熱重量分析(TG)を行った。 With respect to the silver alloy powder thus obtained, the BET specific surface area, tap density, oxygen content, carbon content and particle size distribution are determined by the same method as in Example 1, the alloy composition is analyzed, and the thermogravimetric analysis is performed. Target analysis (TMA) and thermogravimetric analysis (TG) were performed.

その結果、BET比表面積は1.37m/g、タップ密度は3.3g/cm、酸素含有量は0.71質量%、炭素含有量は0.01質量%であり、累積10%粒子径(D10)は0.7μm、累積50%粒子径(D50)は1.6μm、累積90%粒子径(D90)は3.3μmであった。また、合金粉末は、46.0質量%のSnと7.6質量%のInを含み、残部がAgの銀合金粉末であった。また、銀合金粉末の熱機械的分析(TMA)において、100℃のときの収縮率は0.30%(膨張率−0.30%)、150℃のときの収縮率は0.64%(膨張率−0.64%)、200℃のときの収縮率は1.64%(膨張率−1.64%)であり、200℃より低い温度で収縮率が高い(熱収縮開始温度が低い)ことがわかった。さらに、銀合金粉末の熱重量分析(TG)において、100℃のときの重量増加率は0.04%、150℃のときの重量増加率は0.06%、200℃のときの重量増加率は0.11%であり、耐酸化性に優れていた。 As a result, the BET specific surface area was 1.37 m 2 / g, the tap density was 3.3 g / cm 3 , the oxygen content was 0.71% by mass, the carbon content was 0.01% by mass, and the cumulative 10% particles. The diameter (D 10 ) was 0.7 μm, the cumulative 50% particle size (D 50 ) was 1.6 μm, and the cumulative 90% particle size (D 90 ) was 3.3 μm. The alloy powder was a silver alloy powder containing 46.0% by mass of Sn and 7.6% by mass of In, and the balance was Ag. Further, in the thermomechanical analysis (TMA) of the silver alloy powder, the shrinkage rate at 100 ° C. was 0.30% (expansion rate −0.30%), and the shrinkage rate at 150 ° C. was 0.64% (expansion rate −0.30%). The coefficient of thermal expansion is -0.64%) and the coefficient of contraction at 200 ° C. is 1.64% (coefficient of thermal expansion-1.64%). )I understood it. Further, in the thermogravimetric analysis (TG) of the silver alloy powder, the weight increase rate at 100 ° C. is 0.04%, the weight increase rate at 150 ° C. is 0.06%, and the weight increase rate at 200 ° C. is 0.06%. Was 0.11%, which was excellent in oxidation resistance.

[比較例]
アルカリ水溶液の温度25.9℃、pH10.5とし、ショット銀の量を1.35kg、ショット錫の量を1.65kgとし、ショットビスマスを添加しなかった以外は、実施例1と同様の方法により、銀合金粉末(Ag−Sn合金粉末)を得た。
[Comparison example]
The same method as in Example 1 except that the temperature of the alkaline aqueous solution was 25.9 ° C., the pH was 10.5, the amount of shot silver was 1.35 kg, the amount of shot tin was 1.65 kg, and shot bismuth was not added. Obtained a silver alloy powder (Ag—Sn alloy powder).

このようにして得られた銀合金粉末について、実施例1と同様の方法により、BET比表面積、タップ密度、酸素含有量、炭素含有量および粒度分布を求め、合金組成分析を行うとともに、熱機械的分析(TMA)並びに熱重量分析(TG)を行った。 With respect to the silver alloy powder thus obtained, the BET specific surface area, tap density, oxygen content, carbon content and particle size distribution are determined by the same method as in Example 1, the alloy composition is analyzed, and the thermogravimetric analysis is performed. Target analysis (TMA) and thermogravimetric analysis (TG) were performed.

その結果、BET比表面積は1.63m/g、タップ密度は3.3g/cm、酸素含有量は0.76質量%、炭素含有量は0.01質量%であり、累積10%粒子径(D10)は0.7μm、累積50%粒子径(D50)は1.8μm、累積90%粒子径(D90)は4.0μmであった。また、合金粉末は、55質量%のSnを含み、残部がAgの銀合金粉末であった。また、銀合金粉末の熱機械的分析(TMA)において、100℃のときの収縮率は0.21%(膨張率−0.21%)、150℃のときの収縮率は0.41%(膨張率−0.41%)、200℃のときの収縮率は0.95%(膨張率−0.95%)であり、200℃より低い温度では収縮率が低い(熱収縮開始温度に達していない)ことがわかった。さらに、銀合金粉末の熱重量分析(TG)において、100℃のときの重量増加率は0.13%、150℃のときの重量増加率は0.26%、200℃のときの重量増加率は0.49%であり、実施例1〜3と比べて耐酸化性が劣っていた。 As a result, the BET specific surface area was 1.63 m 2 / g, the tap density was 3.3 g / cm 3 , the oxygen content was 0.76 mass%, the carbon content was 0.01 mass%, and the cumulative 10% particles. The diameter (D 10 ) was 0.7 μm, the cumulative 50% particle size (D 50 ) was 1.8 μm, and the cumulative 90% particle size (D 90 ) was 4.0 μm. The alloy powder was a silver alloy powder containing 55% by mass of Sn and the balance being Ag. Further, in the thermomechanical analysis (TMA) of the silver alloy powder, the shrinkage rate at 100 ° C. was 0.21% (expansion rate −0.21%), and the shrinkage rate at 150 ° C. was 0.41% (expansion rate −0.21%). The coefficient of thermal expansion is -0.41%) and the coefficient of shrinkage at 200 ° C. is 0.95% (coefficient of thermal expansion -0.95%). I didn't know). Further, in the thermogravimetric analysis (TG) of the silver alloy powder, the weight increase rate at 100 ° C. is 0.13%, the weight increase rate at 150 ° C. is 0.26%, and the weight increase rate at 200 ° C. is 200 ° C. Was 0.49%, which was inferior in oxidation resistance as compared with Examples 1 to 3.

これらの実施例および比較例の銀合金粉末の原料割合と特性を表1に示し、これらの銀合金粉末の組成と熱機械的分析(TMA)および熱重量分析(TG)の結果を表2に示す。また、実施例1〜3および比較例の銀合金粉末のTMAにおける温度に対する膨張率の関係を図1に示し、実施例1〜3および比較例の銀合金粉末のTGにおける温度に対する重量増加率の関係を図2に示す。また、実施例1、4、5および比較例の銀合金粉末のTMAにおける温度に対する膨張率の関係を図3に示し、実施例1、4、5および比較例の銀合金粉末のTGにおける温度に対する重量増加率の関係を図4に示す。さらに、実施例2、6および比較例の銀合金粉末のTMAにおける温度に対する膨張率の関係を図5に示し、実施例2、6および比較例の銀合金粉末のTGにおける温度に対する重量増加率の関係を図6に示す。 Table 1 shows the raw material ratios and characteristics of the silver alloy powders of these examples and comparative examples, and Table 2 shows the composition of these silver alloy powders and the results of thermomechanical analysis (TMA) and thermogravimetric analysis (TG). Shown. Further, FIG. 1 shows the relationship between the expansion rates of the silver alloy powders of Examples 1 to 3 and Comparative Examples with respect to temperature in TMA, and the weight increase rates of the silver alloy powders of Examples 1 to 3 and Comparative Examples with respect to temperature in TG. The relationship is shown in FIG. Further, the relationship between the expansion coefficient of the silver alloy powders of Examples 1, 4, 5 and Comparative Example with respect to the temperature in TMA is shown in FIG. 3, and the relationship between the temperature of the silver alloy powders of Examples 1, 4, 5 and Comparative Example in TG The relationship between the weight increase rates is shown in FIG. Further, the relationship of the expansion coefficient of the silver alloy powders of Examples 2 and 6 and Comparative Example with respect to the temperature in TMA is shown in FIG. 5, and the weight increase rate of the silver alloy powders of Examples 2 and 6 and Comparative Example with respect to the temperature in TG is shown in FIG. The relationship is shown in FIG.

Figure 0006899275
Figure 0006899275

Figure 0006899275
Figure 0006899275

また、実施例および比較例の銀合金粉末について、X線回折分析および電子顕微鏡による観察を行うとともに、実施例1〜3および比較例の銀合金粉末を用いた導電性ペーストを使用して作製した導電膜の特性を評価した。 Further, the silver alloy powders of Examples and Comparative Examples were prepared by X-ray diffraction analysis and observation with an electron microscope, and using a conductive paste using the silver alloy powders of Examples 1 to 3 and Comparative Examples. The characteristics of the conductive film were evaluated.

(X線回折分析および電子顕微鏡による観察)
実施例1〜3および比較例の銀合金粉末と、実施例1、4、6および比較例の銀合金粉末と、実施例2、6および比較例の銀合金粉末について、粉末X線回折装置(株式会社リガク製のMultiflex)を用いて得られたX線回折パターンのSn由来ピークをそれぞれ図7〜図9に示し、それらのX線回折パターンのAgSn由来ピークをそれぞれ図10〜図12に示す。図7〜図9からわかるように、比較例と比べて、実施例1〜6ではSn由来ピークが低角側にシフトしている。また、図10〜図12からわかるように、比較例と比べて、実施例2ではAgSn由来ピークが広角側にシフトし、実施例3ではAgSn由来ピークが低角側にシフトしている。なお、図10〜図12からわかるように、AgSn由来ピークは、比較例と比べて、実施例1〜6では2つのピークの間隔が狭くなっている。このようなAgSn由来ピークのシフトは、Bi、In、Znなどの第3金属がSnやAgSnに固溶して結晶子を歪めたために起こると考えられる。
(X-ray diffraction analysis and observation with an electron microscope)
For the silver alloy powders of Examples 1 to 3 and Comparative Examples, the silver alloy powders of Examples 1, 4, 6 and Comparative Examples, and the silver alloy powders of Examples 2 and 6 and Comparative Examples, a powder X-ray diffractometer ( The Sn-derived peaks of the X-ray diffraction patterns obtained by using Multiflex) manufactured by Rigaku Co., Ltd. are shown in FIGS. 7 to 9, and the Ag 3 Sn-derived peaks of the X-ray diffraction patterns are shown in FIGS. 10 to 12, respectively. Shown in. As can be seen from FIGS. 7 to 9, the Sn-derived peaks are shifted to the low angle side in Examples 1 to 6 as compared with Comparative Examples. Moreover, as can be seen from FIGS. 10 to 12, in comparison with Comparative Example, shifted to Ag 3 Sn from the peak in the second embodiment is the wide-angle side, Ag 3 Sn from the peak in Example 3 is shifted to the low angle side ing. As can be seen from FIGS. 10 to 12 , the peaks derived from Ag 3 Sn have a narrower interval between the two peaks in Examples 1 to 6 than in Comparative Examples. It is considered that such a shift of the Ag 3 Sn-derived peak occurs because a third metal such as Bi, In, or Zn dissolves in Sn or Ag 3 Sn and distorts the crystallite.

また、実施例1〜3および比較例の銀合金粉末の走査型電子顕微鏡写真(左側の写真が10,000倍、中央の写真が5,000倍、右側の写真が1,000倍の写真)をそれぞれ図13〜図16に示し、実施例4〜6の銀合金粉末の走査型電子顕微鏡写真(左側の写真が10,000倍、右側の写真が5,000倍の写真)をそれぞれ図17〜図19に示す。 In addition, scanning electron micrographs of the silver alloy powders of Examples 1 to 3 and Comparative Examples (the photograph on the left is 10,000 times, the photograph in the center is 5,000 times, and the photograph on the right is 1,000 times). 13 to 16, respectively, and scanning electron micrographs of the silver alloy powders of Examples 4 to 6 (photographs on the left side are 10,000 times and photographs on the right side are 5,000 times) are shown in FIG. 17, respectively. -Shown in FIG.

(導電膜の特性の評価)
実施例1〜3および比較例の銀合金粉末の各々を80質量%と、ガラスフリット(旭硝子株式会社製のASF−1100B)5質量%と、ビヒクル(テルピネオール(TPO)中に40質量%のアクリル樹脂BR−105(三菱レイヨン株式会社製))10質量%と、溶剤(TPO(和光純薬工業株式会社製))5質量%を混練して導電性ペーストを作製し、これらの導電性ペーストをアルミナ基板上に厚さ20μmになるように塗布した後、大気中において(ピーク温度400℃で10分間(In−Out20分間)に設定したベルト炉により)400℃で焼成して作製した導電膜の体積抵抗率を求めた。これらの導電膜について、比較例の体積抵抗率を1とした場合のそれぞれの体積抵抗率を図20に示す。
(Evaluation of conductive film characteristics)
80% by mass of each of the silver alloy powders of Examples 1 to 3 and Comparative Examples, 5% by mass of glass frit (ASF-1100B manufactured by Asahi Glass Co., Ltd.), and 40% by mass of acrylic in a vehicle (terpineol (TPO)). 10% by mass of resin BR-105 (manufactured by Mitsubishi Rayon Co., Ltd.) and 5% by mass of solvent (TPO (manufactured by Wako Pure Chemical Industries, Ltd.)) are kneaded to prepare a conductive paste, and these conductive pastes are prepared. A conductive film produced by coating on an alumina substrate to a thickness of 20 μm and then firing at 400 ° C. in the air (by a belt furnace set at a peak temperature of 400 ° C. for 10 minutes (In-Out 20 minutes)). The volume resistivity was calculated. FIG. 20 shows the volume resistivity of each of these conductive films when the volume resistivity of the comparative example is 1.

また、作製した導電性ペーストを使用して、窒素雰囲気中において(ピーク温度500℃で10分間(In−Out20分間)に設定したベルト炉により)500℃で焼成した以外は、上記と同様の方法により、導電膜を作製して体積抵抗率を求めた。これらの導電膜について、比較例の体積抵抗率を1とした場合のそれぞれの体積抵抗率を図21に示す。 Further, the same method as described above except that the prepared conductive paste was fired at 500 ° C. in a nitrogen atmosphere (by a belt furnace set at a peak temperature of 500 ° C. for 10 minutes (In-Out 20 minutes)). To prepare a conductive film and determine the volume resistivity. FIG. 21 shows the volume resistivity of each of these conductive films when the volume resistivity of the comparative example is 1.

さらに、作製した導電性ペーストを使用して、窒素雰囲気中において(ピーク温度600℃で10分間(In−Out20分間)に設定したベルト炉により)600℃で焼成した以外は、上記と同様の方法により、導電膜を作製して体積抵抗率を求めた。これらの導電膜について、比較例の体積抵抗率を1とした場合のそれぞれの体積抵抗率を図22に示す。 Further, the same method as described above except that the prepared conductive paste was fired at 600 ° C. in a nitrogen atmosphere (by a belt furnace set at a peak temperature of 600 ° C. for 10 minutes (In-Out 20 minutes)). To prepare a conductive film and determine the volume resistivity. FIG. 22 shows the volume resistivity of each of these conductive films when the volume resistivity of the comparative example is 1.

図20〜図22からわかるように、実施例1〜3では、比較例と比べて、高い導電性の導電膜を得ることができる。これは、実施例1〜3の銀合金粉末では、比較例の銀合金粉末と比べて、200℃のときの収縮率が高い(熱収縮開始温度が低い)ので、焼成温度における導電性ペースト中の銀合金粉末が融着し易く、高い導電性の導電膜が得られると考えられる。 As can be seen from FIGS. 20 to 22, in Examples 1 to 3, a conductive film having higher conductivity can be obtained as compared with Comparative Examples. This is because the silver alloy powders of Examples 1 to 3 have a higher shrinkage rate at 200 ° C. (lower heat shrinkage start temperature) than the silver alloy powders of Comparative Examples, so that they are contained in the conductive paste at the firing temperature. It is considered that the silver alloy powder of the above is easily fused and a highly conductive conductive film can be obtained.

本発明による銀合金粉末は、太陽電池の電極、低温焼成セラミック(LTCC)を使用した電子部品や積層セラミックインダクタなどの積層セラミック電子部品の内部電極、積層セラミックコンデンサや積層セラミックインダクタなどの外部電極などを形成するために、低温で焼結する焼成型導電性ペーストの材料として利用して、高い導電性の導電膜を得ることができる。 The silver alloy powder according to the present invention includes electrodes for solar cells, internal electrodes for electronic components using low-temperature fired ceramics (LTCC) and multilayer ceramic electronic components such as multilayer ceramic inductors, and external electrodes such as multilayer ceramic capacitors and multilayer ceramic inductors. Can be used as a material for a calcined conductive paste that is sintered at a low temperature to obtain a highly conductive conductive film.

Claims (14)

銀と錫とビスマス、インジウムおよび亜鉛からなる群から選ばれる1種以上の第3金属元素との合金粉末である銀合金粉末において、銀と錫と第3金属元素の合計に対する銀の割合が20〜90質量%であり、平均粒径が0.5〜20μmであり、熱機械的分析における200℃のときの収縮率が1%以上であることを特徴とする、銀合金粉末。 Silver and tin and bismuth, in the silver alloy powder is an alloy powder of one or more third metallic elements selected from the group consisting of indium and zinc, the proportion of silver to the total of silver and tin and the third metal element 20 A silver alloy powder having an average particle size of 0.5 to 20 μm and a shrinkage rate of 1% or more at 200 ° C. in thermomechanical analysis. 前記銀合金粉末の熱重量分析における200℃のときの重量増加率が0.4%以下であることを特徴とする、請求項1に記載の銀合金粉末。 The silver alloy powder according to claim 1, wherein the weight increase rate at 200 ° C. in the thermogravimetric analysis of the silver alloy powder is 0.4% or less. 前記銀合金粉末中の酸素含有量が1.4質量%以下であることを特徴とする、請求項1または2に記載の銀合金粉末。 The silver alloy powder according to claim 1 or 2, wherein the oxygen content in the silver alloy powder is 1.4% by mass or less. 前記銀合金粉末中の炭素含有量が0.5質量%以下であることを特徴とする、請求項1乃至3のいずれかに記載の銀合金粉末。 The silver alloy powder according to any one of claims 1 to 3, wherein the carbon content in the silver alloy powder is 0.5% by mass or less. BET比表面積が0.1〜3.5m/gであることを特徴とする、請求項1乃至4のいずれか記載の銀合金粉末。 The silver alloy powder according to any one of claims 1 to 4, wherein the BET specific surface area is 0.1 to 3.5 m 2 / g. タップ密度が2.5g/cm以上であることを特徴とする、請求項1乃至5のいずれかに記載の銀合金粉末。 The silver alloy powder according to any one of claims 1 to 5, wherein the tap density is 2.5 g / cm 3 or more. 銀と錫とビスマス、インジウムおよび亜鉛からなる群から選ばれる1種以上の第3金属元素と、銀と錫と第3金属元素の合計に対する銀の割合が20〜90質量%になるように溶解した溶湯を落下させながら、高圧水を吹き付けて急冷凝固させることにより、銀と錫と第3金属元素との合金粉末である銀合金粉末を製造することを特徴とする、銀合金粉末の製造方法。 Silver and tin and bismuth, and one or more third metallic elements selected from the group consisting of indium and zinc, as the proportion of silver to the total of silver and tin and the third metal element is 20 to 90 wt% Production of silver alloy powder, which is characterized by producing silver alloy powder, which is an alloy powder of silver, tin, and a tertiary metal element, by spraying high-pressure water to quench and solidify while dropping the melted molten metal. Method. 前記溶湯が、前記ビスマス、インジウムおよび亜鉛からなる群から選ばれる1種以上の第3金属元素と銀と錫を非酸化性雰囲気中において溶解した溶湯であることを特徴とする、請求項7に記載の銀合金粉末の製造方法。 7. The molten metal is a molten metal in which one or more third metal elements selected from the group consisting of bismuth, indium and zinc, silver and tin are dissolved in a non-oxidizing atmosphere. The method for producing a silver alloy powder according to the above. 前記高圧水が純水またはアルカリ水であることを特徴とする、請求項7または8に記載の銀合金粉末の製造方法。 The method for producing a silver alloy powder according to claim 7 or 8, wherein the high-pressure water is pure water or alkaline water. 前記高圧水が大気中または非酸化性雰囲気中において吹き付けられることを特徴とする、請求項7乃至9のいずれかに記載の銀合金粉末の製造方法。 The method for producing a silver alloy powder according to any one of claims 7 to 9, wherein the high-pressure water is sprayed in an atmosphere or a non-oxidizing atmosphere. 請求項1乃至6のいずれかに記載の銀合金粉末が有機成分中に分散していることを特徴とする、導電性ペースト。 A conductive paste, wherein the silver alloy powder according to any one of claims 1 to 6 is dispersed in an organic component. 前記導電性ペーストが焼成型導電性ペーストであることを特徴とする、請求項11に記載の導電性ペースト。 The conductive paste according to claim 11, wherein the conductive paste is a baking-type conductive paste. 請求項12の焼成型導電性ペーストを基板上に塗布した後に焼成して導電膜を製造することを特徴とする、導電膜の製造方法。 A method for producing a conductive film, which comprises applying the firing-type conductive paste according to claim 12 onto a substrate and then firing the paste to produce a conductive film. 前記焼成を300〜700℃の温度で行うことを特徴とする、請求項13に記載の導電膜の製造方法。 The method for producing a conductive film according to claim 13, wherein the firing is performed at a temperature of 300 to 700 ° C.
JP2017151240A 2016-08-10 2017-08-04 Silver alloy powder and its manufacturing method Active JP6899275B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016157756 2016-08-10
JP2016157756 2016-08-10

Publications (2)

Publication Number Publication Date
JP2018028145A JP2018028145A (en) 2018-02-22
JP6899275B2 true JP6899275B2 (en) 2021-07-07

Family

ID=61248895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017151240A Active JP6899275B2 (en) 2016-08-10 2017-08-04 Silver alloy powder and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6899275B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7328796B2 (en) * 2018-06-08 2023-08-17 Dowaエレクトロニクス株式会社 METHOD AND APPARATUS FOR MANUFACTURING METAL POWDER
CN110335698B (en) * 2019-06-28 2020-08-28 智玻蓝新科技(武汉)有限公司 Conductive material special for glass-based circuit board

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3721073B2 (en) * 1999-12-28 2005-11-30 株式会社東芝 Solder material, device or apparatus using the same, and manufacturing method thereof
JP3964659B2 (en) * 2001-11-30 2007-08-22 松下電器産業株式会社 Chargeable particles, method for producing the same, and electronic circuit board
JP2004095732A (en) * 2002-08-30 2004-03-25 Idemitsu Kosan Co Ltd Bonding material, method for forming bonding pattern, and method for producing electronic circuit substrate
JP2004211155A (en) * 2002-12-27 2004-07-29 Tamura Kaken Co Ltd Method for manufacturing metal microparticle, substance containing metal microparticle, and soldering paste composition
JP2006009125A (en) * 2004-06-29 2006-01-12 Kumamoto Technology & Industry Foundation Surface modified metal fine particle and paste containing this metal fine partice
JP4437063B2 (en) * 2004-09-21 2010-03-24 住友大阪セメント株式会社 Black material
JP5964597B2 (en) * 2011-03-30 2016-08-03 株式会社タムラ製作所 Anisotropic conductive paste and method of connecting electronic parts using the same
JP6184731B2 (en) * 2013-04-25 2017-08-23 Dowaエレクトロニクス株式会社 Silver-bismuth powder, conductive paste and conductive film

Also Published As

Publication number Publication date
JP2018028145A (en) 2018-02-22

Similar Documents

Publication Publication Date Title
JP5155743B2 (en) Copper powder for conductive paste and conductive paste
JP5405814B2 (en) Copper powder for conductive paste and conductive paste
JP7039126B2 (en) Copper powder and its manufacturing method
JP7090511B2 (en) Silver powder and its manufacturing method
JP2010013730A (en) Copper powder for conductive paste, and conductive paste
JP6804286B2 (en) Silver alloy powder and its manufacturing method
JP2010196105A (en) Copper powder for electroconductive paste, and electroconductive paste
JP5576199B2 (en) Copper powder for conductive paste and conductive paste
WO2018123809A1 (en) Copper powder and method for manufacturing same
JP6899275B2 (en) Silver alloy powder and its manufacturing method
JP5932638B2 (en) Copper powder for conductive paste and conductive paste
JP7272834B2 (en) Silver powder and its manufacturing method
JP4146119B2 (en) Copper alloy powder for conductive paste
JP7084730B2 (en) Silver alloy powder and its manufacturing method
JP2012067327A (en) Copper powder for conductive paste, and conductive paste
WO2017115462A1 (en) Silver alloy powder and method for producing same
TWI755565B (en) Silver powder and method for producing same
JP7136970B2 (en) Silver powder containing phosphorus and conductive paste containing the silver powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210614

R150 Certificate of patent or registration of utility model

Ref document number: 6899275

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150