JP7083666B2 - Ic、ドライバic、表示システムおよび電子機器 - Google Patents

Ic、ドライバic、表示システムおよび電子機器 Download PDF

Info

Publication number
JP7083666B2
JP7083666B2 JP2018039857A JP2018039857A JP7083666B2 JP 7083666 B2 JP7083666 B2 JP 7083666B2 JP 2018039857 A JP2018039857 A JP 2018039857A JP 2018039857 A JP2018039857 A JP 2018039857A JP 7083666 B2 JP7083666 B2 JP 7083666B2
Authority
JP
Japan
Prior art keywords
circuit
signal
input terminal
current
inverting input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018039857A
Other languages
English (en)
Other versions
JP2018146585A (ja
Inventor
朗央 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of JP2018146585A publication Critical patent/JP2018146585A/ja
Application granted granted Critical
Publication of JP7083666B2 publication Critical patent/JP7083666B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • G01R19/16552Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies in I.C. power supplies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2884Testing of integrated circuits [IC] using dedicated test connectors, test elements or test circuits on the IC under test
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3275Details of drivers for data electrodes
    • G09G3/3291Details of drivers for data electrodes in which the data driver supplies a variable data voltage for setting the current through, or the voltage across, the light-emitting elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0289Details of voltage level shifters arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0291Details of output amplifiers or buffers arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0294Details of sampling or holding circuits arranged for use in a driver for data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • G09G2310/066Waveforms comprising a gently increasing or decreasing portion, e.g. ramp
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/029Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel
    • G09G2320/0295Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel by monitoring each display pixel
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/12Test circuits or failure detection circuits included in a display system, as permanent part thereof
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/846Passivation; Containers; Encapsulations comprising getter material or desiccants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1216Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being capacitors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Control Of El Displays (AREA)
  • Electronic Switches (AREA)
  • Semiconductor Integrated Circuits (AREA)

Description

本出願の明細書、図面、および特許請求の範囲(以下、「本明細書等」と呼ぶ。)では、半導体装置、電子部品、及び電子機器、並びにこれらの動作方法と作製方法等について説明する。
本明細書等において、半導体装置とは、半導体特性を利用した装置であり、半導体素子(トランジスタ、ダイオード、フォトダイオード等)を含む回路、同回路を有する装置等をいう。また、半導体特性を利用することで機能しうる装置全般をいう。例えば、集積回路、集積回路を備えたチップ、およびパッケージにチップを収納した電子部品は半導体装置の一例である。また、記憶装置、表示装置、発光装置、照明装置及び電子機器等は、それ自体が半導体装置であり、半導体装置を有している場合がある。
表示装置の多階調化、及び高精細化等に対応するため、表示装置のドライバ回路、特に、ビデオ信号からデータ信号を生成するためのソースドライバ回路には、専用IC(ドライバIC)が採用されている(例えば、非特許文献1)。
発光素子を用いたアクティブマトリクス型の表示装置の画素について、様々な回路構成が提案されている。一般的に、画素には、発光素子、画素への階調信号の入力を制御する選択トランジスタ、および発光素子を駆動する駆動トランジスタが少なくとも設けられている。駆動トランジスタを流れるドレイン電流を発光素子に供給することで、ドレイン電流の値に応じた輝度で発光素子を発光させている。
表示装置の画面を構成する画素間で、駆動トランジスタの電気特性(閾値電圧、電界効果移動度等)にばらつきがあると、同じ電圧の階調信号を供給しても、発光素子の輝度にばらつきが生じてしまう。したがって、複数の画素間での駆動トランジスタの電気特性のばらつきは、表示装置の表示品質を低下させしまう原因の1つである。
一方、アクティブマトリクス型の表示装置は高精細化のため多画素化が推し進められており、表示装置には、数十万乃至数千万もの画素が設けられている。一般的なカラー表示装置の画素は、赤、緑、青(RGB)の表示色に対応する3のサブ画素でなる。例えば、サブ画素数は、画面解像度がFull-HDであれば、1366×768×3(RGB)=1,049,088であり、8K4K(スーパーハイビジョン)であれば、7680×4320×3(RGB)=33,177,600である。多数のサブ画素間で駆動トランジスタの電気特性を完全に一致させるのは、非常に困難である。そこで、駆動トランジスタの電気特性を取得し、発光素子の輝度を補正することが提案されている(例えば、非特許文献1)。
非特許文献1では、表示装置のサブ画素、およびスキャンドライバのトランジスタは、チャネルが金属酸化物で形成されているチャネルを有するトランジスタである。本明細書等では、チャネルが金属酸化物で形成されているトランジスタを金属酸化物トランジスタ、酸化物半導体トランジスタまたはOSトランジスタと呼ぶ。
R.Yamamoto et al.,"13.3‐inch 8K4K 664‐ppi 120‐Hz 12‐bit OLED Display Using Top‐Gate Self‐Aligned CAAC‐OS FETs and 12‐bit Source Driver ICs,"SID Symposium Digest of Technical Papers,Vol.47,2016,pp.53―56.
本発明の一形態の課題は、新規なテスト用回路を提供すること、高い信頼性のテストを可能にすること、広い電流出力範囲の半導体装置を提供すること、出力電流の値を高精度に調節できること、および回路面積を縮小することである。
複数の課題の記載は、互いの課題の存在を妨げるものではない。本発明の一形態は、例示した全ての課題を解決する必要はない。また、列記した以外の課題が、本明細書等の記載から、自ずと明らかとなるものであり、このような課題も、本発明の一形態の課題となり得る。
(1)本発明の一形態は、複数のピン、複数の電流検出回路、および電流生成回路を有するICである。複数の電流検出回路は、複数のピンを流れる電流を並列に処理する。電流生成回路は容量素子を有し、容量素子の電荷量に応じた参照電流を生成する。参照電流は、複数の電流検出回路をテストするために用いられる。
(2)本発明の一形態のICは、第1乃至第K(Kは2以上の整数)ピンと、第1乃至第N電流検出回路と、第1容量素子を有する電流生成回路とを有し、第j(jは1乃至Nの整数)電流検出回路は、第jピンを流れる電流を検出し、電流生成回路は、第1容量素子が保持する電荷量に応じた参照電流を生成し、第1乃至第N電流検出回路をテストするため、第1乃至第N電流検出回路は参照電流が逐次入力される。
(3)上掲の形態(2)のICは、第1乃至第3回路と、配線とをさらに有し、第1回路は第jピンと第j電流検出回路間の導通状態を制御し、第2回路は配線への参照電流の入力を制御し、第3回路は第1乃至第Kピンから配線に電気的に接続される1個のピンを選択する。
(4)上掲の形態(2)のICにおいて、電流生成回路は第1スイッチ、第2スイッチ、第1ノード、および第2ノードを有し、第1容量素子の第1端子は第1電圧が入力され、第1ノードは第2電圧が入力され、第1スイッチは第1ノードと第1容量素子の第2端子間の導通状態を制御し、第2スイッチは第2ノードと第1容量素子の第2端子間の導通状態を制御し、電流生成回路は第2ノードを流れる電流を参照電流として出力する。
(5)上掲の形態(2)のICにおいて、電流生成回路は、第1スイッチ、第2スイッチ、第1ノード乃至第3ノード、第1選択回路、および第2選択回路を有し、第1容量素子の第1端子は第1電圧が入力され、第1スイッチは第1ノードと第1容量素子の第2端子間の導通状態を制御し、第2スイッチは第2ノードと第1容量素子の第2端子間の導通状態を制御し、第1選択回路は複数の電圧から1の電圧を選択し、選択した電圧を第1ノードに入力し、第2選択回路は第1ノードおよび第2ノードから1のノードを選択し、選択されたノードを流れる電流は、参照電流として出力される。
(6)上掲の形態(2)乃至(5)の何れか1のICにおいて、第1至第K電流検出回路はそれぞれ電流電圧変換回路を有し、電流電圧変換回路は、増幅回路、第2容量素子、および第3スイッチを有し、増幅回路は反転入力端子、第1非反転入力端子、第2非反転入力端子、および出力端子を有し、第2容量素子の第1端子および第2端子は反転入力端子および出力端子にそれぞれ電気的に接続され、第3スイッチは反転入力端子と出力端子間の導通状態を制御する。
(7)上掲の形態(2)乃至(5)の何れか1のICにおいて、第1乃至第K電流検出回路はそれぞれ電流電圧変換回路を有し、電流電圧変換回路は、増幅回路、第2容量素子、および第3スイッチを有し、増幅回路は、反転入力端子、第1非反転入力端子、第2非反転入力端子、および出力端子を有し、増幅回路は、第1非反転入力端子の電圧および第2非反転入力端子の電圧の平均電圧と、反転入力端子の電圧との差分を増幅し、第2容量素子の第1端子および第2端子は反転入力端子および出力端子にそれぞれ電気的に接続され、第3スイッチは反転入力端子と出力端子間の導通状態を制御する。
(8)上掲の形態(6)又は(7)のICにおいて、電流電圧変換回路の第3スイッチは第1信号対により制御され、電流生成回路は遅延回路を有し、遅延回路は、第1信号対を遅延して第2信号対を生成し、第2信号対を遅延して第3信号対を生成し、第1スイッチは第2信号対により制御され、第2スイッチは第3信号対により制御される。
(9)本発明の一形態は、上掲の形態(1)乃至(8)の何れか1のICにドライバ部が設けられているドライバICであり、ドライバ部は外部入力される画像信号を処理し、階調信号を生成する。
本明細書等において、「第1」、「第2」、「第3」などの序数詞は、順序を表すために使用される場合がある。または、構成要素の混同を避けるために使用する場合がある。これらの場合、序数詞の使用は構成要素の個数を限定するものではない。また、例えば、「第1」を「第2」または「第3」に置き換えて、本発明の一形態を説明することができる。
トランジスタは、ゲート、ソース、およびドレインと呼ばれる3個の端子を有する。ゲートは、トランジスタの導通状態を制御する制御端子である。ソースまたはドレインとして機能する2個の端子は、トランジスタの入出力端子である。2個の入出力端子は、トランジスタの導電型(nチャネル型、pチャネル型)及びトランジスタの3個の端子に与えられる電位の高低によって、一方がソースとなり他方がドレインとなる。このため、本明細書等においては、ソースやドレインの用語は入れ替えて用いることができるものとする。本明細書等では、便宜的に、ゲート以外の2個の端子を第1端子、第2端子と呼ぶ場合がある。
ノードは、回路構成やデバイス構造等に応じて、端子、配線、電極、導電層、導電体、不純物領域等と言い換えることが可能である。また、端子、配線等をノードと言い換えることが可能である。
電圧は、ある電位と、基準の電位(例えば接地電位(GND)またはソース電位)との電位差のことを示す場合が多い。よって、電圧を電位と言い換えることが可能である。なお、電位とは相対的なものである。よって、GNDと記載されていても、必ずしも0Vを意味しない場合もある。
本明細書等において、「膜」という言葉と「層」という言葉とは、場合によっては、または、状況に応じて、互いに入れ替えることが可能である。例えば、「導電層」という用語を「導電膜」という用語に変更することが可能な場合がある。例えば、「絶縁膜」という用語を「絶縁層」という用語に変更することが可能な場合がある。
本明細書等において、XとYとが接続されていると記載されている場合は、XとYとが電気的に接続されている場合と、XとYとが機能的に接続されている場合と、XとYとが直接接続されている場合とが、本明細書等に開示されているものとする。したがって、所定の接続関係、例えば、図または文章に示された接続関係に限定されず、図または文章に示された接続関係以外のものも、図または文章に記載されているものとする。X、Yは、対象物(例えば、装置、素子、回路、配線、電極、端子、導電層、半導体領域など)であるとする。
本発明の一形態は、新規な半導体装置を提供すること、または新規な半導体装置の動作方法を提供することが可能である。
複数の効果の記載は、他の効果の存在を妨げるものではない。また、本発明の一形態は、必ずしも、例示した効果の全てを有する必要はない。また、本発明の一形態について、上記以外の課題、効果、および新規な特徴については、本明細書の記載および図面から自ずと明らかになるものである。
ICの構成例を示す機能ブロック図。 電流検出回路の単位回路の構成例を示す回路図。 電流生成回路の構成例を示す回路図。 A:電流検出モードの動作例を示すタイミングチャート。B:IVシーケンス、ADシーケンスの例を示すタイミングチャート。C:RDシーケンスの例を示すタイミングチャート。 A―E:電流検出モードの動作例を説明するための回路図。 A:テストモードの動作例を示すタイミングチャート。B:IVシーケンス、ADシーケンスの例を示すタイミングチャート。 ソースドライバIC(SD‐IC)の構成例を示す機能ブロック図。 ソースドライバ(SDR)部の構成例を示す機能ブロック図。 電流検出(CSN)部の構成例を示す機能ブロック図。 電流生成部の構成例を示す回路図。 電流検出回路およびテスト用回路の構成例を示す回路図。 デコーダの真理値表、およびスイッチマトリクスの制御信号と電流検出モードとの対応表。 A―C:電流検出モードと、スイッチマトリクスの回路構成との対応を説明する図。 電流検出回路およびテスト用回路の構成例を示す回路図。 A:電流検出モードの動作例を示すタイミングチャート。B:RDシーケンスの例を示すタイミングチャート。 電流検出モードでのIVシーケンス、ADシーケンスの例を示すタイミングチャート。 テストモードの動作例を示すタイミングチャート。 テストモードでのIVシーケンス、ADシーケンスの例を示すタイミングチャート。 A:表示システムの構成例を示すブロック図。B:SD‐ICと画素アレイとの接続構造の模式図。 A、B:画素アレイの構成例を示す図。 A、B:スイッチ回路の構成例を示す図。 画素アレイ、ゲートドライバ回路、SD‐ICの接続構造例を示す図。 表示システムの電流検出動作例を示すフローチャート。 電流検出動作例を説明するための簡略化した回路図。 電流検出動作例を説明するための簡略化した回路図。 A―C:画素アレイの構成例を示す回路図。 画素アレイの構成例を示す回路図。 A、B:サブ画素の構成例を示す回路図。 表示パネルの構成例を示す断面図。 A、B:表示パネルの構成例を示す断面図。 A―D:電子機器の構成例を示す図。 A―C:電子機器の構成例を示す図。 A、B:電子機器の構成例を示す図。 製造したSD‐ICのCSN部をテストモードで動作したときの電流値の取得結果を表す図。
以下に、本発明の実施の形態を説明する。ただし、本発明の一形態は、以下の説明に限定されず、本発明の趣旨およびその範囲から逸脱することなくその形態および詳細を様々に変更し得ることは、当業者であれば容易に理解される。したがって、本発明の一形態は、以下に示す実施の形態および実施例の記載内容に限定して解釈されるものではない。
以下に示される複数の実施の形態は適宜組み合わせることが可能である。また1の実施の形態の中に、複数の構成例(作製方法例、動作方法例、使用方法例等も含む。)が示される場合は、互いの構成例を適宜組み合わせること、および他の実施の形態および実施例に記載された1または複数の構成例と適宜組み合わせることも可能である。
図面において、同一の要素または同様な機能を有する要素、同一の材質の要素、あるいは同時に形成される要素等には同一の符号を付す場合があり、その繰り返しの説明は省略する場合がある。
また、複数の要素に同じ符号を用いる場合、特に、それらを区別する必要があるときには、符号に“_1”、“_2”、“[n]”、“[m,n]”等の識別用の符号を併記する場合がある。例えば、複数の配線MLを個々に区別する場合、2列目(または2行目)の配線MLを配線ML[2]と記載する場合がある。
本明細書において、例えば、電源電位VDDを、電位VDD、VDD等と省略して記載する場合がある。これは、他の構成要素(例えば、信号、電圧、回路、素子、電極、配線等)についても同様である。
図面において、大きさ、層の厚さ、又は領域は、明瞭化のために誇張されている場合がある。よって、必ずしもそのスケールに限定されない。なお図面は、理想的な例を模式的に示したものであり、図面に示す形状又は値などに限定されない。例えば、ノイズによる信号、電圧、若しくは電流のばらつき、又は、タイミングのずれによる信号、電圧、若しくは電流のばらつきなどを含むことが可能である。
〔実施の形態1〕
本実施の形態では、電流検出機能を備えるICについて説明する。図1にICの機能ブロック図を示す。
図1に示すIC100は、電流電圧変換部110、サンプルホールド部112、アナログデジタル変換部113、出力ドライバ114、スイッチ部117、レベルシフト(LS)部121、ロジック部122、123、ロジック及びレベルシフト(LOG/LS)部124、電流生成回路125、スイッチマトリクス128、スイッチ部129、配線TM81、TM82、容量素子Cn81、Cn82を有する。
IC100は、ピンPMV1、PMV2、2N(Nは1以上の整数)個のピンPIなどの複数のピンを有する。IC100の電流入力チャンネル数は2Nであり、2N個のピンPIは電流入力用ピンである。
以下、2N個から1個のピンPIを特定するときは、ピンPI[1]等と表記する。ピンPIと表記する場合は、任意のピンPIを指している。他の要素についても同様に表記する。要素を特定するためのその他の識別記号として、_1、[1,2]等が使用される。
IC100は、N個の奇数チャンネル(または偶数チャンネル)のピンPIを流れる電流を並列で検出する。N個のピンPIから入力される電流は、各部110、112、113で並列に処理され、パラレル形式のN個のデジタルデータに変換される。出力ドライバ114は、N個のデジタルデータをシリアル形式のデジタルデータに変換し、信号CMDOとして外部に出力する。電流検出処理を並列化するため、電流電圧変換部110はN個の単位回路を有する。サンプルホールド部112、アナログデジタル変換部113等も同様である。つまり、電流電圧変換部110の単位回路の数は、ピンPIの数よりも少ない。
電流電圧変換部110はN個の電流電圧変換回路(I/V回路)130を有する。I/V回路130は電流入力型の積分回路で構成されており、増幅回路131、容量素子Civ、スイッチSWivを有する。容量素子Civは積分容量である。サンプルホールド部112はN個のサンプルホールド回路(S/H回路)132を有する。S/H回路132は容量素子Csh、スイッチSWshを有する。アナログデジタル変換部113はN個のアナログデジタル変換回路(A/D回路)133を有する。
スイッチ部117はN個のスイッチマトリクス137を有する。スイッチマトリクス137はスイッチSW71―SW76を有する。スイッチSWiv、SWsh、SW71―SW76はアナログスイッチである。
電流電圧変換部110を検査するためのテスト回路が、IC100に組み込まれている。テスト回路は、LOG/LS部124、電流生成回路125、スイッチマトリクス128、スイッチ部129、容量素子Cn81、Cn82を有する。
電流生成回路125は電流IRFINTを生成する。電流IRFINTは、電流電圧変換部110のテストに用いられる参照電流である。電流生成回路125は、ノードNt、スイッチSWt、SWtb、容量素子Ct、遅延回路125aを有する。
スイッチ部129は配線TM81、TM82、N個のスイッチ回路139を有する。スイッチ部129はDeMUX(デマルチプレクサ)として機能し、2N個のピンPIから配線TM81、TM82に導通される2個のピンを選択する。配線TM81、TM82は、電流IRFINTの経路となる。
スイッチマトリクス128は、スイッチマトリクス137と同じ回路構成であり、スイッチSW81―SW86で構成される。スイッチマトリクス128は、DeMUX、およびプリチャージ回路の機能をもつ。スイッチマトリクス128は、配線TM81、TM82のうちから電流IRFINTを出力する配線の選択、配線TM81、TM82のプリチャージを行う。
IC100には、電圧VDDD、VDDA、VSSD、VSSA、CMVRI、CMVRCが入力される。電圧VDDD、VDDAは高レベル側電源電圧である。電圧VSSD、VSSAは低レベル側電源電圧であり、例えば接地電位である。電圧VDDD、VSSDはデジタル回路のための電源電圧であり、電圧VDDA、VSSAは、アナログ回路のための電源電圧である。ピンPMV1、PMV2は電圧CMVRI、CMVRCの入力用ピンである。
IC100には、信号CMPRE、CMREV、CMSET、CMSH、RTCM、TDCLK、TDSP等の各種の信号が入力される。
信号CMPRE、CMREV、CMSET、CMSHはレベルシフト部121に入力される。レベルシフト部121はデジタル信号をアナログ回路用の信号に変換するための回路であり、デジタル信号を差動信号に変換し、かつレベルシフトする。本明細書等では、このような差動信号の符号として、デジタル信号の符号に「H」、「BH」を付記した符号を用いることにする。例えば、信号CMPREに対応する差動信号対をCMPREH、CMPREBHと表記する。信号CMPREHは信号CMPREと同じ論理の信号であり、信号CMPREBHは、信号CMPRHの反転信号である。
信号CMPREは、ピンPIのプリチャージを制御する信号である。信号CMREVは、電流を検出するチャンネルが奇数チャンネルか、偶数チャンネルかを指定する信号である。信号CMSETは、I/V回路130のオフセットキャンセル動作の制御信号である。信号CMSHは、S/H回路132のサンプリング動作の制御信号である。
信号CMPREH、CMPREBH、CMREVH、CMREVBHはスイッチ部117、スイッチマトリクス128に入力される。信号CMSETH、CMSETBHは電流電圧変換部110、電流生成回路125に入力される。信号CMSHH、CMSHBHはS/H部112に入力される。
ロジック部122は、外部信号を処理し、アナログデジタル変換部113の制御信号を生成する。アナログデジタル変換部113には、ロジック部122、および外部から制御信号が入力される。
信号RTCM、TDCLK、TDSPはロジック部123に入力される。信号RTCMはIC100の動作モードを決定するための信号である。IC100の動作モードは、ピンPIを流れる電流を検出する電流検出モードと、内部回路の動作を検証するテストモードとに大別される。例えば、テストモードはIC100の出荷前検査のときに実行される。
ロジック部123は、信号RTCMに従い、出力ドライバ114、LOG/LS部124のいずれか一方に信号TDSP、TDCLKを出力する。信号TDSPはスタートパルス信号であり、信号TDCLKはクロック信号である。出力ドライバ114は、信号TDCLK、TDSPに従い、アナログデジタル変換部113から出力されるN個のデジタル信号をシリアル形式のデジタル信号に変換し、信号CMDOを出力する。信号RTCM、TDCLK、TDSPは、LOG/LS部124に入力される。LOG/LS部124は入力信号を処理し、アナログデジタル変換部113、スイッチ部129の制御信号を生成する。
<<電流検出回路>>
IC100には、2個の入力チャンネルに対して、1個の電流検出回路が設けられている。図2に、電流検出回路の単位回路、および、単位回路のテストに用いられる回路の構成例を示す。
なお、スイッチSWivには、レベルシフト部121から信号CMSETH、CMSETBHが入力されるが、図2には、高レベル(“H”)であるときにスイッチSWivをオンにする信号CMSETHのみを図示している。図2および他の図面において、スイッチの入力信号は同様に表記する。
電流検出回路の単位回路は、I/V回路130、S/H回路132、A/D回路133で構成される。便宜的に単位回路をCM回路140と呼ぶ。CM回路140[h](hは1乃至Nの整数)は、ピンPI[2h-1]、PI[2h]を流れる電流を検出する。CM回路140[h]が監視対象とするピンPIは、スイッチマトリクス137[h]によって選択される。以下、スイッチマトリクス137[h]の回路構成例を説明する。
スイッチSW71はピンPI[2h-1]とピンPMV1間の導通状態を制御し、スイッチSW72はピンPI[2h]とピンPMV1間の導通状態を制御する。スイッチSW71、SW72のオンオフは、信号CMPREH、CMPREBHで制御される。
スイッチSW73はピンPI[2h-1]と増幅回路131[h]の反転入力端子(以下、端子INMと呼ぶ)間の導通状態を制御する。スイッチSW74はピンPI[2h]と増幅回路131[h]の非反転入力端子(以下、端子INPと呼ぶ)間の導通状態を制御する。スイッチSW75はピンPI[2h-1]と増幅回路131[h]の端子INP間の導通状態を制御する。スイッチSW76はピンPI[2h]と増幅回路131[h]の端子INM間の導通状態を制御する。スイッチSW73―SW76のオンオフは、信号CMREVH、CMREVBHで制御される。
出力ドライバ114には、N個のバッファ回路134、N個のレジスタ135が設けられている。N個のレジスタ135によって、N段のシフトレジスタ118が構成される。N個のレジスタ135には信号TDCLKが入力される。初段のレジスタ135[1]には信号TDSPが入力され、第2段以降のレジスタ135[h]には前段のレジスタ135[h-1]の出力信号が入力される。
レジスタ135[h]の出力信号は、信号ENO[h]として、バッファ回路134[h]に入力される。信号ENO[h]はバッファ回路134[h]の出力イネーブル信号である。バッファ回路134[h]には、A/D回路133[h]で生成されたデジタル信号が入力される。バッファ回路134[h]は、信号ENO[h]に従い、デジタル信号を出力する。N個のバッファ回路134がデジタル信号を出力するタイミングを、シフトレジスタ118が制御することで、シリアル形式の信号CMDOがIC100の外部に出力される。
スイッチ回路139[h]は、スイッチSW87[h]、SW88[h]を有する。スイッチSW87[h]はピンPI[2h-1]と配線TM81間の導通状態を制御し、スイッチSW88[h]はピンPI[2h]と配線TM82間の導通状態を制御する。
LOG/LS部124はN個の回路160を有する。回路160は、信号ENC、TSELH、TSELBHを生成する。信号ENCはA/D回路133のイネーブル信号である。信号TSELH、TSELBHはスイッチSW87、SW88の制御信号である。
回路160はレベルシフタ161、OR回路162、レジスタ163を有する。N個のレジスタ163によってN段のシフトレジスタ168が構成される。N個のレジスタ163には信号TDCLKが入力される。初段のレジスタ163[1]には信号TDSPが入力され、第2段以降のレジスタ163[h]にはレジスタ163[h-1]の出力信号が入力される。
レジスタ163[h]の出力信号は、レジスタ163[h+1]に入力され、かつ、信号TSEL[h]としてOR回路162[h]、レベルシフタ161[h]に入力される。OR回路162[h]は、信号RTCMB(RTCMの反転信号)と信号TSEL[h]の論理和をもとめ、信号ENC[h]を生成する。レベルシフタ161[h]は信号TSEL[h]を差動信号に変換し、かつレベルシフトすることで、信号TSELH[h]、TSELBH[h]を生成する。
スイッチマトリクス128はノードN81、N82を有する。ノードN81、N82には、容量素子Cn81、Cn82が電気的に接続されている。ノードN81には、電流生成回路125から電流IRFINTが入力される。
スイッチSW81は配線TM81とピンPMV1間の導通状態を制御し、スイッチSW82は配線TM82とピンPMV1間の導通状態を制御する。スイッチSW81、SW82のオンオフは、信号CMPREH、CMPREBHで制御される。スイッチSW83は配線TM81とノードN81間の導通状態を制御する。スイッチSW84は配線TM82とノードN82間の導通状態を制御する。スイッチSW85は配線TM81とノードN82間の導通状態を制御する。スイッチSW86は配線TM82とノードN81間の導通状態を制御する。スイッチSW83―SW86のオンオフは、信号CMREVH、CMREVBHで制御される。
<<電流生成回路>>
図3に電流生成回路125の回路構成例を示す。
図3に示すように、遅延回路125aは12個のCMOSインバータ回路で構成される。遅延回路125aは、信号CMSETH、CMSETBHを遅延して信号CMSETH_D1、CMSETBH_D1を生成し、信号CMSETH_D1、CMSETBH_D1を遅延して信号CMSETH_D2、CMSETBH_D2を生成する。信号CMSETH_D1、CMSETBH_D1はスイッチSWtのオンオフを制御し、信号CMSETH_D2、CMSETBH_D2はスイッチSWtbのオンオフを制御する。
容量素子Ctは、ノードNtとピンPMV1に電気的に接続されている。スイッチSWtはピンPMV2とノードNt間の導通状態を制御し、スイッチSWtbはノードNtとノードN81間の導通状態を制御する。スイッチSWtとスイッチSWtbの状態は排他的であり、スイッチSWtとスイッチSWtbのうち一方がオン状態であるとき、他方はオフ状態である。スイッチSWt、SWtbの状態は、信号CMSETによって決定されるが、遅延回路125aによって、スイッチSWt、SWtbのスイッチングのタイミングを異ならせている。初めに、スイッチSWtがオン状態からオフ状態に切り替わり、次いでスイッチSWtbがオフ状態からオン状態に切り替わる。
スイッチSWtがオン状態であり、スイッチSWtbがオフ状態である間、容量素子Ctは充電される。容量素子Ctの電荷量QtはCt|CMVRC-CMVRI|となる。スイッチSWtがオフ状態であり、スイッチSWtbがオン状態である間、容量素子Ctは放電し、電荷量Qtに応じた電流IRFINTがノードN81に流れる。電流IRFINTがノードN81に対してソース電流であるかシンク電流であるかは、電圧CMVRCと電圧CMVRIの大小関係で決まる。
電流生成回路125は、容量素子Ctと、容量素子Ctの充放電を制御する2個のスイッチSWt、SWtbとによって、電流IRFINTを生成している。電流IRFINTの値は、電圧CMVRI、CMVRCによって制御することができる。そのため、電流IRFINTとして、微小な電流(例えば、数10nA以下)を精度良く生成でき、電流IRFINTの値を精度良く調整することができる。
微小な電流の生成と、電流値の微調整をできるようにするため、電流生成回路に多数の抵抗素子が用いられる場合がある。このような電流生成回路は大面積となり、ICに組み込まれるテスト回路には適さない。テスト回路はICの出荷後は必要のない回路となるため、小面積のテスト回路が求められる。電流生成回路125は抵抗素子を用いず、CMOS回路と容量素子とで構成されているので、電流生成回路125を組み込んだことによるIC100の面積増大を抑えることができる。
<<電流検出モード>>
図4Aに、電流検出モードでのIC100の動作シーケンスの一例を示す。IC100の動作モードを電流検出モードにするため、低レベル(“L”)の信号RTCMがIC100に入力される。信号RTCMが“L”である間、LOG/LS部124は信号TDSP、TDCLKを回路160に出力する。よって、電流検出モードでは、信号ENCは“H”が維持され、A/D回路133は常時アクティブ状態である。
動作シーケンスは、検出(SN)シーケンスと読み出し(RD)シーケンスとに大別される。SNシーケンスは電流電圧変換(IV)シーケンス、デジタルアナログ変換(AD)シーケンスとで構成される。N個の奇数チャンネルの電流検出を行う場合、“L”の信号CMREVがIC100に入力される。N個の偶数チャンネルの電流検出を行う場合、“H”の信号CMREVがIC100に入力される。
IVシーケンスでは、CM回路140[1]―140[N]は、対象のピンPIを流れる電流を電圧に変換する。ADシーケンスでは、CM回路140[1]―140[N]は、IVシーケンスで得た電圧(アナログデータ)をデジタルデータに変換する。RDシーケンスでは、出力ドライバ114によって、CM回路140[1]―140[N]で得られたデジタルデータが順次読み出される。
図4B、図5A―図5E等を参照して、IVおよびADシーケンスでのCM回路140[h]の動作例を説明する。図4BはCM回路140[h]のタイミングチャートであり、図中のt0、t1等は時刻を表す。図5A―図5EはCM回路140[h]の動作例を説明するための回路図である。
<IVシーケンス>
t0で信号CMREVは“L”であるので、スイッチマトリクス137[h]において、スイッチSW73[h]、SW74[h]はオン状態であり、スイッチSW75[h]、SW76[h]はオフ状態である(図5A参照)。従って、ピンPI[2h-1]と増幅回路131[h]の端子INM[h]とが電気的に接続され、ピンPI[2h]と増幅回路131[h]の端子INP[h]とが電気的に接続される。
(プリチャージ)
期間t1―t2は、2N個のピンPIのプリチャージが行われる。信号CMPREが“H”になることで、スイッチSW71[h]、SW72[h]はオン状態になる(図5B)。よって、ピンPI[2h-1]、PI[2h]はピンPMV1に電気的に接続され、電圧CMVRIにプリチャージされる。かつ、端子INM[h]、INP[h]も電圧CMVRIにプリチャージされる。
t1で信号CMSHは“H”になり、スイッチSWsh[h]はオン状態になる。増幅回路131[h]の出力端子(以下、端子OT131[h]と呼ぶ)とS/H回路132[h]のノードN132[h]とが電気的に接続される。
(オフセットキャンセル)
期間t3―t4では、I/V回路130のオフセット電圧を補正するためオフセットキャンセルが行われる。t3で信号CMSETは“H”になり、スイッチSWiv[h]はオン状態となる。端子INM[h]と出力端子OT131[h]とが電気的に接続されることで、増幅回路131[h]のオフセット電圧が補正される。(図5C)。
(電流電圧変換)
期間t4―t5で、I/V回路130は端子INMを流れる電流を電圧に変換し、S/H回路132はサンプリング動作をする。
t4で信号CMSETは“L”になる。スイッチSWiv[h]はオフ状態となり、I/V回路130[h]は積分動作を開始する。I/V回路130[h]が積分動作を行うことで、出力端子OT131[h]の電圧は低下する。
端子INP[h]はピンPI[2h]に電気的に接続されているので、増幅回路131[h]は差動増幅回路として動作する。したがって、増幅回路131[h]は、ピンPI[2h-1]のコモンモードノイズとピンPI[2h]のコモンモードノイズとを相殺するため、I/V回路130[h]の出力信号のSNR(信号対ノイズ比)を向上することができる。
<ADシーケンス>
t5で信号CMSHが“L”になり、IVシーケンスが終了し、ADシーケンスが開始する。S/H回路132[h]では、スイッチSWsh[h]がオフ状態となるため、t5での出力端子OT131[h]の電圧V132が保持される(図5E)。電圧V132は、期間t4―t5において端子INM[h]を流れた電流量に対応する。t6で、A/D回路133[h]は、電圧V132をデジタルデータに変換し、デジタルデータを出力ドライバ114のバッファ回路134[h]に出力する。
<RDシーケンス>
図4Cは、RDシーケンスの一例を示すタイミングチャートである。信号TDSPが出力ドライバ114に入力されることで、RDシーケンスが開始する。出力ドライバ114のシフトレジスタ118において、信号TDCLKの立ち上がりに応じて、信号TDSPのシフト動作が行われ、かつバッファ回路134[1]―134[N]から順次デジタルデータが出力される。
RDシーケンスを実行している間、信号CMREVを“H”にして、監視対象のチャンネルを奇数チャンネルから偶数チャンネルに切り替える。スイッチマトリクス137[h]によって、増幅回路131[h]の端子INM[h]、INP[h]は、ピンPI[2h]、PI[2h-1]にそれぞれ電気的に接続される。
<<テストモード>>
テストモードでは、電流生成回路125で生成した電流IRFINTを、CM回路140[1]―140[N]に逐次入力することで、1ユニットずつCM回路140のテストを行う。図6Aに、テストモードでのIC100の動作シーケンスの一例を示す。
IC100の動作モードをテストモードにするため、“H”の信号RTCMがIC100に入力される。ロジック部123は信号RTCMが“H”である間、信号TDSP、TDCLKをLOG/LS部124に出力する。増幅回路131の端子INMに電流IRFINTを入力するため、信号CMREVは“L”である。
LOG/LS部124のシフトレジスタ168は、信号TDCLKに従い、信号TDSPをシフト動作し、信号TSEL[1]―TSEL[N]を生成する。信号TSEL[1]―TSEL[N]によって、CM回路140[1]―140[N]は順次選択される。選択されたCM回路140は、上掲したIVシーケンス、ADシーケンスを実行する。
CM回路140[N]のSNシーケンスの後、RDシーケンスを行うため信号RTCMを“L”にする。上掲したように、信号TDSP、TDCLKに従い出力ドライバ114が動作し、信号CMDOがIC100から出力される。
テストモードでのCM回路140の動作は、電流検出モードの動作と同様である。図4Bのタイミングチャートに従って、CM回路140は動作する。テストモードでは、IVシーケンスを行っている間、選択されたCM回路140に電流IRFINTが入力されることが、電流検出モードと異なる点である。以下、図2、図5A―5D、図6B等を参照して、テストモードでのCM回路140[h]のIVシーケンス、ADシーケンスを説明する。
<IVシーケンス>
t10において信号CMREVは“L”である。スイッチSW73[h]、SW74[h]、はオン状態であり、スイッチSW75[h]、SW76[h]はオフ状態である(図5A)。スイッチマトリクス128において、スイッチSW83、SW84はオン状態であり、スイッチSW85、SW86はオフ状態である。
t11で、レジスタ163[h]は“H”の信号TSEL[h]を出力する。A/D回路133[h]はアクティブになる。スイッチマトリクス128、スイッチ回路139[h]およびスイッチマトリクス137[h]によって、ピンPI[2h-1]は配線TM81、端子INM[h]に電気的に接続され、ピンPI[2h]は配線TM82、端子INP[h]に電気的に接続される。
(プリチャージ)
期間t11ーt12で、ピンPI[2h-1]、PI[2h]、および配線TM81、TM82のプリチャージが行われる。信号CMPREが“H”になることで、スイッチSW71[h]、SW72[h]、SW81、SW82はオン状態になる。ピンPI[2h-1]、PI[2h]、配線TM81、TM82はピンPMV1に電気的に接続されるため、ピンPI[2h-1]、PI[2h]、配線TM81、TM82、端子INM[h]、INP[h]、ノードNtは電圧CMVRIにプリチャージされる。電流生成回路125の容量素子Ctの電荷量Qtは0クーロンになる。
t11で信号CMSHが“H”になるため、スイッチSWsh[h]はオン状態になる。増幅回路131[h]の出力端子OT131[h]とノードN132[h]とが電気的に接続される。
(オフセットキャンセル)
期間t13―t14に、I/V回路130[h]のオフセット電圧を補正するオフセットキャンセルが行われる。信号CMSETは“H”であるので、スイッチSWiv[h]はオン状態となり、端子INM[h]と出力端子OT131[h]とが電気的に接続される。
期間t13―t14では、電流生成回路125の容量素子Ctの充電が行われる。信号CMSETが“H”になってから一定時間遅延して、スイッチSWtがオン状態になる。その後、一定時間遅延して、スイッチSWtbがオフ状態になる。容量素子Ctは充電され、電荷量Qtは(CMVRC-CMVRI)Ctとなる。ここでは、CMVRC>CMVRIである。
(電流電圧変換、サンプリング)
期間t14―t15では、電流生成回路125は電流IRFINTを生成し、出力する。I/V回路130は端子INMを流れる電流を電圧に変換し、S/H回路132はサンプリング動作を行う。
t14で信号CMSETが“L”になるため、スイッチSWiv[h]はオフ状態となる。I/V回路130[h]は端子INP[h]の電圧を参照電圧に用いて、積分動作を開始する。
信号CMSETが“L”になってから一定時間遅延して、スイッチSWtがオフ状態になる。その後、一定時間遅延して、スイッチSWtbがオン状態になる。容量素子Ctが蓄積している電荷によって電流IRFINTが生成され、出力される。電流IRFINTは配線TM81を経て、端子INM[h]に入力される。I/V回路130[h]は、電流IRFINTを積分し、電圧に変換する。ノードN132[h]の電圧VT132は、CMVRI-Qt/Civとなる。
<ADシーケンス>
t15で信号CMSHが“L”になり、IVシーケンスが終了し、ADシーケンスが開始する。S/H回路132[h]では、スイッチSWsh[h]がオフ状態となるため、t15での出力端子OT131[h]の電圧VT132を保持する。t16で、A/D回路133[h]は、電圧VT132をデジタルデータに変換し、デジタルデータをバッファ回路134[h]に出力する。t17で、信号TSEL[h]が“L”になり、ADシーケンスが終了する。
IC100では、テストに用いる参照電流を内部で生成しているため、複数の電流検出回路に対する高信頼性の出荷前検査が可能である。出荷前テストの別の方法として、IC外部の電流生成装置で参照電流を生成し、複数の電流検出回路に順次参照電流を入力する方法が挙げられる。以下の理由により、この方法では複数の電流検出回路の正確な評価は困難である。
参照電流の値が小さくなるほど、電流電圧変換回路はノイズの影響を受けやすい。例えば、参照電流が数十nA以下であると、電流電圧変換回路の評価は非常に難しくなる。電流生成装置は理想電流源として用いられるが、I/V回路130のように入力インピーダンスが変化する回路に安定して、外部から参照電流を入力することは難しい。
従って、参照電流の値が小さい場合、高信頼性の検査のためには、IC内部で参照電流を生成することが好ましい。この場合、電流生成回路は、回路面積が小さいこと、微小な電流(例えば数10nA以下の電流)を生成できること、精度良く調節できる性能(例えば、数nアンペア単位での調節)などが求められる。本実施の形態の電流生成回路125は、これらの要求を満たす。
微小な電流を生成するため、多数の抵抗素子が用いられる場合があるが、電流生成回路125では、2個のスイッチと1個の容量素子とによって電流IRFINTを生成している。また、電流IRFINTの値は、電圧CMVRI、CMVRCによって制御できるため、電流IRFINTの値の精度良く調節することができる。
IC100に電流生成回路125を組み込むことで、複数のCM回路140を高精度に検査することが可能である。電流生成回路125の面積を小さくすることで、テスト回路を組み込むことで生ずるIC100の面積オーバーヘッドを抑えることができる。
〔実施の形態2〕
本実施の形態では、実施の形態1のテスト回路を適用したソースドライバICについて説明する。
図7は、ソースドライバICの構成例を示す機能ブロック図である。図7に示すソースドライバIC200(以下、「SD‐IC200」と呼ぶ)は、ソースドライバ部201(以下、「SDR部201」と呼ぶ)、電流検出部(以下「CSN部202」と呼ぶ)、複数のピンPS、PM、P11、P12を有する。
SD‐IC200は、画素アレイを備える表示パネルに実装される。SDR部201は画像信号を処理し、画素アレイに供給するための階調信号を生成する。ピンPSは階調信号の出力用ピンである。ピンP11、P12はSDR部201用の入力ピンである。ピンP11は差動信号の入力ピンであり、ピンP12はシングルエンド信号の入力ピンである。ピンP11の入力信号には画像信号、クロック信号などがあり、ピンP12の入力信号にはコマンド信号などがある。
CSN部202は画素アレイを流れる電流を検出するための回路である。CSN部202の入力チャンネル数は2N(Nは1以上の整数)であり、2N個のピンPM[1]―PM[2N]が接続されている。CSN部202は、N個の奇数(又は偶数)チャンネルのピンPMを流れる電流(アナログ信号)を並列処理し、シリアル形式のデジタル信号(信号CMDO)を生成し、出力する。信号CMDOを用いて階調信号を補正することで、表示パネルの輝度むらを低減することができる。
<SDR部201>
図8は、SDR部201の構成例を示す機能ブロック図である。SDR部201は、レシーバ210、ロジック部211、シフトレジスタ212、ラッチ部214、215、レベルシフト部216、デジタルアナログ変換部(D/A部)217、増幅部218を有する。図8の例では、ピンPSの個数はM(Mは1以上の整数)である。
並列処理を行うため、各部214―218はM個の単位回路で構成される。ラッチ部214はM個のラッチ回路(LAT)224を有する。ラッチ部215はM個のラッチ回路225を有する。レベルシフト部216はM個のレベルシフト回路(LS)226を有する。D/A部217は、M個のデジタルアナログ変換回路(D/A回路)227を有する。増幅部218はM個の増幅回路(AMP)228を有する。
レシーバ210は、ピンP11に入力された差動信号をシングルエンド方式の信号に変換する。例えば、レシーバ210には、LVDS(Low Voltage Differential Signaling:小振幅差動信号方式)レシーバを用いることができる。
レシーバ210には、画像信号DA、DB、クロック信号CKLA、CLKBが入力される。Nビット(Nは1以上の整数)の画像信号DAと、Nビットの画像信号DBとでなる信号対は、差動形式の画像信号である。信号CLKAと信号CLKBとでなる信号対は差動形式のクロック信号である。レシーバ210において、画像信号DA、DBはシングルエンド方式のNsビットの画像信号DCに変換され、クロック信号CLKA、CLKBはシングルエンド方式のクロック信号SDCLKに変換される。画像信号DC、信号SDCLKは、それぞれロジック部211に入力される。
ピンP12には、例えば、リセット信号SDRST、スタンバイ信号SDSTBY等が入力される。ロジック部211は、信号SDCLK、およびピンP12から入力されるコマンド信号等に従い、SDR部201の内部回路を制御する。なお、コマンド信号が差動信号である場合は、コマンド信号は、レシーバ210を経由してロジック部211に入力される。
ロジック部211は信号SRSP、SRCLK、SLT等の制御信号を生成する。信号SRSP、SRCLKはそれぞれスタートパルス信号、クロック信号であり、シフトレジスタ212に入力される。信号SLTはラッチ信号であり、ラッチ部215に入力される。
ロジック部211は、シリアル形式の画像信号DCをパラレル形式の画像信号DDに変換する(シリアルーパラレル変換機能)。ここでは、ロジック部211は画像信号DCをX個(Xは1以上の整数)に分割し、X個の画像信号DD(Nビット)を生成する。画像信号DDはラッチ部214に出力される。画像信号DDの値は階調を表している。
シフトレジスタ212は、複数段のレジスタを有する。初段のレジスタに信号SRSPが入力される。信号SRCLKに従い、各段のレジスタはサンプリング信号を出力する。ラッチ部214は、サンプリング信号が指定する列のラッチ回路224に、画像信号DDを格納する。ラッチ部215は、信号SLTに従い、各ラッチ回路225のデータを対応するラッチ回路224のデータに書き換える。
レベルシフタ226は、ラッチ回路225から出力される画像信号を差動信号に変換し、かつレベルシフトする。D/A回路227は、レベルシフタ226から出力される差動形式の画像信号をアナログ信号に変換する。増幅回路228は、D/A回路227の出力信号(アナログ信号)を増幅し、ピンPSに出力する。ピンPSの出力信号が階調信号である。
<CSN部202>
図9はCSN部202の構成例を示す機能ブロック図である。
CSN部202には、ピンPM[1]―PM[2N]、PVP、PDI、PVR1―PVR4、PDO1、PDO2、PAIOが電気的に接続されている。
ピンPVPは電源電圧VDDD、VDDA、VSSD、VSSAの入力ピンである。ピンPVR1―PVR4は参照電圧の入力ピンである。ピンPVR1―PVR4には、電圧CMVRD1、CMVRD2、CMVRC、CMVRIが入力される。
ピンPM[1]―PM[2N]は電流入力ピンである。ピンPDIはデジタル入力ピンであり、信号CMSTBY、CMRST等の各種のデジタル信号が入力される。信号CMSTBYはスタンバイ信号であり、CSN部202をスタンバイ状態にするか、アクティブ状態にするかを制御する。信号CMRSTは、CSN部202のロジック回路のリセットするためのリセット信号である。
ピンPDO1、PDO2はデジタル出力ピンであり、ピンPAIOはアナログ入出力ピンである。CSN部202の動作に応じて、ピンPDO2、PAIO、の機能を切り替えることができる。
CSN部202は、アナログスイッチ(ASW)部230、I/V部231、S/H部232、アナログデジタル変換部(A/D部)233、出力ドライバ235、ASW回路260、レベルシフト部270、設定レジスタ(REG)271、デコーダ(DEC)272、セレクタ(SEL)274、275、カウンタ277、D/A回路278を有する。
I/V部231はN個のI/V回路241を有する。S/H部232はN個のS/H回路242を有する。A/D部はN個のA/D回路243を有する。出力ドライバ235はバッファ(BUFF)部236、シフトレジスタ(SR)237を有する。I/V回路241、S/H回路242およびA/D回路243によって、電流検出回路の単位回路が構成される。便宜的に、I/V回路241[h]、S/H回路242[h]およびA/D回路243[h]で構成される単位回路をCM回路245[h]と呼ぶ。
CM回路245の動作検証のために、各種の回路がCSN部202に設けられている。スイッチマトリクス250、ASW部251、252、バッファ部253、LOG/LS部254、電流生成部258、ASW回路259、MUX(マルチプレクサ)269が、CSN部202に設けられている。
ASW部251はN個のASW回路261を有し、バッファ部253は、N個のトライステート(TRI)バッファ回路53を有し、LOG/LS部254はシフトレジスタ255を有する。
ASW部230によって、N個の奇数(または偶数)チャンネルのピンPMを流れる電流がI/V部231に入力される。入力されたN個の電流は、N個のCM回路245によって並列に処理され、N個のデジタル信号に変換される。出力ドライバ235はN個のデジタル信号をシリアル形式のデジタル信号に変換し、信号CMDOを生成する。信号CMDOはピンPDO1から出力される。
設定レジスタ271は、CSN部202の動作を設定するためのデータを記憶する。信号RGCLKは設定レジスタ271用のクロック信号である。信号RGSRDはシリアル形式のデジタル信号である。信号RGCLKがアクティブである間、設定レジスタ271は信号RGSRDを取り込み、データを更新する。設定レジスタ271が保持するデータによって、信号RTCM、RCON、RIRF、RCPOL、RANA[3:0]、RDIG[1:0]、RITG[2:0]の論理が決定する。デジタル入力用のピンPDIを増やせる場合は、設定レジスタ271の生成信号の一部または全てを外部入力信号にしてもよい。
デコーダ272は信号RITG[2:0]をデコードし、信号DRITG[4:0]を生成する。
レベルシフト部270は、デジタル信号を差動信号に変換し、かつレベルシフトする。レベルシフト部270には、信号CMPRE、CMREV、CMSET、CMSH、DRITG[4:0]、RCON、RIRF、RANA[3:0]が入力される。なお、アナログ回路にレベルシフト回路を設け、アナログ回路内部でデジタル信号のレベルシフトを行ってもよい。
信号CMCLKはクロック信号である。カウンタ277は、信号CMCLKの立ち上がり(または立ち下がり)をカウントし、カウント値を表す信号CNTを生成する。信号CNTの最下位ビットが信号CMCLKBである。信号CNTはD/A回路278、A/D部233に入力され、信号CNTはA/D部233に入力される。D/A回路278は信号CNTをアナログ信号に変換し、信号DACOを生成する。信号DACOは、ランプ波形信号である。ASW回路260は、信号RCONH、RCONBHがレベルシフト部270から入力され、信号DACOがD/A回路278から入力され、電圧CMVRCがピンPVR3から入力される。ASW回路260は、信号RCONが“1”である場合、信号DACOをA/D部233に出力し、信号RCONが“0”である場合、電圧CMVRCをA/D部233に出力する。
一例として、A/D部233の分解能は12ビットである。カウンタ277の出力信号CNTのビット数は12であり、D/A回路278は12ビットD/A回路である。
ピンPDIを介して信号TDSP、TDCLKがCSN部202に入力される。信号TDSP、TDCLKはそれぞれスタートパルス信号、クロック信号である。セレクタ274は、信号RTCMが“0”である場合、信号TDSP、TDCLKをシフトレジスタ237に出力し、信号RTCMが“1”である場合、シフトレジスタ237への信号TDSP、TDCLKの出力を停止する。セレクタ275は、信号RTCMが“1”である場合、信号TDSP、TDCLKをシフトレジスタ255に出力し、信号RTCMが“0”である間、シフトレジスタ255への信号TDSP、TDCLKの出力を停止する。
レベルシフト部270は、信号RIRF、CMSET、RCONから生成した差動信号を電流生成部258に出力する。電流生成部258は、電流TIREFを出力する。電流TIREFは、スイッチマトリクス250、ASW部251、230を経て、I/V部231に入力される。電流TIREFはI/V部231のテスト用の参照電流である。
ASW部252は、I/V部231から信号TAMPOを読み出す出力回路と、A/D部233をテストするための信号TCMPINを送信する入力回路との機能をもつ。バッファ部253はA/D部233の内部信号を保持し、保持している信号を信号TCMPOとしてMUX269に出力する。LOG/LS部254はA/D部233、ASW部251、252、バッファ部253を制御する。信号RANA[2:0]はピンPAIOの機能を設定するための信号である。レベルシフト部270は、信号RANA[2:0]から生成した差動信号をASW部252に出力する。信号RDIG[1:0]はピンPDO2の機能を設定するための信号であり、MUX269に入力される。ASW回路259はピンPAIOの機能を設定し、MUX269はピンPDO2の機能を設定する。
<<電流生成部258>>
図10に電流生成部258の回路構成例を示す。電流生成部258は端子B20、B21、電流生成回路258G、ASW回路258A、258Bを有する。端子B20は電流TIREFの出力端子である。端子B21は電流IRFEXTの入力端子である。電流IRFEXTは外部参照電流であり、ピンAOI、ASW回路259を経て、端子B21に入力される。
電流生成回路258Gは図3の電流生成回路125と同様の回路構成であり、遅延回路258a、スイッチSWt、SWtb、容量素子Ct、ノードNt、Nta、Ntbを有する。電流生成回路258Gは、容量素子Ctの電荷量Qtに応じた電流IRFINTを生成する。遅延回路258aの機能は、図3の遅延回路125aと同様であり、遅延回路258aは、信号CMSETH、CMSETBHを遅延して、信号CMSETH_D1、CMSETHBH_D1をそれぞれ生成し、さらに信号CMSETH_D1、CMSETBHを遅延して、CMSETH_D2、CMSETBH_D2をそれぞれ生成する。信号CMSETH_D1、CMSETBH_D1はスイッチSWtに入力され、信号CMSETH_D2、CMSETBH_D2はスイッチSWtbに入力される。ノードNtaには、ASW回路258Aを介して、電圧CMVRC又はCMVRD2が入力される。ノードNtbは電流IRFINTの出力ノードである。
ASW回路258Aは選択回路の機能をもつ。ASW回路258Aには、信号RCONH、RCONBHが入力される。信号RCONが“0”のとき、ASW回路258Aによって、ノードNtaとピンPVR2間が導通されノードNtaに電圧CMVRCが入力される。信号RCONが“1”のとき、ASW回路258Aによって、ノードNtaとピンPVR3が導通され、ノードNtaに電圧CMVRCが入力される。つまり、信号RCONに応じて、容量素子Ctの電圧Vtは|CMVRD2-CMVRI|又は|CMVRDC-CMVRI|に設定される。
ASW回路258Bは選択回路の機能をもつ。ASW回路258Bには、レベルシフト部270から信号RIRFBH、RIRFHが入力される。信号RIRFが“0”のとき、ASW回路258Bによって端子B20と端子B21間が導通され、端子B20には電流IRFEXTが流れる。信号RIRFが“1”のとき、ASW回路258Bによって端子B20とノードNtb間が導通され、端子B20には電流IRFINTが流れる。つまり、信号RIRFによって、テスト用参照電流TIREFは外部参照電流(IRFEXT)、または内部参照電流(IRFINT)に設定される。
<<ASW部230、251、252、I/V部231、S/H部232>>
図11を参照して、ASW部230、I/V部231、S/H部232等の回路構成例を説明する。図11にはCM回路245[h]に対応する各部の単位回路を示す。
レベルシフト部270は、信号CMPRE、CMREV、DRITG[4:0]から生成した差動信号をそれぞれASW部230、スイッチマトリクス250に出力し、信号CMSETから生成した差動信号をI/V部231に出力し、信号CMSHから生成した差動信号をS/H部232に出力する。
I/V回路241[h]はピンPM[2h-1]、PM[2h]を流れる電流を検出する。I/V回路241[h]は電流入力型の積分回路で構成されており、増幅回路41、容量素子C41、スイッチS41を有する。スイッチS41のオンオフは信号CMSETH、CMSETBHによって制御される。
増幅回路41は、1個の反転入力端子(-)、2個の反転入力端子(+)、出力端子を有する。ここでは、反転入力端子(-)を端子INMと呼び、2個の反転入力端子(+)を端子INP1、INP2と呼び、出力端子を端子OTAと呼ぶ。
S/H回路242は、ノードNsh、容量素子C42、スイッチS42を有する。スイッチS42のオンオフは信号CMSHH、CMSHBHによって制御される。
ASW部252は、各N個のスイッチS34、S35を有する。スイッチS34、S35のオンオフはLOG/LS部254の出力信号によって制御される。スイッチS34[h]はI/V回路241[h]とS/H回路242[h]間の導通状態を制御する。スイッチS35[h]はS/H回路242[h]とASW回路259間の導通状態を制御する。
バッファ部253のTRIバッファ回路53[h]は、A/D回路243[h]の内部信号を保持する。ASW回路259によってピンPAIOとTRIバッファ回路53[h]の出力端子間の導通が制御される。
ASW部251は配線TM0―TM3を有する。ASW部251はDeMUXとして機能し、2N個のピンPMのうちの4個のピンが配線TM0―TM3に導通される。
ASW回路261[h]はスイッチS30[h]―S33[h]を有する。スイッチS30[h]―S33[h]のオンオフは、LOG/LS部254の出力信号で制御される。スイッチS30[h]は、配線TM0とピンPM[2h+1]間の導通状態を制御する。スイッチS31[h]は、配線TM1とピンPM[2h]間の導通状態を制御する。スイッチS32[h]は、配線TM2とピンPM[2h-1]間の導通状態を制御する。スイッチS33[h1]は、配線TM3とピンPM[2h-2]間の導通状態を制御する。
ASW部230は、(2N+2)個のスイッチS11、S12、S13、N個のスイッチS14、S15、S16、S18、2N個のスイッチS17を有する。スイッチS11[2h-2]-S11[2h+1]、S12[2h-2]―S12[2h+1]、S13[2h-2]―S13[2h+1]、S14[h]、S15[h]、S16[h]、S17[2h-1]、S17[2h]、S18[h]により、スイッチマトリクス240[h]が構成される。スイッチマトリクス240[h]は、ピンPM[2h-1]―PM[2h+1]、PVR4のうちから、I/V回路241[h]に導通されるピンを選択する。
なお、SD‐IC200には、ピンPM[0](h=1)、ピンPM[2N+1](h=N)は設けられていないが、ASW部230には、スイッチS11[0]、S11[2N+1]、S12[0]、S12[2N+1]等が設けられている。
スイッチマトリクス250はスイッチマトリクス240と同様の回路構成である。スイッチマトリクス250は端子B0―B3、B10―B12、スイッチS21[0]―S21[3]、S22[0]―S22[3]、S23[0]―S23[3]、S24、S25、S26、S27[1]、S27[2]、S28を有する。端子B1はASW回路259によってピンPAIOに導通される。
ASW部230とスイッチマトリクス250とは共通の信号によって制御される。スイッチS11、S21のオンオフは信号CMPREH、CMPREBHで制御される。信号CMPREは、ピンPMおよび配線TM0―TM3のプリチャージを制御するプリチャージ信号である。スイッチS12、S13、S21、S23のオンオフは信号CMREVH、CMREVBHで制御される。信号CMREVは監視対象のチャンネルを設定するための信号である。
スイッチS14、S24のオンオフは信号DRITGH[0]、DRITGBH[0]で制御される。スイッチS15、S25のオンオフは信号DRITGH[1]、DRITGBH[1]で制御される。スイッチS16、S26のオンオフは信号DRITGH[2]、DRITGBH[2]で制御される。スイッチS17、S27のオンオフは信号DRITGH[3]、DRITGBH[3]で制御される。スイッチS18、S28のオンオフは信号DRITGH[4]、DRITGBH[4]で制御される。
端子B0―B3はそれぞれ、配線TM0―TM3に電気的に接続される。端子B10は電流生成部258の端子B20に電気的に接続されている。ノイズ対策のため、端子B10―B12にはそれぞれ容量素子Cn10―Cn12が電気的に接続されている。
<<スイッチマトリクス240、I/V回路241>>
I/V回路241の増幅回路41は、端子INP1の電圧と端子INP2の電圧との平均電圧と、端子INMの電圧との差分を増幅する機能を有する。例えば、端子INP1、INP2、INMの電圧がそれぞれ、Vinp1、Vinp2、Vinmである場合、増幅回路41は差分電圧((Vinp1+Vinp2)/2-Vinm)を増幅する機能を有する。例えば、増幅回路41の増幅率(差動利得)がAであり、同相利得が0dBである場合は、増幅回路41の端子OTAの電圧Vampoと、入力電圧Vinp1、Vinp2、Vinmとの関係は、下記式(a1)で表される。
ampo=A((Vinp1+Vinp2)/2-Vinm) ・・・(a1)
スイッチマトリクス240[h]の回路構成によって、I/V回路241[h]とピンPVR4、PM[2h-1]―PM[2h+1]との導通状態が設定される。スイッチマトリクス240[h]がプログラム可能な回路であることで、I/V回路241[h]に複数の電流検出モードを与えることができる。電流検出モードには、3入力差動検出モード、差動検出モード、シングルエンド検出モード、高インピーダンスモードがある。図12、図13A―図13Cを参照して、電流検出モードと、スイッチマトリクス240[h]の回路構成との対応を説明する。
図12は、スイッチマトリクス240[h]の制御信号とI/V回路241[h]の機能との対応とデコーダ272の真理値表とを示す。「INM」の項目は、端子INM[h]に接続されるピンPMを表しており、例えば、「2h」とは、端子INM[h]とピンPM[2h]間が導通状態であることを示す。「INP1」、「INP2」の項目についても同様である。図13A―図13Cは、電流検出モードと、スイッチマトリクス240[h]の回路構成との対応を説明する図である。
監視対象のチャンネルは信号CMREVで設定される。監視対象は、信号CMREVが“H”であれば奇数チャンネルであり、信号CMREVが“L”であれば偶数チャンネルである。信号RITG[0]―RITG[2]によって、I/V回路241の信号入力形式が設定される。つまり、信号RITG[2:0]によって、I/V回路241の電流検出モードが決定される。
(高インピーダンス(HIz)モード)
信号RITG[2:0]が3’b111であるとき、スイッチマトリクス240[h]によって、端子INM[h]は高インピーダンス状態にされる。
(シングルエンド検出(SE)モード)
図13Aに、信号CMREVが1’b0であり、信号RITG[2:0]が3’b100であるときの、スイッチマトリクス240[h]の回路構成を示す。端子INM[h]はピンPM[2h-1]に導通され、端子INP1[h]、INP2[h]はピンPVR4に導通される。したがって、図13AのI/V回路241[h]の回路構成は、積分回路241SEと等価である。積分回路241SEは、シングルエンド入力積分回路であり、定電圧(CMVRI)を参照電圧に用いて、ピンPM[2h-1]を流れる電流を積分する。
(差動検出(DEFF)モード)
図13Bに、信号CMREVが1’b0であり、信号RITG[2:0]が3’b010であるときの、スイッチマトリクス240[h]の回路構成を示す。端子INM[h]はピンPM[2h-1]に導通され、端子INP1[h]、INP2[h]はピンPM[2h]に導通される。したがって、図13BのI/V回路241[h]の回路構成は、差動積分回路241Dと等価である。差動積分回路241DはピンPM[2h]の電圧を参照電圧に用いて、ピンPM[2h-1]を流れる電流を積分する。
(3入力差動検出(3‐DEFF)モード)
I/V回路241が、3個のピンINM、INP1、INP2に異なる信号が入力できる回路構成であるときの電流検出モードが、「3入力差動検出モード」である。
図13Cに、信号CMREVが1’b0であり、信号RITG[2:0]が3’b000であるときの、スイッチマトリクス240[h]の回路構成を示す。端子INM[h]はピンPM[2h-1]に導通される。端子INP1[h]、INP2[h]はそれぞれピンPM[2h-2]、ピンPM[2h+1]に導通される。I/V回路241は、ピンPM[2h-1]の電圧とピンPM[2h]の電圧との平均電圧を参照電圧に用いて、ピンPM[2h-1]を流れる電流を積分する。
3入力差動検出モードでは、2個のピンPMの電圧をI/V回路241の参照電圧に用いるため、参照電圧のノイズ成分は平均化される。したがって、3入力差動検出モードは、差動検出モードよりも、増幅回路41の出力からコモンモードノイズをより効果的に除去できる。
信号CMREV、RITG[2:0]によって、スイッチマトリクス250は、スイッチマトリクス240[h]と同じ回路構成に設定される。スイッチマトリクス250の回路構成に応じて、端子B10、B11、B12と配線TM0―TM3間の導通状態が設定される。
例えば、信号CMREVが1’b0であり、信号RITG[2:0]が3’b000である場合(図13C参照)、スイッチマトリクス250によって、端子B10、B11、B12はそれぞれ配線TM1、TM0、TM2に導通される。
図14を参照して、A/D部233、出力ドライバ235、バッファ部253、LOG/LS部254の構成例を説明する。図14には各部の単位回路を示す。
<<A/D部233>>
A/D回路243[h]は、コンパレータ43[h]、フリップフロップ(FF)44[h]、45[h]、インバータ回路46[h]、セレクタ47[h]を有する。
コンパレータ43[h]の非反転入力端子(以下、端子(+)と呼ぶ)には、S/H回路242[h]のノードNsh[h]が電気的に接続されている。反転入力端子(以下、端子(-)と呼ぶ)には、ASW回路260を介して信号DACO又は電圧CMVRCが入力される。信号RCONが“0”であるとき、端子(-)に電圧CMVRCが入力され、信号RCONが“1”であるとき、端子(-)に信号DACOが入力される。なお、コンパレータ43[h]の回路構成等に応じて、端子(-)にノードNsh[h]を電気的に接続し、ASW回路260の出力を端子(+)に電気的に接続してもよい。
セレクタ47[h]には信号RCPOLが入力される。信号PCPOLは、フリップフロップ44[h]に入力される信号CMPO_hの極性を設定する。信号PCPOLが“0”であるとき、セレクタ47[h]は、コンパレータ43[h]の出力信号をフリップフロップ44[h]へ出力する。信号PCPOLが“1”であるとき、セレクタ47[h]は、インバータ回路46[h]の出力信号をフリップフロップ44[h]へ出力する。このときの信号CMPO_hは、コンパレータ43[h]の出力信号の反転信号である。
フリップフロップ44[h]は、例えば、D(遅延)フリップフロップで構成される。フリップフロップ44[h]には、信号EN_h、CMCLKBが入力される。信号EN_hはフリップフロップ44[h]のイネーブル信号であり、LOG/LS部254で生成される。信号CMCLKBはフリップフロップ44[h]のクロック信号である。信号CMCLKBの立ち上がりのタイミングで、フリップフロップ44[h]のデータが更新される。フリップフロップ44[h]のデータは信号LATO_hとして、フリップフロップ45[h]に出力される。
フリップフロップ45[h]は、信号CNT[11:0]を一時的に記憶するレジスタとして機能する。フリップフロップ45[h]は、例えば、12ビットDフリップフロップで構成される。フリップフロップ45[h]には、信号LATO_h、CNT[11:0]、CMSRTが入力される。信号LATO_hはクロック信号として用いられ、信号CMSRTはリセット信号として用いられる。フリップフロップ44[h]の出力信号が低レベルから高レベルに遷移すると、フリップフロップ45[h]は信号CNT[11:0]を記憶する。フリップフロップ45[h]が出力する信号ADO[11:0]_hは、カウンタ277のカウント値を表す。
<<出力ドライバ235>>
バッファ部236は、3N個のTRIバッファ回路48を有する。一例として、各TRIバッファ回路48は4ビットのデータを保持する。信号ADO[11:0]_hを保持するために、3個のTRIバッファ回路48[3h-2]、48[3h-1]、48[3h]が設けられている。TRIバッファ回路48[3h-2]、48[3h-1]、48[3h]は信号ADO[11:8]_h、ADOUT[7:4]_h、ADO[3:0]_hをそれぞれ保持する。
シフトレジスタ237は3N段のフリップフロップ49で構成される。各段のフリップフロップ49には、信号TDCLKが入力され、初段のフリップフロップ49[1]には信号TDSPが入力される。フリップフロップ49の出力信号は、TRIバッファ回路48のイネーブル信号に用いられる。
シフトレジスタ237の出力信号によって、3N個のTRIバッファ回路48の何れか1個が選択される。非選択のTRIバッファ回路48の出力端子は高インピーダンス状態とされる。選択されたTRIバッファ回路48の出力端子はピンPDO1に電気的に接続される。選択されたTRIバッファ回路48の出力信号は、信号CMDO[3:0]として、ピンPDO1から出力される。
<<バッファ部253>>
信号CMPO_hは、TRIバッファ回路53[h]に出力され、保持される。TRIバッファ回路53[h]には、シフトレジスタ255から信号TSEL_hが入力される。信号TSEL_hが“H”であるとき、TRIバッファ回路53[h]は信号を出力する。つまり、シフトレジスタ255によって選択されたTRIバッファ回路53の出力信号は、信号TCMPOとしてMUX269へ出力される。
<<LOG/LS部254>>
LOG/LS部254は各N個のOR回路62、インバータ回路63、AND回路64、レベルシフト回路67―69を有する。信号RTCMがOR回路62に入力され、信号RANA[1]がAND回路64に入力され、信号RANA[3]がインバータ回路63に入力される。
シフトレジスタ255はN段のフリップフロップ60で構成される。各段のフリップフロップ60には信号TDCLKが入力され、初段のフリップフロップ60[1]には信号TDSPが入力される。信号TSEL_hはフリップフロップ60[h]の出力信号である。信号TSEL_hはTRIバッファ回路53[h]、OR回路62[h]、インバータ回路63[h]、64[h]、レベルシフト回路67[h]に入力される。
OR回路62[h]は信号TSEL_hと信号RTCMの反転信号との論理和を求め、信号EN_hを生成する。信号EN_hはフリップフロップ44[h]へ出力される。
レベルシフト回路67[h]は、信号TSEL_hを差動信号に変換し、かつレベルシフトすることで、信号TSELH_h、TSELBH_hを生成する。信号TSELH_h、TSELBH_hはスイッチS30[h]―S33[h]のオンオフを制御する。
インバータ回路63[h]は信号RANA[3]の否定を求め、信号TSEL3を生成する。レベルシフト回路68[h]は、信号TSEL3を差動信号に変換し、かつレベルシフトすることで、信号TSEL3H_h、TSEL3BH_hを生成する。信号TSEL3H_h、TSEL3BH_hはスイッチS34[h]のオンオフを制御する。
AND回路64[h]は信号TSEL_hと信号RANA[1]の論理積を求め、信号TSEL1を生成する。レベルシフト回路69[h]は、信号TSEL1_hを差動信号に変換し、かつレベルシフトすることで、信号TSEL1H_h、TSEL1BH_hを生成する。信号TSEL1H_h、TSEL1BH_hはスイッチS35[h]のオンオフを制御する。
<<ASW部252>>
上掲したように、ASW部252は、テストモードにおいて信号TAMPOを読み出す出力回路と、A/D部233に信号TCMPINを送信する入力回路との機能をもつ。例えば、スイッチS34[h]、S35[h]がオン状態のとき、増幅回路41[h]の出力は信号TAMPOとしてASW回路259に送信される。スイッチS34[h]がオフ状態であり、S35[h]がオン状態のとき、信号TCMPINがASW回路259からS/H回路242[h]に入力される。
<<ピンPAIO>>
表1は、ピンPAIOの真理値表である。ピンPAIOの機能は、信号RANA[3:0]によって設定される。より具体的には、信号RANA[2:0]によりASW回路259の回路構成が設定され、信号RANA[1]、RANA[3]により、ASW部252の回路構成が設定される。
Figure 0007083666000001
ピンPAIOの出力を用いて、ピンPM[1]―PM[2N]を流れる電流を監視しているが、監視対象のピンPMの数、およびピン番号はこれに限定されない。
<<ピンPDO2>>
表2は、ピンPDO2の真理値表である。ピンPDO2の出力信号は、信号RDIG[1:0]によって設定される。より具体的には、MUX269は信号RDIG[1:0]をデコードし、ピンPDO2から出力する信号を選択する。
Figure 0007083666000002
信号CSROは、シフトレジスタ237の最終段のフリップフロップ49[3N]の出力信号である。信号TSROはシフトレジスタ255の最終段のフリップフロップ60[N]の出力信号である。信号CSROを監視することで、RDシーケンスの終了タイミングを知ることができる。信号TSROを監視することで、テストモードでのN個のCM回路245のSNシーケンスの終了タイミングを知ることができる。
CSN部202の動作モードは、SDR部201の動作モードとは独立して設定することが可能である。CSN部202の動作モードは電流検出モード、テストモードに大別される。
<<電流検出モード>>
図15Aに、電流検出モードでのCSN部202の動作シーケンスの一例を示す。動作シーケンスは、RS(レジスタ設定)シーケンス、SN(検出)シーケンス、RD(読み出し)シーケンスに大別される。SNシーケンスはIV(電流電圧変換)シーケンス、AD(デジタルアナログ変換)シーケンスで構成される。
(RSシーケンス)
RSシーケンスでは、設定レジスタ271の設定データが更新される。信号CMRSTが“H”になると、CSN部202のロジック回路(設定レジスタ271、A/D部233のフリップフロップ45など)がリセットされる。次に、設定レジスタ271に信号RGCLK、RGSRDを入力する。設定レジスタ271は信号RGCLKの立ち上がり(または立ち下がり)のタイミングで、信号RGSRDを取り込み、データを保持する。ここでは、以下のように、設定レジスタ271に設定データを書き込む。
CSN部202を電流検出モードに設定するため、信号RTCMは“0”である。I/V部231を2入力差動検出モードに設定するため、信号RITG[2:0]は3’b000である。A/D部233に信号DACOを入力するため、信号RCONは“1”である。信号CMPOをコンパレータ43の出力信号に設定するため、信号RPOLは“0”である。電流検出モードであるので、信号RIRFは“0”である。ピンPAIOを高インピーダンス状態にするため、信号RANA[3:0]は4’b0111である。ピンPDO2から信号CSROを出力するため、信号RDIG[1:0]は2’b00である。
RSシーケンスが実行された後、N個の奇数チャンネルのSNシーケンスと、N個の偶数チャネルのSNシーケンスとが交互に実施される。SNシーケンスでは、奇数(または偶数)番号のピンPMを流れる電流がN個のCM回路245によって並列に処理され、デジタル信号に変換される。SNシーケンスが実行される毎に、出力ドライバ235は、読み出し動作を行う。CSN部202は、SNシーケンス、RDシーケンスを所定のサイクル数実行し、電流検出モードを終了する。
図16を参照して、IVシーケンス、ADシーケンスの動作例を説明する。図16はCM回路245のタイミングチャートである。ここでは、参照電圧の大小関係は、CMVRI>CMVRD2>CMVRD1である。検出対象の電流は、ピンPMからSD‐IC200外部に流れ出すソース電流である。
<IVシーケンス>
期間t1―t5にIVシーケンスが行われる。なお、t1以前に設定レジスタ271の設定データによって、ASW部230、CM回路245[h]の回路構成が設定されている。A/D回路243はアクティブ状態である。I/V回路241の端子OTAとS/H回路242の入力端子間は導通されている。具体的には、I/V回路241[h]の端子INM[h]、INP1[h]、INP2[h]は、ピンPM[2h-1]、PM[2h-2]、PM[2h]にそれぞれ電気的に接続されている。
(プリチャージ)
期間t1―t2にプリチャージ動作が行われる。“H”の信号CMPREが入力されるため、ASW部230のスイッチS11がオン状態となる。これにより、N個のピンPM、ならびにN個のI/V回路241の端子INM、INP1、INP2はそれぞれピンPVR4に電気的に接続され、電圧CMVRIにプリチャージされる。
t1で信号CMSHが“H”になるため、スイッチS42がオン状態になる。S/H回路242のノードNshは、I/V回路241の端子OTAと導通される。
(オフセットキャンセル)
期間t3―t4に、増幅回路41のオフセット電圧を補正するオフセットキャンセルが行われる。“H”の信号CMSETが入力されるため、スイッチS41はオン状態である。端子OTAが端子INMと導通され、容量素子C41は放電される。
(I/V変換)
期間t4―t5に、I/V回路241は端子INMを流れる電流を電圧に変換し、S/H回路242は、端子OTAの電圧をサンプリングする。
t4で、信号CMSETが“L”になることで、I/V回路241は、端子INP1の電圧と端子INP2の電圧とを平均した電圧を参照電圧に用いて、積分動作を開始する。端子INM[h]の電圧は、ピンPM[2h-1]を流れる電流によって低下するため、端子OTA[h]の電圧は低下する。
t5で信号CMSHが“L”になり、I/Vシーケンスが終了する。S/H回路242は、t5での端子OTAの電圧CMVSMPを保持する。電圧CMVSMPは、期間t4―t5に端子INMを流れた電荷量に対応する。
<A/Dシーケンス>
期間t5―t11でADシーケンスが実行される。期間t6―t11に信号CMCLKがカウンタ277に入力され、カウンタ277は信号CNT[11:0]、CMCLKBを生成する。信号CMCLKBは信号CMCLKの反転信号である。D/A回路278は、信号CNT[11:0]をアナログ変換し、信号DACOを生成する。信号DACOはコンパレータ43の端子(+)に入力される。
コンパレータ43は、ノードNshの電圧CMVSMPと信号DACOの電圧とを比較する。t7で信号DACOの電圧が電圧CMVSMPを超えると、コンパレータ43の出力信号は“H”から“L”に遷移する。ここでは、インバータ回路46の出力信号が信号CMPOであるので、t7で信号CMPOは“L”から“H”に遷移する。
信号CMCLKBの立ち上がり(信号CMCLKの立下り)で、フリップフロップ44のデータは、信号CMPOによって更新される。t8で信号CMCLKBが立ち上がると、信号LATOは、“1”(“H”)になる。フリップフロップ45は、信号LATO(クロック信号)の立ち上がりで、信号CNT[11:0]を、つまりカウント値Xsmpを記憶する。カウント値Xsmpは期間t4―t5に端子INMを流れた電流量を表す。
t9でカウンタ277のカウント値が0になるため、信号CMPOは“H”から“L”に遷移する。t10でのCMCLKBの立ち上がりで、フリップフロップ44のデータは、信号CMPOによって更新されるため、信号LATOは“L”になる。フリップフロップ45のデータADO[11:0]は、信号LATOが“L”から“H”に遷移する時点まで、更新されない。
<RDシーケンス>
図15Bは、RDシーケンスの一例を示すタイミングチャートである。信号TDSPが出力ドライバ235に入力されることで、RDシーケンスが開始する。出力ドライバ235のシフトレジスタ237において、信号TDCLKの立ち上がりに応じて、信号TDSPのシフト動作が行われ、フリップフロップ49[1]―49[3N]はTRIバッファ回路48[1]―48[3N]にイネーブル信号をそれぞれ出力する。TRIバッファ回路48[1]―48[3N]には、逐次“H”のイネーブル信号が入力され、保持している4ビットデータを信号CMDO[3:0]としてピンPDO1に出力する。シフトレジスタ237の最終段の出力は、信号CSROとしてピンPDO2から出力される。
RDシーケンスを実行している間、信号CMREVを“H”から“L”(または“L”から“H”)にして、監視対象のチャンネルの切り替えが行われる。
<<テストモード>>
テストモードでは、CM回路245[1]―245[N]に電流TIREFを逐次入力することで、1ユニットずつCM回路245をテストする。図18に、テストモードでのCSN部202の動作シーケンスの一例を示す。動作シーケンスは、RSシーケンス(1)、NサイクルのSNシーケンス、RSシーケンス(2)、RDシーケンスに大別される。
<RSシーケンス(1)>
RSシーケンス(1)では、設定レジスタ271の設定データが更新される。信号CMRSTが“H”になると、CSN部202の設定レジスタ271、A/D部233のフリップフロップ45などがリセットされる。次に、設定レジスタ271に信号RGCLK、RGSRDを入力して、設定レジスタ271に設定データを書き込む。RSシーケンス(1)では、CSN部202をテストモードにするため信号RTCMは“1”に設定される。
<SNシーケンス>
セレクタ275によって、シフトレジスタ255に信号TDCLK、TDSPが入力される。シフトレジスタ255は、信号TDSPをシフト動作し、信号TSEL[1]―TSEL[N]を生成する。信号TSEL[1]―TSEL[N]によって、CM回路245[1]―245[N]は逐次選択される。選択されたCM回路245はSNシーケンスを実行する。
テストモードのCM回路245のSNシーケンスは、電流検出モードと同様である。主な違いは、端子INMに電流生成部258から電流TIREFが入力されることである。電流TIREFをI/V部231に入力するため、信号CMREVは“L”に固定される。
例えば、RSシーケンス(1)において、信号TSROをピンPDO2から出力するための設定データを設定レジスタ271に書き込む。よって、ピンPDO2の出力を監視することで、CM回路245[N]のSNシーケンスの終了を知ることができる。
<RSシーケンス(2)>
RSシーケンス(2)では、RDシーケンスを実行するための設定データを設定レジスタ271に書き込む。RSシーケンス(2)では、信号RTCMは“0”に設定される。例えば、信号CSROをピンPDO2から出力するため、信号RDIG[1:0]は2’b00に設定される。その他の設定データは、RSシーケンス(1)と同じデータを用いることができる。
<RDシーケンス>
図15Bのタイミングチャートに従い、出力ドライバ235は動作する。CM回路245[1]―245[N]が生成したN個の12ビットデジタル信号(ADO[11:0])が、シリアル形式の4ビットデジタル信号(CMDO[3:0])に変換され、ピンPDO1から出力される。信号CMDO[3:0]を解析することで、CM回路245の良否判定等を行う。
図17の例では、信号RTCMのデータに応じて、信号TDSP、TDCLKの周波数を設定している。信号TDSP、TDCLKの信号RTCMが“0”であるときの周波数は、信号RTCMが“1”であるときよりも高い。
<<IV、ADシーケンス>>
図18に電流検出モードでのCM回路245[h]のIV、ADシーケンスの動作例を示す。
RSシーケンス(1)において、次のように設定レジスタ271のデータを設定する。CSN部202をテストモードに設定するため信号RTCMは“1”である。電流TIREFを電流IRFINTに設定するため、信号RIRFは“1”である。I/V部231を2入力差動検出モードに設定するため信号RITG[2:0]は3’b000である。A/D部233に信号DACOを入力するため信号RCONは“1”である。信号RCONを“1”にすることで、電流生成部258には電圧CMVRCが入力される。信号CMPOをコンパレータ43の出力信号に設定するため、信号RPOLは“0”である。ピンPAIOを高インピーダンス状態にするため、信号RANA[3:0]は4’b0111である。ピンPDO2から信号TSROを出力するため、信号RDIG[1:0]は2’b01である。
<IVシーケンス>
t21以前に、設定レジスタ271の設定データによって、ASW部230、スイッチマトリクス240[h]、250の回路構成が設定されている。スイッチマトリクス240[h]によって、端子INM[h]、INP1[h]、INP2[h]は、ピンPM[2h-1]、PM[2h-2]、PM[2h]にそれぞれ導通される。スイッチマトリクス250の端子B0―B3は、配線TM3―TM0にそれぞれ導通される。電流TIREFは配線TM3を通り、端子INM[h]に入力される。
t20で、フリップフロップ60[h]が“H”の信号TSEL_hを生成する。ASW回路261[h]のスイッチS30―S33がオン状態になり、ピンPM[2h-1]―PM[2h+1]と配線TM3―TM0とが導通される。TRIバッファ回路53[h]に“H”のイネーブル信号(TSEL_h)が入力され、フリップフロップ44[h]に“H”のイネーブル信号(EN_h)が入力される。
信号RANA[3]は“0”であり、信号RANA[1]は“1”であるので、スイッチS34[h]、S35[h]はオン状態である。
(プリチャージ)
期間t21―t22にプリチャージ動作が行われる。“H”の信号CMPREが入力されるため、ASW部230のスイッチS11がオン状態となり、スイッチマトリクス250のスイッチS21がオン状態になる。ピンPM[2h-1]―PM[2h+1]、端子INM[h]、INP1[h]、INP2[h]、配線TM0―TM3、はそれぞれピンPVR4に電気的に接続され、電圧CMVRIにプリチャージされる。
t21で信号CMSHが“H”になるため、スイッチS42[h]がオン状態になる。ノードNsh[h]は端子OTA[h]に導通される。
(オフセットキャンセル)
期間t23―t24に、増幅回路41[h]のオフセット電圧を補正するオフセットキャンセルが行われる。スイッチS41[h]はオン状態である。容量素子C41[h]は放電され、その電荷量は0クーロンとなる。
(電流IRFINTの生成)
期間t23―t24では、電流生成部258のスイッチSWtがオン状態であり、スイッチSWtbがオフ状態である。ノードNtに電圧CMVRCが入力され、容量素子Ctは充電される。容量素子Ctの電荷量Qtは、(CMVRC-CMVRI)×Ctである。t24で信号CMSETが“L”になると、一定時間遅延してスイッチSWtがオフ状態になる。次いで、スイッチSWtbがオン状態になり、ノードNtbに電流IRFINTが流れる。電流TIREFとして電流IRFINTが端子B20からスイッチマトリクス250に出力される。電流TIREFは、配線TM2を経て、端子INM[h]に入力される。
(I/V変換)
期間t24―t25では、I/V回路241[h]は端子INM[h]を流れる電流TIREFを電圧に変換し、S/H回路242[h]は端子OTA[h]の電圧をサンプリングする。
t24で、信号CMSETは“L”になり、I/V回路241は、端子INP1の電圧と端子INP2の電圧を平均した電圧を参照電圧に用いて、積分動作を開始する。ノードNsh[h]の電圧は低下し、電圧TVSMPとなる。電圧TVSMPと電圧CMVRIの差分はQt/Civhである。CivhはI/V回路241[h]のC41[h]の容量である。
<A/Dシーケンス>
期間t25―t31でADシーケンスが実行される。A/D回路243[h]は、電圧TVSMPを12ビットデジタル信号(ADO[11:0]_h)に変換する。カウント値Xirfは、電荷量Qtに対応する。
CSN部202のテスト方法は上記に限定されない。設定レジスタ271の設定データによって、取得するデータの変更、テストに用いる信号の変更、動作シーケンスの変更等が可能である。
例えば、信号RANA[3:0]を4’0011にし、信号RCONを“1”にして、ピンPAIOから信号DACOを出力する。ピンPAIOの電圧からD/A回路278のDCオフセット電圧を取得できる。
例えば、信号RANA[3:0]を4’0010にし、ピンPAIOから信号TAMPOを出力する。ピンPAIOの電圧から、I/V回路241のオフセット電圧を取得できる。この場合、I/V回路241をボルテージフォロワとして動作させるため、例えば、信号RIRFは“0”であり、信号RITG[2:0]は3’100である(図12参照)。
例えば、信号RANA[3:0]を4’1010にし、ピンPAIOから信号TCMPINを入力する。信号TCMPINを用いてA/D部233のテストを行うことができる。例えば、信号RTCMを“0”にして電流検出モードでA/D部233のテストを実行してもよい。
電流生成部258では、電圧によって容量素子Ctを充電することで、電流IRFINTの生成が行われる。そのため、電流生成部258は広い電流出力範囲をもち、かつ出力電流の値を高精度に調節できる。従って、SD‐IC200に電流生成部258を組み込むことで、複数のCM回路245の高い信頼性のテストを行うことができる。実施例1において、このことを説明する。
多数の抵抗素子を用いずに電流生成部258を構成することで、電流生成部258の面積が小さくできる。電流生成部258を組み込むことで生ずるSD‐IC200の面積オーバーヘッドを抑えることができ、SD‐IC200の低コスト化につながる。
〔実施の形態3〕
本実施の形態では、実施の形態2のSD‐ICを搭載した表示パネル、同表示パネルを搭載した表示システムについて説明する。
<<表示装置の構成例>>
図19Aは、表示システムの構成例を示すブロック図である。表示システム500は、プロセッサ510、表示コントローラ515、表示パネル520を有する。
プロセッサ510は、実行ユニット512およびメモリ装置513を有する。表示コントローラ515は、画像プロセッサ516、タイミングコントローラ517およびメモリ装置518を有する。表示パネル520は画素アレイ521および周辺回路522を有する。
プロセッサ510は、各種プログラムを実行して、表示システム500を統括的に制御する。実行ユニット512は、プログラムを実行する機能を有する。例えば、実行ユニット512は、ALU(演算装置)であり、メモリ装置513は、キャッシュメモリである。または、実行ユニット512は、CPU(中央処理装置)、MPU(マイクロプロセッサユニット)などの各種のプロセッサを適用できる。例えば、表示システム500が電子部品として電子機器に組み込まれている場合、プロセッサ510に電子機器(ホスト装置)のプロセッサが用いられる。
表示コントローラ515は、表示パネル520を制御するためのコントローラである。タイミングコントローラ517は、周辺回路522の動作のタイミングを設定するための各種の信号を生成する。画像プロセッサ516は、プロセッサ510から送信される画像信号を処理する。メモリ装置518は、表示コントローラ515が処理を実行するために必要なデータを記憶する。データは、例えば、画像プロセッサ516が処理した画像データ、画像プロセッサ516およびタイミングコントローラ517で使用されるパラメータデータなどである。
表示パネル520は画素アレイ521、周辺回路522を有する。画素アレイ521は、サブ画素10、ゲート線GL1、ソース線SL1、配線MLを有する。
周辺回路522は、スイッチ回路523U、523D、ゲートドライバ回路524L、524R、12個のSD‐IC200を有する。ここでは、12個のSD‐IC200を区別する場合、図19Aに示すとおり、「200」の符号に_1U、_1Dなどを付記する。図19BにSD‐IC200と画素アレイ521との接続構造を模式的に示す。
SD‐IC200のピンPSにはソース線SL1が電気的に接続される。ピンPMと配線MLと間の接続は、スイッチ回路523D(または523U)により制御される。スイッチ回路523U、523Dは、画素アレイ521とCSN部202とのインターフェースである。SD‐IC200のSDR部201は、表示コントローラ515から送信される画像信号を処理して、ソース線SL1に供給する階調信号を生成する。SD‐IC200のCSN部202は、配線MLを流れる電流を検出する。CSN部202が生成する信号CMDOは、プロセッサ510に送信される。プロセッサ510は信号CMDOを処理し、例えば、画像プロセッサ516が使用するパラメータを更新する。信号CMDOを表示コントローラ515の画像プロセッサ516で処理する構成も可能である。
SD‐IC200の仕様、画素数等に応じて、表示システム500に実装されるSD‐IC200の数が決定される。
ゲートドライバ回路524Lは、階調信号を入力するサブ画素10を選択するためのスキャン信号を生成し、ゲート線GL1に入力する。ゲートドライバ回路524Rも同様である。
スイッチ回路523U、523D、ゲートドライバ回路524L、524Rはゲートオンアレイ構造であり、画素アレイ521と同一絶縁表面上に形成されている。SD‐IC200はCOG(Chip on Glass)方式で実装されている。周辺回路522の構成はこれに限定されない。スイッチ回路523U、523Dの一部の機能をSD‐IC200に持たせてもよい。ゲートドライバ回路524L、524Rを1または複数のゲートドライバICで構成してもよい。表示パネル520へのICの実装技術には、COGの他に、COF(Chip on Film)、TAB(Tape Automated Bonding)などがある。
表示パネル520にはFPCが実装される。FPCを介して、画素アレイ521、周辺回路522に電圧、信号等が入力される。
<<画素アレイ521>>
図20A、図20Bを参照して、サブ画素10、画素アレイ521の構成例を説明する。
図20Aには、2行3列に配列された6個のサブ画素10を示している。本明細書等において、ゲート線GL1_j(jは1以上の整数)は第j行のゲート線GL1である。ソース線SL1_6k(kは1以上の整数)は第6k列のソース線SL1である。サブ画素10[j,6k]とは、第j行第6k列のサブ画素10である。
サブ画素10は、EL(エレクトロルミネセンス)素子DE1、トランジスタMS1、MD1、MM1、容量素子CS1を有する。サブ画素10は、ゲート線GL1、ソース線SL1、配線ML、ANLに電気的に接続されている。図20Aの例では、配線MLは隣接する2列で共有されている。
EL素子DE1は、一対の電極(画素電極、コモン電極)、EL層を有する。EL層は一対の電極に挟まれている領域を有する。EL層は、発光性の物質を含む層(発光層)を少なくとも有する。EL層には、その他に、電子輸送物質を含む層(電子輸送層)、正孔輸送物質を含む層(正孔輸送層)など、他の機能層を設けることができる。EL素子は、発光物質が有機物である場合は有機EL素子と呼ばれ、無機物である場合は無機EL素子と呼ばれる。一対の電極の一方はアノード電極であり、他方はカソード電極である。図20Aの例では画素電極がアノードであり、コモン電極がカソードである。画素電極は、トランジスタMD1および容量素子CS1に電気的に接続され、コモン電極には電圧VCTが入力される。
本実施の形態では、サブ画素の表示素子がEL素子である例を示すが、表示素子にはその他発光素子を用いることができる。発光素子には、発光ダイオード、発光トランジスタ、量子ドットを用いた発光素子などがある。
配線ANLは、例えば、電圧供給線として機能させる。配線ANLの電圧は電圧VCTよりも高くすればよい。図20の例では、配線ANLを列ごとに設けているが、複数列に対して1の配線ANLを設けてもよい。
トランジスタMS1は選択トランジスタと呼ばれ、トランジスタMD1は駆動トランジスタと呼ばれる。トランジスタMD1は、EL素子DE1の電流源として機能する。トランジスタMD1はゲート電圧に応じたドレイン電流をEL素子DE1に供給する。容量素子CS1はトランジスタMD1のゲート電圧を保持する保持容量である。トランジスタMM1は、サブ画素10から配線MLへの電流の読み出しを制御する。ここでは、トランジスタMM1のような機能を有するトランジスタを、モニタトランジスタと呼ぶことにする。
トランジスタMS1、MD1、MM1はバックゲートを有するOSトランジスタである。ゲート線GL1には、トランジスタMS1、MM1のバックゲートが電気的に接続されている。配線MLには、トランジスタMS1、MM1のゲートが電気的に接続されている。トランジスタMD1のバックゲートはゲートに電気的に接続されている。
図20Bに示すように、画素アレイ521には、赤(R)、緑(G)、青(B)を表示する3種類のサブ画素10が設けられている。3個(RGB)のサブ画素10で画素20が構成される。
サブ画素の表示色を用いて、構成要素を区別する場合、R、_R等の識別記号を付すことにする。例えば、サブ画素10Rは赤色のサブ画素10である。ソース線SL1_Gkは、緑色の階調信号が入力されるk列目のソース線SL1である。
画素アレイ521のサブ画素数は、行(水平)方向は2N×3(RGB)個であり、列(垂直)方向はN個である(N、Nは1以上の整数)。
例えば、表示パネル520の画面解像度が8K4K(7680×4320)である場合、サブ画素10の数は、7680×3(RGB)×4320である。ソース線SL1_R、SL1_G、SL1_Bの本数は、それぞれ、7680である。ゲート線GL1の本数は4320である。配線MLの本数は3840×3である。
画素の構成は図20Bの例に限定されない、例えば、1画素を1個のサブ画素10R、2個のサブ画素10G、1個のサブ画素10Bで構成する。サブ画素10の表示色の組み合わせには、[C(シアン),M(マゼンタ),Y(黄)]、[R,G,B,W(白)]、[R,G,B,Y]、[R,G,B,C]などがある。
<スイッチ回路523U、523D>
図21A、図21Bを参照して、スイッチ回路523U、523Dについて説明する。
スイッチ回路523Uには、電圧V0、信号MPON_U、MSEL_U1―MSEL_U3が入力される。スイッチ回路523Dには、電圧V0、信号MPON_D、MSEL_D1―MSEL_D3が入力される。
スイッチ回路523Uは、N個の端子MO[2q-1]、N個の回路531[2q-1]、N個の回路532[2q]を有する。スイッチ回路523Dは、N個の端子MO[2q]、N個の回路532[2q-1]、N個の回路531[2q]を有する。qは1乃至Nの整数である。端子MOは、SD‐IC200のピンPMに電気的に接続される。
回路531はトランジスタM11―M16を有し、回路532はトランジスタM24―M26を有する。トランジスタM11―M16、M24―M26はそれぞれバックゲートを有するOSトランジスタである。
回路531によって、3本の配線MLと端子MOと間の導通状態を制御する。信号MSEL_U1―MSEL_U3、MSEL_D1―MSEL_D3により、端子MOに導通される配線MLの選択が行われる。回路531と回路532によって、配線MLの両端から電圧V0を入力することができる。信号MPON_U、MPON_Dにより配線MLへの電圧V0の入力が制御される。表示パネル520が画像を表示する間は、配線MLに電圧V0を入力する。サブ画素10を流れる電流を検出する場合は、端子MOに1または複数の配線MLを導通させる。
図22を参照して、画素アレイ521、ゲートドライバ回路524L、524R、およびSD‐IC200の接続構造について説明する。
ゲート線GL1_1―GL1_Nは、ゲートドライバ回路524Lとゲートドライバ回路524R双方に電気的に接続されている。ゲートドライバ回路524L、524Rは同じ回路構成であり、OSトランジスタで構成される。ゲートドライバ回路524L、524Rにより、ゲート線GL1の両端から同じタイミングでスキャン信号が入力される。なお、別の例として、ゲートドライバ回路524Lで奇数行のゲート線GL1を駆動し、ゲートドライバ回路524Rで偶数行のゲート線GL1を駆動してもよい。
ソース線SL1、配線MLは、2画素(6サブ画素)分の列ごとに、接続されるSD‐IC200が変わる。図22には、代表的に、画素アレイ521、SD‐IC200_1U、200_1Dの接続構造を示す。SD‐IC200_1UのCSN部202の要部を簡略化して示している。
配線MLが接続されるSD‐IC200は、3本毎にSD‐IC200_1UとSD‐IC200_1Dと交互に変化する。端子MO[1]、MO[3]、MO[5]は、それぞれ、SD‐IC200_1UのピンPM[1]、PM[2]、PM[3]に導通される。端子MO[2]、MO[4]は、それぞれ、SD‐IC200_1DのピンPM[1]、PM[2]に導通される。
ソース線SL1_Rが接続されるSD‐IC200は、2本毎に、SD‐IC200_1UとSD‐IC200_1Dとで交互に変化する。ソース線SL1_G、SL1_Bについても同様である。
<<電流検出>>
図23―図25を参照して、電流検出動作例を説明する。図23は電流検出動作例のフローチャートである。図24、図25は、電流検出動作例を説明するための簡略化した回路図である。
(ステップSS10)
CSN部202に“H”の信号CMRSTを入力し、CSN部202をリセットする。
(ステップSS11)
RSシーケンスを実行し、CSN部202のモードを電流検出モードにするための設定データを、CSN部202の設定レジスタ271に書き込む。I/V部231の検出モードが3入力差動検出モードである場合を例に、以降のステップを説明する。
ステップSS12―SS17が、電流検出動作の1サイクルである。ステップSS12で第j行のサブ画素10に階調信号を書き込む。CSN部202は、奇数チャンネルのSNシーケンス、RDシーケンスを実行する(ステップSS13、SS14)。ステップSS15で第j行のサブ画素10に階調信号を書き込む。CSN部202は、偶数ャンネルのSNシーケンス、RDシーケンスを実行する(ステップSS16、SS17)。画素アレイ521の行数(N)と同じ回数、ステップSS12―ステップSS17を実行し、電流検出動作が終了する(ステップSS18)。
(ステップSS12)
周辺回路522によって、サブ画素10に階調信号を書き込む。j回目のステップSS12であれば、ゲート線GL1_jを選択し、第j行のサブ画素10に階調信号を書き込む。
次のステップSS13において、CSN部202は奇数チャンネルの電流検出を行う。そのため、ステップSS12では、ステップSS13で対象になるサブ画素10と、対象外のサブ画素10とでは異なる階調信号を書き込む。検出対象のサブ画素10のための階調信号を「階調信号CM」と呼び、対象外のサブ画素10のための階調信号を「階調信号NL」と呼ぶ。
ゲート線GL1_jが選択状態であるとき、階調信号CMが書き込まれたサブ画素10のトランジスタMM1と配線MLとの間に電流Imが流れ、階調信号NLが書き込まれたサブ画素10のトランジスタMM1と配線MLとの間には電流Imが流れない。例えば、階調信号NLには0階調の信号(黒表示用階調信号)が用いられる。
図24を参照して、ステップSS12を説明する。ステップSS12では、スイッチ回路523U、523DのトランジスタM14―M16、M24―M26をオン状態にして、配線MLに電圧V0を入力する。次いで、ゲート線GL1_jを選択し、第j行のサブ画素10R、10G、10Bに階調信号を書き込む。
図24の例では、サブ画素10Rを対象とし、サブ画素10G、10Bは対象外である。サブ画素10G、10Bには、それぞれ、階調信号NL_G、NL_Bを書き込む。奇数チャネルのピンPMに電気的に接続される列のサブ画素10Rには、階調信号CM_Rを書き込み、その他のサブ画素10Rには階調信号NL_Rを書き込む。ゲート線GL1_jが選択されている間、トランジスタMM1はオン状態であるので、階調信号CM_Rが書き込まれたサブ画素10Rと配線ML間に電流Im_Rが流れる。
(ステップSS13‐1)
次に、CSN部202でI/Vシーケンスを行うため、端子MOと配線MLを導通させる。スイッチ回路523U、523DのトランジスタM14―M16、M24―M26をオフ状態にし、トランジスタM11―M12をオン状態にする(図25)。CSN部202のI/V回路241は、端子INP1、INP2の電圧を平均した電圧を参照電圧に用いて、端子INMを流れる電流を電圧に変換する。I/Vシーケンスの終了タイミングで、スイッチ回路523U、523DのトランジスタM11、M12をオフ状態にし、端子MOと配線MLを非導通状態にする。
隣接する配線MLのノイズ成分は高い類似性がある。サブ画素10Rの電流Im_Rの検出を3入力差動検出モードで行うことで、I/V回路241の出力信号がノイズ成分を効果的に除去できるため、サブ画素10Rを流れる電流Im_Rの値をより正確に取得することができる。
(ステップSS13‐2)
CSN部202はA/Dシーケンスを行う。A/D回路243はI/V回路241の出力電圧をデジタルデータに変換する。CSN部202がA/Dシーケンスを実行している間、スイッチ回路523U、523DのトランジスタM14―M16、M24―M26をオン状態にして、配線MLに電圧V0を入力する。
(ステップSS14)
CSN部202はR/Dシーケンスを行い、信号CMDO[3:0]を出力する。
(ステップSS15)
ステップSS15はステップSS12と同様に行われる。サブ画素10G、10Bに階調信号NL_G、NL_Bを書き込む。ステップSS16で検出対象となる列のサブ画素10Rに階調信号CM_Rを書き込み、その他のサブ画素10Rに階調信号NL_Rを書き込む。
SDR部201とCSN部202の動作は独立しているので、ADシーケンス(ステップSS13‐2)の実行中、またはRDシーケンス(ステップSS14)の実行中に、SS15を実行することができる。
(ステップSS16)
ステップSS16はステップSS13と同様であり、CSN部はIVシーケンス(ステップSS16‐1)、ADシーケンス(ステップSS16‐2)を行う。
(ステップSS17)
CSN部202はR/Dシーケンスを行い、信号CMDO[3:0]を出力する。
(ステップSS18)
図23の動作例では、ステップSS12―SS18のサイクル数はNに設定し、1行ごとにサブ画素10の電流を検出している。サイクル数はNに限定されない。検出対象とするサブ画素数等に応じて、設定される。
サブ画素10の駆動トランジスタ(MD1)のドレイン電流は非常に小さく、1nA乃至数百nA程度である。CSN部202のCM回路245は、このような微小な電流を検出することが可能である。3入力差動検出モードでは、I/V回路241は、高いSNRのアナログ信号を取得することができるので、CM回路245は、高い精度での電流検出が可能である。信号CMDO[3:0]を用いることで、サブ画素10に書き込む階調信号をより適切に補正することができる。したがって、ソースドライバ回路をSD‐IC200で構成することで、表示品質の優れた表示システム500を提供することができる。
<<画素アレイ、サブ画素の他の構成例>>
以下、図26A―図26C、図27、図28A、図28Bを参照して、画素アレイ、サブ画素の他の構成例を説明する。
図26Aに示す画素アレイ551は、画素アレイ521の変形例であり、サブ画素10に代えてサブ画素11を有する。サブ画素11は、トランジスタMS2、MD2、MM2、容量素子CS2、EL素子DE2を有する。
トランジスタMS2のバックゲートはゲートに電気的に接続され、トランジスタMM2のバックゲートはゲートに電気的に接続されている。ゲート線GL1にトランジスタMS2、MM2のゲートが電気的に接続されている。
図26Bに示す画素アレイ552には、1行に2本のゲート線GL1、GL2が設けられている。ゲート線GL2にはトランジスタMM1のバックゲートが電気的に接続される。トランジスタMS1とトランジスタMM1のオンオフを独立して制御できる。サブ画素10にかえてサブ画素11で画素アレイ552を構成してもよい。
図26Cに示す画素アレイ553はゲート線GL1、ソース線SL、配線ML、サブ画素12を有する。サブ画素12はトランジスタMS3、MD3、容量素子CS3、EL素子DE3を有する。ゲート線GL1にトランジスタMS3のゲートとバックゲートが電気的に接続されている。画素電極はEL素子DE3のカソードを構成する。コモン電極はEL素子DE3のアノードを構成し、電圧VANが入力される。
1列あたり複数のソース線を設けてもよい。図27に示す画素アレイ554では、1列あたりソース線SL1a、SL1bが設けられている。ソース線SL1a、SL1bに対応して、ゲート線GL1a、GL1bがそれぞれ設けられる。ゲート線GL1aとゲート線GL1bには同じタイミングでゲートドライバ回路524L、524Rからスキャン信号が入力される。図27の例では、サブ画素10で画素アレイ554を構成しているが、他のサブ画素でもよい。
1列あたり複数のソース線を設けることで、複数行を同時に選択できる。ソース線が2本であれば、1水平期間が2倍になるため、データ書き込み時間を長くできる。したがって、画素アレイ554は、大型画面(例えば、対角50インチ以上)の表示システム、および高解像度の画像信号(例えば、階調12ビット、120Hz)が入力される表示システムに好適である。
サブ画素のトランジスタはOSトランジスタに限定されない、例えば、多結晶シリコントランジスタでもよい。多結晶シリコントランジスタを用いる場合、サブ画素をpチャネル型トランジスタで構成することができる。図28Aに示すサブ画素15は3個のpチャネル型トランジスタを有する。図28Bに示すサブ画素16は2個のpチャネル型トランジスタを有する。
バックゲートを有さないトランジスタで、サブ画素の一部または全てのトランジスタを構成してもよい。駆動トランジスタはバックゲートを有するトランジスタであることが好ましい。それは、バックゲートを設けることで、Id‐Vd特性の飽和性および電流駆動能力を向上できるからである。
〔実施の形態4〕
実施の形態4では、図29、図30A、図30Bを参照して、表示パネルの構成例について説明する。
図29に示す表示パネル4201において、基板4001は素子基板のベース基板であり、基板4006は対向基板のベース基板である。
基板4001には、画素アレイ4120、ゲートドライバ回路4125、端子部4126が設けられている。図29には、画素アレイ4120に含まれるトランジスタ4010、容量素子4020およびEL素子4513、並びにゲートドライバ回路4125に含まれるトランジスタ4011を例示している。基板4001には絶縁層4102、4103、4110、4111、4112が設けられている。
トランジスタ4010、4011は絶縁層4102上に設けられている。トランジスタ4010、4011は、それぞれ、導電層4150、4151、半導体層4152、導電層4156、4157を有する。導電層4150、4151はソース電極およびドレイン電極を構成する。導電層4156はバックゲート電極を構成し、導電層4157はゲート電極を構成する。
容量素子4020は、導電層4151と導電層4021が絶縁層4103を介して重なる領域を有する。
端子部4126には、導電層4014、4015が設けられている。導電層4015はFPC4018が有する端子と異方性導電層4019を介して、電気的に接続されている。導電層4015は、導電層4014に電気的に接続されている。導電層4014は端子を構成し、導電層4015は引き回し配線を構成する。
半導体層4152はチャネル形成領域を有する。半導体層4152は、金属酸化物層またはシリコン層などである。
例えば、半導体層4152を金属酸化物層とする場合、インジウム(In)および亜鉛(Zn)の少なくとも一方を含む金属酸化物層であることが好ましい。このような金属酸化物としては、In酸化物、Zn酸化物、In‐Zn酸化物、In‐M‐Zn酸化物(元素Mは、Al、Ti、Ga、Y、Zr、La、Ce、Nd、またはHfである)が代表的である。
トランジスタ4010、4011がOSトランジスタである場合、半導体層4152は、例えば、1層乃至3層の金属酸化物層で構成される。
導電層4030は絶縁層4112の上に設けられている。導電層4030、絶縁層4112上に隔壁4510が設けられている。隔壁4510上に発光層4511、導電層4031の積層が設けられている。隔壁4510は、有機絶縁材料、又は無機絶縁材料を用いて形成する。特に感光性の樹脂材料を用い、導電層4030上に開口部を形成し、その開口部の側面が連続した曲率を持って形成される傾斜面となるように形成することが好ましい。
EL素子4513は、導電層4030、発光層4511、導電層4031の積層で構成される。導電層4030は画素電極であり、導電層4031はコモン電極である。発光層4511は、単層でもよいし、複数層の積層でもよい。
EL素子4513に酸素、水素、水分、二酸化炭素等が侵入しないように、導電層4031および隔壁4510上に保護層を形成してもよい。保護層としては、窒化シリコン、窒化酸化シリコン、酸化アルミニウム、窒化アルミニウム、酸化窒化アルミニウム、窒化酸化アルミニウム、DLC(Diamond Like Carbon)などを形成することができる。
シール材4005によって基板4006は基板4001に固定されている。シール材4005によって密封されている基板4001と基板4006との間の空間は、充填材4514で満たされている。充填材4514としては窒素やアルゴンなどの不活性な気体の他に、紫外線硬化樹脂または熱硬化樹脂を用いることができ、PVC(ポリビニルクロライド)、アクリル樹脂、ポリイミド樹脂、エポキシ樹脂、シリコーン樹脂、PVB(ポリビニルブチラル)またはEVA(エチレンビニルアセテート)などを用いることができる。また、充填材4514に乾燥剤が含まれていてもよい。シール材4005には、ガラスフリットなどのガラス材料や、二液混合型の樹脂などの常温で硬化する硬化樹脂、光硬化性の樹脂、熱硬化性の樹脂などの樹脂材料を用いることができる。シール材4005に乾燥剤が含まれていてもよい。
カラーフィルタ層、ブラックマトリクス層、偏光板、円偏光板(楕円偏光板を含む)、位相差板(λ/4板、λ/2板)などは、適宜設ければよい。これらは、表示パネル4201がトップエミッション型表示パネルであれば基板4006に設ければよく、ボトムエミッション型表示パネルであれば基板4001に設ければよい。
図30A、図30Bに表示パネルの他の構成例を示す。図30Aに示す表示パネル4202、図30Bに示す表示パネル4203は、それぞれ、トランジスタの構造が表示パネル4201と異なる。表示パネル4202のトランジスタ4010、4011はトップゲート型トランジスタである。表示パネル4203のトランジスタ4010、4011は、バックゲート電極を有するトップゲート型トランジスタである。
〔実施の形態5〕
本明細書等で開示する表示システムは、様々な電子機器の表示部に用いることができる。本明細書等で開示されるSD‐ICによって、表示部の輝度を補正することができるため、階調データのビット数の増加、大画面化、画素数の増加などが容易である。電子機器には、テレビジョン受信装置(以下、TV装置)、VR(仮想現実)ヘッドマウントディスプレイ、医用表示装置(画像診断装置の表示装置)、デジタルサイネージ、航空機、船舶、自動車、機械等の操作を模擬する模擬装置(シミュレータ)、デジタルカメラ、デジタルビデオカメラ、モバイル機器(例えば、タブレット端末、スマートフォン、ゲーム機)、ウエアラブル機器等がある。
以下、図31A―図31D、図32A―図32C、図33A、図33Bを参照して、表示システムを具備する電子機器の幾つかの具体例を示す。
図31Aに示すTV装置2010は、表示部2011、筐体2013、支持台2015を有する。TV装置2010は、例えば、30乃至110インチの8KTV装置である。
図31Bに示す表示装置2020は、表示部2021、筐体2023、支持台2025を有する。表示装置2020は、コンピュータ、遊技機等のモニタとして用いることができる。表示装置2020にテレビジョン放送の受信装置を組み込むことで、表示装置2020をTV装置として利用することができる。
図31C、図31Dに医用表示装置の構成例を示す。図31Cに示す医用表示装置2040は、表示部2041、筐体2043、支持部2045を有する。支持部2045によって、天井、面等に医用表示装置2040を固定することができる。例えば、医用表示装置2040は、手術室、集中治療室等に設置される。表示部2041には、術野、患部の映像、患者の情報(例えば、心電図、血圧)、医用画像(例えば、X線画像、MRI画像)が表示される。
図31Dに示す医用表示装置2050は、表示部2051、筐体2053、支持台2055を有する。医用表示装置2050は、据え置き型の表示装置であり、例えば、医用画像診断に用いられる。筐体2053は回転できるように支持台2055に取り付けられ、表示する画像に応じて、表示部2253を横向き(ランドスケープ)、縦向き(ポートレート)に回転することができる。
図32Aに示す情報端末2110は、表示部2111、筐体2113、光センサ2114、カメラ2115、操作ボタン2116を有する。情報端末2110の機能には、音声通話、カメラ2115を利用したビデオ通話、電子メール、手帳、インターネット接続、音楽再生などがある。例えば、情報端末2110に電子教科書のデータを記憶させることで、デジタル教科書リーダとして用いることが可能である。
表示部2111はタッチセンサ装置が組み込まれた表示システムで構成される。情報端末2110の画面をスタイラスペン2117(または電子ペン)、指などでタッチ操作することで、情報端末2110を操作することが可能である。光センサ2114で検知された環境光のデータに基づいて、表示部2111の明るさ、色合いなどが変更可能である。以下に例示される電子機器の表示部も、表示部2111と同様の機能を持つ。
図32Bに示すPC(パーソナルコンピュータ)2130は、表示部2131、筐体2133、光センサ2134、カメラ2135、キーボード2136を有する。表示部2131はタッチセンサ装置が組み込まれた表示システムで構成され、表示部2111と同様の機能を持つ。キーボード2136は、筐体2133から着脱可能な構成である。筐体2133にキーボード2136を装着した状態では、PC2130はノード型PCとして使用できる。筐体2133からキーボード2136を脱着した状態では、PC2130はタブレット型PCとして使用できる。
図32Cに示すスマートフォン2150は、表示部2151、筐体2153、光センサ2154、マイク2156、スピーカ2157、操作ボタン2158を有する。表示部2151はタッチセンサ装置が組み込まれた表示システムで構成され、表示部2111と同様の機能を持つ。筐体2153の背面にはカメラなどが設けられている。スマートフォン2150は情報端末2110と同様の機能をもつ。
図33Aに、車載用電子機器の構成例を示す。例えば、自動車2200は、ナビゲーションシステム2210、リアビューモニタ2220、後部座席モニタ2230等が設けられている。図33Aは、自動車2200の後部座席からみた室内を模式的に示す。
リアビューモニタ2220は、後写鏡(インナーリアビューミラーとも呼ぶ。)として機能する。リアビューモニタ2220は、表示部2221、筐体2223、接続部2225を有する。接続部2225によって、表示部2221は、画面の向きを変更可能に室内に取り付けられている。自動車2200には、車体の後方を撮影するカメラが設けられており、カメラの映像はリアルタイムでリアビューモニタ2220に表示される。ナビゲーションシステム2210に自動車2200の後退時にカメラの映像を表示する機能をもたせてもよい。
後部座席モニタ2230は、表示部2231、筐体2233を有する。筐体2233は、前部座席のヘッドレスト2235のシャフトに固定するための取付け部を有する。後部座席モニタ2230には、例えば、ナビゲーションシステム2210の映像、TV放送の映像、記録媒体(例えば、DVD、SDカード)に保存されている映像コンテンツ等が表示される。
図33Bに示すデジタルサイネージ2300は、表示部2301、筐体2303、スピーカ2305を有する。デジタルサイネージ2300によって、例えば、駅・空港・海港・各種施設(例えば、展示場、スタジアム、劇場、美術館)の案内図表示システム、病院・銀行などの順番案内表示システムを提供できる。
実施の形態2のSD‐IC200を製造し、ウエハテストを行った。SD‐IC200のベース基板はシリコンウエハである。ウエハテストでは、電流生成部258の性能を確認するため、CSN部202をテストモードで動作し、信号CMDO[11:0]を取得した。図34は、信号CMDO[3:0]の解析結果を示す。
Figure 0007083666000003
表3に、SD‐IC200の仕様を示す。CSN部202には、180個のCM回路245(図11参照)が設けられている。A/D回路243は12ビットA/D回路である。電流生成部258の容量素子Ctの容量は1pFである。
なお、製造したSD‐IC200では、ASW部252にスイッチS34が設けられていなく、LOG/LS部254には、インバータ回路63、レベルシフト回路68が設けられていない(図14参照)。
CSN部202をテストモードで動作して、信号CMDO[3:0]を測定した。I/V回路241の検出モードは3入力差動検出モードとした。A/D回路243のコンパレータ43には信号DACOを入力した。D/A回路278の参照電圧は1V(=CMVRD1)、4V(=CMVRD2)とした。
電流TIREFには、電流IRFINT(内部生成電流)を用いた。電圧CMVRIは4Vである。ノードNtに電圧CMVRCを入力した。電圧CMVRCを4Vから7Vの間で16段階(変化量0.1875V)変化させて、電流IRFINTを変化させた。各電流IRFINTに対して、テストモードでCSN部202を動作し、信号CMDO[3:0]を取得した。図34は、電圧CMVRCに対するCM回路245[176]―245[180]の出力データ(ADO[11:0])の値を示す。図34の縦軸の値は、CM回路245[176]―245[180]が検出した電流IRFINTの値に対応する。
図34は、電流IRFINTを容量素子Ctの電荷と入力電圧CMVRCとによって制御することで、電流生成部258は広い電流出力範囲をもち、かつ出力電流の値を高精度に調節できることを示している。従って、SD‐IC200に電流生成部258を組み込むことで、複数のCM回路245を高精度に検査することが可能である。
10、11、12、15、16:サブ画素、 20:画素、
41:増幅回路、 43:コンパレータ、 44、45、49、60:フリップフロップ、 46:インバータ回路、 47:セレクタ、 48:TRI(トライステート)バッファ回路、 53:TRIバッファ回路、 62:OR回路、 63:インバータ回路、 64:AND回路、 67、68、69:レベルシフト回路、
100:IC、 110:電流電圧変換部、 112:サンプルホールド部、 113:アナログデジタル変換部、 114:出力ドライバ、 117:スイッチ部、 118:シフトレジスタ、 121:レベルシフト部、 122、 123:ロジック部、 124:LOG/LS(ロジック及びレベルシフタ)部、 125:電流生成回路、 125a:遅延回路、 128:スイッチマトリクス、 129:スイッチ部、
130:電流電圧変換回路(I/V回路)、 131:増幅回路、 132:サンプルホールド回路(S/H回路)、 133:アナログデジタル変換回路(A/D回路)、 134:バッファ回路、 135:レジスタ、 137:スイッチマトリクス、 139:スイッチ回路、 140:CM回路、 160:回路、 161:レベルシフタ、 162:OR回路、 163:レジスタ、 168:シフトレジスタ、
200:SD‐IC(ソースドライバIC)、 201:SDR(ソースドライバ)部、 202:CSN(電流検出)部、 210:レシーバ、 211:ロジック部、 212:シフトレジスタ、 214:ラッチ部、 215:ラッチ部、 216:レベルシフト部、 217:デジタルアナログ変換部(D/A部)、 218:増幅部、 224、 225:ラッチ回路、 226:レベルシフタ、 227:デジタルアナログ変換回路(D/A回路)、 228:増幅回路、 230:ASW(アナログスイッチ)部、 231:I/V(電流電圧変換)部、 232:S/H(サンプルホールド)部、 233:アナログデジタル変換部(A/D部)、 235:出力ドライバ、 236:バッファ部、 237:シフトレジスタ、240:スイッチマトリクス、 241:I/V回路、241S:積分回路、 241D:差動積分回路、 242:S/H回路、 243:A/D回路、 245:CM回路、 250:スイッチマトリクス、 251:ASW部、 252:ASW部、 253:バッファ部、 254:LOG/LS部、 255:シフトレジスタ、 258:電流生成部、 258a:遅延回路、 258A、 258B、259、260、261:ASW回路、 258G:電流生成回路、 269:MUX(マルチプレクサ)、 270:レベルシフト部、 271:設定レジスタ、 272:デコーダ、 274、275:セレクタ、 277:カウンタ、 278:D/A回路、
500:表示システム、 510:プロセッサ、 512:実行ユニット、 513:メモリ装置、 515:表示コントローラ、 516:画像プロセッサ、 517:タイミングコントローラ、 518:メモリ装置、 520:表示パネル、 521:画素アレイ、 522:周辺回路、 523D、523U:スイッチ回路、 524L、524R:ゲートドライバ回路、 531、532:回路、
551、552、553、554:画素アレイ、
2010:TV装置、 2011:表示部、 2013:筐体、 2015:支持台、 2020:表示装置、 2021:表示部、 2023:筐体、 2025:支持台、 2040:医用表示装置、 2041:表示部、 2043:筐体、 2045:支持部、 2050:医用表示装置、 2051:表示部、 2053:筐体、 2055:支持台、 2110:情報端末、 2111:表示部、 2113:筐体、 2114:光センサ、 2115:カメラ、 2116:操作ボタン、 2117:スタイラスペン、 2130:PC(パーソナルコンピュータ)、 2131:表示部、 2131:筐体、 2133:筐体、 2134:光センサ、 2135:カメラ、 2136:キーボード、 2150:スマートフォン、 2151:表示部、 2153:筐体、 2154:光センサ、 2156:マイク、 2157:スピーカ、 2158:操作ボタン、 2200:自動車、 2210:ナビゲーションシステム、 2220:リアビューモニタ、 2221:表示部、 2223:筐体、 2225:接続部、 2230:後部座席モニタ、 2231:表示部、 2233:筐体、 2235:ヘッドレスト、 2300:デジタルサイネージ、 2301:表示部、 2303:筐体、 2305:スピーカ、
4001:基板、 4005:シール材、 4006:基板、 4010、4011:トランジスタ、 4014、4015、4021、4030、4031、4156、4157、4150、4151:導電層、 4018:FPC、 4019:異方性導電層、 4020:容量素子、 4102、4103、4110、4111、4112:絶縁層、 4120:画素アレイ、 4125:ゲートドライバ回路、 4126:端子部、 4152:半導体層、 4201、4202、4203:表示パネル、 4510:隔壁、 4511:発光層、 4513:EL(エレクトロルミネセンス)素子、 4514:充填材、
P11、P12、PAIO、PDI、PDO1、PDO2、PI、PM、PMV1、PMV2、PS、PVP、PVR1、PVR2、PVR3、PVR4:ピン、
B0、B1、B2、B3、B10、B11、B12、B20、B21、INM、INP、INP1、INP2、MO、OTA、OT131:端子、
N81、N82、N132、Nsh、Nt、Nta、Ntb:ノード、
S11、S12、S13、S14、S15、S16、S17、S18、S21、S22、S23、S24、S25、S26、S27、S28、S30、S31、S32、S33、S34、S35、S41、S42、SW71、SW72、SW73、SW74、SW75、SW76、SW81、SW82、SW83、SW84、SW85、SW86、SW87、SW88、SWiv、SWsh、SWt、SWtb:スイッチ、
Civ、Csh、Ct、C41、C42、Cn10、Cn11、Cn12、Cn81、Cn82、CS1、CS2、CS3:容量素子、
ANL、ML、TM0、TM1、TM2、TM3、TM81、TM82:配線、
GL1、GL1a、GL1b、GL2:ゲート線、
SL1、SL1a、SL1b:ソース線、
DE1、DE2、DE3:EL素子、
M11、M12、M13、M14、M15、M16、M24、M25、M26、MD1、MD2、MD3、MM1、MM2、MS1、MS2、MS3:トランジスタ

Claims (14)

  1. 第1乃至第K(Kは2以上の整数)ピンと、
    第1乃至第N(Nは2以上の整数)電流検出回路と、
    第1容量素子を有する電流生成回路と、を有し、
    第j(jは1乃至Nの整数)電流検出回路は、第[2j-1]ピンと第[2j]ピンを流れる電流を検出し、
    前記電流生成回路は、前記第1容量素子が保持する電荷量に応じた参照電流を生成し、
    前記第1乃至第N電流検出回路をテストするため、前記第1乃至第N電流検出回路は、前記参照電流が逐次入力され
    前記電流生成回路は、第1スイッチ、第2スイッチ、第1ノード乃至第3ノード、第1選択回路、および第2選択回路を有し、
    前記第1容量素子の第1端子は第1電圧が入力され、
    前記第1スイッチは、前記第1ノードと前記第1容量素子の第2端子間の導通状態を制御し、
    前記第2スイッチは、前記第2ノードと前記第1容量素子の第2端子間の導通状態を制御し、
    前記第1選択回路は、複数の電圧から1の電圧を選択し、選択した電圧を前記第1ノードに入力し、
    前記第2選択回路は、前記第2ノードおよび前記第3ノードから1のノードを選択し、
    前記選択されたノードを流れる電流は、前記参照電流として出力されることを特徴とするIC。
  2. 請求項において、
    前記第1乃至第N電流検出回路はそれぞれ電流電圧変換回路を有し、
    前記電流電圧変換回路は、増幅回路、第2容量素子、および第3スイッチを有し、
    前記増幅回路は、反転入力端子、第1非反転入力端子、第2非反転入力端子、および出力端子を有し、
    前記第2容量素子の第1端子および第2端子は、前記反転入力端子および前記出力端子にそれぞれ電気的に接続され、
    前記第3スイッチは、前記反転入力端子と前記出力端子間の導通状態を制御することを特徴とするIC。
  3. 請求項1において、
    前記第1乃至第N電流検出回路はそれぞれ電流電圧変換回路を有し、
    前記電流電圧変換回路は、増幅回路、第2容量素子、および第3スイッチを有し、
    前記増幅回路は、反転入力端子、第1非反転入力端子、第2非反転入力端子、および出力端子を有し、
    前記増幅回路は、前記第1非反転入力端子の電圧および前記第2非反転入力端子の電圧の平均電圧と、前記反転入力端子の電圧との差分を増幅し、
    前記第2容量素子の第1端子および第2端子は、前記反転入力端子および前記出力端子にそれぞれ電気的に接続され、
    前記第3スイッチは、前記反転入力端子と前記出力端子間の導通状態を制御することを特徴とするIC。
  4. 請求項2又3において、
    前記電流電圧変換回路の前記第3スイッチは、第1信号対により制御され、
    前記電流生成回路は遅延回路を有し、
    前記遅延回路は、前記第1信号対を遅延して第2信号対を生成し、前記第2信号対を遅延して第3信号対を生成し、
    前記電流生成回路の前記第1スイッチおよび前記第2スイッチは、前記第2信号対および前記第3信号対によりそれぞれ制御されることを特徴とするIC。
  5. 請求項2乃至4の何れか1項において、
    前記第1乃至第N電流検出回路はそれぞれサンプルホールド回路、およびアナログデジタル変換回路を有し、
    前記サンプルホールド回路は、前記電流電圧変換回路の出力電圧を保持し、
    前記アナログデジタル変換回路は、前記サンプルホールド回路が保持する電圧をデジタルデータに変換することを特徴とするIC。
  6. 2N個(Nは1以上の整数)の第1ピン[1]乃至[2N]と、
    第2ピンと、
    第1配線および第2配線と、
    N個の電流検出回路[1]乃至[N]と、
    第1乃至第3スイッチ回路と、
    電流生成回路と、を有するICであり、
    前記電流生成回路は、第1容量素子、第1スイッチ、第2スイッチ、第1ノード乃至第4ノード、第1選択回路、および第2選択回路を有し、
    前記第1容量素子の第1端子は前記第2ピンに電気的に接続され、
    前記第1スイッチは前記第1ノードと前記第1容量素子の第2端子間の導通状態を制御し、
    前記第2スイッチは前記第2ノードと前記第1容量素子の第2端子間の導通状態を制御し、
    前記第3ノードは、電流が入力され、
    前記第4ノードを流れる電流は、参照電流として前記電流生成回路から出力され、
    前記第1選択回路は複数の電圧から1の電圧を選択し、選択した電圧を前記第1ノードに入力し、
    前記第2選択回路は、前記第2ノードまたは前記第3ノードを選択し、選択したノードを前記第4ノードに電気的に接続し、
    前記第1スイッチ回路は、電流検出回路[h](hは1乃至Nの整数)の入力端子[h]と第1ピン[2h-1]間の導通状態、および前記入力端子[h]と第1ピン[2h]間の導通状態を制御し、
    前記電流検出回路[h]は、前記入力端子[h]を流れる電流を検出し、
    前記第2スイッチ回路は、前記第1配線と前記第4ノード間の導通状態、および前記第2配線と前記第4ノード間の導通状態を制御し、
    前記第3スイッチ回路は、前記第1配線と前記第1ピン[2h]間の導通状態、および前記第2配線と第1ピン[2h-1]間の導通状態を制御することを特徴とするIC。
  7. 請求項6において、
    前記電流検出回路[h]は電流電圧変換回路[h]、サンプルホールド回路[h]、およびアナログデジタル変換回路[h]を有し、
    前記電流電圧変換回路[h]は増幅回路[h]、第2容量素子[h]、および第3スイッチ[h]を有し、
    前記増幅回路[h]は反転入力端子[h]、第1非反転入力端子[h]、第2非反転入力端子[h]、および出力端子[h]を有し、
    前記第2容量素子[h]の第1端子および第2端子は、前記反転入力端子[h]および前記出力端子[h]にそれぞれ電気的に接続され、
    前記第3スイッチ[h]は、前記反転入力端子[h]と前記出力端子[h]間の導通状態を制御し、
    前記反転入力端子[h]は前記入力端子[h]に電気的に接続され、
    前記増幅回路[h]は、前記第1非反転入力端子[h]の電圧および前記第2非反転入力端子[h]の電圧の平均電圧と、前記反転入力端子[h]の電圧との差分を増幅し、
    前記サンプルホールド回路[h]は、前記出力端子[h]の電圧を保持し、
    前記アナログデジタル変換回路[h]は、前記サンプルホールド回路[h]が保持する電圧をデジタルデータに変換することを特徴とするIC。
  8. 請求項7において、
    前記第3スイッチ[h]は第1信号対により制御され、
    前記電流生成回路は遅延回路を有し、
    前記遅延回路は、前記第1信号対を遅延して第2信号対を生成し、前記第2信号対を遅延して第3信号対を生成し、
    前記第1スイッチは前記第2信号対により制御され、
    前記第2スイッチは前記第3信号対により制御されることを特徴とするIC。
  9. 請求項7または8において、
    前記第1スイッチ回路は、
    前記第1ピン[2h-1]と前記反転入力端子[h]間を導通し、前記第1ピン[2h-1]と前記第1非反転入力端子[h]間を導通し、かつ前記第1ピン[2h]と前記第2非反転入力端子[h]間を導通する機能と、
    前記第1ピン[2h]と前記反転入力端子[h]間を導通し、前記第1ピン[2h-1]と前記第1非反転入力端子[h]間を導通し、かつ前記第1ピン[2h+1]と前記第2非反転入力端子[h]間を導通する機能とを有することを特徴とするIC。
  10. 請求項7または8において、
    前記第1スイッチ回路は、
    前記第1ピン[2h-1]に前記反転入力端子[h]を導通し、前記第1ピン[2h-1]に前記第1非反転入力端子[h]および前記第2非反転入力端子[h]を導通する機能と、
    前記第1ピン[2h-1]に前記反転入力端子[h]を導通し、前記第1ピン[2h]に前記第1非反転入力端子[h]および前記第2非反転入力端子[h]を導通する機能と、
    前記第1ピン[2h]に前記反転入力端子[h]を導通し、前記第1ピン[2h-1]に前記第1非反転入力端子[h]および前記第2非反転入力端子[h]を導通する機能と、
    前記第1ピン[2h]に前記反転入力端子[h]を導通し、前記第1ピン[2h+1]に前記第1非反転入力端子[h]および前記第2非反転入力端子[h]を導通する機能とを有することを特徴とするIC。
  11. 請求項7乃至9の何れか1項において、
    前記第1スイッチ回路は、
    前記第1ピン[2h-1]に前記反転入力端子[h]を導通し、前記第2ピンに前記第1非反転入力端子[h]および前記第2非反転入力端子[h]を導通する機能と、
    前記第1ピン[2h]に前記反転入力端子[h]を導通し、前記第2ピンに前記第1非反転入力端子[h]および前記第2非反転入力端子[h]を導通する機能とを有することを特徴とするIC。
  12. 請求項6乃至11の何れか1項に記載のICに、ドライバ部が設けられているドライバICであって、
    前記ドライバ部は外部から入力される画像信号を処理し、階調信号を生成することを特徴とするドライバIC。
  13. 請求項12に記載のドライバIC、および画素アレイを有する表示システムであって、
    前記ドライバICは前記画素アレイに前記階調信号を送信することを特徴とする表示システム。
  14. 表示部を有する電子機器であり、
    前記表示部は、請求項12に記載のドライバIC、および画素アレイを有し、
    前記ドライバICは前記画素アレイに前記階調信号を入力することを特徴とする電子機器。
JP2018039857A 2017-03-07 2018-03-06 Ic、ドライバic、表示システムおよび電子機器 Active JP7083666B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017043102 2017-03-07
JP2017043102 2017-03-07

Publications (2)

Publication Number Publication Date
JP2018146585A JP2018146585A (ja) 2018-09-20
JP7083666B2 true JP7083666B2 (ja) 2022-06-13

Family

ID=63448178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018039857A Active JP7083666B2 (ja) 2017-03-07 2018-03-06 Ic、ドライバic、表示システムおよび電子機器

Country Status (6)

Country Link
US (1) US11011087B2 (ja)
JP (1) JP7083666B2 (ja)
KR (1) KR20190125311A (ja)
CN (1) CN110383098B (ja)
DE (1) DE112018001207T5 (ja)
WO (1) WO2018163021A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102530011B1 (ko) * 2018-10-11 2023-05-10 삼성디스플레이 주식회사 비교기 및 이를 포함하는 수신기
KR20200063720A (ko) * 2018-11-28 2020-06-05 엘지디스플레이 주식회사 데이터 구동부와 그를 포함한 유기발광 표시장치
JP7374586B2 (ja) * 2019-01-17 2023-11-07 ブリルニクス シンガポール プライベート リミテッド 固体撮像装置、固体撮像装置の駆動方法、および電子機器
DE102019106527A1 (de) * 2019-03-14 2020-09-17 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Verfahren zum betrieb einer optischen anzeigevorrichtung und optische anzeigevorrichtung
US11341878B2 (en) * 2019-03-21 2022-05-24 Samsung Display Co., Ltd. Display panel and method of testing display panel
DE102019122474B9 (de) * 2019-08-21 2023-03-02 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Ansteuerverfahren und anzeigevorrichtung
CN110853562A (zh) * 2019-11-14 2020-02-28 武汉华星光电技术有限公司 一种显示面板及显示装置
KR20210076626A (ko) * 2019-12-16 2021-06-24 엘지디스플레이 주식회사 표시장치와 그 구동 방법
KR20220084473A (ko) * 2020-12-14 2022-06-21 엘지디스플레이 주식회사 데이터 구동 회로 및 디스플레이 장치
JP2022189388A (ja) * 2021-06-11 2022-12-22 株式会社アドバンテスト 試験装置
CN113572172B (zh) * 2021-09-26 2022-01-25 广东电网有限责任公司东莞供电局 一种电网调度管理***及管理控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003035733A (ja) 2001-07-25 2003-02-07 Shibasoku:Kk 微小容量測定装置
US20130154672A1 (en) 2011-12-16 2013-06-20 Lear Corporation Method and System for Battery Current Measurement Calibration
US20150379909A1 (en) 2014-06-27 2015-12-31 Lg Display Co., Ltd. Organic light emitting display for sensing electrical characteristics of driving element
JP2016072975A (ja) 2014-09-26 2016-05-09 株式会社半導体エネルギー研究所 半導体装置および表示装置

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2431683A2 (fr) * 1978-06-26 1980-02-15 Sfena Capteur asservi a sorties incrementales
JPH07131347A (ja) 1993-11-04 1995-05-19 Mitsubishi Electric Corp A/d変換器テスト回路及びd/a変換器テスト回路
TW408277B (en) * 1996-11-15 2000-10-11 Alps Electric Co Ltd Small current detector circuit and locator device using the same
DE69739284D1 (de) 1997-11-05 2009-04-16 St Microelectronics Srl Temperaturkorrelierter Spannungsgeneratorschaltkreis und zugehöriger Spannungsregler für die Speisung einer Speicherzelle mit einer einzigen Stromversorgung, insbesondere vom FLASH-Typ
US6476630B1 (en) * 2000-04-13 2002-11-05 Formfactor, Inc. Method for testing signal paths between an integrated circuit wafer and a wafer tester
JP3892650B2 (ja) 2000-07-25 2007-03-14 株式会社日立製作所 液晶表示装置
JP2003195813A (ja) 2001-09-07 2003-07-09 Semiconductor Energy Lab Co Ltd 発光装置
TWI221268B (en) 2001-09-07 2004-09-21 Semiconductor Energy Lab Light emitting device and method of driving the same
US20060072047A1 (en) 2002-12-06 2006-04-06 Kanetaka Sekiguchi Liquid crystal display
WO2004107078A1 (ja) 2003-05-14 2004-12-09 Semiconductor Energy Laboratory Co., Ltd. 半導体装置
EP1793367A3 (en) 2005-12-02 2009-08-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP4915841B2 (ja) 2006-04-20 2012-04-11 ルネサスエレクトロニクス株式会社 階調電圧発生回路、ドライバic、及び液晶表示装置
US8199074B2 (en) 2006-08-11 2012-06-12 Chimei Innolux Corporation System and method for reducing mura defects
JP2008145269A (ja) 2006-12-11 2008-06-26 Denso Corp センサ装置
JP4375579B2 (ja) 2007-02-08 2009-12-02 株式会社デンソー 容量式物理量検出装置
EP1983569A1 (en) 2007-04-19 2008-10-22 Austriamicrosystems AG Semicondutor body and method for voltage regulation
JP2009198691A (ja) 2008-02-20 2009-09-03 Eastman Kodak Co 有機el表示モジュールおよびその製造方法
JP2009223070A (ja) 2008-03-18 2009-10-01 Eastman Kodak Co ドライバicおよび有機elパネル
EP2136354B1 (en) 2008-06-09 2017-03-22 Semiconductor Energy Laboratory Co., Ltd. Display device, liquid crystal display device and electronic device including the same
JP2010282539A (ja) 2009-06-08 2010-12-16 Sanyo Electric Co Ltd 静電容量型タッチセンサ用の信号処理回路
US7884662B1 (en) * 2009-09-17 2011-02-08 Himax Technologies Limited Multi-channel integrator
JP5411670B2 (ja) * 2009-11-25 2014-02-12 セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー 静電容量型タッチパネルの信号処理回路
JP5584103B2 (ja) 2009-12-04 2014-09-03 株式会社半導体エネルギー研究所 半導体装置
JP5295090B2 (ja) * 2009-12-18 2013-09-18 株式会社ワコム 指示体検出装置
US8373729B2 (en) * 2010-03-22 2013-02-12 Apple Inc. Kickback compensation techniques
JP4927216B1 (ja) 2010-11-12 2012-05-09 シャープ株式会社 線形素子列値推定方法、静電容量検出方法、集積回路、タッチセンサシステム、及び電子機器
JP4955116B1 (ja) 2010-12-28 2012-06-20 シャープ株式会社 タッチパネルシステムおよび電子機器
US8482266B2 (en) 2011-01-25 2013-07-09 Freescale Semiconductor, Inc. Voltage regulation circuitry and related operating methods
TWI439900B (zh) * 2011-05-12 2014-06-01 Univ Nat Chiao Tung 一種主動式觸控感測電路裝置
WO2012176637A1 (en) 2011-06-22 2012-12-27 Sharp Kabushiki Kaisha Touch panel system and electronic device
JP5329681B2 (ja) 2012-01-06 2013-10-30 シャープ株式会社 タッチパネルシステムおよび電子機器
TWI499957B (zh) 2011-06-22 2015-09-11 Sharp Kk 觸摸面板系統及電子裝置
JP5539269B2 (ja) 2011-06-27 2014-07-02 シャープ株式会社 静電容量値分布検出方法、静電容量値分布検出回路、タッチセンサシステム、及び情報入出力機器
EP2724214B1 (en) 2011-06-22 2018-09-19 Sharp Kabushiki Kaisha Touch panel system and electronic device
JP5384598B2 (ja) 2011-09-09 2014-01-08 シャープ株式会社 静電容量型タッチセンサパネル、及びこれを用いた静電容量型タッチセンサシステム、情報入出力装置
JP5350437B2 (ja) 2011-06-27 2013-11-27 シャープ株式会社 タッチセンサシステム
TWI518565B (zh) 2011-06-22 2016-01-21 夏普股份有限公司 觸控面板系統及電子機器
US9830026B2 (en) 2011-06-29 2017-11-28 Sharp Kabushiki Kaisha Touch sensor system and electronic device
JP5998458B2 (ja) 2011-11-15 2016-09-28 セイコーエプソン株式会社 画素回路、電気光学装置、および電子機器
KR102025722B1 (ko) 2012-05-02 2019-09-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 온도 센서 회로, 및 온도 센서 회로를 사용한 반도체 장치
JP6045891B2 (ja) * 2012-11-29 2016-12-14 シナプティクス・ジャパン合同会社 半導体装置及び電子機器
JP6027903B2 (ja) 2013-01-30 2016-11-16 シナプティクス・ジャパン合同会社 半導体装置
US9041453B2 (en) 2013-04-04 2015-05-26 Semiconductor Energy Laboratory Co., Ltd. Pulse generation circuit and semiconductor device
KR102187047B1 (ko) 2013-07-10 2020-12-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치, 구동 회로, 및 표시 장치
US10073555B2 (en) * 2013-09-03 2018-09-11 Nuvoton Technology Corporation Sensing device
DE112014006046T5 (de) 2013-12-27 2016-09-15 Semiconductor Energy Laboratory Co., Ltd. Licht emittierende Vorrichtung
TWI655442B (zh) 2014-05-02 2019-04-01 日商半導體能源研究所股份有限公司 輸入/輸出裝置
TWI699739B (zh) 2014-09-05 2020-07-21 日商半導體能源研究所股份有限公司 半導體裝置、驅動器ic、顯示裝置及電子裝置
JP2016057616A (ja) 2014-09-05 2016-04-21 株式会社半導体エネルギー研究所 表示パネル、入出力装置、情報処理装置
JP6742808B2 (ja) 2015-05-29 2020-08-19 株式会社半導体エネルギー研究所 表示装置及び電子機器
JP6500690B2 (ja) 2015-08-11 2019-04-17 富士電機株式会社 半導体物理量センサ装置
US10545612B2 (en) 2015-12-11 2020-01-28 Semiconductor Energy Laboratory Co., Ltd. Signal processing circuit, signal processing IC, and semiconductor device
US10957237B2 (en) 2015-12-28 2021-03-23 Semiconductor Energy Laboratory Co., Ltd. Circuit, semiconductor device, display device, electronic device, and driving method of circuit
US9984624B2 (en) 2015-12-28 2018-05-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, driver IC, and electronic device
CN205793589U (zh) * 2016-05-23 2016-12-07 京东方科技集团股份有限公司 一种静电保护电路、显示面板及显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003035733A (ja) 2001-07-25 2003-02-07 Shibasoku:Kk 微小容量測定装置
US20130154672A1 (en) 2011-12-16 2013-06-20 Lear Corporation Method and System for Battery Current Measurement Calibration
US20150379909A1 (en) 2014-06-27 2015-12-31 Lg Display Co., Ltd. Organic light emitting display for sensing electrical characteristics of driving element
JP2016072975A (ja) 2014-09-26 2016-05-09 株式会社半導体エネルギー研究所 半導体装置および表示装置

Also Published As

Publication number Publication date
WO2018163021A1 (en) 2018-09-13
US20200013320A1 (en) 2020-01-09
US11011087B2 (en) 2021-05-18
CN110383098A (zh) 2019-10-25
CN110383098B (zh) 2022-06-10
JP2018146585A (ja) 2018-09-20
KR20190125311A (ko) 2019-11-06
DE112018001207T5 (de) 2019-11-21

Similar Documents

Publication Publication Date Title
JP7083666B2 (ja) Ic、ドライバic、表示システムおよび電子機器
US10714004B2 (en) Semiconductor device, driver IC, and electronic device
US10360827B2 (en) Systems and methods for indirect threshold voltage sensing in an electronic display
JP4263153B2 (ja) 表示装置、表示装置の駆動回路およびその駆動回路用半導体デバイス
US9727163B2 (en) Touch detection device, display device with touch detection function, and electronic apparatus
US20130063404A1 (en) Driver Circuitry for Displays
TW201329472A (zh) 線路與解多工器之缺陷檢測方法、缺陷檢測裝置、以及包含該缺陷檢測裝置之顯示面板
US11783739B2 (en) On-chip testing architecture for display system
KR20170076952A (ko) 에러 픽셀 검출용 유기발광 표시장치와 그 구동방법
US11727838B2 (en) Display driver and display device
US8698089B2 (en) Photo detecting pixels and X-ray detector including the same
KR102087186B1 (ko) 증폭기 오프셋 보상 기능을 갖는 소스 구동 회로 및 이를 포함하는 디스플레이 장치
US11645957B1 (en) Defective display source driver screening and repair
CN115148133A (zh) 源极驱动器以及显示装置
US11657742B1 (en) Circuitry for screening defective portion of display chip
CN110534046B (zh) 阵列基板、显示设备、数据补偿方法
JP2004061805A (ja) 液晶駆動回路
JP2012078379A (ja) 表示装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220601

R150 Certificate of patent or registration of utility model

Ref document number: 7083666

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150