JP7067233B2 - 噴射制御装置 - Google Patents

噴射制御装置 Download PDF

Info

Publication number
JP7067233B2
JP7067233B2 JP2018081374A JP2018081374A JP7067233B2 JP 7067233 B2 JP7067233 B2 JP 7067233B2 JP 2018081374 A JP2018081374 A JP 2018081374A JP 2018081374 A JP2018081374 A JP 2018081374A JP 7067233 B2 JP7067233 B2 JP 7067233B2
Authority
JP
Japan
Prior art keywords
switch
upstream
solenoid
voltage
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018081374A
Other languages
English (en)
Other versions
JP2019190307A (ja
Inventor
雅司 稲葉
昇 長瀬
太一 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2018081374A priority Critical patent/JP7067233B2/ja
Priority to US16/382,388 priority patent/US10837392B2/en
Publication of JP2019190307A publication Critical patent/JP2019190307A/ja
Application granted granted Critical
Publication of JP7067233B2 publication Critical patent/JP7067233B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/36Controlling fuel injection of the low pressure type with means for controlling distribution
    • F02D41/365Controlling fuel injection of the low pressure type with means for controlling distribution with means for controlling timing and distribution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/023Valves; Pressure or flow regulators in the fuel supply or return system
    • F02M21/0242Shut-off valves; Check valves; Safety valves; Pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2003Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2003Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening
    • F02D2041/2013Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening by using a boost voltage source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2024Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit the control switching a load after time-on and time-off pulses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2068Output circuits, e.g. for controlling currents in command coils characterised by the circuit design or special circuit elements
    • F02D2041/2075Type of transistors or particular use thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • F02D2041/281Interface circuits between sensors and control unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

本発明は、内燃機関に燃料を噴射する噴射弁が有するソレノイドの駆動を制御する噴射制御装置に関する。
例えば特許文献1に開示されるような内燃機関の燃料噴射を制御する噴射制御装置は、噴射弁が備えるソレノイドの駆動を制御する機能を有している。このような噴射制御装置は、設定された駆動期間の開始時、ソレノイドに対してバッテリ電圧を昇圧して得られる昇圧電圧を印加することによりピーク電流を供給する。このようなピーク電流制御により、噴射弁が速やかに開弁される。その後、噴射制御装置は、駆動期間が終了するまで、ソレノイドに対してバッテリ電圧を印加することによりピーク電流よりも低い一定の電流を供給する。このような定電流制御により、噴射弁の開弁状態が保持される。
このような噴射制御装置は、バッテリ電圧が供給される直流電源線からソレノイドへと至る給電経路のうち上流側に設けられた第1上流側スイッチと、昇圧電圧が供給される昇圧電源線からソレノイドへと至る給電経路のうち上流側に設けられた第2上流側スイッチとを備えている。なお、第1上流側スイッチおよび第2上流側スイッチとしては、MOSトランジスタが用いられることが多い。このような構成によれば、第1上流側スイッチがオンされることによりソレノイドにバッテリ電圧が印加され、第2上流側スイッチがオンされることによりソレノイドに昇圧電圧が印加される。
特開2016-160920号公報
昇圧電圧は、バッテリ電圧を昇圧して得られるものであることから、その電圧値は、例えば65V程度であり、バッテリ電圧の電圧値(例えば12V)に比べて高い。そのため、上記構成において、ソレノイドに昇圧電圧が印加される際、昇圧電源線からオン状態の第2上流側スイッチおよび第1上流側スイッチのボディダイオードを介して直流電源線へと逆流が生じるおそれがある。
そこで、従来の噴射制御装置では、ソレノイドの上流側端子と第1上流側スイッチとの間に逆流防止用ダイオードが設けられており、これにより上記逆流の発生が防止されるようになっている。ただし、この場合、逆流防止用ダイオードは、直流電源線からソレノイドへと至る給電経路に順方向に介在して設けられている。そのため、従来の噴射制御装置では、ソレノイドにバッテリ電圧が印加される際、逆流防止用ダイオードに順方向電流が流れることから、逆流防止用ダイオードにより熱損失が生じる。この熱損失は、逆流防止用ダイオードの順方向電圧に応じた比較的大きなものとなるため、噴射制御装置の設計上において問題となる可能性がある。
本発明は上記事情に鑑みてなされたものであり、その目的は、熱損失の低減を図ることができる噴射制御装置を提供することにある。
請求項1に記載の噴射制御装置は、内燃機関に燃料を噴射する噴射弁が有するソレノイド(2、3)の駆動を制御するものであり、第1上流側スイッチ(Q1)、第2上流側スイッチ(Q3)、下流側スイッチ(Q4、Q5)、逆流防止用ダイオード(D2)、短絡スイッチ(Q2)および駆動制御部(10、44)を備える。第1上流側スイッチは、直流電圧が供給される直流電源線(L1)からソレノイドへと至る給電経路のうち上流側に設けられる。第2上流側スイッチは、直流電圧を昇圧して得られる昇圧電圧が供給される昇圧電源線(L2)からソレノイドへと至る給電経路のうち上流側に設けられる。下流側スイッチは、2つの給電経路の下流側に共通に設けられる。
逆流防止用ダイオードは、ソレノイドの上流側端子と第1上流側スイッチとの間に第1上流側スイッチ側をアノードとして設けられる。短絡スイッチは、ソレノイドの上流側端子と第1上流側スイッチとの間に逆流防止用ダイオードと並列に設けられる。駆動制御部は、第1上流側スイッチ、第2上流側スイッチ、下流側スイッチおよび短絡スイッチのオンとオフを制御するものであり、下流側スイッチをオンするとともに第1上流側スイッチおよび第2上流側スイッチのうち一方をオンすることによりソレノイドを駆動する。請求項1に記載の噴射制御装置は、さらに、ソレノイドに印加される印加電圧を検出する印加電圧検出部(7)を備え、駆動制御部(10)は、印加電圧検出部により検出される印加電圧が直流電圧より高い期間には、短絡スイッチがオフするように制御する。また、請求項2に記載の噴射制御装置では、第1上流側スイッチおよび短絡スイッチは、いずれもNチャネル型のMOSトランジスタにより構成されており、駆動制御部は、第1上流側スイッチをオン駆動するためのオン駆動電圧および短絡スイッチをオン駆動するためのオン駆動電圧を、共通のブートストラップ回路(8)を用いて生成する。
上記構成では、第1上流側スイッチおよび下流側スイッチがオンされるとソレノイドに直流電圧が印加され、第2上流側スイッチおよび下流側スイッチがオンされるとソレノイドに昇圧電圧が印加される。また、上記構成では、短絡スイッチがオフされると逆流防止用ダイオードの両端が短絡されていない状態となり、短絡スイッチがオンされると逆流防止用ダイオードの両端が短絡された状態となる。
そこで、上記構成において、ソレノイドに昇圧電圧が印加される際、短絡スイッチがオフされるようにすれば、直流電源線からソレノイドへと至る給電経路に順方向に逆流防止用ダイオードが介在した状態となり、昇圧電源線から直流電源線への逆流が防止される。また、上記構成において、直流電圧が印加される際、短絡スイッチがオンされるようにすれば、直流電源線からオンされた短絡スイッチを介してソレノイドへと直流電圧が印加されるため、逆流防止用ダイオードに順方向電流が流れることがない。そのため、上記構成によれば、直流電圧が印加される際、逆流防止用ダイオードによる熱損失が生じることがない。したがって、上記構成によれば、従来の構成に比べ、熱損失の低減を図ることができるという優れた効果が得られる。
第1実施形態に係る噴射制御装置の構成を模式的に示す図 第1実施形態に係るソレノイド電流、ソレノイドへの印加電圧および各トランジスタの駆動状態を模式的に示すタイミングチャート 第2実施形態に係るソレノイド電流、ソレノイドへの印加電圧および各トランジスタの駆動状態を模式的に示すタイミングチャート 第3実施形態に係るソレノイド電流、ソレノイドへの印加電圧および各トランジスタの駆動状態を模式的に示すタイミングチャート 第4実施形態に係る噴射制御装置の構成を模式的に示す図 第4実施形態に係るソレノイド電流、ソレノイドへの印加電圧および各トランジスタの駆動状態を模式的に示すタイミングチャート
以下、本発明の複数の実施形態について図面を参照して説明する。なお、各実施形態において実質的に同一の構成には同一の符号を付して説明を省略する。
(第1実施形態)
以下、第1実施形態について図1および図2を参照して説明する。
図1に示す噴射制御装置1は、車両に搭載される複数の電子制御装置、つまり複数のECUのうちの1つである。噴射制御装置1は、車両に搭載された内燃機関に相当するエンジンの燃料噴射を制御するもので、エンジンECUに相当する。エンジンECUは、車両の様々な運転状態における各種センサ信号に基づいて各種アクチュエータを統合的に制御し、最適なエンジン状態での動作を実現するものである。
噴射制御装置1は、エンジンの気筒内に高圧に圧縮された燃料を噴射供給するインジェクタの駆動を制御する。この場合、インジェクタは、ソレノイド式電磁弁を備えている。なお、以下では、ソレノイド式電磁弁のことをソレノイドと呼ぶこととする。噴射制御装置1は、インジェクタが有するソレノイド2、3への通電電流を制御して電磁弁を開閉駆動する。
噴射制御装置1は、ソレノイド2、3の駆動を制御する機能を有している。なお、図1では、2つのソレノイド2、3だけを図示しているが、実際には、エンジンの気筒数に応じた数のソレノイドが存在しており、噴射制御装置1には、それら複数のソレノイドを駆動するための構成が設けられている。
噴射制御装置1には、図示しない車載バッテリから出力されるバッテリ電圧VBが直流電源線L1を介して供給されている。なお、バッテリ電圧VBは直流電圧に相当する。噴射制御装置1は、ソレノイド2、3を接続するための端子P1~P3を備えている。端子P1には、ソレノイド2、3の各上流側端子が接続されている。端子P2には、ソレノイド2の下流側端子が接続されている。端子P3には、ソレノイド3の下流側端子が接続されている。
この場合、噴射制御装置1は、設定された駆動期間の開始時、ソレノイド2、3に対してピーク電流を供給するピーク電流制御を行い、電磁弁を速やかに開弁させる。その後、噴射制御装置1は、駆動期間が終了するまでソレノイド2、3に対してピーク電流よりも低い一定の電流を供給する定電流制御を行い、電磁弁の開弁状態を保持する。
噴射制御装置1は、駆動回路4および制御IC5を備えている。駆動回路4は、トランジスタQ1~Q5、ダイオードD1~D5、抵抗R1~R4、コンデンサC1、C2などを備えている。トランジスタQ1~Q5は、Nチャネル型のMOSトランジスタであり、いずれもドレイン・ソース間にソース側をアノードとして接続されたボディダイオードを備えている。なお、図1では、トランジスタQ1、Q2のボディダイオードであるダイオードD1、D2だけを示し、他のボディダイオードの図示は省略している。
トランジスタQ1のドレインは、バッテリ電圧VBが供給される直流電源線L1に接続され、そのソースはダイオードD2を順方向に介して端子P1に接続されている。トランジスタQ1は、直流電源線L1からソレノイド2、3へと至る給電経路のうち上流側に設けられるものであり、第1上流側スイッチに相当する。
トランジスタQ3のドレインは、バッテリ電圧VBを昇圧して得られる昇圧電圧Vboostが供給される昇圧電源線L2に接続され、そのソースは端子P1に接続されている。トランジスタQ3は、昇圧電源線L2からソレノイド2、3へと至る給電経路のうち上流側に設けられる第2上流側スイッチに相当する。昇圧電圧Vboostは、ソレノイド2、3に前述したピーク電流を流すためのものであり、図示しない昇圧回路により生成される。その昇圧回路は、例えば昇圧型のスイッチング電源回路として構成されており、バッテリ電圧VBを昇圧することにより昇圧電圧Vboostを生成する。
トランジスタQ2のソースは、トランジスタQ1のソースに接続され、そのドレインは端子P1に接続されている。トランジスタQ2は、ソレノイド2、3の上流側端子とトランジスタQ1との間にダイオードD2と並列に設けられた短絡スイッチに相当する。ダイオードD2は、ソレノイド2、3に昇圧電圧Vboostが印加される際、昇圧電源線L2から直流電源線L1へと流れる逆流の発生を防止するために設けられている。したがって、ダイオードD2は、ソレノイド2、3の上流側端子とトランジスタQ1との間に接続された逆流防止用ダイオードに相当する。
ダイオードD3のカソードは端子P1に接続され、そのアノードは回路の基準電位となるグランド電位(0V)が与えられるグランドに接続されている。ダイオードD3は、トランジスタQ1、Q3の双方がオフされてソレノイド2、3への電流供給が遮断された際に還流電流を流すために設けられている。したがって、ダイオードD3は、ソレノイド2、3の上流側端子とグランドとの間に接続された還流用ダイオードに相当する。
トランジスタQ4のドレインは端子P2に接続され、そのソースは抵抗R1を介してグランドに接続されている。トランジスタQ5のドレインは端子P3に接続され、そのソースは抵抗R2を介してグランドに接続されている。トランジスタQ4、Q5は、上記各給電経路のうち下流側に共通に設けられる下流側スイッチに相当する。トランジスタQ1~Q5の各ゲートには、制御IC5から出力される駆動信号がそれぞれ与えられており、それによりトランジスタQ1~Q5のオンとオフが制御される。つまり、この場合、トランジスタQ1~Q5は、それぞれ独立した駆動信号により駆動される。
抵抗R1、R2は、ソレノイド2、3に流れる電流を検出するためのシャント抵抗に相当する。抵抗R1、R2の各端子電圧は、制御IC5に入力されている。制御IC5が備える電流検出部6は、例えば増幅回路などを備えた構成となっている。電流検出部6は、抵抗R1の端子電圧を増幅した電圧に基づいてソレノイド2に流れる電流であるソレノイド電流を検出する。また、電流検出部6は、抵抗R2の端子電圧を増幅した電圧に基づいてソレノイド3に流れる電流であるソレノイド電流を検出する。
端子P1~P3の電圧は、制御IC5に入力されている。制御IC5が備える電圧検出部7は、例えば分圧回路などを備えた構成となっている。電圧検出部7は、端子P1の電圧を分圧した電圧に基づいてソレノイド2、3の上流側端子の電圧を検出する。また、電圧検出部7は、端子P2、P3の各電圧を分圧した電圧に基づいてソレノイド2、3の各下流側端子の電圧を検出する。さらに、電圧検出部7は、上述したように検出されるソレノイド2、3の上流側端子の電圧および下流側端子の電圧から、ソレノイド2、3に印加される印加電圧を検出する。したがって、電圧検出部7は、印加電圧検出部に相当する。
ダイオードD4のアノードは端子P2に接続され、そのカソードは昇圧電源線L2に接続されている。ダイオードD5のアノードは端子P3に接続され、そのカソードは昇圧電源線L2に接続されている。つまり、ダイオードD4、D5は、昇圧電源線L2とソレノイド2、3の下流側端子との間にソレノイド2、3の下流側端子側をアノードとして接続されている。ダイオードD4、D5は、トランジスタQ4、Q5がオフしている期間にソレノイド2、3に流れる電流を昇圧電源線L2、ひいては図示しない昇圧回路が有するコンデンサへと回生させるように作用するもので、回生用ダイオードに相当する。
コンデンサC1の一方の端子は制御IC5のブートストラップ用端子に接続され、その他方の端子は抵抗R3を介してトランジスタQ1、Q2の各ソースに接続されている。トランジスタQ1、Q2の各ソースは、制御IC5のブートストラップ用端子に接続されている。コンデンサC1および抵抗R3は、制御IC5に内蔵される図示しないダイオードとともに、トランジスタQ1、Q2をオン駆動するためのオン駆動電圧を生成するブートストラップ回路8を構成する。
コンデンサC2の一方の端子は制御IC5のブートストラップ用端子に接続され、その他方の端子は抵抗R4を介してトランジスタQ3のソースに接続されている。トランジスタQ3のソースは、制御IC5のブートストラップ用端子に接続されている。コンデンサC2および抵抗R4は、制御IC5に内蔵される図示しないダイオードとともに、トランジスタQ3をオン駆動するためのオン駆動電圧を生成するブートストラップ回路9を構成する。
制御IC5が備える駆動制御部10は、図示しない外部のマイコンから与えられる指令、電流検出部6による電流検出の結果、電圧検出部7による電圧検出の結果などに基づいて、駆動回路4の動作、つまりトランジスタQ1~Q5のオンとオフを制御する。具体的には、制御IC5は、上記マイコンから与えられる指令に基づいて複数のソレノイドの中から通電を行うものを選択し、設定された駆動期間、トランジスタQ4、Q5のうち選択されたソレノイドに対応して設けられたトランジスタをオン駆動する。
そして、制御IC5は、ピーク電流制御が行われる期間にトランジスタQ3をオン駆動し、定電流制御が行われる期間にトランジスタQ1をオンオフ駆動する。また、この際、制御IC5は、電流検出部6による電流検出の結果に基づいて、ソレノイド電流が所望する電流値となるようにトランジスタQ1、Q3の駆動を制御する。
このように、駆動制御部10は、トランジスタQ4をオンするとともに、トランジスタQ1およびQ3のうち一方をオンすることによりソレノイド2を駆動する。また、駆動制御部10は、トランジスタQ5をオンするとともに、トランジスタQ1およびQ3のうち一方をオンすることによりソレノイド3を駆動する。
トランジスタQ1、Q2は、いずれもNチャネル型のMOSトランジスタであるため、それらをオン駆動するためのオン駆動電圧としては、バッテリ電圧VBよりも高い電圧が必要となる。一方、駆動制御部10が設けられる制御IC5に供給される電源電圧は、例えば5Vであり、バッテリ電圧VBよりも低い電圧となっている。そこで、駆動制御部10は、前述したブートストラップ回路8を用いてトランジスタQ1、Q2のオン駆動電圧を生成するようになっている。このように、駆動制御部10は、トランジスタQ1、Q2のオン駆動電圧を共通のブートストラップ回路8を用いて生成する。
また、トランジスタQ3は、Nチャネル型のMOSトランジスタであるため、それをオン駆動するためのオン駆動電圧としては、昇圧電圧Vboostよりも高い電圧が必要となる。一方、駆動制御部10が設けられる制御IC5に供給される電源電圧は、例えば5Vであり、昇圧電圧よりも低い電圧となっている。そこで、駆動制御部10は、前述したブートストラップ回路9を用いてトランジスタQ3のオン駆動電圧を生成するようになっている。
次に、上記構成の作用について図2を参照して説明する。
ここでは、ソレノイド2を駆動する際における制御ロジックを説明するが、ソレノイド3を駆動する際における制御ロジックも同様のものとなる。駆動制御部10は、設定された駆動期間TQの開始時点である時刻t1において、トランジスタQ3およびトランジスタQ4をオン駆動する。これにより、ソレノイド2に対し昇圧電圧Vboostが印加され、ソレノイド電流が増加に転じる。
また、駆動制御部10は、時刻t1において、トランジスタQ2をオフ駆動する。これにより、ダイオードD2の両端が短絡されていない状態となる。そのため、ダイオードD2が直流電源線L1からソレノイド2へと至る給電経路に順方向に介在した状態となり、昇圧電源線L2から直流電源線L1への逆流が防止される。
駆動制御部10は、ソレノイド電流がピーク電流の目標値に応じて設定された遮断電流値に達した時刻t2において、トランジスタQ3をオフ駆動する。これにより、ソレノイド2への印加電圧が0Vになり、ソレノイド電流が減少に転じる。このように、トランジスタQ3がオン駆動されている期間はピーク電流制御が行われる放電期間に相当する。なお、放電期間中、ソレノイド2への印加電圧が漸減しているのは、前述した昇圧回路のコンデンサでの放電がその充電よりも大きくなっているためである。
駆動制御部10は、放電期間が経過した後、駆動期間TQが終了するまでの定電流期間にトランジスタQ1をオンオフ駆動することにより、電磁弁を開弁状態に保つための一定の電流をソレノイド2に供給する。具体的には、駆動制御部10は、放電期間が経過した後、ソレノイド電流が減少して定電流下限値に達した時点、例えば時刻t3の時点でトランジスタQ1をオン駆動する。これにより、ソレノイド2に対しバッテリ電圧VBが印加され、ソレノイド電流が再び増加に転じる。
駆動制御部10は、ソレノイド電流が増加して定電流上限値に達した時点、例えば時刻t4の時点でトランジスタQ1をオフ駆動する。これにより、ソレノイド2への印加電圧が0Vになり、ソレノイド電流が再び減少に転じる。このような制御が繰り返されることによりソレノイド2に対し一定の電流が供給される。
この場合、駆動制御部10は、放電期間が経過した後、ソレノイド電流が減少して最初に定電流下限値に達した時刻t3の時点でトランジスタQ2をオン駆動する。これにより、ダイオードD2の両端が短絡された状態となる。そのため、定電流期間において、直流電源線L1からオンされたトランジスタQ1およびQ2を介してソレノイド2へとバッテリ電圧VBが印加されるため、ダイオードD2に順方向電流が流れることがない。
駆動制御部10は、駆動期間TQの終了時点である時刻t5において、トランジスタQ1~Q4をオフ駆動する。このように、トランジスタQ2は、時刻t3においてオフからオンに転じるとともに、時刻t5においてオフからオンに転じる。つまり、トランジスタQ2がオンされてダイオードD2の両端が短絡される期間Tsは、下記(1)式に示すように、定電流期間Tcに等しい期間となる。
Ts=Tc …(1)
以上説明した本実施形態によれば、次のような効果が得られる。
本実施形態の噴射制御装置1では、トランジスタQ1およびトランジスタQ4またはQ5がオンされるとソレノイド2または3にバッテリ電圧VBが印加され、トランジスタQ3およびトランジスタQ4またはQ5がオンされるとソレノイド2または3に昇圧電圧Vboostが印加される。また、噴射制御装置1では、トランジスタQ2がオフされるとダイオードD2の両端が短絡されていない状態となり、トランジスタQ2がオンされるとダイオードD2の両端が短絡された状態となる。
そして、噴射制御装置1では、ソレノイド2、3に昇圧電圧Vboostが印加される際、トランジスタQ2がオフされるようになっている。このようにすれば、直流電源線L1からソレノイド2、3へと至る給電経路に順方向に逆流防止用ダイオードが介在した状態となり、昇圧電源線L2から直流電源線L1への逆流が防止される。
また、噴射制御装置1では、バッテリ電圧VBが印加される際、トランジスタQ2がオンされるようになっている。このようにすれば、直流電源線L1からオンされたトランジスタQ2を介してソレノイド2、3へとバッテリ電圧VBが印加されるため、ダイオードD2に順方向電流が流れることがない。そのため、上記構成によれば、バッテリ電圧VBが印加される際、ダイオードD2による熱損失が生じることがない。なお、この場合、トランジスタQ2による熱損失が生じることになるが、MOSトランジスタであるトランジスタQ2による熱損失はダイオードD2による熱損失に比べて格段に小さいものとなる。
したがって、上記構成によれば、従来の構成に比べ、熱損失の低減を図ることができるという優れた効果が得られる。このような熱損失の増加は、ソレノイド2、3に供給される電流が大きくなるほど、一層顕在化する。したがって、エンジンの性能アップに伴いソレノイド2、3に流す電流が大電流化すればするほど、本実施形態により得られる熱損失の低減効果が一層有益なものとなる。
駆動制御部10は、トランジスタQ1およびトランジスタQ2について、それぞれ独立して制御するようになっている。このようにすれば、ダイオードD2の両端を短絡するタイミングの設定についての自由度が高まるため、逆流防止および熱損失低減の効果が確実に得られるように、上記タイミングを設定することが可能となる。
駆動制御部10は、トランジスタQ2がオンする期間およびトランジスタQ3がオンする期間が重複することがないように、それらトランジスタQ2、Q3のオンとオフを制御するようになっている。トランジスタQ3がオンしているときにトランジスタQ2がオンすると、昇圧電源線L2から直流電源線L1への逆流が生じてしまう。上述したようにトランジスタQ2、Q3のオンとオフを制御することにより、このような逆流の発生を確実に防止することができる。
噴射制御装置1は、トランジスタQ4、Q5がオフしている期間にソレノイド2、3に流れる電流を昇圧電源線L2へと回生させるためのダイオードD4、D5を備えている。そして、駆動制御部10は、トランジスタQ4、Q5がオフする期間には、トランジスタQ1、Q3がいずれもオフするように、それらトランジスタQ1、Q3のオンとオフを制御するようになっている。このようにすれば、ダイオードD4、D5による回生の作用を確実に得ることができる。
駆動制御部10は、トランジスタQ1をオン駆動するためのオン駆動電圧およびトランジスタQ2をオン駆動するためのオン駆動電圧を、共通のブートストラップ回路8を用いて生成するようになっている。このような構成によれば、トランジスタQ1、Q2の各オン駆動電圧をそれぞれ別々のブートストラップ回路を用いて生成する構成に比べ、回路素子を削減することができる。
(第2実施形態)
以下、第2実施形態について図3を参照して説明する。
第2実施形態では、ソレノイド2、3を駆動する際における制御ロジックの内容が第1実施形態と異なっている。なお、噴射制御装置1の構成は、第1実施形態と共通する。
本実施形態の制御ロジックでは、第1実施形態の制御ロジックに対し、トランジスタQ2がオンされるタイミングが異なっている。すなわち、本実施形態では、駆動制御部10は、ソレノイド電流が遮断電流値に達した時刻t2の時点において、トランジスタQ2をオン駆動する。
このように、本実施形態では、トランジスタQ2は、時刻t2においてオフからオンに転じるとともに、時刻t5においてオフからオンに転じる。つまり、トランジスタQ2がオンされてダイオードD2の両端が短絡される期間Tsは、下記(2)式に示すように、駆動期間TQから放電期間Tdを減算した期間となる。
Ts=TQ-Td …(2)
以上説明した本実施形態によっても、ソレノイド2、3に昇圧電圧Vboostが印加される際にトランジスタQ2がオフされるとともにバッテリ電圧VBが印加される際にトランジスタQ2がオンされるようになっているため、第1実施形態と同様、逆流防止の効果および熱損失低減の効果が得られる。
なお、本実施形態の制御ロジックは、次のように変形することが可能である。すなわち、駆動制御部10は、電圧検出部7により検出されるソレノイド2、3への印加電圧がバッテリ電圧VBより高い期間にトランジスタQ2がオフするように制御するようにしてもよい。このようにした場合でも、トランジスタQ2がオンされてダイオードD2の両端が短絡される期間Tsは、上記(2)式に示した期間と同様のものとなる。
したがって、このような変形例によっても、上述した実施形態と同様の効果が得られる。さらに、このような変形例によれば、ソレノイド2、3への印加電圧の検出値に基づいてトランジスタQ2を制御するため、ソレノイド電流の検出値に基づいてトランジスタQ2を制御するものに比べ、一層確実に、逆流を防止する効果を得ることができる。
(第3実施形態)
以下、第3実施形態について図4を参照して説明する。
第3実施形態では、ソレノイド2、3を駆動する際における制御ロジックの内容が第1実施形態と異なっている。なお、噴射制御装置1の構成は、第1実施形態と共通する。
本実施形態の制御ロジックでは、第1実施形態の制御ロジックに対し、トランジスタQ2のオンとオフの制御が異なっている。本実施形態では、駆動制御部10は、トランジスタQ1およびトランジスタQ2について、共通の制御を行うようになっている。すなわち、駆動制御部10は、放電期間が経過した後、ソレノイド電流が減少して定電流下限値に達した時点、例えば時刻t3の時点でトランジスタQ2をオン駆動する。駆動制御部10は、ソレノイド電流が増加して定電流上限値に達した時点、例えば時刻t4の時点でトランジスタQ2をオフ駆動する。
このように、本実施形態では、トランジスタQ2は、トランジスタQ1がオンする期間にオンするとともに、トランジスタQ1がオフする期間にオフする。つまり、トランジスタQ2がオンされてダイオードD2の両端が短絡される期間Tsは、下記(3)式に示すように、トランジスタQ1がオンされる期間Tq1と等しい期間となる。
Ts=Tq1 …(3)
以上説明した本実施形態によっても、ソレノイド2、3に昇圧電圧Vboostが印加される際にトランジスタQ2がオフされるとともにバッテリ電圧VBが印加される際にトランジスタQ2がオンされるようになっているため、第1実施形態と同様、逆流防止の効果および熱損失低減の効果が得られる。さらに、本実施形態によれば、トランジスタQ1およびQ2について共通の制御を行うようになっているため、噴射制御装置1における制御ロジックを簡素化することができる。
(第4実施形態)
以下、第4実施形態について図5を参照して説明する。
本実施形態の噴射制御装置41は、第1実施形態の噴射制御装置1に対し、駆動回路4および制御IC5に代えて駆動回路42および制御IC43を備えている点などが異なる。
駆動回路42および制御IC43は、駆動回路4および制御IC5に対し、トランジスタQ2の駆動に関する構成が異なる。この場合、トランジスタQ1およびQ2の各ゲートには、制御IC43から出力される共通の駆動信号が与えられており、それによりトランジスタQ1およびQ2のオンとオフが制御される。つまり、この場合、制御IC43が備える駆動制御部44は、トランジスタQ1およびQ2について、共通の駆動信号により、それらのオンとオフを制御するようになっている。
次に、上記構成の作用について図6を参照して説明する。
本実施形態の制御ロジックでは、第1実施形態の制御ロジックに対し、トランジスタQ2のオンとオフの制御が異なっている。前述した通り、本実施形態では、駆動制御部44は、トランジスタQ1およびトランジスタQ2について、共通の駆動信号により、それらのオンとオフを制御するようになっている。
すなわち、駆動制御部44は、放電期間が経過した後、ソレノイド電流が減少して定電流下限値に達した時点、例えば時刻t3の時点でトランジスタQ2をオン駆動する。駆動制御部44は、ソレノイド電流が増加して定電流上限値に達した時点、例えば時刻t4の時点でトランジスタQ2をオフ駆動する。
このように、本実施形態では、トランジスタQ2は、トランジスタQ1がオンする期間にオンするとともに、トランジスタQ1がオフする期間にオフする。つまり、トランジスタQ2がオンされてダイオードD2の両端が短絡される期間Tsは、第3実施形態と同様、上記(3)式に示したように、トランジスタQ1がオンされる期間Tq1と等しい期間となる。
以上説明した本実施形態によっても、ソレノイド2、3に昇圧電圧Vboostが印加される際にトランジスタQ2がオフされるとともにバッテリ電圧VBが印加される際にトランジスタQ2がオンされるようになっているため、第1実施形態と同様、逆流防止の効果および熱損失低減の効果が得られる。また、本実施形態によれば、トランジスタQ1およびQ2について共通の制御を行うようになっているため、第3実施形態と同様、噴射制御装置41における制御ロジックを簡素化することができる。
さらに、本実施形態によれば、次のような効果も得られる。すなわち、本実施形態の構成では、従来の構成に対して追加されるトランジスタQ2について、従来の構成にも設けられるトランジスタQ1を駆動するための駆動信号を共有して駆動するようになっている。また、本実施形態の構成では、従来の構成に対して追加されるトランジスタQ2のオン駆動電圧を、従来の構成にも設けられるトランジスタQ1のオン駆動電圧を生成するブートストラップ回路8を共有して生成するようになっている。したがって、本実施形態によれば、制御IC43として、トランジスタQ2が設けられない従来の構成において用いられていた既存のICを流用することができる。
(その他の実施形態)
なお、本発明は上記し且つ図面に記載した各実施形態に限定されるものではなく、その要旨を逸脱しない範囲で任意に変形、組み合わせ、あるいは拡張することができる。
上記各実施形態で示した数値などは例示であり、それに限定されるものではない。
本発明は、エンジンの燃料噴射を制御するエンジンECUに適用される噴射制御装置に限らず、内燃機関に燃料を噴射する噴射弁が有するソレノイドの駆動を制御する噴射制御装置全般に適用することができる。
トランジスタQ1~Q5としては、Nチャネル型のMOSトランジスタに限らずとよく、様々な種類の半導体スイッチング素子を用いることができる。
逆流防止用ダイオードとしては、トランジスタQ2のボディダイオードにより構成するものに限らずともよく、別途ダイオードを追加してもよい。
トランジスタQ1、Q2の各オン駆動電圧をそれぞれ別々のブートストラップ回路を用いて生成する構成としてもよい。
本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
1、41…噴射制御装置、2、3…ソレノイド、7…電圧検出部、8…ブートストラップ回路、10、44…駆動制御部、D2、D4、D5…ダイオード、L1…直流電源線、L2…昇圧電源線、Q1~Q5…トランジスタ。

Claims (7)

  1. 内燃機関に燃料を噴射する噴射弁が有するソレノイド(2、3)の駆動を制御する噴射制御装置であって、
    直流電圧が供給される直流電源線(L1)から前記ソレノイドへと至る給電経路のうち上流側に設けられる第1上流側スイッチ(Q1)と、
    前記直流電圧を昇圧して得られる昇圧電圧が供給される昇圧電源線(L2)から前記ソレノイドへと至る給電経路のうち上流側に設けられる第2上流側スイッチ(Q3)と、
    2つの前記給電経路の下流側に共通に設けられる下流側スイッチ(Q4、Q5)と、
    前記ソレノイドの上流側端子と前記第1上流側スイッチとの間に前記第1上流側スイッチ側をアノードとして設けられる逆流防止用ダイオード(D2)と、
    前記ソレノイドの上流側端子と前記第1上流側スイッチとの間に前記逆流防止用ダイオードと並列に設けられる短絡スイッチ(Q2)と、
    前記第1上流側スイッチ、前記第2上流側スイッチ、前記下流側スイッチおよび前記短絡スイッチのオンとオフを制御するものであり、前記下流側スイッチをオンするとともに前記第1上流側スイッチおよび前記第2上流側スイッチのうち一方をオンすることにより前記ソレノイドを駆動する駆動制御部(10、44)と、
    前記ソレノイドに印加される印加電圧を検出する印加電圧検出部(7)と、
    を備え
    前記駆動制御部(10)は、前記印加電圧検出部により検出される前記印加電圧が前記直流電圧より高い期間には、前記短絡スイッチがオフするように制御する噴射制御装置。
  2. 内燃機関に燃料を噴射する噴射弁が有するソレノイド(2、3)の駆動を制御する噴射制御装置であって、
    直流電圧が供給される直流電源線(L1)から前記ソレノイドへと至る給電経路のうち上流側に設けられる第1上流側スイッチ(Q1)と、
    前記直流電圧を昇圧して得られる昇圧電圧が供給される昇圧電源線(L2)から前記ソレノイドへと至る給電経路のうち上流側に設けられる第2上流側スイッチ(Q3)と、
    2つの前記給電経路の下流側に共通に設けられる下流側スイッチ(Q4、Q5)と、
    前記ソレノイドの上流側端子と前記第1上流側スイッチとの間に前記第1上流側スイッチ側をアノードとして設けられる逆流防止用ダイオード(D2)と、
    前記ソレノイドの上流側端子と前記第1上流側スイッチとの間に前記逆流防止用ダイオードと並列に設けられる短絡スイッチ(Q2)と、
    前記第1上流側スイッチ、前記第2上流側スイッチ、前記下流側スイッチおよび前記短絡スイッチのオンとオフを制御するものであり、前記下流側スイッチをオンするとともに前記第1上流側スイッチおよび前記第2上流側スイッチのうち一方をオンすることにより前記ソレノイドを駆動する駆動制御部(10、44)と、
    を備え
    前記第1上流側スイッチおよび前記短絡スイッチは、いずれもNチャネル型のMOSトランジスタにより構成されており、
    前記駆動制御部は、前記第1上流側スイッチをオン駆動するためのオン駆動電圧および前記短絡スイッチをオン駆動するためのオン駆動電圧を、共通のブートストラップ回路(8)を用いて生成する噴射制御装置。
  3. 前記駆動制御部(10)は、前記第1上流側スイッチおよび前記短絡スイッチについて、それぞれ独立して制御するようになっている請求項1または2に記載の噴射制御装置。
  4. 前記駆動制御部(10、44)は、前記第1上流側スイッチおよび前記短絡スイッチについて、共通の制御を行うようになっている請求項1または2に記載の噴射制御装置。
  5. 前記駆動制御部(44)は、前記第1上流側スイッチおよび前記短絡スイッチについて、共通の信号により、それらのオンとオフを制御する請求項に記載の噴射制御装置。
  6. 前記駆動制御部(10、44)は、前記短絡スイッチがオンする期間および前記第2上流側スイッチがオンする期間が重複しないように、それらスイッチのオンとオフを制御する請求項1からのいずれか一項に記載の噴射制御装置。
  7. さらに、前記昇圧電源線と前記ソレノイドの下流側端子との間に前記ソレノイドの下流側端子側をアノードとして接続された回生用ダイオード(D4、D5)を備え、
    前記駆動制御部(10、44)は、前記下流側スイッチがオフする期間には、前記第1上流側スイッチおよび前記第2上流側スイッチがいずれもオフするように、それらスイッチのオンとオフを制御する請求項1からのいずれか一項に記載の噴射制御装置。
JP2018081374A 2018-04-20 2018-04-20 噴射制御装置 Active JP7067233B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018081374A JP7067233B2 (ja) 2018-04-20 2018-04-20 噴射制御装置
US16/382,388 US10837392B2 (en) 2018-04-20 2019-04-12 Injection control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018081374A JP7067233B2 (ja) 2018-04-20 2018-04-20 噴射制御装置

Publications (2)

Publication Number Publication Date
JP2019190307A JP2019190307A (ja) 2019-10-31
JP7067233B2 true JP7067233B2 (ja) 2022-05-16

Family

ID=68237571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018081374A Active JP7067233B2 (ja) 2018-04-20 2018-04-20 噴射制御装置

Country Status (2)

Country Link
US (1) US10837392B2 (ja)
JP (1) JP7067233B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3094408B1 (fr) * 2019-03-26 2021-03-05 Continental Automotive Procédé de commande d’un injecteur de carburant haute pression
DE102020200682A1 (de) * 2020-01-22 2021-07-22 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Betreiben eines elektromagnetisch ansteuerbaren Tankventils, Computerprogramm und Steuergerät
DE102020200679A1 (de) * 2020-01-22 2021-07-22 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Öffnen einer Ventilanordnung für einen Treibstofftank

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016160920A (ja) 2015-03-05 2016-09-05 株式会社デンソー 燃料噴射制御装置
JP2017066960A (ja) 2015-09-30 2017-04-06 三菱電機株式会社 車載エンジン制御装置
DE102016225235A1 (de) 2015-12-17 2017-06-22 Robert Bosch Gmbh Verfahren zum Betreiben eines Magnetventils und Schaltungsanordnung
JP2017137771A (ja) 2016-02-01 2017-08-10 株式会社デンソー 燃料噴射制御装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3517490A1 (de) * 1985-05-15 1986-11-20 Robert Bosch Gmbh, 7000 Stuttgart Schutzeinrichtung fuer einen elektromagnetischen verbraucher
JP4450213B2 (ja) * 2004-11-12 2010-04-14 国産電機株式会社 燃料噴射装置用電源装置
US8121761B2 (en) * 2006-02-07 2012-02-21 Freescale Semiconductor, Inc. Acceleration sensor arrangement, safing arrangement for an activation system, activation system
JP2008019852A (ja) * 2006-06-14 2008-01-31 Denso Corp インジェクタ駆動装置及びインジェクタ駆動システム
JP2008005649A (ja) * 2006-06-23 2008-01-10 Denso Corp ピエゾアクチュエータの駆動装置
JP5373257B2 (ja) * 2006-08-04 2013-12-18 日立オートモティブシステムズ株式会社 エンジン用高圧ポンプ駆動回路
JP5055050B2 (ja) * 2006-10-10 2012-10-24 日立オートモティブシステムズ株式会社 内燃機関制御装置
JP4474423B2 (ja) * 2007-01-12 2010-06-02 日立オートモティブシステムズ株式会社 内燃機関制御装置
JP4871245B2 (ja) * 2007-10-26 2012-02-08 日立オートモティブシステムズ株式会社 内燃機関制御装置
JP4776651B2 (ja) * 2008-03-28 2011-09-21 日立オートモティブシステムズ株式会社 内燃機関制御装置
JP5300787B2 (ja) * 2010-05-31 2013-09-25 日立オートモティブシステムズ株式会社 内燃機関制御装置
JP5509112B2 (ja) * 2011-01-28 2014-06-04 本田技研工業株式会社 内燃機関の燃料噴射制御装置
JP5470294B2 (ja) * 2011-02-02 2014-04-16 日立オートモティブシステムズ株式会社 インジェクタ駆動回路
JP5742797B2 (ja) * 2012-07-18 2015-07-01 株式会社デンソー 燃料噴射制御装置
JP5975899B2 (ja) * 2013-02-08 2016-08-23 日立オートモティブシステムズ株式会社 燃料噴射装置の駆動装置
DE102013203130A1 (de) * 2013-02-26 2014-08-28 Robert Bosch Gmbh Verfahren zur Steuerung eines Einspritzvorgangs eines Magnetinjektors
JP6169404B2 (ja) * 2013-04-26 2017-07-26 日立オートモティブシステムズ株式会社 電磁弁の制御装置及びそれを用いた内燃機関の制御装置
JP6104302B2 (ja) * 2015-03-12 2017-03-29 三菱電機株式会社 車載エンジン制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016160920A (ja) 2015-03-05 2016-09-05 株式会社デンソー 燃料噴射制御装置
JP2017066960A (ja) 2015-09-30 2017-04-06 三菱電機株式会社 車載エンジン制御装置
DE102016225235A1 (de) 2015-12-17 2017-06-22 Robert Bosch Gmbh Verfahren zum Betreiben eines Magnetventils und Schaltungsanordnung
JP2017137771A (ja) 2016-02-01 2017-08-10 株式会社デンソー 燃料噴射制御装置

Also Published As

Publication number Publication date
US10837392B2 (en) 2020-11-17
JP2019190307A (ja) 2019-10-31
US20190323447A1 (en) 2019-10-24

Similar Documents

Publication Publication Date Title
JP6717176B2 (ja) 噴射制御装置
JP7067233B2 (ja) 噴射制御装置
JP4895623B2 (ja) 電力供給制御装置
JP7135809B2 (ja) 噴射制御装置
US20100059023A1 (en) Circuit Arrangement and Method for Operating an Inductive Load
JP2018096229A (ja) 噴射制御装置
US11466650B2 (en) Fuel injection valve driving device
JP2018031294A (ja) 電磁弁駆動装置
EP1669577B1 (en) Inductive load driver with overcurrent detection
JP6757887B2 (ja) 車載用非常電源装置
JP7135810B2 (ja) 噴射制御装置
WO2020080029A1 (ja) 電子制御装置
JP7251276B2 (ja) 駆動回路
US10957474B2 (en) Injection control device
JP4379384B2 (ja) 電気負荷の駆動装置
JP2020096125A (ja) ソレノイド駆動装置
JP4407468B2 (ja) ピエゾアクチュエータの駆動装置
JP4895624B2 (ja) 電力供給制御装置
JP2021099070A (ja) 噴射制御装置
US10961963B2 (en) Injection control device
JP6022909B2 (ja) 電磁負荷制御装置
JP2018100642A (ja) 噴射制御装置
JP2018091193A (ja) 燃料噴射制御装置
JP6809311B2 (ja) 制御装置
JP2018053889A (ja) 噴射制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220411

R151 Written notification of patent or utility model registration

Ref document number: 7067233

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151