JP6977599B2 - All-solid-state battery system - Google Patents

All-solid-state battery system Download PDF

Info

Publication number
JP6977599B2
JP6977599B2 JP2018023887A JP2018023887A JP6977599B2 JP 6977599 B2 JP6977599 B2 JP 6977599B2 JP 2018023887 A JP2018023887 A JP 2018023887A JP 2018023887 A JP2018023887 A JP 2018023887A JP 6977599 B2 JP6977599 B2 JP 6977599B2
Authority
JP
Japan
Prior art keywords
solid
state battery
layer
piezoelectric element
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018023887A
Other languages
Japanese (ja)
Other versions
JP2019140022A (en
Inventor
充 坂野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018023887A priority Critical patent/JP6977599B2/en
Publication of JP2019140022A publication Critical patent/JP2019140022A/en
Application granted granted Critical
Publication of JP6977599B2 publication Critical patent/JP6977599B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、全固体電池システムに関する。 The present invention relates to an all-solid-state battery system.

ハイブリッド自動車等の電動機を駆動するための電源として、ニッケル水素電池及びリチウムイオン電池等の全固体電池が注目されている。かかる全固体電池は、正極集電体層、正極活物質層、固体電解質層、負極活物質層、及び負極集電体層を具備している。 All-solid-state batteries such as nickel-metal hydride batteries and lithium-ion batteries are attracting attention as power sources for driving electric motors of hybrid vehicles and the like. Such an all-solid-state battery includes a positive electrode current collector layer, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector layer.

このような全固体電池は、上記の層間及び層内でのイオン電導性及び電気伝導性を良好に維持するため、その積層方向に、通常、拘束圧力が付与されており、拘束圧力を付与するための種々の技術が提案されている。 In such an all-solid-state battery, in order to maintain good ion conductivity and electrical conductivity between the above layers and layers, a confining pressure is usually applied in the stacking direction, and the confining pressure is applied. Various techniques for this have been proposed.

例えば、特許文献1では、単電池を複数積層した電池群と、電池群を単電池の積層方向の両側から挟み込んで拘束するエンドプレートと、エンドプレートによる拘束力を調整する拘束力調整部と、拘束力調整部を制御するコントローラとを有し、コントローラは、拘束力調整部を制御することにより、車両のイグニッションスイッチがオンであるとき、第1の拘束力により電池群を拘束し、イグニッションスイッチがオフであるとき、第1の拘束力よりも低い第2の拘束力により電池群を拘束することを特徴とする車両用組電池が開示されている。 For example, in Patent Document 1, a battery group in which a plurality of cells are stacked, an end plate in which the battery group is sandwiched and restrained from both sides in the stacking direction of the cells, and a binding force adjusting unit for adjusting the binding force by the end plate are provided. It has a controller that controls the binding force adjusting unit, and the controller controls the binding force adjusting unit to restrain the battery group by the first binding force when the ignition switch of the vehicle is on, and the ignition switch. Disclosed is an assembled battery for a vehicle, characterized in that the battery group is constrained by a second binding force lower than the first binding force when is off.

特許文献2では、正極層、負極層、並びに、該正極層及び負極層の間に配置される固体電解質層を有する積層体と、電池電圧を検知する電圧検知手段と、電圧検知手段により検知された電圧に基づいて積層体に加わる拘束圧力を制御する圧力制御手段と、を備える圧粉全固体電池が開示されている。 In Patent Document 2, it is detected by a laminate having a positive electrode layer, a negative electrode layer, and a solid electrolyte layer arranged between the positive electrode layer and the negative electrode layer, a voltage detecting means for detecting a battery voltage, and a voltage detecting means. Disclosed is a powder all-solid-state battery comprising a pressure control means for controlling a constraining pressure applied to a laminate based on a voltage.

特許文献3では、正極層、負極層、並びに、正極層及び負極層の間に挟持された固体電解質層を有する積層体と、積層体に対し、積層体の積層方向に拘束圧力を与えるための加圧冶具と、加圧治具を積層方向に対して斜めに押し付ける押付圧力を発生させることで、拘束圧力を押付圧力の積層方向の分力として発生させる加圧手段とを備えることを特徴とする全固体電池が開示されている。 In Patent Document 3, a laminate having a positive electrode layer, a negative electrode layer, and a solid electrolyte layer sandwiched between the positive electrode layer and the negative electrode layer, and a laminate for applying a restraining pressure to the laminate in the stacking direction of the laminate. It is characterized by being provided with a pressurizing tool and a pressurizing means that generates a restraining pressure as a component force of the pressing pressure in the laminating direction by generating a pressing force that presses the pressurizing jig diagonally with respect to the stacking direction. All-solid-state batteries are disclosed.

特許文献4では、車両に搭載される全固体電池の充電システムであって、全固体電池を充電する充電部、全固体電池に拘束圧を加える加圧部、及び拘束圧を制御する圧力制御部を備え、圧力制御部が、充電時の拘束圧が放電時の拘束圧よりも高くなるように、加圧部に指示する、充電システムが開示されている。 Patent Document 4 is a charging system for an all-solid-state battery mounted on a vehicle, which is a charging unit for charging the all-solid-state battery, a pressurizing unit for applying a restraining pressure to the all-solid-state battery, and a pressure control unit for controlling the restraining pressure. Disclosed is a charging system in which the pressure control unit instructs the pressurizing unit so that the confining pressure during charging is higher than the confining pressure during discharging.

特許文献5では、負極集電体層、負極活物質層、固体電解質層、正極活物質層、及び正極集電体層が積層されている積層型電池を、外装体に収納した封入電池と、封入電池を積層方向に拘束する治具と、積層型電池の最外層表面と外装体との間及び積層型電池の内部の少なくともいずれかに設置された1つ以上の接触圧センサと、外装体の内部の空間に設置された1つ以上の気体圧力センサと、接触圧の変化及び気体圧力の変化が閾値以上である場合にのみ充電を停止させる制御装置とを備える、全固体二次電池システムが開示されている。 In Patent Document 5, an enclosed battery in which a laminated battery in which a negative electrode current collector layer, a negative electrode active material layer, a solid electrolyte layer, a positive electrode active material layer, and a positive electrode current collector layer are laminated is housed in an exterior body is used. A jig that restrains the enclosed battery in the stacking direction, one or more contact pressure sensors installed between the outermost layer surface of the laminated battery and the exterior body, and at least one of the inside of the stacked battery, and the exterior body. An all-solid-state secondary battery system comprising one or more gas pressure sensors installed in the space inside the battery and a control device that stops charging only when changes in contact pressure and changes in gas pressure are above the threshold. Is disclosed.

特許文献6では、複数個の単電池を積層した積層体を備える電池システムにおいて、積層体の充放電を制御する充放電制御部と、積層体の積層方向両端部の少なくともいずれか一方の端部に配置され、積層体の積層方向の圧力を調整する圧力調整電池と、圧力調整電池の充放電を制御する圧力調整制御部とを備えることを特徴とする電池システムが開示されている。 In Patent Document 6, in a battery system including a laminated body in which a plurality of single batteries are laminated, at least one end of a charge / discharge control unit that controls charge / discharge of the laminated body and both ends in the stacking direction of the laminated body. Disclosed is a battery system comprising a pressure adjusting battery for adjusting the pressure in the stacking direction of the laminated body and a pressure adjusting control unit for controlling charging / discharging of the pressure adjusting battery.

特開2012−089446号公報Japanese Unexamined Patent Publication No. 2012-08946 特開2010−205479号公報Japanese Unexamined Patent Publication No. 2010-205479 特開2012−048853号公報Japanese Unexamined Patent Publication No. 2012-048853 特開2015−095281号公報Japanese Unexamined Patent Publication No. 2015-09521 特開2017−098184号公報Japanese Unexamined Patent Publication No. 2017-098184 特開2017−103083号公報Japanese Unexamined Patent Publication No. 2017-103083

本発明者らは、全固体電池は、積層方向に膨張収縮するだけでなく、充放電時に、面方向に対して不均一に膨張収縮し、これが電池性能の劣化をもたらす可能性があることを見出した。かかる膨張収縮は、負極活物質としてLi、Sn、Siやそれらの合金系負極を用いた場合に顕著に表れる傾向にあった。 The present inventors have stated that an all-solid-state battery not only expands and contracts in the stacking direction, but also expands and contracts non-uniformly with respect to the surface direction during charging and discharging, which may lead to deterioration of battery performance. I found it. Such expansion and contraction tended to appear remarkably when Li, Sn, Si or an alloy-based negative electrode thereof was used as the negative electrode active material.

したがって、電池の充放電に伴うこのような問題を抑制できる、全固体電池システムを提供する必要性が存在する。 Therefore, there is a need to provide an all-solid-state battery system capable of suppressing such problems associated with battery charging and discharging.

本発明者らは、鋭意検討したところ、以下の手段により上記課題を解決できることを見出して、本発明を完成させた。すなわち、本発明は、下記のとおりである:
〈態様1〉正極集電体層、正極活物質層、固体電解質層、負極活物質層、及び負極集電体層をこの順で有する、全固体電池、
印加された電圧に応じて膨張収縮したときに上記全固体電池を面方向に拘束するようにして、上記全固体電池上に配置されている、圧電素子、並びに
上記圧電素子に電圧を印加する、電源装置
を具備している、全固体電池システム。
〈態様2〉 上記圧電素子が、上記全固体電池の面方向の中央部において、上記全固体電池の短手方向に膨張収縮するように配置されている、態様1に記載の全固体電池システム。
〈態様3〉 複数個の前記圧電素子、
上記全固体電池の面方向に複数個の前記圧電素子によって印加されている圧力をそれぞれ検出する複数個の検出部、並びに
上記電源装置及び複数個の上記検出部と電気的に接続されている制御部
を更に具備しており、
上記制御部が、複数個の前記検出部が検出した上記圧力の間の差を減少させ又はなくすように、電源装置を制御する、
態様1に記載の全固体電池システム。
As a result of diligent studies, the present inventors have found that the above problems can be solved by the following means, and have completed the present invention. That is, the present invention is as follows:
<Aspect 1> An all-solid-state battery having a positive electrode current collector layer, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector layer in this order.
A voltage is applied to the piezoelectric element and the piezoelectric element arranged on the all-solid-state battery so as to constrain the all-solid-state battery in the plane direction when it expands and contracts according to the applied voltage. An all-solid-state battery system equipped with a power supply.
<Aspect 2> The all-solid-state battery system according to the first aspect, wherein the piezoelectric element is arranged so as to expand and contract in the lateral direction of the all-solid-state battery at a central portion in the plane direction of the all-solid-state battery.
<Aspect 3> The plurality of piezoelectric elements,
A plurality of detectors for detecting the pressure applied by the plurality of piezoelectric elements in the plane direction of the all-solid-state battery, and a control electrically connected to the power supply device and the plurality of detectors. It has more parts,
The control unit controls the power supply device so that the difference between the pressures detected by the plurality of detection units is reduced or eliminated.
The all-solid-state battery system according to aspect 1.

本発明によれば、上記の問題を抑制できる、全固体電池を提供することができる。 According to the present invention, it is possible to provide an all-solid-state battery capable of suppressing the above-mentioned problems.

図1は、本発明の第一の態様の全固体電池システムの概念図である。FIG. 1 is a conceptual diagram of an all-solid-state battery system according to the first aspect of the present invention. 図2は、従来の全固体電池の面方向における膨張の様子を示す概念図である。図2(a)は、充電前の状態を示しており、図2(b)は、充電後の状態を示している。FIG. 2 is a conceptual diagram showing the state of expansion of a conventional all-solid-state battery in the plane direction. FIG. 2A shows a state before charging, and FIG. 2B shows a state after charging. 図4は、本発明の第一の態様の全固体電池システムの面方向における膨張の概念図である。図3(a)は、充電前の状態を示しており、図3(b)は、充電後の状態を示している。FIG. 4 is a conceptual diagram of expansion in the plane direction of the all-solid-state battery system according to the first aspect of the present invention. FIG. 3A shows a state before charging, and FIG. 3B shows a state after charging. 図4は、本発明の第二の態様の全固体電池システムの概念図である。FIG. 4 is a conceptual diagram of an all-solid-state battery system according to a second aspect of the present invention. 図5は、本発明の第二の態様の全固体電池システムの面方向における膨張の概念図である。図5(a)は、充電前の状態を示しており、図5(b)は、充電後の状態を示している。FIG. 5 is a conceptual diagram of expansion in the plane direction of the all-solid-state battery system according to the second aspect of the present invention. FIG. 5A shows a state before charging, and FIG. 5B shows a state after charging. 図6は、本発明の第二の態様の全固体電池システムの制御のフローチャートの例である。FIG. 6 is an example of a flowchart for controlling an all-solid-state battery system according to a second aspect of the present invention.

《全固体電池システム》
図1に示すように、本発明の全固体電池システム100は、正極集電体層、正極活物質層、固体電解質層、負極活物質層、及び負極集電体層をこの順で有する、全固体電池10、
印加された電圧に応じて膨張収縮したときに全固体電池を面方向に拘束できるようにして全固体電池10上に配置されている、圧電素子20、並びに
圧電素子に電圧を印加する、電源装置30
を具備している。
<< All-solid-state battery system >>
As shown in FIG. 1, the all-solid-state battery system 100 of the present invention has a positive electrode current collector layer, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector layer in this order. Solid-state battery 10,
A power supply device that applies a voltage to the piezoelectric element 20 and the piezoelectric element arranged on the all-solid-state battery 10 so that the all-solid-state battery can be constrained in the plane direction when expanded and contracted according to the applied voltage. 30
Is equipped with.

図1の圧電素子20の付近に存在する白抜き矢印は、圧電素子20が膨張収縮可能な方向を意味するものである。また、図1においては、圧電素子は、全固体電池を面方向に拘束できるように配置されていればよく、例えば全固体電池の各単位構造間に配置してもよく、又は全固体電池の周囲に配置される部材、例えば封止樹脂、ラミネート等の上に配置されていてもよい。 The white arrow existing in the vicinity of the piezoelectric element 20 in FIG. 1 means the direction in which the piezoelectric element 20 can expand and contract. Further, in FIG. 1, the piezoelectric element may be arranged so as to be able to constrain the all-solid-state battery in the plane direction, and may be arranged, for example, between each unit structure of the all-solid-state battery, or the all-solid-state battery. It may be arranged on a member arranged around, for example, a sealing resin, a laminate, or the like.

全固体電池を面方向について見た場合、すなわち全固体電池の各層の積層方向から見た場合、全固体電池は、SOC(State Of Charge)に応じて不均一に膨張する。特に、全固体電池の面方向の形状が図2(a)に示す長方形である場合には、この膨張の不均一性は、図2(b)に示すように、全固体電池の短手方向において顕著に現れる。なお、膨張の状態に関しては、差異を明確にするために誇張して示しているものであり、実際の縮尺とは必ずしも一致していないことに留意されたい。 When the all-solid-state battery is viewed in the plane direction, that is, when viewed from the stacking direction of each layer of the all-solid-state battery, the all-solid-state battery expands non-uniformly according to the SOC (State Of Charge). In particular, when the shape of the all-solid-state battery in the plane direction is the rectangle shown in FIG. 2 (a), the non-uniformity of expansion is the lateral direction of the all-solid-state battery as shown in FIG. 2 (b). Appears prominently in. It should be noted that the state of expansion is exaggerated to clarify the difference and does not necessarily match the actual scale.

これに対し、本発明者らは、上記の構成を有する全固体電池システムにより、電池の不均一な膨張に伴う問題を抑制できることを見出した。このことを、本発明の全固体電池の具体的な態様に関し、図面を参照しながら以下で説明する。 On the other hand, the present inventors have found that the all-solid-state battery system having the above configuration can suppress the problem associated with the non-uniform expansion of the battery. This will be described below with reference to the drawings with respect to specific embodiments of the all-solid-state battery of the present invention.

《全固体電池:第一の態様》
図1に示すように、本発明の第一の態様の全固体電池システム100は、圧電素子20が、全固体電池10の面方向の中央部において、全固体電池10の短手方向に膨張収縮するように配置されている。
<< All-solid-state battery: First aspect >>
As shown in FIG. 1, in the all-solid-state battery system 100 of the first aspect of the present invention, the piezoelectric element 20 expands and contracts in the lateral direction of the all-solid-state battery 10 at the central portion in the plane direction of the all-solid-state battery 10. It is arranged to do so.

図2に関して言及した全固体電池の不均一な膨張は、全固体電池の側面に配置された部材、例えば他の拘束部材を物理的に圧迫することとなり、かかる部材の変形をもたらすこと等の物理的な問題の原因となることがあった。 The non-uniform expansion of the all-solid-state battery mentioned with respect to FIG. 2 physically presses a member arranged on the side surface of the all-solid-state battery, for example, another restraining member, resulting in deformation of the member. It sometimes caused a problem.

これに対し、本発明の第一の態様の全固体電池システム100によれば、図3(a)に示すように、本発明の第一の態様の全固体電池システム100の全固体電池10を充電したときに、図3(b)の黒塗り矢印で示すように、膨張が最も顕著に現れる全固体電池10の短手方向の中央部における膨張を最大限に抑制することにより、全固体電池の不均一な膨張を抑制することができる。この不均一な膨張の抑制により、電池の充放電に伴う物理的な問題を抑制することができると考えられる。 On the other hand, according to the all-solid-state battery system 100 of the first aspect of the present invention, as shown in FIG. 3A, the all-solid-state battery 10 of the all-solid-state battery system 100 of the first aspect of the present invention is used. As shown by the black arrow in FIG. 3B when the battery is charged, the all-solid-state battery 10 has the most noticeable expansion by suppressing the expansion in the central portion in the lateral direction to the maximum. Non-uniform expansion can be suppressed. It is considered that the suppression of this non-uniform expansion can suppress the physical problems associated with the charging and discharging of the battery.

上記の本発明は、例えば、全固体電池の面方向における寸法変化とSOCとの関係、及び圧電素子の伸びLと印加する電圧Vとの間の以下の関係式を用い、全固体電池の面方向における寸法変化と圧電素子の寸法変化の程度とが一致するように圧電素子に印加する電圧を決定することにより実現できる。
L=f・V
(式中、fは、以下で「圧電定数」として言及するものであり、圧電素子固有の比例定数である)
The present invention uses, for example, the relationship between the dimensional change in the surface direction of the all-solid-state battery and the SOC, and the following relational expression between the elongation L of the piezoelectric element and the applied voltage V, and the surface of the all-solid-state battery. This can be realized by determining the voltage applied to the piezoelectric element so that the dimensional change in the direction and the degree of the dimensional change of the piezoelectric element match.
L = f ・ V
(In the equation, f is referred to below as a "piezoelectric constant" and is a proportional constant peculiar to the piezoelectric element.)

《全固体電池:第二の態様》
図4に示すように、本発明の第二の態様の全固体電池システム200は、複数個の圧電素子、
全固体電池の面方向に複数個の圧電素子によって印加されている圧力をそれぞれ検出する複数個の検出部、並びに
電源装置及び複数個の検出部と電気的に接続されている制御部
を更に具備しており、
制御部が、複数個の検出部が検出した圧力の間の差を減少させ又はなくすように、電源装置を制御する。
<< All-solid-state battery: Second aspect >>
As shown in FIG. 4, the all-solid-state battery system 200 according to the second aspect of the present invention has a plurality of piezoelectric elements.
It further includes a plurality of detectors for detecting the pressure applied by a plurality of piezoelectric elements in the plane direction of the all-solid-state battery, and a power supply device and a control unit electrically connected to the plurality of detectors. And
The control unit controls the power supply so that the difference between the pressures detected by the plurality of detection units is reduced or eliminated.

なお、検出部及び制御部は図示していないが、これらは、上記の作用を有する限り、随意の位置に存在していてよい。 Although the detection unit and the control unit are not shown, they may be present at arbitrary positions as long as they have the above-mentioned effects.

図2に関して言及した全固体電池の不均一な膨張は、負極活物質の反応による膨張に起因するものと考えられ、この負極活物質の膨張の結果、中央部においては内部の圧力が大きくなり、負極活物質の反応が更に促進され、更に内部の圧力が大きくなると考えられる。これに対し、全固体電池の端部においては、内部の圧力の大きな増加は観察されず、負極活物質の反応が促進しないこととなる。その結果、内部の圧力及び電池反応のムラが生じることがあった。 The non-uniform expansion of the all-solid-state battery mentioned with respect to FIG. 2 is considered to be due to the expansion due to the reaction of the negative electrode active material, and as a result of the expansion of the negative electrode active material, the internal pressure increases in the central portion. It is considered that the reaction of the negative electrode active material is further promoted and the internal pressure is further increased. On the other hand, at the end of the all-solid-state battery, no large increase in internal pressure was observed, and the reaction of the negative electrode active material was not promoted. As a result, the internal pressure and the unevenness of the battery reaction may occur.

これに対し、本発明の第二の態様の全固体電池システム200によれば、図5(a)に示すように、本発明の第二の態様の全固体電池システム200の全固体電池10を充電したときに、図5(b)の黒塗り矢印で示すように、各圧電素子20によって均一な拘束圧を印加することができる。この均一な拘束圧の印加によれば、全固体電池全体にかかる圧力のムラを抑制し、全固体電池の内部抵抗のムラを抑制し、その結果、全固体電池内部で生じる電池反応の反応速度のムラを抑制することができると考えられる。 On the other hand, according to the all-solid-state battery system 200 of the second aspect of the present invention, as shown in FIG. 5A, the all-solid-state battery 10 of the all-solid-state battery system 200 of the second aspect of the present invention is used. When charging, a uniform restraining pressure can be applied by each piezoelectric element 20 as shown by the black-painted arrow in FIG. 5 (b). By applying this uniform restraining pressure, unevenness in the pressure applied to the entire all-solid-state battery is suppressed, unevenness in the internal resistance of the all-solid-state battery is suppressed, and as a result, the reaction rate of the battery reaction occurring inside the all-solid-state battery is suppressed. It is considered that the unevenness of the battery can be suppressed.

第二の態様の全固体電池システムの制御部は、例えば図6に示すフローチャートに従って作動することができる。 The control unit of the all-solid-state battery system of the second aspect can be operated according to, for example, the flowchart shown in FIG.

より具体的には、図6に示すように、まず、処理を開始し、そして各検出部により圧力を検出し、検出した各圧力を用いて平均拘束圧を算出する。 More specifically, as shown in FIG. 6, the process is first started, the pressure is detected by each detection unit, and the average confining pressure is calculated using each detected pressure.

次いで、各点の拘束圧pと算出した平均拘束圧pとの差分を算出し、この差分と設定値aとを比較する。設定値aは、許容可能な拘束圧の誤差を規定する値であり、随意の値であってよい。差分が設定値aよりも小さい場合には、処理を終了する。 Then, it calculates the difference between the average confining pressure p a and the calculated confining pressure p of each point is compared with a set value a and the difference. The set value a is a value that defines an allowable error of the restraining pressure, and may be an arbitrary value. If the difference is smaller than the set value a, the process ends.

差分が設定値aよりも大きい場合には、各点の拘束圧pと算出した平均拘束圧pとを比較して、平均拘束圧pが大きい場合には、加圧工程を行い、各点の拘束圧pが大きい場合には、減圧工程を行う。 If the difference is greater than the set value a is compared with the mean confining pressure p a and the calculated confining pressure p of each point, when the average confining pressure p a is large, performs a pressing process, the If the restraining pressure p at the point is large, a depressurization step is performed.

「加圧工程」は、検出部が検出した圧力とあらかじめ設定された圧力との差を減少させ又はなくすように、圧電素子から放電させるものであり、「減圧工程」は、同じ目的のために圧電素子に充電するものである。ここで、放電又は充電により変化させる電圧ΔVは、以下の式に応じて決定することができる。なお、ヤング率は、例えばJIS K7161−1:2014に準拠して、引張試験機を用いて測定したものであってよい。
ΔV=(p−p)・S/(E・f)
(式中、S、E、及びfは圧電素子の面積、引張弾性率、及び圧電定数を指すものである。)
The "pressurization step" is to discharge from the piezoelectric element so as to reduce or eliminate the difference between the pressure detected by the detection unit and the preset pressure, and the "decompression step" is for the same purpose. It charges the piezoelectric element. Here, the voltage ΔV to be changed by discharging or charging can be determined according to the following equation. The Young's modulus may be measured using a tensile tester in accordance with, for example, JIS K7161-1: 2014.
ΔV = (p-p a) · S / (E · f)
(In the equation, S, E, and f refer to the area of the piezoelectric element, the tensile elastic modulus, and the piezoelectric constant.)

以下では、本発明の構成要素である圧電素子、電源装置、検出部、及び制御部について説明する。 Hereinafter, the piezoelectric element, the power supply device, the detection unit, and the control unit, which are the constituent elements of the present invention, will be described.

〈圧電素子〉
圧電素子は、印加された電圧に応じて膨張収縮したときに全固体電池を面方向に拘束できるように配置されている。
<Piezoelectric element>
The piezoelectric element is arranged so that the all-solid-state battery can be constrained in the plane direction when it expands and contracts according to the applied voltage.

圧電素子としては、例えばポリフッ化ビニリデン(PVdF)等の圧電性の高分子を用いることができる。 As the piezoelectric element, a piezoelectric polymer such as polyvinylidene fluoride (PVdF) can be used.

〈電源装置〉
電源装置は、圧電素子に電圧を印加する、電源装置である。電源装置は、交流電源であってもよく、又は直流電源であってもよい。
<Power supply unit>
The power supply device is a power supply device that applies a voltage to the piezoelectric element. The power supply device may be an AC power supply or a DC power supply.

〈検出部〉
検出部は、全固体電池の面方向に圧電素子によって印加されている圧力を検出する検出部である。
<Detection unit>
The detection unit is a detection unit that detects the pressure applied by the piezoelectric element in the surface direction of the all-solid-state battery.

〈制御部〉
制御部は、電源装置及び検出部と電気的に接続されている制御部である。この制御部は、検出部が検出した圧力とあらかじめ設定された圧力との差を減少させ又はなくすように電源装置を制御することができる。
<Control unit>
The control unit is a control unit that is electrically connected to the power supply device and the detection unit. This control unit can control the power supply device so as to reduce or eliminate the difference between the pressure detected by the detection unit and the preset pressure.

次に、本発明の構成要素である全固体電池を構成する各層について説明する。 Next, each layer constituting the all-solid-state battery, which is a component of the present invention, will be described.

〈正極集電体層〉
正極集電体層に用いられる導電性材料は、特に限定されず、全固体電池に使用できる公知のものを適宜採用されうる。例えば、ステンレス(SUS)、アルミニウム、銅、ニッケル、鉄、チタン、及びカーボンなどが挙げられる。
<Positive current collector layer>
The conductive material used for the positive electrode current collector layer is not particularly limited, and a known material that can be used for an all-solid-state battery can be appropriately adopted. For example, stainless steel (SUS), aluminum, copper, nickel, iron, titanium, carbon and the like can be mentioned.

本開示にかかる正極集電体層の形状として、特に限定されず、例えば、箔状、板状、メッシュ状などを挙げることができる。これらの中で、箔状が好ましい。 The shape of the positive electrode current collector layer according to the present disclosure is not particularly limited, and examples thereof include a foil shape, a plate shape, and a mesh shape. Of these, foil-like is preferable.

〈正極活物質層〉
正極活物質層は、少なくとも正極活物質を含有しており、好ましくは後述する固体電解質を更に含む。そのほか、使用用途や使用目的などに合わせて、例えば、導電助剤又はバインダーなどの全固体電池の正極活物質層に用いられる添加剤を含むことができる。
<Positive electrode active material layer>
The positive electrode active material layer contains at least a positive electrode active material, and preferably further contains a solid electrolyte described later. In addition, an additive used for the positive electrode active material layer of an all-solid-state battery, such as a conductive auxiliary agent or a binder, can be contained according to the intended use and purpose of use.

本開示において、用いられる正極活物質材料として、特に限定されず、公知のものが用いられる。例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)、LiCo1/3Ni1/3Mn1/3、Li1+xMn2−x−y(Mは、Al、Mg、Co、Fe、Ni、及びZnから選ばれる1種以上の金属元素)で表される組成の異種元素置換Li−Mnスピネルなどが挙げられるが、これらに限定されない。 In the present disclosure, the positive electrode active material used is not particularly limited, and known materials are used. For example, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , Li 1 + x Mn 2-x- Examples thereof include dissimilar element substitution Li-Mn spinels having a composition represented by y My O 4 (M is one or more metal elements selected from Al, Mg, Co, Fe, Ni, and Zn). Not limited to these.

導電助剤としては、特に限定されず、公知のものが用いられる。例えば、VGCF(気相成長法炭素繊維、Vapor Grown Carbon Fiber)及びカーボンナノ繊維などの炭素材並びに金属材などが挙げられるが、これらに限定されない。 The conductive auxiliary agent is not particularly limited, and known ones are used. Examples thereof include, but are not limited to, carbon materials such as VGCF (vapor grown carbon fiber, Vapor Green Carbon Fiber) and carbon nanofibers, and metal materials.

バインダーとしては、特に限定されず、公知のものが用いられる。例えば、ポリフッ化ビニリデン(PVdF)、カルボキシメチルセルロース(CMC)、ブタジエンゴム(BR)若しくはスチレンブタジエンゴム(SBR)などの材料又はこれらの組合せを挙げることができるが、これらに限定されない。 The binder is not particularly limited, and known binders are used. Examples include, but are not limited to, materials such as polyvinylidene fluoride (PVdF), carboxymethyl cellulose (CMC), butadiene rubber (BR) or styrene butadiene rubber (SBR) or combinations thereof.

〈固体電解質層〉
固体電解質層は、少なくとも固体電解質を含む。固体電解質として、特に限定されず、全固体電池の固体電解質として利用可能な材料を用いることができる。例えば、公知の硫化物固体電解質又は公知の酸化物固体電解質を用いることができる。
<Solid electrolyte layer>
The solid electrolyte layer contains at least a solid electrolyte. The solid electrolyte is not particularly limited, and a material that can be used as a solid electrolyte for an all-solid-state battery can be used. For example, a known sulfide solid electrolyte or a known oxide solid electrolyte can be used.

硫化物固体電解質の例として、例えば、LiS−SiS、LiI−LiS−SiS、LiI−LiS−P、LiI−LiBr−LiS−P、LiS−P−LiI−LiBr、LiS−P−GeS、LiI−LiS−P、LiI−LiPO−P、及びLiS−P等;硫化物系結晶質固体電解質、例えば、Li10GeP12、Li11、LiPS、及びLi3.250.75等;並びにこれらの組合せを挙げることができる。 Examples of the sulfide solid electrolyte, for example, Li 2 S-SiS 2, LiI-Li 2 S-SiS 2, LiI-Li 2 S-P 2 S 5, LiI-LiBr-Li 2 S-P 2 S 5, Li 2 S-P 2 S 5- LiI-LiBr, Li 2 S-P 2 S 5- GeS 2 , LiI-Li 2 S-P 2 O 5 , LiI-Li 3 PO 4- P 2 S 5 , and Li 2 SP 2 S 5 etc .; Sulfide-based crystalline solid electrolytes such as Li 10 GeP 2 S 12 , Li 7 P 3 S 11 , Li 3 PS 4 , and Li 3.25 P 0.75 S 4 etc. ; And combinations of these can be mentioned.

酸化物固体電解質の例として、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、及びこれらの共重合体などが挙げられるが、これらに限定されない。 Examples of solid oxide electrolytes include, but are not limited to, polyethylene oxide (PEO), polypropylene oxide (PPO), and copolymers thereof.

固体電解質は、ガラスであっても、結晶化ガラス(ガラスセラミック)であってもよい。また、固体電解質層は、上述した固体電解質以外に、必要に応じてバインダーなどを含んでもよい。具体例として、上述の「正極活物質層」で列挙された「バインダー」と同様であり、ここでは説明を省略する。 The solid electrolyte may be glass or crystallized glass (glass ceramic). Further, the solid electrolyte layer may contain a binder or the like, if necessary, in addition to the above-mentioned solid electrolyte. As a specific example, it is the same as the "binder" listed in the above-mentioned "positive electrode active material layer", and the description thereof is omitted here.

〈負極活物質層〉
負極活物質層は、少なくとも負極活物質を含み、好ましくは上述した固体電解質を更に含む。そのほか、使用用途や使用目的などに合わせて、例えば、導電助剤又はバインダーなどの全固体電池の負極活物質層に用いられる添加剤を含むことができる。
<Negative electrode active material layer>
The negative electrode active material layer contains at least the negative electrode active material, and preferably further contains the above-mentioned solid electrolyte. In addition, an additive used for the negative electrode active material layer of an all-solid-state battery such as a conductive auxiliary agent or a binder can be included according to the intended use and purpose of use.

本開示において、用いられる負極活物質材料として、特に限定されず、リチウムイオンなどの金属イオンを吸蔵及び放出可能であればよい。例えば、Li、Sn、Si若しくはInなどの金属、リチウムとチタンとの合金、又はハードカーボン、ソフトカーボン若しくはグラファイトなどの炭素材料などが挙げられるが、これらに限定されない。 In the present disclosure, the negative electrode active material used is not particularly limited as long as it can occlude and release metal ions such as lithium ions. Examples thereof include, but are not limited to, metals such as Li, Sn, Si or In, alloys of lithium and titanium, and carbon materials such as hard carbon, soft carbon or graphite.

負極活物質層に用いられる固体電解質、導電助剤、バインダーなどその他の添加剤については、上述した「正極活物質層」及び「固体電解質層」の項目で説明したものを適宜採用することができる。 As for other additives such as the solid electrolyte, the conductive auxiliary agent, and the binder used for the negative electrode active material layer, those described in the above-mentioned "Positive electrode active material layer" and "Solid electrolyte layer" can be appropriately adopted. ..

〈負極集電体層〉
負極集電体層に用いられる導電性材料は、特に限定されず、全固体電池に使用できる公知のものを適宜採用されうる。例えば、ステンレス(SUS)、アルミニウム、銅、ニッケル、鉄、チタン、及びカーボンなどが挙げられる。
<Negative electrode current collector layer>
The conductive material used for the negative electrode current collector layer is not particularly limited, and a known material that can be used for an all-solid-state battery can be appropriately adopted. For example, stainless steel (SUS), aluminum, copper, nickel, iron, titanium, carbon and the like can be mentioned.

本開示にかかる負極集電体層の形状として、特に限定されず、例えば、箔状、板状、メッシュ状などを挙げることができる。これらの中で、箔状が好ましい。 The shape of the negative electrode current collector layer according to the present disclosure is not particularly limited, and examples thereof include a foil shape, a plate shape, and a mesh shape. Of these, foil-like is preferable.

10 全固体電池
20 圧電素子
30 電源装置
100、200 全固体電池システム
10 All-solid-state battery 20 Piezoelectric element 30 Power supply 100, 200 All-solid-state battery system

Claims (3)

正極集電体層、正極活物質層、固体電解質層、負極活物質層、及び負極集電体層をこの順で有する、全固体電池、
印加された電圧に応じて膨張収縮したときに前記全固体電池を、前記全固体電池を構成する各層の面方向に拘束するようにして、前記全固体電池上に配置されている、圧電素子、並びに
前記圧電素子に電圧を印加する、電源装置
を具備している、全固体電池システム。
An all-solid-state battery having a positive electrode current collector layer, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector layer in this order.
A piezoelectric element, which is arranged on the all-solid-state battery so as to constrain the all-solid-state battery in the plane direction of each layer constituting the all-solid-state battery when it expands and contracts according to an applied voltage. An all-solid-state battery system comprising a power supply that applies a voltage to the piezoelectric element.
前記全固体電池を構成する各層の面方向の形状が、長方形であり、かつ
前記圧電素子が、前記全固体電池の面方向の中央部において、前記全固体電池の短手方向に膨張収縮するように配置されている、請求項1に記載の全固体電池システム。
The shape of each layer constituting the all-solid-state battery in the plane direction is rectangular and
The all-solid-state battery system according to claim 1, wherein the piezoelectric element is arranged so as to expand and contract in the lateral direction of the all-solid-state battery at a central portion in the surface direction of the all-solid-state battery.
複数個の前記圧電素子、
前記全固体電池の面方向に複数個の前記圧電素子によって印加されている圧力をそれぞれ検出する複数個の検出部、並びに
前記電源装置及び複数個の前記検出部と電気的に接続されている制御部
を更に具備しており、
前記制御部が、複数個の前記検出部が検出した前記圧力の間の差を減少させ又はなくすように、電源装置を制御する、
請求項1に記載の全固体電池システム。
Multiple said piezoelectric elements,
A plurality of detectors for detecting the pressure applied by the plurality of piezoelectric elements in the plane direction of the all-solid-state battery, and a control electrically connected to the power supply device and the plurality of detectors. It has more parts,
The control unit controls the power supply device so that the difference between the pressures detected by the plurality of detection units is reduced or eliminated.
The all-solid-state battery system according to claim 1.
JP2018023887A 2018-02-14 2018-02-14 All-solid-state battery system Active JP6977599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018023887A JP6977599B2 (en) 2018-02-14 2018-02-14 All-solid-state battery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018023887A JP6977599B2 (en) 2018-02-14 2018-02-14 All-solid-state battery system

Publications (2)

Publication Number Publication Date
JP2019140022A JP2019140022A (en) 2019-08-22
JP6977599B2 true JP6977599B2 (en) 2021-12-08

Family

ID=67695470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018023887A Active JP6977599B2 (en) 2018-02-14 2018-02-14 All-solid-state battery system

Country Status (1)

Country Link
JP (1) JP6977599B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021019986A1 (en) 2019-07-30 2021-02-04 旭化成株式会社 Alkaline water electrolytic cell
US20220328860A1 (en) * 2021-04-09 2022-10-13 Sakuu Corporation Ceramic lithium battery with piezoelectric compensation layers

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010160981A (en) * 2009-01-08 2010-07-22 Toyota Motor Corp Battery system
JP2010205479A (en) * 2009-03-02 2010-09-16 Toyota Motor Corp All-solid battery employing power compact
JP2012048853A (en) * 2010-08-24 2012-03-08 Toyota Motor Corp All-solid battery
JP6123642B2 (en) * 2013-11-08 2017-05-10 トヨタ自動車株式会社 All-solid battery charging system
JP6582667B2 (en) * 2015-07-22 2019-10-02 日本電気株式会社 Battery pack, battery device, and battery control method
JP6206470B2 (en) * 2015-11-27 2017-10-04 トヨタ自動車株式会社 All-solid-state secondary battery system

Also Published As

Publication number Publication date
JP2019140022A (en) 2019-08-22

Similar Documents

Publication Publication Date Title
JP5128786B2 (en) Battery module
KR101529408B1 (en) Non-aqueous electrolyte secondary battery
CN110233281B (en) All-solid-state battery
JP6885309B2 (en) Series stacked all-solid-state battery
US9564655B2 (en) Manufacturing method of all-solid battery
JP2016018704A (en) All-solid battery
JP2017098184A (en) All-solid-state secondary battery system
JP6898585B2 (en) Secondary battery state estimation method and state estimation system
JP2012048853A (en) All-solid battery
WO2004047214A1 (en) Lithium-ion secondary battery system and method for operating lithium-ion secondary battery
KR20100071786A (en) Secondary battery having enhanced uniformity of temperature distribution
JP2018116914A (en) Battery module
JP2012089446A (en) Battery pack for vehicle and vehicle
JP5725362B2 (en) Lithium secondary battery and manufacturing method thereof
KR20190003688A (en) How to Heat Treatment Lithium Batteries
JP6814391B2 (en) Battery module
WO2012026295A1 (en) Battery control device
JP6977599B2 (en) All-solid-state battery system
EP3624224B1 (en) Separator without separator substrate and electrochemical device comprising same
JP7196783B2 (en) All-solid-state battery and all-solid-state battery system
CN110277595B (en) Secondary battery system and secondary battery control method
JP7010102B2 (en) All solid state battery
JP7375786B2 (en) All-solid-state lithium-ion battery control system
JP7272788B2 (en) Method for manufacturing all-solid-state battery
JP7053353B2 (en) Lithium ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211025

R151 Written notification of patent or utility model registration

Ref document number: 6977599

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151