JP2019140022A - All-solid battery system - Google Patents

All-solid battery system Download PDF

Info

Publication number
JP2019140022A
JP2019140022A JP2018023887A JP2018023887A JP2019140022A JP 2019140022 A JP2019140022 A JP 2019140022A JP 2018023887 A JP2018023887 A JP 2018023887A JP 2018023887 A JP2018023887 A JP 2018023887A JP 2019140022 A JP2019140022 A JP 2019140022A
Authority
JP
Japan
Prior art keywords
solid
state battery
battery
piezoelectric element
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018023887A
Other languages
Japanese (ja)
Other versions
JP6977599B2 (en
Inventor
坂野 充
Mitsuru Sakano
充 坂野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018023887A priority Critical patent/JP6977599B2/en
Publication of JP2019140022A publication Critical patent/JP2019140022A/en
Application granted granted Critical
Publication of JP6977599B2 publication Critical patent/JP6977599B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

To provide an all-solid battery system that can suppress problems caused by expansion and contraction associated with battery charging and discharging.SOLUTION: An all-solid battery system 100 according to the present invention includes: an all-solid battery 10 having a positive electrode current collector layer, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector layer in this order; a piezoelectric element 20 which is disposed on the all-solid battery 10 so as to restrain the all-solid state battery in the surface direction when expanded and contracted according to an applied voltage; and a power supply 30 that applies voltage to the piezoelectric element.SELECTED DRAWING: Figure 1

Description

本発明は、全固体電池システムに関する。   The present invention relates to an all solid state battery system.

ハイブリッド自動車等の電動機を駆動するための電源として、ニッケル水素電池及びリチウムイオン電池等の全固体電池が注目されている。かかる全固体電池は、正極集電体層、正極活物質層、固体電解質層、負極活物質層、及び負極集電体層を具備している。   All-solid-state batteries such as nickel metal hydride batteries and lithium ion batteries have attracted attention as power sources for driving electric motors of hybrid vehicles and the like. Such an all-solid battery includes a positive electrode current collector layer, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector layer.

このような全固体電池は、上記の層間及び層内でのイオン電導性及び電気伝導性を良好に維持するため、その積層方向に、通常、拘束圧力が付与されており、拘束圧力を付与するための種々の技術が提案されている。   In order to maintain the ionic conductivity and electrical conductivity between the above-described layers and layers in the all-solid-state battery, a binding pressure is usually applied in the stacking direction, and the binding pressure is applied. Various techniques have been proposed for this purpose.

例えば、特許文献1では、単電池を複数積層した電池群と、電池群を単電池の積層方向の両側から挟み込んで拘束するエンドプレートと、エンドプレートによる拘束力を調整する拘束力調整部と、拘束力調整部を制御するコントローラとを有し、コントローラは、拘束力調整部を制御することにより、車両のイグニッションスイッチがオンであるとき、第1の拘束力により電池群を拘束し、イグニッションスイッチがオフであるとき、第1の拘束力よりも低い第2の拘束力により電池群を拘束することを特徴とする車両用組電池が開示されている。   For example, in Patent Document 1, a battery group in which a plurality of unit cells are stacked, an end plate that sandwiches and restrains the battery group from both sides in the stacking direction of the unit cells, a constraint force adjustment unit that adjusts a constraint force by the end plate, A controller for controlling the restraint force adjustment unit, and the controller restrains the battery group by the first restraint force when the ignition switch of the vehicle is on by controlling the restraint force adjustment unit, and the ignition switch An assembled battery for a vehicle is disclosed in which the battery group is restrained by a second restraining force lower than the first restraining force when is off.

特許文献2では、正極層、負極層、並びに、該正極層及び負極層の間に配置される固体電解質層を有する積層体と、電池電圧を検知する電圧検知手段と、電圧検知手段により検知された電圧に基づいて積層体に加わる拘束圧力を制御する圧力制御手段と、を備える圧粉全固体電池が開示されている。   In Patent Document 2, a positive electrode layer, a negative electrode layer, and a laminate having a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer, a voltage detection means for detecting battery voltage, and a voltage detection means are detected. And a pressure control means for controlling a restraining pressure applied to the laminate based on the voltage.

特許文献3では、正極層、負極層、並びに、正極層及び負極層の間に挟持された固体電解質層を有する積層体と、積層体に対し、積層体の積層方向に拘束圧力を与えるための加圧冶具と、加圧治具を積層方向に対して斜めに押し付ける押付圧力を発生させることで、拘束圧力を押付圧力の積層方向の分力として発生させる加圧手段とを備えることを特徴とする全固体電池が開示されている。   In Patent Document 3, a laminate having a positive electrode layer, a negative electrode layer, and a solid electrolyte layer sandwiched between the positive electrode layer and the negative electrode layer, and applying a restraining pressure to the laminate in the stacking direction of the laminate A pressure jig, and a pressing unit that generates a pressing pressure that presses the pressing jig obliquely with respect to the stacking direction, thereby generating a restraining pressure as a component force in the stacking direction of the pressing pressure. An all solid state battery is disclosed.

特許文献4では、車両に搭載される全固体電池の充電システムであって、全固体電池を充電する充電部、全固体電池に拘束圧を加える加圧部、及び拘束圧を制御する圧力制御部を備え、圧力制御部が、充電時の拘束圧が放電時の拘束圧よりも高くなるように、加圧部に指示する、充電システムが開示されている。   In patent document 4, it is the charge system of the all-solid-state battery mounted in a vehicle, Comprising: The charging part which charges an all-solid-state battery, the pressurization part which applies a restraint pressure to an all-solid-state battery, and the pressure control part which controls a restraint pressure There is disclosed a charging system in which the pressure control unit instructs the pressurizing unit such that the constraint pressure during charging is higher than the constraint pressure during discharge.

特許文献5では、負極集電体層、負極活物質層、固体電解質層、正極活物質層、及び正極集電体層が積層されている積層型電池を、外装体に収納した封入電池と、封入電池を積層方向に拘束する治具と、積層型電池の最外層表面と外装体との間及び積層型電池の内部の少なくともいずれかに設置された1つ以上の接触圧センサと、外装体の内部の空間に設置された1つ以上の気体圧力センサと、接触圧の変化及び気体圧力の変化が閾値以上である場合にのみ充電を停止させる制御装置とを備える、全固体二次電池システムが開示されている。   In Patent Document 5, a sealed battery in which a negative electrode current collector layer, a negative electrode active material layer, a solid electrolyte layer, a positive electrode active material layer, and a positive electrode current collector layer are stacked in an outer package, A jig for restraining the encapsulated battery in the stacking direction, one or more contact pressure sensors installed at least either between the outermost layer surface of the stacked battery and the exterior body, or inside the multilayer battery, and the exterior body All-solid-state secondary battery system comprising one or more gas pressure sensors installed in the interior space of the battery and a control device that stops charging only when the change in contact pressure and the change in gas pressure are greater than or equal to a threshold value Is disclosed.

特許文献6では、複数個の単電池を積層した積層体を備える電池システムにおいて、積層体の充放電を制御する充放電制御部と、積層体の積層方向両端部の少なくともいずれか一方の端部に配置され、積層体の積層方向の圧力を調整する圧力調整電池と、圧力調整電池の充放電を制御する圧力調整制御部とを備えることを特徴とする電池システムが開示されている。   In Patent Document 6, in a battery system including a stacked body in which a plurality of single cells are stacked, a charge / discharge control unit that controls charging / discharging of the stacked body, and at least one end of both ends in the stacking direction of the stacked body And a pressure adjustment battery that adjusts the pressure in the stacking direction of the laminated body, and a pressure adjustment control unit that controls charging / discharging of the pressure adjustment battery.

特開2012−089446号公報JP 2012-089446 A 特開2010−205479号公報JP 2010-205479 A 特開2012−048853号公報JP 2012-048853 A 特開2015−095281号公報Japanese Patent Laying-Open No. 2015-095281 特開2017−098184号公報JP 2017-098184 A 特開2017−103083号公報JP 2017-103083 A

本発明者らは、全固体電池は、積層方向に膨張収縮するだけでなく、充放電時に、面方向に対して不均一に膨張収縮し、これが電池性能の劣化をもたらす可能性があることを見出した。かかる膨張収縮は、負極活物質としてLi、Sn、Siやそれらの合金系負極を用いた場合に顕著に表れる傾向にあった。   The present inventors have shown that all solid state batteries not only expand and contract in the stacking direction, but also expand and contract in a non-uniform manner in the surface direction during charge and discharge, which may lead to deterioration of battery performance. I found it. Such expansion and contraction tended to appear remarkably when Li, Sn, Si, or an alloy negative electrode thereof was used as the negative electrode active material.

したがって、電池の充放電に伴うこのような問題を抑制できる、全固体電池システムを提供する必要性が存在する。   Accordingly, there is a need to provide an all-solid battery system that can suppress such problems associated with charging and discharging of batteries.

本発明者らは、鋭意検討したところ、以下の手段により上記課題を解決できることを見出して、本発明を完成させた。すなわち、本発明は、下記のとおりである:
〈態様1〉正極集電体層、正極活物質層、固体電解質層、負極活物質層、及び負極集電体層をこの順で有する、全固体電池、
印加された電圧に応じて膨張収縮したときに上記全固体電池を面方向に拘束するようにして、上記全固体電池上に配置されている、圧電素子、並びに
上記圧電素子に電圧を印加する、電源装置
を具備している、全固体電池システム。
〈態様2〉 上記圧電素子が、上記全固体電池の面方向の中央部において、上記全固体電池の短手方向に膨張収縮するように配置されている、態様1に記載の全固体電池システム。
〈態様3〉 複数個の前記圧電素子、
上記全固体電池の面方向に複数個の前記圧電素子によって印加されている圧力をそれぞれ検出する複数個の検出部、並びに
上記電源装置及び複数個の上記検出部と電気的に接続されている制御部
を更に具備しており、
上記制御部が、複数個の前記検出部が検出した上記圧力の間の差を減少させ又はなくすように、電源装置を制御する、
態様1に記載の全固体電池システム。
As a result of intensive studies, the present inventors have found that the above problems can be solved by the following means, and have completed the present invention. That is, the present invention is as follows:
<Aspect 1> An all-solid battery having a positive electrode current collector layer, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector layer in this order,
Applying a voltage to the piezoelectric element disposed on the all-solid-state battery, and the piezoelectric element so as to restrain the all-solid-state battery in the surface direction when expanded and contracted according to the applied voltage. An all-solid-state battery system including a power supply device.
<Aspect 2> The all-solid-state battery system according to aspect 1, wherein the piezoelectric element is disposed so as to expand and contract in the lateral direction of the all-solid battery at a central portion in the surface direction of the all-solid battery.
<Aspect 3> A plurality of the piezoelectric elements,
A plurality of detectors for respectively detecting pressure applied by the plurality of piezoelectric elements in the surface direction of the all solid state battery; and a control electrically connected to the power supply device and the plurality of detectors. Further comprising
The control unit controls the power supply device so as to reduce or eliminate the difference between the pressures detected by the plurality of detection units;
The all-solid-state battery system of aspect 1.

本発明によれば、上記の問題を抑制できる、全固体電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the all-solid-state battery which can suppress said problem can be provided.

図1は、本発明の第一の態様の全固体電池システムの概念図である。FIG. 1 is a conceptual diagram of an all solid state battery system according to a first embodiment of the present invention. 図2は、従来の全固体電池の面方向における膨張の様子を示す概念図である。図2(a)は、充電前の状態を示しており、図2(b)は、充電後の状態を示している。FIG. 2 is a conceptual diagram showing a state of expansion in the surface direction of a conventional all solid state battery. FIG. 2 (a) shows a state before charging, and FIG. 2 (b) shows a state after charging. 図4は、本発明の第一の態様の全固体電池システムの面方向における膨張の概念図である。図3(a)は、充電前の状態を示しており、図3(b)は、充電後の状態を示している。FIG. 4 is a conceptual diagram of expansion in the surface direction of the all solid state battery system according to the first aspect of the present invention. FIG. 3A shows a state before charging, and FIG. 3B shows a state after charging. 図4は、本発明の第二の態様の全固体電池システムの概念図である。FIG. 4 is a conceptual diagram of the all solid state battery system according to the second embodiment of the present invention. 図5は、本発明の第二の態様の全固体電池システムの面方向における膨張の概念図である。図5(a)は、充電前の状態を示しており、図5(b)は、充電後の状態を示している。FIG. 5 is a conceptual diagram of expansion in the surface direction of the all solid state battery system according to the second aspect of the present invention. Fig.5 (a) has shown the state before charge, FIG.5 (b) has shown the state after charge. 図6は、本発明の第二の態様の全固体電池システムの制御のフローチャートの例である。FIG. 6 is an example of a flowchart of the control of the all solid state battery system according to the second aspect of the present invention.

《全固体電池システム》
図1に示すように、本発明の全固体電池システム100は、正極集電体層、正極活物質層、固体電解質層、負極活物質層、及び負極集電体層をこの順で有する、全固体電池10、
印加された電圧に応じて膨張収縮したときに全固体電池を面方向に拘束できるようにして全固体電池10上に配置されている、圧電素子20、並びに
圧電素子に電圧を印加する、電源装置30
を具備している。
《All-solid battery system》
As shown in FIG. 1, the all solid state battery system 100 of the present invention has a positive electrode current collector layer, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector layer in this order. Solid battery 10,
The piezoelectric element 20 disposed on the all solid state battery 10 so that the all solid state battery can be constrained in the surface direction when expanded and contracted according to the applied voltage, and a power supply device for applying a voltage to the piezoelectric element 30
It has.

図1の圧電素子20の付近に存在する白抜き矢印は、圧電素子20が膨張収縮可能な方向を意味するものである。また、図1においては、圧電素子は、全固体電池を面方向に拘束できるように配置されていればよく、例えば全固体電池の各単位構造間に配置してもよく、又は全固体電池の周囲に配置される部材、例えば封止樹脂、ラミネート等の上に配置されていてもよい。   A white arrow existing in the vicinity of the piezoelectric element 20 in FIG. 1 means a direction in which the piezoelectric element 20 can expand and contract. Moreover, in FIG. 1, the piezoelectric element should just be arrange | positioned so that an all-solid-state battery can be restrained in a surface direction, for example, may be arrange | positioned between each unit structure of an all-solid-state battery, or an all-solid-state battery You may arrange | position on the members arrange | positioned around, for example, sealing resin, a laminate, etc.

全固体電池を面方向について見た場合、すなわち全固体電池の各層の積層方向から見た場合、全固体電池は、SOC(State Of Charge)に応じて不均一に膨張する。特に、全固体電池の面方向の形状が図2(a)に示す長方形である場合には、この膨張の不均一性は、図2(b)に示すように、全固体電池の短手方向において顕著に現れる。なお、膨張の状態に関しては、差異を明確にするために誇張して示しているものであり、実際の縮尺とは必ずしも一致していないことに留意されたい。   When the all solid state battery is viewed in the plane direction, that is, when viewed from the stacking direction of each layer of the all solid state battery, the all solid state battery expands non-uniformly in accordance with SOC (State Of Charge). In particular, when the shape of the all-solid-state battery in the surface direction is the rectangle shown in FIG. 2A, the non-uniformity of the expansion is the short direction of the all-solid-state battery as shown in FIG. Appears prominently. It should be noted that the state of expansion is exaggerated to clarify the difference and does not necessarily match the actual scale.

これに対し、本発明者らは、上記の構成を有する全固体電池システムにより、電池の不均一な膨張に伴う問題を抑制できることを見出した。このことを、本発明の全固体電池の具体的な態様に関し、図面を参照しながら以下で説明する。   On the other hand, the present inventors have found that the problem associated with uneven expansion of the battery can be suppressed by the all solid state battery system having the above configuration. This will be described below with reference to the drawings regarding a specific embodiment of the all solid state battery of the present invention.

《全固体電池:第一の態様》
図1に示すように、本発明の第一の態様の全固体電池システム100は、圧電素子20が、全固体電池10の面方向の中央部において、全固体電池10の短手方向に膨張収縮するように配置されている。
<< All Solid Battery: First Aspect >>
As shown in FIG. 1, the all-solid-state battery system 100 according to the first aspect of the present invention is configured such that the piezoelectric element 20 expands and contracts in the lateral direction of the all-solid-state battery 10 in the central portion of the all-solid-state battery 10. Are arranged to be.

図2に関して言及した全固体電池の不均一な膨張は、全固体電池の側面に配置された部材、例えば他の拘束部材を物理的に圧迫することとなり、かかる部材の変形をもたらすこと等の物理的な問題の原因となることがあった。   The non-uniform expansion of the all-solid battery referred to with respect to FIG. 2 physically presses a member disposed on the side surface of the all-solid-state battery, for example, another restraining member, resulting in physical deformation such as deformation of the member. Could cause general problems.

これに対し、本発明の第一の態様の全固体電池システム100によれば、図3(a)に示すように、本発明の第一の態様の全固体電池システム100の全固体電池10を充電したときに、図3(b)の黒塗り矢印で示すように、膨張が最も顕著に現れる全固体電池10の短手方向の中央部における膨張を最大限に抑制することにより、全固体電池の不均一な膨張を抑制することができる。この不均一な膨張の抑制により、電池の充放電に伴う物理的な問題を抑制することができると考えられる。   On the other hand, according to the all solid state battery system 100 of the first aspect of the present invention, as shown in FIG. 3A, the all solid state battery 10 of the all solid state battery system 100 of the first aspect of the present invention is provided. As shown by the black arrows in FIG. 3 (b), when the battery is charged, the expansion of the center of the all-solid battery 10 in the short direction of the all-solid battery 10 where the expansion is most prominent is suppressed to the maximum. Can be suppressed. It is considered that physical problems associated with charging / discharging of the battery can be suppressed by suppressing the uneven expansion.

上記の本発明は、例えば、全固体電池の面方向における寸法変化とSOCとの関係、及び圧電素子の伸びLと印加する電圧Vとの間の以下の関係式を用い、全固体電池の面方向における寸法変化と圧電素子の寸法変化の程度とが一致するように圧電素子に印加する電圧を決定することにより実現できる。
L=f・V
(式中、fは、以下で「圧電定数」として言及するものであり、圧電素子固有の比例定数である)
The above-mentioned present invention uses, for example, the relationship between the dimensional change in the surface direction of the all solid state battery and the SOC, and the following relational expression between the elongation L of the piezoelectric element and the applied voltage V, and the surface of the all solid state battery: This can be realized by determining the voltage applied to the piezoelectric element so that the dimensional change in the direction and the degree of dimensional change of the piezoelectric element coincide.
L = f · V
(In the formula, f is referred to as “piezoelectric constant” below, and is a proportional constant inherent to the piezoelectric element)

《全固体電池:第二の態様》
図4に示すように、本発明の第二の態様の全固体電池システム200は、複数個の圧電素子、
全固体電池の面方向に複数個の圧電素子によって印加されている圧力をそれぞれ検出する複数個の検出部、並びに
電源装置及び複数個の検出部と電気的に接続されている制御部
を更に具備しており、
制御部が、複数個の検出部が検出した圧力の間の差を減少させ又はなくすように、電源装置を制御する。
<< All Solid Battery: Second Aspect >>
As shown in FIG. 4, the all solid state battery system 200 of the second aspect of the present invention includes a plurality of piezoelectric elements,
A plurality of detectors for detecting pressures applied by a plurality of piezoelectric elements in the surface direction of the all-solid-state battery, and a power supply device and a controller electrically connected to the plurality of detectors. And
The control unit controls the power supply device so as to reduce or eliminate the difference between the pressures detected by the plurality of detection units.

なお、検出部及び制御部は図示していないが、これらは、上記の作用を有する限り、随意の位置に存在していてよい。   In addition, although a detection part and a control part are not shown in figure, as long as they have said effect | action, they may exist in arbitrary positions.

図2に関して言及した全固体電池の不均一な膨張は、負極活物質の反応による膨張に起因するものと考えられ、この負極活物質の膨張の結果、中央部においては内部の圧力が大きくなり、負極活物質の反応が更に促進され、更に内部の圧力が大きくなると考えられる。これに対し、全固体電池の端部においては、内部の圧力の大きな増加は観察されず、負極活物質の反応が促進しないこととなる。その結果、内部の圧力及び電池反応のムラが生じることがあった。   The non-uniform expansion of the all-solid-state battery mentioned with reference to FIG. 2 is considered to be caused by the expansion due to the reaction of the negative electrode active material. As a result of the expansion of the negative electrode active material, the internal pressure increases in the central portion. It is considered that the reaction of the negative electrode active material is further promoted and the internal pressure is further increased. On the other hand, a large increase in the internal pressure is not observed at the end portion of the all solid state battery, and the reaction of the negative electrode active material is not promoted. As a result, internal pressure and battery reaction unevenness may occur.

これに対し、本発明の第二の態様の全固体電池システム200によれば、図5(a)に示すように、本発明の第二の態様の全固体電池システム200の全固体電池10を充電したときに、図5(b)の黒塗り矢印で示すように、各圧電素子20によって均一な拘束圧を印加することができる。この均一な拘束圧の印加によれば、全固体電池全体にかかる圧力のムラを抑制し、全固体電池の内部抵抗のムラを抑制し、その結果、全固体電池内部で生じる電池反応の反応速度のムラを抑制することができると考えられる。   On the other hand, according to the all solid state battery system 200 of the second aspect of the present invention, as shown in FIG. 5A, the all solid state battery 10 of the all solid state battery system 200 of the second aspect of the present invention is provided. When charged, a uniform restraining pressure can be applied by each piezoelectric element 20, as indicated by the black arrows in FIG. By applying this uniform restraint pressure, the pressure unevenness applied to the entire solid state battery is suppressed, and the internal resistance of the all solid state battery is suppressed. As a result, the reaction rate of the battery reaction occurring inside the all solid state battery. It is thought that unevenness of the film can be suppressed.

第二の態様の全固体電池システムの制御部は、例えば図6に示すフローチャートに従って作動することができる。   The control part of the all-solid-state battery system of a 2nd aspect can operate | move according to the flowchart shown, for example in FIG.

より具体的には、図6に示すように、まず、処理を開始し、そして各検出部により圧力を検出し、検出した各圧力を用いて平均拘束圧を算出する。   More specifically, as shown in FIG. 6, first, the process is started, the pressure is detected by each detection unit, and the average restraint pressure is calculated using each detected pressure.

次いで、各点の拘束圧pと算出した平均拘束圧pとの差分を算出し、この差分と設定値aとを比較する。設定値aは、許容可能な拘束圧の誤差を規定する値であり、随意の値であってよい。差分が設定値aよりも小さい場合には、処理を終了する。 Then, it calculates the difference between the average confining pressure p a and the calculated confining pressure p of each point is compared with a set value a and the difference. The set value a is a value that defines an allowable constraint pressure error, and may be an arbitrary value. If the difference is smaller than the set value a, the process is terminated.

差分が設定値aよりも大きい場合には、各点の拘束圧pと算出した平均拘束圧pとを比較して、平均拘束圧pが大きい場合には、加圧工程を行い、各点の拘束圧pが大きい場合には、減圧工程を行う。 If the difference is greater than the set value a is compared with the mean confining pressure p a and the calculated confining pressure p of each point, when the average confining pressure p a is large, performs a pressing process, the When the point constraining pressure p is large, a pressure reducing process is performed.

「加圧工程」は、検出部が検出した圧力とあらかじめ設定された圧力との差を減少させ又はなくすように、圧電素子から放電させるものであり、「減圧工程」は、同じ目的のために圧電素子に充電するものである。ここで、放電又は充電により変化させる電圧ΔVは、以下の式に応じて決定することができる。なお、ヤング率は、例えばJIS K7161−1:2014に準拠して、引張試験機を用いて測定したものであってよい。
ΔV=(p−p)・S/(E・f)
(式中、S、E、及びfは圧電素子の面積、引張弾性率、及び圧電定数を指すものである。)
The “pressurization process” is to discharge from the piezoelectric element so as to reduce or eliminate the difference between the pressure detected by the detection unit and the preset pressure, and the “decompression process” is for the same purpose. The piezoelectric element is charged. Here, the voltage ΔV to be changed by discharging or charging can be determined according to the following equation. The Young's modulus may be measured using a tensile tester in accordance with, for example, JIS K7161-1: 2014.
ΔV = (p−p a ) · S / (E · f)
(In the formula, S, E, and f indicate the area, tensile elastic modulus, and piezoelectric constant of the piezoelectric element.)

以下では、本発明の構成要素である圧電素子、電源装置、検出部、及び制御部について説明する。   Hereinafter, a piezoelectric element, a power supply device, a detection unit, and a control unit that are components of the present invention will be described.

〈圧電素子〉
圧電素子は、印加された電圧に応じて膨張収縮したときに全固体電池を面方向に拘束できるように配置されている。
<Piezoelectric element>
The piezoelectric element is arranged so that the all solid state battery can be constrained in the surface direction when it expands and contracts in accordance with the applied voltage.

圧電素子としては、例えばポリフッ化ビニリデン(PVdF)等の圧電性の高分子を用いることができる。   As the piezoelectric element, for example, a piezoelectric polymer such as polyvinylidene fluoride (PVdF) can be used.

〈電源装置〉
電源装置は、圧電素子に電圧を印加する、電源装置である。電源装置は、交流電源であってもよく、又は直流電源であってもよい。
<Power supply unit>
The power supply device is a power supply device that applies a voltage to the piezoelectric element. The power supply device may be an AC power supply or a DC power supply.

〈検出部〉
検出部は、全固体電池の面方向に圧電素子によって印加されている圧力を検出する検出部である。
<Detection unit>
A detection part is a detection part which detects the pressure applied by the piezoelectric element in the surface direction of the all-solid-state battery.

〈制御部〉
制御部は、電源装置及び検出部と電気的に接続されている制御部である。この制御部は、検出部が検出した圧力とあらかじめ設定された圧力との差を減少させ又はなくすように電源装置を制御することができる。
<Control part>
The control unit is a control unit that is electrically connected to the power supply device and the detection unit. The control unit can control the power supply device so as to reduce or eliminate the difference between the pressure detected by the detection unit and a preset pressure.

次に、本発明の構成要素である全固体電池を構成する各層について説明する。   Next, each layer which comprises the all-solid-state battery which is a component of this invention is demonstrated.

〈正極集電体層〉
正極集電体層に用いられる導電性材料は、特に限定されず、全固体電池に使用できる公知のものを適宜採用されうる。例えば、ステンレス(SUS)、アルミニウム、銅、ニッケル、鉄、チタン、及びカーボンなどが挙げられる。
<Positive electrode current collector layer>
The conductive material used for the positive electrode current collector layer is not particularly limited, and any known material that can be used for an all-solid battery can be appropriately employed. Examples include stainless steel (SUS), aluminum, copper, nickel, iron, titanium, and carbon.

本開示にかかる正極集電体層の形状として、特に限定されず、例えば、箔状、板状、メッシュ状などを挙げることができる。これらの中で、箔状が好ましい。   The shape of the positive electrode current collector layer according to the present disclosure is not particularly limited, and examples thereof include a foil shape, a plate shape, and a mesh shape. Among these, a foil shape is preferable.

〈正極活物質層〉
正極活物質層は、少なくとも正極活物質を含有しており、好ましくは後述する固体電解質を更に含む。そのほか、使用用途や使用目的などに合わせて、例えば、導電助剤又はバインダーなどの全固体電池の正極活物質層に用いられる添加剤を含むことができる。
<Positive electrode active material layer>
The positive electrode active material layer contains at least a positive electrode active material, and preferably further includes a solid electrolyte described later. In addition, an additive used for a positive electrode active material layer of an all-solid battery, such as a conductive additive or a binder, can be included in accordance with the intended use or intended purpose.

本開示において、用いられる正極活物質材料として、特に限定されず、公知のものが用いられる。例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)、LiCo1/3Ni1/3Mn1/3、Li1+xMn2−x−y(Mは、Al、Mg、Co、Fe、Ni、及びZnから選ばれる1種以上の金属元素)で表される組成の異種元素置換Li−Mnスピネルなどが挙げられるが、これらに限定されない。 In the present disclosure, the positive electrode active material used is not particularly limited, and a known material is used. For example, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , Li 1 + x Mn 2−x− y M y O 4 (M is, Al, Mg, Co, Fe, Ni, and one or more metal elements selected from Zn) such heterogeneous element substituted Li-Mn spinel composition represented by the can be mentioned, It is not limited to these.

導電助剤としては、特に限定されず、公知のものが用いられる。例えば、VGCF(気相成長法炭素繊維、Vapor Grown Carbon Fiber)及びカーボンナノ繊維などの炭素材並びに金属材などが挙げられるが、これらに限定されない。   The conductive auxiliary agent is not particularly limited, and known ones are used. Examples thereof include, but are not limited to, carbon materials such as VGCF (vapor-grown carbon fiber, Vapor Carbon Carbon Fiber) and carbon nanofibers, and metal materials.

バインダーとしては、特に限定されず、公知のものが用いられる。例えば、ポリフッ化ビニリデン(PVdF)、カルボキシメチルセルロース(CMC)、ブタジエンゴム(BR)若しくはスチレンブタジエンゴム(SBR)などの材料又はこれらの組合せを挙げることができるが、これらに限定されない。   It does not specifically limit as a binder, A well-known thing is used. Examples include, but are not limited to, materials such as polyvinylidene fluoride (PVdF), carboxymethylcellulose (CMC), butadiene rubber (BR), styrene butadiene rubber (SBR), or combinations thereof.

〈固体電解質層〉
固体電解質層は、少なくとも固体電解質を含む。固体電解質として、特に限定されず、全固体電池の固体電解質として利用可能な材料を用いることができる。例えば、公知の硫化物固体電解質又は公知の酸化物固体電解質を用いることができる。
<Solid electrolyte layer>
The solid electrolyte layer includes at least a solid electrolyte. The solid electrolyte is not particularly limited, and a material that can be used as a solid electrolyte of an all-solid battery can be used. For example, a known sulfide solid electrolyte or a known oxide solid electrolyte can be used.

硫化物固体電解質の例として、例えば、LiS−SiS、LiI−LiS−SiS、LiI−LiS−P、LiI−LiBr−LiS−P、LiS−P−LiI−LiBr、LiS−P−GeS、LiI−LiS−P、LiI−LiPO−P、及びLiS−P等;硫化物系結晶質固体電解質、例えば、Li10GeP12、Li11、LiPS、及びLi3.250.75等;並びにこれらの組合せを挙げることができる。 Examples of the sulfide solid electrolyte include, for example, Li 2 S—SiS 2 , LiI—Li 2 S—SiS 2 , LiI—Li 2 S—P 2 S 5 , LiI—LiBr—Li 2 S—P 2 S 5 , Li 2 S-P 2 S 5 -LiI-LiBr, Li 2 S-P 2 S 5 -GeS 2, LiI-Li 2 S-P 2 O 5, LiI-Li 3 PO 4 -P 2 S 5, and Li 2 S-P 2 S 5 and the like; sulfide-based crystalline solid electrolytes such as Li 10 GeP 2 S 12 , Li 7 P 3 S 11 , Li 3 PS 4 , and Li 3.25 P 0.75 S 4 As well as combinations thereof.

酸化物固体電解質の例として、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、及びこれらの共重合体などが挙げられるが、これらに限定されない。   Examples of the oxide solid electrolyte include, but are not limited to, polyethylene oxide (PEO), polypropylene oxide (PPO), and copolymers thereof.

固体電解質は、ガラスであっても、結晶化ガラス(ガラスセラミック)であってもよい。また、固体電解質層は、上述した固体電解質以外に、必要に応じてバインダーなどを含んでもよい。具体例として、上述の「正極活物質層」で列挙された「バインダー」と同様であり、ここでは説明を省略する。   The solid electrolyte may be glass or crystallized glass (glass ceramic). Further, the solid electrolyte layer may contain a binder or the like as necessary in addition to the above-described solid electrolyte. A specific example is the same as the “binder” listed in the “positive electrode active material layer” described above, and a description thereof is omitted here.

〈負極活物質層〉
負極活物質層は、少なくとも負極活物質を含み、好ましくは上述した固体電解質を更に含む。そのほか、使用用途や使用目的などに合わせて、例えば、導電助剤又はバインダーなどの全固体電池の負極活物質層に用いられる添加剤を含むことができる。
<Negative electrode active material layer>
The negative electrode active material layer includes at least a negative electrode active material, and preferably further includes the solid electrolyte described above. In addition, an additive used for the negative electrode active material layer of the all-solid-state battery, such as a conductive additive or a binder, can be included in accordance with the intended use or intended purpose.

本開示において、用いられる負極活物質材料として、特に限定されず、リチウムイオンなどの金属イオンを吸蔵及び放出可能であればよい。例えば、Li、Sn、Si若しくはInなどの金属、リチウムとチタンとの合金、又はハードカーボン、ソフトカーボン若しくはグラファイトなどの炭素材料などが挙げられるが、これらに限定されない。   In the present disclosure, the negative electrode active material used is not particularly limited as long as it can occlude and release metal ions such as lithium ions. Examples include, but are not limited to, metals such as Li, Sn, Si, or In, alloys of lithium and titanium, or carbon materials such as hard carbon, soft carbon, or graphite.

負極活物質層に用いられる固体電解質、導電助剤、バインダーなどその他の添加剤については、上述した「正極活物質層」及び「固体電解質層」の項目で説明したものを適宜採用することができる。   As other additives such as a solid electrolyte, a conductive additive, and a binder used in the negative electrode active material layer, those described in the above-mentioned items of “positive electrode active material layer” and “solid electrolyte layer” can be appropriately employed. .

〈負極集電体層〉
負極集電体層に用いられる導電性材料は、特に限定されず、全固体電池に使用できる公知のものを適宜採用されうる。例えば、ステンレス(SUS)、アルミニウム、銅、ニッケル、鉄、チタン、及びカーボンなどが挙げられる。
<Negative electrode current collector layer>
The conductive material used for the negative electrode current collector layer is not particularly limited, and a known material that can be used for an all-solid battery can be appropriately employed. Examples include stainless steel (SUS), aluminum, copper, nickel, iron, titanium, and carbon.

本開示にかかる負極集電体層の形状として、特に限定されず、例えば、箔状、板状、メッシュ状などを挙げることができる。これらの中で、箔状が好ましい。   The shape of the negative electrode current collector layer according to the present disclosure is not particularly limited, and examples thereof include a foil shape, a plate shape, and a mesh shape. Among these, a foil shape is preferable.

10 全固体電池
20 圧電素子
30 電源装置
100、200 全固体電池システム
DESCRIPTION OF SYMBOLS 10 All-solid-state battery 20 Piezoelectric element 30 Power supply device 100, 200 All-solid-state battery system

Claims (3)

正極集電体層、正極活物質層、固体電解質層、負極活物質層、及び負極集電体層をこの順で有する、全固体電池、
印加された電圧に応じて膨張収縮したときに前記全固体電池を面方向に拘束するようにして、前記全固体電池上に配置されている、圧電素子、並びに
前記圧電素子に電圧を印加する、電源装置
を具備している、全固体電池システム。
An all-solid battery having a positive electrode current collector layer, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector layer in this order;
The piezoelectric element disposed on the all solid state battery, and a voltage is applied to the piezoelectric element so as to constrain the all solid state battery in a plane direction when expanding and contracting according to the applied voltage. An all-solid-state battery system including a power supply device.
前記圧電素子が、前記全固体電池の面方向の中央部において、前記全固体電池の短手方向に膨張収縮するように配置されている、請求項1に記載の全固体電池システム。   2. The all-solid-state battery system according to claim 1, wherein the piezoelectric element is disposed so as to expand and contract in a lateral direction of the all-solid battery at a central portion in a surface direction of the all-solid-state battery. 複数個の前記圧電素子、
前記全固体電池の面方向に複数個の前記圧電素子によって印加されている圧力をそれぞれ検出する複数個の検出部、並びに
前記電源装置及び複数個の前記検出部と電気的に接続されている制御部
を更に具備しており、
前記制御部が、複数個の前記検出部が検出した前記圧力の間の差を減少させ又はなくすように、電源装置を制御する、
請求項1に記載の全固体電池システム。
A plurality of the piezoelectric elements;
A plurality of detectors for detecting pressures applied by the plurality of piezoelectric elements in the surface direction of the all solid state battery, and a control electrically connected to the power supply device and the plurality of detectors; Further comprising
The control unit controls the power supply device so as to reduce or eliminate the difference between the pressures detected by the plurality of detection units;
The all solid state battery system according to claim 1.
JP2018023887A 2018-02-14 2018-02-14 All-solid-state battery system Active JP6977599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018023887A JP6977599B2 (en) 2018-02-14 2018-02-14 All-solid-state battery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018023887A JP6977599B2 (en) 2018-02-14 2018-02-14 All-solid-state battery system

Publications (2)

Publication Number Publication Date
JP2019140022A true JP2019140022A (en) 2019-08-22
JP6977599B2 JP6977599B2 (en) 2021-12-08

Family

ID=67695470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018023887A Active JP6977599B2 (en) 2018-02-14 2018-02-14 All-solid-state battery system

Country Status (1)

Country Link
JP (1) JP6977599B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021019986A1 (en) 2019-07-30 2021-02-04 旭化成株式会社 Alkaline water electrolytic cell
CN112864481A (en) * 2019-11-26 2021-05-28 现代自动车株式会社 All-solid-state battery using expansion layer to increase life and method of operating the same
US20220328860A1 (en) * 2021-04-09 2022-10-13 Sakuu Corporation Ceramic lithium battery with piezoelectric compensation layers

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010160981A (en) * 2009-01-08 2010-07-22 Toyota Motor Corp Battery system
JP2010205479A (en) * 2009-03-02 2010-09-16 Toyota Motor Corp All-solid battery employing power compact
JP2012048853A (en) * 2010-08-24 2012-03-08 Toyota Motor Corp All-solid battery
JP2015095281A (en) * 2013-11-08 2015-05-18 トヨタ自動車株式会社 Charging system of solid state battery
JP2017027774A (en) * 2015-07-22 2017-02-02 日本電気株式会社 Battery pack, battery device, and battery control method
JP2017098184A (en) * 2015-11-27 2017-06-01 トヨタ自動車株式会社 All-solid-state secondary battery system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010160981A (en) * 2009-01-08 2010-07-22 Toyota Motor Corp Battery system
JP2010205479A (en) * 2009-03-02 2010-09-16 Toyota Motor Corp All-solid battery employing power compact
JP2012048853A (en) * 2010-08-24 2012-03-08 Toyota Motor Corp All-solid battery
JP2015095281A (en) * 2013-11-08 2015-05-18 トヨタ自動車株式会社 Charging system of solid state battery
JP2017027774A (en) * 2015-07-22 2017-02-02 日本電気株式会社 Battery pack, battery device, and battery control method
JP2017098184A (en) * 2015-11-27 2017-06-01 トヨタ自動車株式会社 All-solid-state secondary battery system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021019986A1 (en) 2019-07-30 2021-02-04 旭化成株式会社 Alkaline water electrolytic cell
CN112864481A (en) * 2019-11-26 2021-05-28 现代自动车株式会社 All-solid-state battery using expansion layer to increase life and method of operating the same
US20220328860A1 (en) * 2021-04-09 2022-10-13 Sakuu Corporation Ceramic lithium battery with piezoelectric compensation layers

Also Published As

Publication number Publication date
JP6977599B2 (en) 2021-12-08

Similar Documents

Publication Publication Date Title
JP6123642B2 (en) All-solid battery charging system
JP6206470B2 (en) All-solid-state secondary battery system
JP6898585B2 (en) Secondary battery state estimation method and state estimation system
JP2007012598A (en) Nonaqueous electrolyte secondary battery and battery module
JP3457624B2 (en) Method of manufacturing flat battery
JP2016018704A (en) All-solid battery
JP2018116914A (en) Battery module
WO2004047214A1 (en) Lithium-ion secondary battery system and method for operating lithium-ion secondary battery
JP6977599B2 (en) All-solid-state battery system
JP5510553B2 (en) Battery control device
JP2012089446A (en) Battery pack for vehicle and vehicle
JP6814391B2 (en) Battery module
JP2010080279A (en) Secondary battery system and vehicle using the same
US11990641B2 (en) Separator having no separator substrate and electrochemical device including the same
JP2016025716A (en) Nonaqueous electrolyte secondary battery system
JP2019145285A (en) All-solid battery
US10186693B2 (en) Flat secondary battery
JP7010102B2 (en) All solid state battery
JP7022308B2 (en) Battery module
KR101634919B1 (en) Nonaqueous electrolyte secondary battery
JP2019145286A (en) All-solid battery
CN114665099A (en) Nonaqueous electrolyte secondary battery
JP2022150874A (en) All-solid-state lithium-ion battery control system
JP7174326B2 (en) assembled battery
KR102197360B1 (en) Electrode Assembly Comprising One-sided Coating Electrode of Improved Mechanical Strength

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211025

R151 Written notification of patent or utility model registration

Ref document number: 6977599

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151