JP6814391B2 - Battery module - Google Patents

Battery module Download PDF

Info

Publication number
JP6814391B2
JP6814391B2 JP2017187913A JP2017187913A JP6814391B2 JP 6814391 B2 JP6814391 B2 JP 6814391B2 JP 2017187913 A JP2017187913 A JP 2017187913A JP 2017187913 A JP2017187913 A JP 2017187913A JP 6814391 B2 JP6814391 B2 JP 6814391B2
Authority
JP
Japan
Prior art keywords
negative electrode
pressurizing
active material
positive electrode
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017187913A
Other languages
Japanese (ja)
Other versions
JP2019061937A (en
Inventor
光洋 葛葉
光洋 葛葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017187913A priority Critical patent/JP6814391B2/en
Publication of JP2019061937A publication Critical patent/JP2019061937A/en
Application granted granted Critical
Publication of JP6814391B2 publication Critical patent/JP6814391B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Description

本発明は電池モジュールに関する。詳しくは、充放電可能な単電池を複数接続してなる組電池を備えた電池モジュールに関する。 The present invention relates to a battery module. More specifically, the present invention relates to a battery module including an assembled battery formed by connecting a plurality of chargeable and dischargeable single batteries.

リチウムイオン二次電池等の充放電可能な電池を単電池とし、当該単電池を複数備えた組電池は、車両搭載用電源などに好ましく用いられている。かかる組電池は、例えば、角型の単電池を所定の配列方向に沿って相互に隣接するように複数配列し、該配列方向に沿って各々の単電池を所定の拘束荷重を加えつつ拘束した後に、各々の単電池の電極端子(正極端子および負極端子)をバスバーによって電気的に接続することによって構築される。かかる組電池を車両搭載用電源などとして用いる場合、一般に、当該組電池の充放電等を制御する制御部と接続された電池モジュールの態様で好適に使用される。かかる構成の電池モジュールにおいて、組電池を構成する各単電池に掛かる拘束荷重を調整して、組電池の電池性能向上や不具合低減を図る技術が検討されている。かかる技術の例として、特許文献1および特許文献2に記載されたものが挙げられる。 A rechargeable / dischargeable battery such as a lithium ion secondary battery is used as a cell, and an assembled battery having a plurality of the cell is preferably used as a power source for mounting on a vehicle. In such an assembled battery, for example, a plurality of square cells are arranged so as to be adjacent to each other along a predetermined arrangement direction, and each cell is restrained while applying a predetermined restraining load along the arrangement direction. Later, it is constructed by electrically connecting the electrode terminals (positive terminal and negative terminal) of each cell with a bus bar. When such an assembled battery is used as a power source for mounting on a vehicle, it is generally preferably used in the form of a battery module connected to a control unit that controls charging / discharging of the assembled battery. In a battery module having such a configuration, a technique for adjusting the restraint load applied to each cell constituting the assembled battery to improve the battery performance of the assembled battery and reduce defects is being studied. Examples of such techniques include those described in Patent Document 1 and Patent Document 2.

特開2013−251060号公報Japanese Unexamined Patent Publication No. 2013-251060 特開2014−157747号公報Japanese Unexamined Patent Publication No. 2014-157747

ところで、かかる構成の電池モジュールにおいて、組電池の充電電流または充電時間が過度に増加すると、各単電池の内部で電解液中のリチウム(Li)等の金属が析出して電池性能が低下することがある。例えば特許文献1には、単電池の電極体の反応領域の端部を含む領域に拘束荷重を与える拘束機構を備えた組電池が開示されているが、かかる構成の組電池によると、電極体における拘束荷重が加えられた拘束部と加えられていない非拘束部との境界において、局所的にLi等の金属が析出しやすい虞があった。一方で、近年、組電池の燃費性能向上の観点から、大電流で充放電を行うことができる電池の実現が求められており、大電流で充電しても単電池内部においてLi等の金属析出が生じないような技術の創出が求められている。 By the way, in a battery module having such a configuration, if the charging current or charging time of the assembled battery is excessively increased, metals such as lithium (Li) in the electrolytic solution are precipitated inside each cell, and the battery performance is deteriorated. There is. For example, Patent Document 1 discloses an assembled battery having a restraining mechanism for applying a restraining load to a region including an end of a reaction region of an electrode body of a cell, but according to the assembled battery having such a configuration, the electrode body. At the boundary between the restrained portion to which the restraining load is applied and the non-constraining portion to which the restraining load is not applied, there is a possibility that a metal such as Li is likely to be locally deposited. On the other hand, in recent years, from the viewpoint of improving the fuel efficiency of an assembled battery, the realization of a battery capable of charging and discharging with a large current has been required, and even if the battery is charged with a large current, metals such as Li are deposited inside the cell. There is a need to create a technology that does not cause the problem.

本発明は、かかる点に鑑みてなされたものであり、充電電流を大きくしてもLiなどの金属析出が好適に抑制され得る電池モジュールを提供することを目的とする。 The present invention has been made in view of this point, and an object of the present invention is to provide a battery module capable of suitably suppressing metal precipitation such as Li even if the charging current is increased.

本発明によって提供される電池モジュールは、組電池と制御部とを備える。上記組電池は、所定の方向に配列した複数の充放電可能な単電池と、上記配列された単電池の間隙および該配列方向の両端部のうちの少なくとも一箇所に配置された押圧部材と、が該配列方向に拘束荷重を加えられつつ拘束されて構成されている。上記単電池は、扁平形状の電極体と電解液とが電池ケースに収容されて構成されており、該電極体は正極活物質層を有する正極シートと負極活物質層を有する負極シートとを備えている。上記正極シートにおける上記電池ケースの底面と平行方向である幅方向の一方の端部には、上記正極活物質層を有しない正極露出部が形成されており、且つ、上記負極シートにおける上記幅方向の他方の端部には、上記負極活物質層を有しない負極露出部が形成されている。また、上記電極体は、上記正極活物質層と上記負極活物質層とが対向した扁平形状のコア部を有している。 The battery module provided by the present invention includes an assembled battery and a control unit. The assembled battery includes a plurality of rechargeable and dischargeable cells arranged in a predetermined direction, a pressing member arranged at least one of the gaps between the arranged cells and both ends in the arrangement direction. Is constrained while being constrained in the arrangement direction. The cell is configured by housing a flat electrode body and an electrolytic solution in a battery case, and the electrode body includes a positive electrode sheet having a positive electrode active material layer and a negative electrode sheet having a negative electrode active material layer. ing. A positive electrode exposed portion having no positive electrode active material layer is formed at one end of the positive electrode sheet in the width direction parallel to the bottom surface of the battery case, and the negative electrode sheet has the width direction. A negative electrode exposed portion having no negative electrode active material layer is formed at the other end portion of the above. Further, the electrode body has a flat core portion in which the positive electrode active material layer and the negative electrode active material layer face each other.

ここで、上記押圧部材は、上記コア部の上記幅方向の両端と上記正負極露出部それぞれとの境界を包含する両縁部に拘束荷重を加える第1加圧部と、該両縁部よりも上記コア部の上記幅方向の中央部に拘束荷重を加える第2加圧部と、を備えている。 Here, the pressing member is formed by a first pressurizing portion that applies a restraining load to both edges including the boundary between both ends of the core portion in the width direction and each of the positive and negative electrode exposed portions, and the both edge portions. Also includes a second pressurizing portion that applies a restraining load to the central portion of the core portion in the width direction.

上記制御部は、時間計測手段と荷重制御手段とを備えている。上記時間計測手段は、上記組電池の充電継続時間を計測する。上記荷重制御手段は、上記充電継続時間が所定の閾値より小さいとき上記第1加圧部により上記両縁部に拘束荷重を加え、上記充電継続時間が所定の閾値以上のとき上記第1加圧部により上記両縁部に拘束荷重を加えつつ、上記第2加圧部により上記中央部に拘束荷重を加える。 The control unit includes a time measuring means and a load controlling means. The time measuring means measures the charging duration of the assembled battery. The load control means applies a restraining load to both edges by the first pressurizing portion when the charging continuation time is smaller than a predetermined threshold value, and when the charging continuation time is equal to or longer than a predetermined threshold value, the first pressurizing portion is applied. While applying a restraining load to both edges by the portion, a restraining load is applied to the central portion by the second pressurizing portion.

かかる構成によると、Li等の金属が析出しがちであった部位、すなわち、電極体における拘束荷重が加えられた部位(拘束部)と拘束荷重が加えられていない部位(非拘束部)との境界が、充電継続時間が長くなるのにつれて電極体の幅方向の両縁部から中央部に向けて移動する。このため、Li等の金属析出の発生が未然に防止されうる。かかる技術によると、充電電流を大きくしても、Li等の金属析出の発生が抑制される電池モジュールを実現することができる。 According to such a configuration, a portion where a metal such as Li tends to precipitate, that is, a portion of the electrode body to which a restraint load is applied (constrained portion) and a portion to which a restraint load is not applied (non-restraint portion). The boundary moves from both edges in the width direction of the electrode body toward the center as the charging duration increases. Therefore, the occurrence of metal precipitation such as Li can be prevented. According to such a technique, it is possible to realize a battery module in which the generation of metal precipitation such as Li is suppressed even if the charging current is increased.

本発明の一実施形態における単電池を模式的に示す斜視図である。It is a perspective view which shows typically the cell cell in one Embodiment of this invention. 本発明の一実施形態に係る電極体を模式的に示す斜視図である。It is a perspective view which shows typically the electrode body which concerns on one Embodiment of this invention. 本発明の一実施形態に係る電池モジュールを模式的に示す図である。It is a figure which shows typically the battery module which concerns on one Embodiment of this invention. 本発明の一実施形態に係る電池モジュールにおける押圧部材を説明する正面図である。It is a front view explaining the pressing member in the battery module which concerns on one Embodiment of this invention. 本発明の一実施形態における押圧部材を示す平面図である。It is a top view which shows the pressing member in one Embodiment of this invention. 本発明の一実施形態における押圧部材を示す平面図である。It is a top view which shows the pressing member in one Embodiment of this invention. 本発明の一実施形態における押圧部材を示す平面図である。It is a top view which shows the pressing member in one Embodiment of this invention. 本発明の一実施形態に係る電池制御システムのフローチャートである。It is a flowchart of the battery control system which concerns on one Embodiment of this invention. 実施例と比較例に係る組電池におけるLiが析出しない限界電流の測定結果を示すグラフである。It is a graph which shows the measurement result of the critical current which Li does not precipitate in the assembled battery which concerns on Example and Comparative Example.

以下、図面を参照しながら本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄(例えば、電極体や電解液の構成および製法、リチウムイオン二次電池の構築に係る一般的技術等)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。また、以下の図面において、同じ作用を奏する部材、部位には同じ符号を付し、重複する説明は省略または簡略化することがある。各図における寸法関係(長さ、幅、厚さ等)は、必ずしも実際の寸法関係を反映するものではない。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. It should be noted that matters other than those specifically mentioned in the present specification and necessary for carrying out the present invention (for example, the constitution and manufacturing method of the electrode body and the electrolytic solution, and general matters relating to the construction of a lithium ion secondary battery). (Technology, etc.) can be grasped as a design item of a person skilled in the art based on the prior art in the field. The present invention can be carried out based on the contents disclosed in the present specification and common general technical knowledge in the art. Further, in the following drawings, members and parts that perform the same action are designated by the same reference numerals, and duplicate description may be omitted or simplified. The dimensional relationships (length, width, thickness, etc.) in each figure do not necessarily reflect the actual dimensional relationships.

本発明の一実施形態に係る電池モジュールとして、リチウムイオン二次電池を単電池とし、当該リチウムイオン二次電池を複数接続してなる組電池を備えた電池モジュールを例に挙げて説明するが、本発明をかかる実施形態に記載されたものに限定することを意図したものではない。 As a battery module according to an embodiment of the present invention, a battery module including a lithium ion secondary battery as a single battery and an assembled battery formed by connecting a plurality of the lithium ion secondary batteries will be described as an example. The present invention is not intended to be limited to those described in such embodiments.

<単電池の構成>
本実施形態に係る電池モジュールは、単電池を複数備えた組電池と、当該組電池の拘束状態を制御する制御部と、を備えている。本明細書では、先ず、組電池を構成する単電池の具体的な構成を説明する。
<Structure of cell>
The battery module according to the present embodiment includes an assembled battery including a plurality of cells and a control unit for controlling a restrained state of the assembled battery. In the present specification, first, a specific configuration of the cell cells constituting the assembled battery will be described.

図1は本実施形態における単電池20を模式的に示す斜視図であり、図2は本実施形態における電極体30を模式的に示す斜視図である。本実施形態に係る電池モジュールにおいて、組電池を構成する単電池としては、図1に示すような角型の単電池20が用いられている。かかる単電池20は、角型の電池ケース50の内部に、図2に示す電極体30が収容されることによって形成されている。 FIG. 1 is a perspective view schematically showing the cell 20 in the present embodiment, and FIG. 2 is a perspective view schematically showing the electrode body 30 in the present embodiment. In the battery module according to the present embodiment, the square cell 20 as shown in FIG. 1 is used as the cell constituting the assembled battery. The cell 20 is formed by accommodating the electrode body 30 shown in FIG. 2 inside the square battery case 50.

図1に示すように、電池ケース50は、上面が開放された扁平な角型のケース本体52と、ケース本体52の上面を塞ぐ蓋体54とから構成されている。電池ケース50の蓋体54には正極端子60と負極端子62とが設けられており、これらの電極端子は電池ケース50内に収容された電極体30(図2参照)に電気的に接続されている。 As shown in FIG. 1, the battery case 50 is composed of a flat square case body 52 having an open upper surface and a lid 54 that closes the upper surface of the case body 52. The lid 54 of the battery case 50 is provided with a positive electrode terminal 60 and a negative electrode terminal 62, and these electrode terminals are electrically connected to an electrode body 30 (see FIG. 2) housed in the battery case 50. ing.

上記した電池ケース50の内部には、電極体30とともに電解液が収容されている。電解液には、従来からリチウムイオン二次電池に用いられるものと同様のものを特に限定なく使用することができる。かかる電解液の一例としては、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との混合溶媒にLiPFを含有させた非水電解液が挙げられる。 Inside the battery case 50 described above, an electrolytic solution is housed together with the electrode body 30. As the electrolytic solution, the same one as that conventionally used for a lithium ion secondary battery can be used without particular limitation. An example of such an electrolytic solution is a non-aqueous electrolytic solution in which LiPF 6 is contained in a mixed solvent of ethylene carbonate (EC), dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC).

図2に示すように、本実施形態における電極体30は、正極活物質層33を有する正極シート31と、負極活物質層37を有する負極シート35とを、セパレータ39を介して積層させ、該積層体を捲回することによって形成された扁平形状の捲回電極体である。電極体30の幅方向Wの中央部には、正極活物質層33と負極活物質層37とが対向した扁平形状のコア部30Aが形成されている。このコア部30Aが単電池20における主な充放電反応の場となる。また、電極体30の幅方向Wの両側縁部には、後述する正極露出部34(または負極露出部38)からなる端子接続部30Bが形成されており、当該端子接続部30Bが電極端子(図1中の正極端子60、負極端子62)と電気的に接続される。電極体30は、その幅方向Wが電池ケース50の底面と平行方向となるように、電池ケース50に収容される。 As shown in FIG. 2, in the electrode body 30 of the present embodiment, a positive electrode sheet 31 having a positive electrode active material layer 33 and a negative electrode sheet 35 having a negative electrode active material layer 37 are laminated via a separator 39, and the electrode body 30 is laminated. It is a flat-shaped wound electrode body formed by winding a laminated body. A flat core portion 30A in which the positive electrode active material layer 33 and the negative electrode active material layer 37 face each other is formed in the central portion of the electrode body 30 in the width direction W. The core portion 30A serves as a main charge / discharge reaction field in the cell 20. Further, terminal connecting portions 30B including positive electrode exposed portions 34 (or negative electrode exposed portions 38), which will be described later, are formed on both side edges of the electrode body 30 in the width direction W, and the terminal connecting portions 30B are electrode terminals ( It is electrically connected to the positive electrode terminal 60 and the negative electrode terminal 62) in FIG. The electrode body 30 is housed in the battery case 50 so that its width direction W is parallel to the bottom surface of the battery case 50.

以下、電極体30を構成する各部材の具体的な構造を説明する。正極シート31は、アルミニウム箔等からなる長尺の正極集電体32の表面に、正極活物質層33が形成されることによって構成されている。また、正極シート31の幅方向Wの一方の端部(側縁部)には、正極活物質層33が付与されておらず、正極集電体32が露出した正極露出部34が形成されている。正極活物質層33には、リチウムイオンを吸蔵・放出する材料である正極活物質が含まれている。かかる正極活物質には、例えば、リチウム元素と一種または二種以上の遷移金属元素とを含むリチウム遷移金属複合酸化物が用いられる。このリチウム遷移金属複合酸化物としては、例えば、リチウムニッケル複合酸化物(例えば、LiNiO)、リチウムニッケルコバルトマンガン複合酸化物(例えば、LiNi1/3Co1/3Mn1/3)などが挙げられる。また、正極活物質層33には、正極活物質以外の添加材として導電材やバインダが含まれていてもよい。導電材としては、例えば、カーボンブラックやカーボンファイバーなどのカーボン材料などが用いられる。また、バインダとしては、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、スチレンブタジエンゴム(SBR)などが用いられる。 Hereinafter, the specific structure of each member constituting the electrode body 30 will be described. The positive electrode sheet 31 is formed by forming a positive electrode active material layer 33 on the surface of a long positive electrode current collector 32 made of aluminum foil or the like. Further, the positive electrode active material layer 33 is not provided on one end (side edge portion) of the positive electrode sheet 31 in the width direction W, and the positive electrode exposed portion 34 in which the positive electrode current collector 32 is exposed is formed. There is. The positive electrode active material layer 33 contains a positive electrode active material which is a material that occludes and releases lithium ions. As such a positive electrode active material, for example, a lithium transition metal composite oxide containing a lithium element and one or more kinds of transition metal elements is used. Examples of the lithium transition metal composite oxide include a lithium nickel composite oxide (for example, LiNiO 2 ) and a lithium nickel cobalt manganese composite oxide (for example, LiNi 1/3 Co 1/3 Mn 1/3 O 2 ). Can be mentioned. Further, the positive electrode active material layer 33 may contain a conductive material or a binder as an additive other than the positive electrode active material. As the conductive material, for example, a carbon material such as carbon black or carbon fiber is used. Further, as the binder, for example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), styrene butadiene rubber (SBR) and the like are used.

一方、負極シート35は、銅箔等からなる長尺の負極集電体36の表面に、負極活物質層37が形成されることによって構成されている。上記した正極シート31と同様に、負極シート35においても幅方向Wの他方の端部(側縁部)に負極活物質層37が形成されておらず、負極集電体36が露出した負極露出部38が設けられている。かかる負極活物質層37には負極活物質が含まれており、かかる負極活物質としては、例えば、黒鉛(グラファイト)、難黒鉛化炭素(ハードカーボン)、易黒鉛化炭素(ソフトカーボン)、カーボンナノチューブ、あるいはこれらを組み合わせた炭素材料などが用いられる。また、その他の添加材としては、バインダ、増粘剤、分散剤等が挙げられる。バインダとしては、例えば、上述した正極活物質層33と同様のものを用いることができる。増粘剤としてはカルボキシメチルセルロース(CMC)やメチルセルロース(MC)などを用いることができる。 On the other hand, the negative electrode sheet 35 is formed by forming a negative electrode active material layer 37 on the surface of a long negative electrode current collector 36 made of copper foil or the like. Similar to the positive electrode sheet 31 described above, also in the negative electrode sheet 35, the negative electrode active material layer 37 is not formed at the other end (side edge portion) in the width direction W, and the negative electrode current collector 36 is exposed. A portion 38 is provided. The negative electrode active material layer 37 contains a negative electrode active material, and examples of the negative electrode active material include graphite (graphite), non-graphitized carbon (hard carbon), easily graphitized carbon (soft carbon), and carbon. A nanotube or a carbon material combining these is used. In addition, examples of other additives include binders, thickeners, dispersants and the like. As the binder, for example, the same binder as the positive electrode active material layer 33 described above can be used. As the thickener, carboxymethyl cellulose (CMC), methyl cellulose (MC) and the like can be used.

また、正極シート31と負極シート35との間に配置されるセパレータ39は、リチウムイオンを通過させることができる微細な孔が複数形成された多孔質の絶縁部材である。かかるセパレータ39には、例えば、ポリプロピレン(PP)とポリエチレン(PE)とポリプロピレン(PP)を順に積層させた3層構造の樹脂製の多孔性シートなどを用いることができる。 Further, the separator 39 arranged between the positive electrode sheet 31 and the negative electrode sheet 35 is a porous insulating member in which a plurality of fine pores through which lithium ions can pass are formed. As the separator 39, for example, a resin porous sheet having a three-layer structure in which polypropylene (PP), polyethylene (PE), and polypropylene (PP) are laminated in this order can be used.

<電池モジュールの構成>
図3は本実施形態に係る電池モジュール100を模式的に示す図である。また、図4は本実施形態に係る電池モジュール100における押圧部材40を説明する正面図であり、図5〜図7はそれぞれ一実施形態に係る押圧部材40を示す平面図である。なお、図4は押圧部材40と電極体30との位置関係を説明するために、図中の上側に単電池20を記載しており、当該単電池20内部に収容された電極体30を模式的に示している。
<Battery module configuration>
FIG. 3 is a diagram schematically showing the battery module 100 according to the present embodiment. Further, FIG. 4 is a front view for explaining the pressing member 40 in the battery module 100 according to the present embodiment, and FIGS. 5 to 7 are plan views showing the pressing member 40 according to one embodiment, respectively. In addition, in FIG. 4, in order to explain the positional relationship between the pressing member 40 and the electrode body 30, the cell 20 is shown on the upper side in the drawing, and the electrode body 30 housed inside the cell 20 is modeled. Is shown.

図3に示すように、本実施形態に係る電池モジュール100は、複数(図3では2個)の単電池20A、20Bを備えた組電池10と、当該組電池10の拘束状態を制御する制御部90とを備えている。 As shown in FIG. 3, the battery module 100 according to the present embodiment is a control that controls an assembled battery 10 including a plurality of (two in FIG. 3) single batteries 20A and 20B and a restrained state of the assembled battery 10. It is provided with a part 90.

組電池10を構成する各々の単電池20A、20Bは、所定の配列方向Xに沿って相互に隣接して配列されている。本実施形態においては、この単電池20A、20B内部の電極体30の扁平面が各単電池20A、20Bの間で対向するように、各々の単電池20A、20Bが配列されている。また、各々の単電池20A、20Bは、バスバー64によって正極端子60と負極端子62とが電気的に接続されている。 The cells 20A and 20B constituting the assembled battery 10 are arranged adjacent to each other along a predetermined arrangement direction X. In the present embodiment, the respective cells 20A and 20B are arranged so that the flat surfaces of the electrode bodies 30 inside the cells 20A and 20B face each other between the cells 20A and 20B. Further, in each of the cells 20A and 20B, the positive electrode terminal 60 and the negative electrode terminal 62 are electrically connected by a bus bar 64.

上記した単電池20A、20Bは、配列方向Xに沿って所定の拘束荷重で拘束されている。本実施形態においては、単電池20A、20Bを拘束する拘束部材として、一対のエンドプレート70A、70Bと締付け用ビーム材72とを備えている。具体的には、一対のエンドプレート70A、70Bは、配列方向Xにおける最外側にそれぞれ配置されており、配列方向Xに沿って延びる締付け用ビーム材72を、一対のエンドプレート70A、70Bを架橋するように取り付けることによって、単電池20A、20Bを配列方向Xに沿って拘束することができる。 The above-mentioned cells 20A and 20B are constrained by a predetermined constraining load along the arrangement direction X. In the present embodiment, a pair of end plates 70A and 70B and a tightening beam material 72 are provided as restraining members for restraining the cells 20A and 20B. Specifically, the pair of end plates 70A and 70B are arranged on the outermost side in the arrangement direction X, respectively, and the tightening beam material 72 extending along the arrangement direction X bridges the pair of end plates 70A and 70B. By attaching the cells 20A and 20B in such a manner, the cells 20A and 20B can be restrained along the arrangement direction X.

そして、図3に示すように、本実施形態に係る電池モジュール100では、配列された単電池20A、20Bの間隙と両外側(すなわち単電池20A、20Bの配列方向の両端部)に、当該単電池20A、20Bとともに拘束される押圧部材40が配置されている。かかる押圧部材40は、単電池20A、20Bの側面に対向するように配置された支持板42と、当該支持板42の表面から配列方向Xに沿って突出した加圧部44とを備えている。かかる構造の押圧部材40を単電池20A、20Bの間隙および両外側に配置し、単電池20A、20Bを配列方向Xに沿って拘束することによって、押圧部材40の加圧部44で単電池20A、20Bの側面を押圧して、電池ケース50内に収容された電極体30に所定の拘束荷重を加えることができる。 Then, as shown in FIG. 3, in the battery module 100 according to the present embodiment, the single batteries 20A and 20B are arranged in the gaps and both outer sides (that is, both ends in the arrangement direction of the batteries 20A and 20B). A pressing member 40 that is restrained together with the batteries 20A and 20B is arranged. The pressing member 40 includes a support plate 42 arranged so as to face the side surfaces of the cells 20A and 20B, and a pressurizing portion 44 protruding from the surface of the support plate 42 along the arrangement direction X. .. By arranging the pressing members 40 having such a structure in the gap between the cells 20A and 20B and on both outer sides and restraining the cells 20A and 20B along the arrangement direction X, the pressing member 44 of the pressing member 40 controls the cells 20A. , The side surface of 20B can be pressed to apply a predetermined restraining load to the electrode body 30 housed in the battery case 50.

そして、本実施形態においては、図4〜図7に示すように、押圧部材40の加圧部44は、第1加圧部44a、第2A加圧部44b、44cおよび第2B加圧部44d、44eに分割されている。 Then, in the present embodiment, as shown in FIGS. 4 to 7, the pressurizing portion 44 of the pressing member 40 includes a first pressurizing portion 44a, a second A pressurizing portion 44b, 44c, and a second B pressurizing portion 44d. , 44e.

図4および図5に示すように、押圧部材40の第1加圧部44aは、電極体30のコア部30Aの幅方向Wの両側縁に隣接するように一対設けられており、コア部30Aの幅方向Wの両縁部(具体的には、コア部30Aの幅方向Wの両端と正負極露出部34、38それぞれとの境界を包含する部位。以下、この部位を「第1拘束部」ともいう。)を押圧することができるように、形成位置や寸法が調製されている。ここで、一対の第1加圧部44aの間隔L1は、電極体30のコア部30Aの幅方向Wの長さL0より短くなるように設定されている。 As shown in FIGS. 4 and 5, a pair of first pressurizing portions 44a of the pressing member 40 are provided so as to be adjacent to both side edges of the core portion 30A of the electrode body 30 in the width direction W, and the core portions 30A are provided. Both edges of the width direction W (specifically, a portion including the boundary between both ends of the width direction W of the core portion 30A and the positive and negative electrode exposed portions 34 and 38. Hereinafter, this portion is referred to as a “first restraint portion”. The formation position and dimensions are adjusted so that the) can be pressed. Here, the distance L1 between the pair of first pressurizing portions 44a is set to be shorter than the length L0 of the core portion 30A of the electrode body 30 in the width direction W.

図4および図6に示すように、押圧部材40の一対の第2A加圧部44b、44cは、一対の第1加圧部44aの幅方向Wの両内縁に隣接するように設けられており、コア部30Aの幅方向Wの両縁部(第1拘束部)よりも中央寄りの部分(以下、この部位を「第2A拘束部」ともいう。)に拘束荷重を加えることができるように、形成位置や寸法が調整されている。ここで、一対の第2A加圧部44cの間隔L2は、一対の第1加圧部44aの間隔L1より短くなるように設定されている。 As shown in FIGS. 4 and 6, the pair of second A pressurizing portions 44b and 44c of the pressing member 40 are provided so as to be adjacent to both inner edges of the pair of first pressurizing portions 44a in the width direction W. , A restraining load can be applied to a portion of the core portion 30A closer to the center than both edges (first restraint portion) in the width direction W (hereinafter, this portion is also referred to as a "second A restraint portion"). , The formation position and dimensions are adjusted. Here, the interval L2 between the pair of second A pressurizing portions 44c is set to be shorter than the interval L1 between the pair of first pressurizing portions 44a.

図4および図7に示すように、押圧部材40の一対の第2B加圧部44d、44eは、一対の第2A加圧部44cの幅方向Wの両内縁に隣接するように設けられており、コア部30Aの幅方向Wの中央部であって、第2A拘束部よりもさらに幅方向Wの中央寄りの部位(以下、この部位を「第2B拘束部」ともいう。)に拘束荷重を加えることができるように、形成位置や寸法が調整されている。 As shown in FIGS. 4 and 7, the pair of second B pressurizing portions 44d and 44e of the pressing member 40 are provided so as to be adjacent to both inner edges of the pair of second A pressurizing portions 44c in the width direction W. , The restraining load is applied to the central portion of the core portion 30A in the width direction W, which is closer to the center of the width direction W than the second A restraining portion (hereinafter, this portion is also referred to as "second B restraining portion"). The formation position and dimensions have been adjusted so that they can be added.

本実施形態において、図3に示すように、支持板42を介して、第2A加圧部44b、44cおよび第2B加圧部44d、44eには油圧供給管80が接続されており、当該油圧供給管80から供給される油圧を調整することによって第2A加圧部44b、44cおよび第2B加圧部44d、44eを単電池20A、20Bの配列方向Xに向かって膨張/収縮させることができる。 In the present embodiment, as shown in FIG. 3, a hydraulic supply pipe 80 is connected to the second A pressurizing portions 44b and 44c and the second B pressurizing portions 44d and 44e via the support plate 42, and the oil pressure thereof. By adjusting the oil pressure supplied from the supply pipe 80, the second A pressurizing portions 44b and 44c and the second B pressurizing portions 44d and 44e can be expanded / contracted in the arrangement direction X of the cells 20A and 20B. ..

好ましい一態様において、第1加圧部44aは、上述した第2A加圧部44b、44cおよび第2B加圧部44d、44eとは異なり、膨張/収縮可能に構成されていない。かかる態様によると、電極体30のコア部30Aの幅方向Wの両縁部(第1拘束部)は、常に拘束荷重が加えられた状態となっている。あるいは、第1加圧部44aは、上述した第2加圧部44b、44cおよび第2B加圧部44d、44eと同様に、支持板42を介して油圧供給管80が接続されており、当該油圧供給管80から供給される油圧を調整することによって膨張/収縮可能に構成されていてもよい。 In a preferred embodiment, the first pressurizing section 44a is not configured to be expandable / contractible, unlike the second A pressurizing section 44b, 44c and the second B pressurizing section 44d, 44e described above. According to this aspect, both edges (first restraint portions) of the core portion 30A of the electrode body 30 in the width direction W are always in a state where a restraint load is applied. Alternatively, the first pressurizing portion 44a is connected to the hydraulic supply pipe 80 via the support plate 42 in the same manner as the second pressurizing portions 44b and 44c and the second B pressurizing portions 44d and 44e described above. It may be configured to be expandable / contractible by adjusting the hydraulic pressure supplied from the hydraulic pressure supply pipe 80.

<制御部>
図3に示すように、本実施形態に係る電池モジュール100は、組電池10の拘束状態を制御する制御部90を備えている。図示は省略するが、制御部90は、電池モジュール100が搭載される外部機器(車両など)と接続されている。制御部90は、組電池10の充電継続時間を計測する充電時間計測手段92を備えている。
<Control unit>
As shown in FIG. 3, the battery module 100 according to the present embodiment includes a control unit 90 that controls a restrained state of the assembled battery 10. Although not shown, the control unit 90 is connected to an external device (vehicle or the like) on which the battery module 100 is mounted. The control unit 90 includes a charging time measuring means 92 for measuring the charging duration of the assembled battery 10.

そして、本実施形態に係る電池モジュール100では、制御部90に荷重制御手段94が設けられており、当該荷重制御手段94が押圧部材40の加圧部44の膨張/収縮を調整することによって、電極体30のコア部30Aへ加えられる拘束荷重を制御できるように構成されている。具体的には、荷重制御手段94は、充電時間計測手段92と電気的に接続されているとともに油圧供給管80と接続されている。そして、充電時間計測手段92が計測した充電継続時間が所定の閾値以上となった際に、その情報が荷重制御手段94に送信される。荷重制御手段94は、かかる情報に基づいて、第1加圧部44a、第2A加圧部44b、44cおよび/または第2B加圧部44d、44eに供給される油圧を調整することによって、加圧部44を膨張/収縮させる。 In the battery module 100 according to the present embodiment, the control unit 90 is provided with the load control means 94, and the load control means 94 adjusts the expansion / contraction of the pressurizing unit 44 of the pressing member 40. It is configured so that the restraining load applied to the core portion 30A of the electrode body 30 can be controlled. Specifically, the load control means 94 is electrically connected to the charging time measuring means 92 and is also connected to the hydraulic supply pipe 80. Then, when the charging continuation time measured by the charging time measuring means 92 exceeds a predetermined threshold value, the information is transmitted to the load controlling means 94. The load control means 94 applies the load by adjusting the hydraulic pressure supplied to the first pressurizing section 44a, the second A pressurizing section 44b, 44c and / or the second B pressurizing section 44d, 44e based on such information. The compression unit 44 is expanded / contracted.

図8に、具体的な電池制御システム82のフローチャートの一例を示す。電池制御システム82は、組電池10の充電電流Iと充電継続時間Tを検知する(S1)。ここで、図3の形態では、処理S1のうち充電継続時間Tの検知は、上述した充電時間計測手段92の処理によって具現化されうる。次に、検知された組電池10の充電継続時間Tが予め定められた閾値Th1以上か否かを判定する(S2)。充電継続時間Tが予め定められた閾値Th1以上でない場合(NO)には、組電池10の充電電流Iと充電継続時間Tを検知する処理S1に戻るとよい。このフローチャートでは、充電継続時間Tが予め定められた閾値Th1以上である場合(YES)には、第1加圧部44aに油圧が供給されて第1加圧部44aを膨張させ、コア部30Aの幅方向Wの両縁部(第1拘束部)に拘束荷重が加えられる(S3)。図3の形態では、処理S3および後述する処理S5と処理S7は、上述した荷重制御手段94の処理によって具現化されうる。 FIG. 8 shows an example of a specific flowchart of the battery control system 82. The battery control system 82 detects the charging current I and the charging duration T of the assembled battery 10 (S1). Here, in the embodiment of FIG. 3, the detection of the charging duration T in the processing S1 can be embodied by the processing of the charging time measuring means 92 described above. Next, it is determined whether or not the detected charging duration T of the assembled battery 10 is equal to or greater than a predetermined threshold Th1 (S2). When the charging duration T is not equal to or higher than the predetermined threshold Th1 (NO), it is preferable to return to the process S1 for detecting the charging current I and the charging duration T of the assembled battery 10. In this flowchart, when the charging duration T is equal to or greater than the predetermined threshold value Th1 (YES), the first pressurizing section 44a is supplied with flood control to expand the first pressurizing section 44a and the core section 30A. A restraining load is applied to both edges (first restraining portion) in the width direction W of the above (S3). In the form of FIG. 3, the process S3 and the processes S5 and S7 described later can be embodied by the process of the load control means 94 described above.

次に、検知された組電池10の充電継続時間Tが予め定められた閾値Th2以上か否かを判定する(S4)。充電継続時間Tが予め定められた閾値Th2以上でない場合(NO)には、第1加圧部44aによりコア部30Aの幅方向Wの両縁部(第1拘束部)へ拘束荷重を加える処理S3に戻るとよい。充電継続時間Tが予め定められた閾値Th2以上である場合(YES)には、第1加圧部44aに加えて、さらに第2A加圧部44b、44cに油圧が供給されて第2A加圧部44b、44cを膨張させ、コア部30Aの両縁部(第1拘束部)に加えて、該両縁部よりも幅方向Wの中央寄りの部位(第2A拘束部)に拘束荷重が加えられる(S5)。 Next, it is determined whether or not the detected charging duration T of the assembled battery 10 is equal to or greater than a predetermined threshold Th2 (S4). When the charging duration T is not equal to or higher than the predetermined threshold Th2 (NO), the first pressurizing portion 44a applies a restraining load to both edges (first restraining portion) of the core portion 30A in the width direction W. You should return to S3. When the charging duration T is equal to or higher than the predetermined threshold value Th2 (YES), hydraulic pressure is further supplied to the second A pressurizing portions 44b and 44c in addition to the first pressurizing portion 44a to pressurize the second A pressurization. The portions 44b and 44c are expanded, and in addition to both edge portions (first restraint portion) of the core portion 30A, a restraint load is applied to a portion closer to the center in the width direction W than both edge portions (second restraint portion). (S5).

次に、検知された組電池10の充電継続時間Tが予め定められた閾値Th3以上か否かを判定する(S6)。充電継続時間Tが予め定められた閾値Th3以上でない場合(NO)には、第1加圧部44aおよび第2A加圧部44b、44cによりコア部30Aの両縁部(第1拘束部)とその中央寄りの部位(第2A拘束部)へ拘束荷重を加える処理S5に戻るとよい。充電継続時間Tが予め定められた閾値Th3以上である場合(YES)には、第1加圧部44aおよび第2A加圧部44b、44cに加えて、さらに第2B加圧部44d、44eに油圧を供給して膨張させ、コア部30Aの両縁部(第1拘束部)と該両縁部より中央寄りの部分(第2A拘束部)に加えて、コア部30Aの幅方向Wの中央部(第2B拘束部)に拘束荷重が加えられる(S7)。 Next, it is determined whether or not the detected charging duration T of the assembled battery 10 is equal to or greater than a predetermined threshold value Th3 (S6). When the charging duration T is not equal to or higher than the predetermined threshold value Th3 (NO), the first pressurizing portion 44a and the second A pressurizing portions 44b, 44c form the core portion 30A with both edges (first restraint portion). It is preferable to return to the process S5 in which the restraint load is applied to the portion near the center (second A restraint portion). When the charging duration T is equal to or higher than the predetermined threshold value Th3 (YES), in addition to the first pressurizing section 44a and the second A pressurizing section 44b, 44c, the second pressurizing section 44d, 44e is further subjected to. By supplying hydraulic pressure to expand the core portion 30A, in addition to both edges of the core portion 30A (first restraint portion) and a portion closer to the center than both edges (second A restraint portion), the center of the core portion 30A in the width direction W. A restraint load is applied to the portion (second B restraint portion) (S7).

次に、組電池10の充電が終了するか否かを判定する(S8)。充電が終了しない場合(NO)には、第1加圧部44a、第2A加圧部44b、44cおよび第2B加圧部44d、44eにより第1拘束部、第2A拘束部および第2B拘束部へ拘束荷重を加える処理S7に戻るとよい。充電が終了する場合(YES)には、組電池10の充電電流Iと充電継続時間Tを検知する処理S1に戻るとよい。 Next, it is determined whether or not the charging of the assembled battery 10 is completed (S8). When charging is not completed (NO), the first pressurizing section 44a, the second A pressurizing section 44b, 44c and the second B pressurizing section 44d, 44e cause the first restraint section, the second A restraint section, and the second B restraint section. It is preferable to return to the process S7 of applying the restraining load to. When charging is completed (YES), it is preferable to return to the process S1 for detecting the charging current I and the charging duration T of the assembled battery 10.

第1加圧部44aが膨張/収縮しないように構成されている態様が採用された場合、電池制御システム82は処理S2が省略されて実施され得る。かかる構成によると、常時、第1加圧部44aにより第1拘束部へ拘束荷重が加えられる。 When the embodiment in which the first pressurizing unit 44a is configured so as not to expand / contract is adopted, the battery control system 82 can be implemented by omitting the process S2. According to such a configuration, a restraint load is always applied to the first restraint portion by the first pressurizing portion 44a.

また、好ましい一態様において、処理S6は省略され得る。かかる態様において、充電継続時間Tが予め定められた閾値Th2より小さい場合には、第1拘束部に拘束荷重が加えられ(S3)、充電継続時間Tが予め定められた閾値Th2以上である場合には、第1拘束部に加えて、第2A拘束部および第2B拘束部に拘束荷重が加えられる(S7)。かかる態様を採用した場合、第2A拘束部および第2B拘束部は一体となった第2拘束部(第1加圧部よりもコア部30Aの幅方向Wの中央部)とみなすことができる。 Further, in a preferred embodiment, the process S6 may be omitted. In such an embodiment, when the charging duration T is smaller than the predetermined threshold Th2, a restraining load is applied to the first restraint portion (S3), and the charging duration T is equal to or higher than the predetermined threshold Th2. In addition to the first restraint portion, a restraint load is applied to the second A restraint portion and the second B restraint portion (S7). When such an embodiment is adopted, the second restraint portion and the second B restraint portion can be regarded as an integrated second restraint portion (a central portion in the width direction W of the core portion 30A rather than the first pressurizing portion).

かかる電池制御システム82によると、充電継続時間が長くなるにつれて、電極体30において拘束荷重が加えられる部位である拘束部と、拘束荷重が加えられていない部位である非拘束部と、の境界であって、Liが析出しがちであった部位が電極体30の幅方向Wの両縁部から中央部に向けて移動する。このため、本実施形態に係る電池モジュール100によれば、充電電流を大きくしてもLi析出が好適に抑制され得る。 According to the battery control system 82, as the charging duration becomes longer, at the boundary between the restraint portion, which is a portion where the restraint load is applied, and the non-constraint portion, which is a portion where the restraint load is not applied, in the electrode body 30. Therefore, the portion where Li tends to be deposited moves from both edges of the electrode body 30 in the width direction W toward the center. Therefore, according to the battery module 100 according to the present embodiment, Li precipitation can be suitably suppressed even if the charging current is increased.

電池制御システム82の他の好適な一実施形態によると、処理S1における充電電流Iおよび充電継続時間Tは、ブレーキ圧Pおよびブレーキ時間Tに代替することができる。その場合、処理S2、S4およびS6の各段階において、制御部90はブレーキ時間Tが予め定めた所定の閾値以上か否かを判定し、その結果に応じて第1拘束部、第2A拘束部および/または第2B拘束部を拘束する処理(処理S3、S5またはS7)を行うとよい。 According to another preferred embodiment of a battery control system 82, the charging current I and the charging duration T in step S1 may be replaced with the brake pressure P B and braking time T B. In that case, at each stage of processing S2, S4 and S6, the control unit 90 determines whether more than a predetermined threshold brake time T B is predetermined, first restraining portion according to the result, the 2A constraining It is preferable to perform a process of constraining the portion and / or the second B restraint portion (process S3, S5 or S7).

なお、ここで開示される電池モジュール100は、上記した実施形態に限定されず、種々の構成を変更することができる。 The battery module 100 disclosed here is not limited to the above-described embodiment, and various configurations can be changed.

例えば、上記した実施形態においては、2個の単電池20A、20Bによって組電池10が構成されているが、組電池を構成する単電池の個数は特に限定されず、3個以上の単電池によって組電池が構成されていてもよい。また、上記した実施形態では、電極体30として捲回電極体を使用しているが、電極体は、正極シートと負極シートとを備えていればよく、捲回電極体に限定されない。かかる電極体の他の例としては、矩形の正極シートと負極シートとを積層させた積層電極体が挙げられる。 For example, in the above embodiment, the assembled battery 10 is composed of two cell batteries 20A and 20B, but the number of cell cells constituting the assembled battery is not particularly limited, and three or more cell cells are used. An assembled battery may be configured. Further, in the above-described embodiment, the wound electrode body is used as the electrode body 30, but the electrode body may include a positive electrode sheet and a negative electrode sheet, and is not limited to the wound electrode body. Another example of such an electrode body is a laminated electrode body in which a rectangular positive electrode sheet and a negative electrode sheet are laminated.

また、上記した実施形態に係る電池モジュール100は、3個の押圧部材40を備えており、当該押圧部材40が、配列方向Xに沿って並べられたエンドプレート70A、単電池20A、単電池20B、エンドプレート70Bの各々の部材の間隙に配置されている。しかし、エンドプレートと単電池との間には押圧部材が配置されていなくてもよい。
また、組電池が3個以上の単電池を備えている場合、配列された単電池の間隙の全てに押圧部材が配置されていなくてもよい。配列された単電池の間隙のうちの少なくとも一箇所に押圧部材が配置されていれば、適切な効果を発揮させることができる。
Further, the battery module 100 according to the above-described embodiment includes three pressing members 40, and the pressing members 40 are arranged along the arrangement direction X, such as an end plate 70A, a cell 20A, and a cell 20B. , Are arranged in the gap between each member of the end plate 70B. However, the pressing member may not be arranged between the end plate and the cell.
Further, when the assembled battery includes three or more cells, the pressing members may not be arranged in all the gaps of the arranged cells. If the pressing member is arranged at least one of the gaps between the arranged cells, an appropriate effect can be exhibited.

上記した実施形態では、押圧部材40の加圧部44は、第1加圧部44a、第2A加圧部44b、44cおよび第2B加圧部44d、44eの合計9個に分割されている。しかし、分割された加圧部44の数は3以上であれば特に限定されない。また、個々の分割された加圧部44(本実施形態では第1加圧部44a、第2A加圧部44b、44cおよび第2B加圧部44d、44e)は、区切りや角のないシームレスな構造を有していてもよい。 In the above-described embodiment, the pressurizing portion 44 of the pressing member 40 is divided into a total of nine pressurizing portions 44a, second A pressurizing portions 44b and 44c, and second B pressurizing portions 44d and 44e. However, the number of the divided pressurizing portions 44 is not particularly limited as long as it is 3 or more. Further, the individual divided pressurizing portions 44 (in this embodiment, the first pressurizing portions 44a, the second A pressurizing portions 44b, 44c and the second B pressurizing portions 44d, 44e) are seamless without breaks or corners. It may have a structure.

さらに、上記した実施形態では、油圧によって加圧部44が膨張/収縮するように構成されているが、加圧部44を膨張/収縮させる手段は油圧でなくてもよい。例えば、加圧部44は、空気圧や水圧などによって膨張/収縮するように構成されていてもよいし、機械的な手段によって膨張/収縮するように構成されていてもよい。 Further, in the above-described embodiment, the pressurizing portion 44 is configured to expand / contract by the hydraulic pressure, but the means for expanding / contracting the pressurizing portion 44 does not have to be hydraulic. For example, the pressurizing unit 44 may be configured to expand / contract by air pressure, water pressure, or the like, or may be configured to expand / contract by mechanical means.

以下、本発明に関する試験例を説明するが、以下の説明は本発明を限定することを意図したものではない。 Hereinafter, test examples relating to the present invention will be described, but the following description is not intended to limit the present invention.

<実施例>
実施例では、上記した実施形態のように、油圧によって膨張/収縮するように構成された加圧部44を備えた押圧部材40を用いて電池モジュール100を構築した。
<Example>
In the embodiment, as in the above embodiment, the battery module 100 is constructed by using the pressing member 40 provided with the pressurizing portion 44 configured to expand / contract by the flood control.

具体的には、正極活物質(LiNi1/3Co1/3Mn1/3)と、導電材(アセチレンブラック)と、バインダ(ポリフッ化ビニリデン)とが混合された正極活物質層33が、正極集電体(アルミニウム箔)32の両面に形成された矩形状の正極シート31を作製した。一方、負極活物質(黒鉛)と、増粘剤(カルボキシメチルセルロース)と、バインダ(スチレンブタジエンゴム)とが混合された負極活物質層37が、負極集電体(銅箔)36の両面に形成された矩形状の負極シート35を作製した。そして、上記した正極シート31と負極シート35とをセパレータ39を介して積層させ、該積層体を捲回させた電極体30を作製し、作製した電極体30を電解液とともに電池ケース50内に収納することによってリチウムイオン二次電池(単電池20)を作製した。そして、2個の単電池20A、20Bを、電極体30の扁平面が相互に対向するように配列させ、各々の単電池20A、20Bとエンドプレート70A、70Bとの間に押圧部材40を配置し、配列方向Xに沿って拘束荷重が掛かるように拘束した。 Specifically, the positive electrode active material layer 33 in which a positive electrode active material (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ), a conductive material (acetylene black), and a binder (polyvinylidene fluoride) are mixed. Made a rectangular positive electrode sheet 31 formed on both sides of the positive electrode current collector (aluminum foil) 32. On the other hand, the negative electrode active material layer 37, which is a mixture of the negative electrode active material (graphite), the thickener (carboxymethyl cellulose), and the binder (styrene butadiene rubber), is formed on both sides of the negative electrode current collector (copper foil) 36. The rectangular negative electrode sheet 35 was produced. Then, the positive electrode sheet 31 and the negative electrode sheet 35 described above are laminated via the separator 39 to produce an electrode body 30 in which the laminated body is wound, and the produced electrode body 30 is placed in the battery case 50 together with the electrolytic solution. A lithium ion secondary battery (cell 20) was produced by storing the battery. Then, the two cells 20A and 20B are arranged so that the flat surfaces of the electrode body 30 face each other, and the pressing member 40 is arranged between the respective cells 20A and 20B and the end plates 70A and 70B. Then, it was restrained so that a restraining load was applied along the arrangement direction X.

なお、実施例においては、押圧部材40として、加圧部44が第1加圧部44aと第2A加圧部44b、44cと第2B加圧部44d、44eとを備えたものを使用した。ここで第1加圧部44aは膨張/収縮しないように構成されており、常に電極体30のコア部30Aの両縁部(第1拘束部)に拘束荷重が加わるようにした。押圧部材40は油圧供給管80に接続され、充電継続時間Tが予め設定された所定の閾値Th2以上になった場合に、第2A加圧部44b、44cおよび第2B加圧部44d、44eが膨張し、電極体のコア部の幅方向Wの両縁部(第1拘束部)に加えて、該両縁部よりもコア部の幅方向Wの中央部(第2拘束部)に拘束荷重が加わるようにした。 In the example, as the pressing member 40, a pressing member 44 having a first pressing section 44a, a second pressing section 44b, 44c, and a second B pressing section 44d, 44e was used. Here, the first pressurizing portion 44a is configured so as not to expand / contract, and a restraining load is always applied to both edge portions (first restraining portions) of the core portion 30A of the electrode body 30. The pressing member 40 is connected to the hydraulic supply pipe 80, and when the charging duration T becomes equal to or higher than a preset predetermined threshold Th2, the second A pressurizing portions 44b and 44c and the second B pressurizing portions 44d and 44e Inflated, in addition to both edges (first restraint) of the core portion of the electrode body in the width direction W, a restraint load is applied to the central portion (second restraint portion) of the core portion in the width direction W rather than both edges. Was added.

<比較例>
比較例において、押圧部材40として、加圧部44が膨張/収縮しない第1加圧部44aのみから構成されたものを使用し、常に電極体30のコア部30Aの幅方向Wの両縁部(第1拘束部)のみに拘束荷重が加わるように構成された組電池10を構築した。なお、押圧部材40の構成以外は、実施例に係る組電池10の製造方法と同様にして製造した。
<Comparison example>
In the comparative example, as the pressing member 40, a member in which the pressing portion 44 is composed of only the first pressing portion 44a that does not expand / contract is used, and both edges of the core portion 30A of the electrode body 30 in the width direction W are always used. An assembled battery 10 configured so that a restraining load is applied only to (the first restraining portion) was constructed. Except for the configuration of the pressing member 40, the assembled battery 10 was manufactured in the same manner as in the manufacturing method of the assembled battery 10 according to the embodiment.

<評価試験>
実施例および比較例に係る組電池10を、−10℃の環境下に置き、所定の電流値で、充電、休止、放電、休止を1サイクルとする充放電サイクルを所定のサイクル数で実施した。その後、単電池20であるリチウムイオン二次電池を解体し、負極上での金属リチウムの析出の有無を確認した。負極上での金属リチウムの析出が確認されなかった電流値のうち、最大の電流値を限界電流値とした。比較例に係るリチウムイオン二次電池の限界電流値を基準としたときの、実施例に係るリチウムイオン二次電池の限界電流値の比を百分率(%)で求めた。結果を図9に示す。
<Evaluation test>
The assembled batteries 10 according to Examples and Comparative Examples were placed in an environment of −10 ° C., and a charge / discharge cycle in which charging, pause, discharge, and pause were one cycle was carried out at a predetermined current value at a predetermined number of cycles. .. Then, the lithium ion secondary battery, which is the cell 20, was disassembled, and the presence or absence of precipitation of metallic lithium on the negative electrode was confirmed. Of the current values in which precipitation of metallic lithium was not confirmed on the negative electrode, the maximum current value was set as the limit current value. The ratio of the limit current values of the lithium ion secondary batteries according to the examples was determined as a percentage (%) based on the limit current values of the lithium ion secondary batteries according to the comparative example. The results are shown in FIG.

図9に明らかなように、実施例に係る組電池の上記限界電流値は、比較例に係る組電池の上記限界電流値よりも増加した。すなわち、実施例に係る構成の電池モジュールによると充電電流を増加させてもリチウム(Li)析出が好適に抑制されることがわかった。 As is clear from FIG. 9, the limit current value of the assembled battery according to the embodiment is larger than the limit current value of the assembled battery according to the comparative example. That is, according to the battery module having the configuration according to the embodiment, it was found that lithium (Li) precipitation is suitably suppressed even if the charging current is increased.

以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。 Although specific examples of the present invention have been described in detail above, these are merely examples and do not limit the scope of claims. The techniques described in the claims include various modifications and modifications of the specific examples illustrated above.

10 組電池
20、20A、20B 単電池
30 電極体
30A コア部
30B 端子接続部
31 正極シート
32 正極集電体
33 正極活物質層
34 正極露出部
35 負極シート
36 負極集電体
37 負極活物質層
38 負極露出部
39 セパレータ
40 押圧部材
42 支持板
44 加圧部
44a 第1加圧部
44b、44c 第2A加圧部
44d、44e 第2B加圧部
50 電池ケース
52 ケース本体
54 蓋体
60 正極端子
62 負極端子
64 バスバー
70A、70B エンドプレート
72 締付け用ビーム材
80 油圧供給管
82 電池制御システム
90 制御部
92 充放電制御手段
94 荷重制御手段
100 電池モジュール
L0 コア部の長さ
L1 一対の第1加圧部の間隔
L2 一対の第2A加圧部の間隔
W 幅方向
X 単電池の配列方向
10 sets of batteries 20, 20A, 20B Single cell 30 Electrode body 30A Core part 30B Terminal connection part 31 Positive electrode sheet 32 Positive electrode current collector 33 Positive electrode active material layer 34 Positive electrode exposed part 35 Negative electrode sheet 36 Negative electrode current collector 37 Negative electrode active material layer 38 Negative electrode exposed part 39 Separator 40 Pressing member 42 Support plate 44 Pressurizing part 44a First pressurizing part 44b, 44c 2nd A Pressurizing part 44d, 44e 2nd B Pressurizing part 50 Battery case 52 Case body 54 Lid body 60 Positive electrode terminal 62 Negative electrode terminal 64 Bus bar 70A, 70B End plate 72 Tightening beam material 80 Hydraulic supply pipe 82 Battery control system 90 Control unit 92 Charge / discharge control means 94 Load control means 100 Battery module L0 Core part length L1 Pair of first addition Spacing part spacing L2 Pair of second A pressurizing section spacing W Width direction X Cell array direction

Claims (1)

組電池と制御部とを備えた電池モジュールであって、
前記組電池は、所定の方向に配列した複数の充放電可能な単電池と、前記配列された単電池の間隙および該配列方向の両端部のうちの少なくとも一箇所に配置された押圧部材と、が該配列方向に拘束荷重を加えられつつ拘束されて構成されており、
前記単電池は、扁平形状の電極体と電解液とが電池ケースに収容されて構成されており、
前記電極体は、正極活物質層を有する正極シートと負極活物質層を有する負極シートとを備えており、
前記正極シートにおける前記電池ケースの底面と平行方向である幅方向の一方の端部には、前記正極活物質層を有しない正極露出部が形成されており、且つ、前記負極シートにおける前記幅方向の他方の端部には、前記負極活物質層を有しない負極露出部が形成されており、
前記電極体は、前記正極活物質層と前記負極活物質層とが対向した扁平形状のコア部を有しており、
ここで、前記押圧部材は、前記コア部の前記幅方向の両端と前記正負極露出部それぞれとの境界を包含する両縁部に拘束荷重を加える第1加圧部と、該両縁部よりも前記コア部の前記幅方向の中央部に拘束荷重を加える第2加圧部と、を備えており、
前記制御部は、時間計測手段と荷重制御手段とを備えており、
前記時間計測手段は、前記組電池の充電継続時間を計測し、
前記荷重制御手段は、
前記充電継続時間が所定の閾値より小さいとき、前記第1加圧部により前記両縁部に拘束荷重を加え、
前記充電継続時間が所定の閾値以上のとき、前記第1加圧部により前記両縁部に拘束荷重を加えつつ、前記第2加圧部により前記中央部に拘束荷重を加える、
ことを特徴とする電池モジュール。
It is a battery module equipped with an assembled battery and a control unit.
The assembled battery includes a plurality of rechargeable and dischargeable cells arranged in a predetermined direction, pressing members arranged at least one of the gaps between the arranged cells and both ends in the arrangement direction. Is constrained while being constrained in the arrangement direction.
The cell is composed of a flat electrode body and an electrolytic solution housed in a battery case.
The electrode body includes a positive electrode sheet having a positive electrode active material layer and a negative electrode sheet having a negative electrode active material layer.
A positive electrode exposed portion having no positive electrode active material layer is formed at one end of the positive electrode sheet in the width direction parallel to the bottom surface of the battery case, and the width direction of the negative electrode sheet. A negative electrode exposed portion having no negative electrode active material layer is formed at the other end portion of the above.
The electrode body has a flat core portion in which the positive electrode active material layer and the negative electrode active material layer face each other.
Here, the pressing member is formed by a first pressurizing portion that applies a restraining load to both edges including the boundary between both ends of the core portion in the width direction and each of the positive and negative electrode exposed portions, and the both edge portions. Also includes a second pressurizing portion that applies a restraining load to the central portion of the core portion in the width direction.
The control unit includes a time measuring means and a load controlling means.
The time measuring means measures the charging duration of the assembled battery and measures the charging duration.
The load control means
When the charging duration is smaller than a predetermined threshold value, a restraining load is applied to both edges by the first pressurizing portion.
When the charging duration is equal to or longer than a predetermined threshold value, the first pressurizing portion applies a restraining load to both edges, and the second pressurizing portion applies a restraining load to the central portion.
A battery module characterized by that.
JP2017187913A 2017-09-28 2017-09-28 Battery module Active JP6814391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017187913A JP6814391B2 (en) 2017-09-28 2017-09-28 Battery module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017187913A JP6814391B2 (en) 2017-09-28 2017-09-28 Battery module

Publications (2)

Publication Number Publication Date
JP2019061937A JP2019061937A (en) 2019-04-18
JP6814391B2 true JP6814391B2 (en) 2021-01-20

Family

ID=66177592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017187913A Active JP6814391B2 (en) 2017-09-28 2017-09-28 Battery module

Country Status (1)

Country Link
JP (1) JP6814391B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7137765B2 (en) * 2019-08-27 2022-09-15 トヨタ自動車株式会社 Lithium-ion secondary battery controller
JP7256162B2 (en) * 2020-12-02 2023-04-11 プライムプラネットエナジー&ソリューションズ株式会社 battery control system
CN114024048B (en) * 2021-11-04 2024-02-06 中南大学 Recovery method for lithium ion battery negative electrode lithium precipitation
JP7437863B2 (en) 2022-02-16 2024-02-26 プライムプラネットエナジー&ソリューションズ株式会社 Energy storage device pack, charging method for energy storage device pack, and charging device for energy storage device pack

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010238554A (en) * 2009-03-31 2010-10-21 Toyota Motor Corp Holder of power storage element
JP2013200940A (en) * 2010-06-14 2013-10-03 Toyota Motor Corp Power storage device
JP5545168B2 (en) * 2010-10-22 2014-07-09 トヨタ自動車株式会社 Vehicle assembled battery and vehicle
US8449998B2 (en) * 2011-04-25 2013-05-28 Lg Chem, Ltd. Battery system and method for increasing an operational life of a battery cell
CN104115326B (en) * 2012-02-16 2016-08-24 丰田自动车株式会社 The manufacture method of secondary cell
US9893327B2 (en) * 2012-02-21 2018-02-13 Toyota Jidosha Kabushiki Kaisha Electric storage apparatus
EP3121868B8 (en) * 2014-03-17 2019-12-11 Envision AESC Japan Ltd. Pressurization device for battery cells
JP2017107648A (en) * 2015-12-07 2017-06-15 株式会社Soken Battery pack
JP2017117633A (en) * 2015-12-24 2017-06-29 トヨタ自動車株式会社 Method of manufacturing battery pack

Also Published As

Publication number Publication date
JP2019061937A (en) 2019-04-18

Similar Documents

Publication Publication Date Title
JP6202347B2 (en) Non-aqueous electrolyte secondary battery
KR101580731B1 (en) Non-aqueous electrolyte secondary battery
JP6814391B2 (en) Battery module
KR101529408B1 (en) Non-aqueous electrolyte secondary battery
US10218029B2 (en) Electrode for secondary battery, secondary battery, and manufacturing method of the electrode and the secondary battery
KR101651712B1 (en) Secondary Battery
KR101664244B1 (en) Method forming electrode surface pattern and the electrode manufactured by the method and secondary battery including the same
US9431680B2 (en) Electric storage device, electric storage system, and manufacturing method thereof
JP2016539462A (en) Secondary battery comprising a jelly roll type electrode assembly in which an intermittent plain portion is formed on a positive electrode current collector
JP2018116914A (en) Battery module
JP6977599B2 (en) All-solid-state battery system
KR101245288B1 (en) Secondary battery with enhanced adhesion between cell assembly and pouch-type case and its manufacturing method
JP7409762B2 (en) Nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery
US20230010746A1 (en) Electrode Assembly and Method for Manufacturing the Same
CN113224376A (en) Solid-state battery
KR20180029906A (en) Battery
JP2020161293A (en) Lithium ion secondary battery
WO2022224872A1 (en) Lithium secondary battery
JP5811156B2 (en) Nonaqueous electrolyte secondary battery
WO2022209601A1 (en) Lithium secondary battery
US11870039B2 (en) Electrode assembly and method for manufacturing the same
US11387495B2 (en) Non-aqueous electrolyte secondary battery
JP2020135979A (en) Secondary battery electrode plate group, manufacturing method thereof, and secondary battery
JP7240612B2 (en) Method for manufacturing secondary battery
JP7365562B2 (en) Wound electrode body for secondary batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201202

R151 Written notification of patent or utility model registration

Ref document number: 6814391

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151