JP6964520B2 - Cleaning method for SiC single crystal growth furnace - Google Patents

Cleaning method for SiC single crystal growth furnace Download PDF

Info

Publication number
JP6964520B2
JP6964520B2 JP2017559181A JP2017559181A JP6964520B2 JP 6964520 B2 JP6964520 B2 JP 6964520B2 JP 2017559181 A JP2017559181 A JP 2017559181A JP 2017559181 A JP2017559181 A JP 2017559181A JP 6964520 B2 JP6964520 B2 JP 6964520B2
Authority
JP
Japan
Prior art keywords
sic
single crystal
gas
growth furnace
crystal growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017559181A
Other languages
Japanese (ja)
Other versions
JPWO2017115750A1 (en
Inventor
陽祐 谷本
秀行 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Publication of JPWO2017115750A1 publication Critical patent/JPWO2017115750A1/en
Application granted granted Critical
Publication of JP6964520B2 publication Critical patent/JP6964520B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • C23C16/0245Pretreatment of the material to be coated by cleaning or etching by etching with a plasma
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4405Cleaning of reactor or parts inside the reactor by using reactive gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B5/00Cleaning by methods involving the use of air flow or gas flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は、SiC単結晶成長炉のクリーニング方法に関する。
本願は、2015年12月28日に、日本に出願された特願2015−256287号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a method for cleaning a SiC single crystal growth furnace.
The present application claims priority based on Japanese Patent Application No. 2015-256287 filed in Japan on December 28, 2015, the contents of which are incorporated herein by reference.

炭化珪素(SiC)は、重要なセラミックス材料として多方面で使用されている。近年、炭化珪素のエピタキシャル成長技術が注目されており、特にその絶縁破壊電圧の高さや高温作動時における信頼性から、低消費電力のトランジスタなど用途が開発されている。
このような用途に用いられる炭化珪素としては、高純度な単結晶のバルクあるいは膜(薄膜、厚膜いずれも含む)である必要がある。
Silicon carbide (SiC) is widely used as an important ceramic material. In recent years, the epitaxial growth technology of silicon carbide has attracted attention, and in particular, applications such as low power consumption transistors have been developed because of its high dielectric breakdown voltage and reliability during high-temperature operation.
The silicon carbide used for such applications needs to be a bulk or film (including both a thin film and a thick film) of a high-purity single crystal.

炭化珪素の単結晶膜を成膜する方法としては、化学気相堆積法(Chemical Vapor Deposition法;CVD法)を用いて、C含有ガス(プロパンガスなど)とSi含有ガス(シランガスなど)との化学反応により炭化珪素の単結晶膜を成長させる方法や、モノメチルシランをCVD法の原料として炭化珪素の単結晶膜を成長させる方法が知られている。 As a method for forming a single crystal film of silicon carbide, a chemical vapor deposition method (CVD method) is used to combine a C-containing gas (propane gas or the like) and a Si-containing gas (silane gas or the like). A method of growing a silicon carbide single crystal film by a chemical reaction and a method of growing a silicon carbide single crystal film using monomethylsilane as a raw material for a CVD method are known.

これらのCVD法を用いて高純度な炭化珪素単結晶膜を作製するには、炭化珪素成膜時に、1500℃以上の高い温度が必要である。そのため、SiC単結晶成長炉(以下、単に「成長炉」ということがある)の内壁やウエハを設置するサセプタなどの成長炉内の部材(以下、成長炉の内壁及び部材を合わせて「炉内基材」ということがある)には、高耐熱性の材料が用いられ、主としてカーボン母材の表面にCVD法によって緻密な多結晶のSiCを被覆したもの(SiCコート)が用いられる。
ここで、SiC単結晶成長炉とは、SiC単結晶膜やSiC単結晶インゴットなどのSiC単結晶を成長させるために用いられる炉(容器、チャンバ)を全て含む。
In order to produce a high-purity silicon carbide single crystal film using these CVD methods, a high temperature of 1500 ° C. or higher is required at the time of film formation of silicon carbide. Therefore, the inner wall of the SiC single crystal growth furnace (hereinafter, may be simply referred to as “growth furnace”) and the members inside the growth furnace such as the susceptor on which the wafer is installed (hereinafter, the inner wall and members of the growth furnace are collectively referred to as “inside the furnace”. A material having high heat resistance is used as the base material), and a material in which the surface of the carbon base material is coated with dense polycrystalline SiC by the CVD method (SiC coating) is mainly used.
Here, the SiC single crystal growth furnace includes all furnaces (containers, chambers) used for growing a SiC single crystal such as a SiC single crystal film and a SiC single crystal ingot.

また、CVD法による膜成長の際に、成長炉の内壁やサセプタなどの炉内基材にも炭化珪素が付着し、堆積してしまう。それらの基材に堆積した炭化珪素の堆積物(以下、「SiC堆積物」という)は、剥離、脱落して、炭化珪素薄膜の成長表面に落下付着し、結晶成長を阻害したり、欠陥を生じさせたりする原因となる。そのため、定期的に成長炉の内壁などに堆積したSiC堆積物を取り除かなければならない。その除去方法として、従来、炭化珪素が成長炉の内壁に堆積した場合には、工具を用いて剥離除去するか、容器を定期的に交換する方法が採用されていた。 Further, when the film is grown by the CVD method, silicon carbide adheres to and accumulates on the inner wall of the growth furnace and the base material in the furnace such as the susceptor. The silicon carbide deposits (hereinafter referred to as "SiC deposits") deposited on these substrates peel off and fall off, and fall and adhere to the growth surface of the silicon carbide thin film, inhibiting crystal growth and causing defects. It may cause it to occur. Therefore, the SiC deposits deposited on the inner wall of the growth furnace must be removed on a regular basis. As a method for removing the silicon carbide, when silicon carbide is deposited on the inner wall of the growth furnace, it has been peeled off with a tool or the container has been replaced regularly.

堆積した炭化珪素の削り取りや成長炉の交換には極めて長い作業時間を要し、反応器を長期間にわたり大気開放する必要があることから、歩留まりの悪化など生産性にも影響を与える原因となっていた。そのため、無機物質を効率よく除去するガスを用いて、成長炉の内壁などに付着した炭化珪素を化学的に除去するクリーニング方法が検討されている。 It takes an extremely long working time to scrape off the accumulated silicon carbide and replace the growth furnace, and it is necessary to open the reactor to the atmosphere for a long period of time, which causes a deterioration in yield and other factors that affect productivity. Was there. Therefore, a cleaning method for chemically removing silicon carbide adhering to the inner wall of a growth furnace or the like by using a gas that efficiently removes inorganic substances has been studied.

特許文献1には、炭化珪素成膜装置の成膜チャンバ内で使用するサセプタの材質をバルクの炭化珪素のみとすることで、サセプタに堆積した炭化珪素の堆積物をプラズマ化させたフッ素と酸素でのエッチングにより除去した後にサセプタを再利用できる方法が開示されている。 In Patent Document 1, by using only bulk silicon carbide as the material of the susceptor used in the film forming chamber of the silicon carbide film forming apparatus, fluorine and oxygen obtained by plasma-forming the silicon carbide deposits deposited on the susceptor. A method is disclosed in which the susceptor can be reused after being removed by etching in.

特許文献2には、予めプラズマ化された三フッ化窒素等のフッ素含有ガスにより炭化珪素よりなる堆積物を除去し、その排ガスを分析することで処理時間を調整する方法が開示されている。 Patent Document 2 discloses a method of adjusting the treatment time by removing deposits made of silicon carbide with a fluorine-containing gas such as nitrogen trifluoride that has been plasmatized in advance and analyzing the exhaust gas thereof.

炭化珪素の単結晶を種結晶上に成長させて単結晶インゴットを製造する方法としては、昇華再結晶法(改良レリー法)が知られている(例えば、特許文献3参照)。この昇華再結晶法ではSiC単結晶成長炉内で、昇華用原料を2000℃以上に加熱することで、原料を昇華させて昇華ガスを発生させ、その昇華ガスを原料収容部よりも数10〜数100℃低温にした種結晶へ供給することにより、この種結晶上に単結晶を成長させる方法である。
この方法においても、成長炉の内壁などの炉内基材に炭化珪素が付着し、堆積してしまう点は、炭化珪素の単結晶膜を成膜する場合と同様であり、堆積したSiC堆積物を除去したり、部材を交換したりしている。
A sublimation recrystallization method (improved release method) is known as a method for producing a single crystal ingot by growing a single crystal of silicon carbide on a seed crystal (see, for example, Patent Document 3). In this sublimation recrystallization method, the raw material for sublimation is heated to 2000 ° C. or higher in the SiC single crystal growth furnace to sublimate the raw material to generate sublimation gas, and the sublimation gas is generated by several 10 to 10 from the raw material accommodating portion. This is a method of growing a single crystal on a seed crystal by supplying the seed crystal to a temperature of several hundred degrees Celsius.
In this method as well, the point that silicon carbide adheres to and deposits on the inner wall of the growth furnace and the like is the same as in the case of forming a single crystal film of silicon carbide, and the deposited SiC deposits. Is being removed or parts are being replaced.

特開2015−53393号公報Japanese Unexamined Patent Publication No. 2015-53393 特開2013−251487号公報Japanese Unexamined Patent Publication No. 2013-251487 特開2004−224663号公報Japanese Unexamined Patent Publication No. 2004-224663

しかしながら、特許文献1には、エッチングにより炭化珪素の堆積物だけでなくサセプタ自身もエッチングされ得ることが記載されている。また、特許文献1には、サセプタにバルクの炭化珪素を用いることで平均表面粗さRaを小さくすることが可能となり、サセプタのエッチング速度を小さくできることが記載されている。しかし、炭化珪素のエピタキシャル成長炉のうちの反応ガスが接する部分や部材全てをバルクの炭化珪素だけで構成することは極めて困難であり、インサイチュウ(in−situ)への展開は困難である。 However, Patent Document 1 describes that not only the silicon carbide deposit but also the susceptor itself can be etched by etching. Further, Patent Document 1 describes that by using bulk silicon carbide for the susceptor, the average surface roughness Ra can be reduced and the etching rate of the susceptor can be reduced. However, it is extremely difficult to construct all the parts and members of the epitaxial growth furnace of silicon carbide that come into contact with the reaction gas only with bulk silicon carbide, and it is difficult to deploy them in situ.

また、特許文献2は、炭化珪素よりなる付着物と、カーボン母材の表面にCVD法によって緻密な多結晶を被覆したもの(SiCコート)との僅かな反応性の差を排ガスの分析により認識し、制御しようとする発明であるが、炉内基材へのダメージを防ぐことは困難であった。 Further, Patent Document 2 recognizes a slight difference in reactivity between a deposit made of silicon carbide and a carbon base material coated with dense polycrystals by a CVD method (SiC coat) by analysis of exhaust gas. However, although it is an invention to be controlled, it is difficult to prevent damage to the substrate in the furnace.

以上のように、SiC単結晶成長炉において、炉内基材のSiCコートを傷めることなく余分なSiC堆積物を選択的に除去する方法を見出すために多くの試行錯誤が行われてきた。 As described above, in the SiC single crystal growth furnace, many trials and errors have been carried out in order to find a method for selectively removing excess SiC deposits without damaging the SiC coat of the base material in the furnace.

本発明は、上記の課題に鑑みてなされたものであり、炉内基材を構成するSiCコートあるいはSiCバルクへの損傷を抑制して、SiC堆積物を選択的に除去することができるSiC単結晶成長炉のクリーニング方法を提供することを目的とする。 The present invention has been made in view of the above problems, and is capable of selectively removing SiC deposits by suppressing damage to the SiC coat or SiC bulk constituting the base material in the furnace. It is an object of the present invention to provide a cleaning method for a crystal growth furnace.

本発明は、上記課題を解決するために、以下の手段を採用した。 The present invention employs the following means in order to solve the above problems.

(1)少なくとも表面が粉末XRD分析での他の結晶面に対する(111)面の強度比が85%以上、100%以下である3C−SiC多結晶からなる炉内基材を備えたSiC単結晶成長炉を、ガスを用いてクリーニングする方法であって、フッ素ガスと不活性ガスおよび空気の少なくとも一方との混合ガスを、ノンプラズマ状態で前記SiC単結晶成長炉内に流通させて、該SiC単結晶成長炉内に堆積したSiC堆積物を選択的に除去するものであり、前記混合ガスは1体積%以上、20体積%以下のフッ素ガスと80体積%以上、99体積%以下の不活性ガスとからなり、SiC単結晶成長炉内温度が200℃以上、500℃以下であることを特徴とするSiC単結晶成長炉のクリーニング方法。
(2)前記不活性ガスが、窒素ガス、アルゴンガス、及びヘリウムガスからなる群から選択されたものであることを特徴とする(1)に記載のSiC単結晶成長炉のクリーニング方法。
(3)前記不活性ガスが窒素ガスまたはアルゴンガスのいずれかであることを特徴とする(2)に記載のSiC単結晶成長炉のクリーニング方法。
(1) A SiC single crystal having an in-core substrate composed of 3C-SiC polycrystals having at least a surface having a strength ratio of the (111) plane to another crystal plane of 85% or more and 100% or less in powder XRD analysis. A method of cleaning a growth furnace with a gas, in which a mixed gas of fluorine gas, an inert gas, and at least one of air is circulated in the SiC single crystal growth furnace in a non-plasma state, and the SiC is used. The SiC deposits deposited in the single crystal growth furnace are selectively removed, and the mixed gas is 1% by volume or more and 20% by volume or less of fluorine gas and 80% by volume or more and 99% by volume or less of inert gas. A method for cleaning a SiC single crystal growth furnace, which comprises gas and has a SiC single crystal growth furnace having a temperature of 200 ° C. or higher and 500 ° C. or lower.
(2) The method for cleaning a SiC single crystal growth furnace according to (1), wherein the inert gas is selected from the group consisting of nitrogen gas, argon gas, and helium gas.
(3) The method for cleaning a SiC single crystal growth furnace according to (2), wherein the inert gas is either nitrogen gas or argon gas.

本発明のSiC単結晶成長炉のクリーニング方法によれば、炉内基材を構成するSiCコートあるいはSiCバルクへの損傷を抑制して、SiC堆積物を選択的に除去することができるSiC単結晶成長炉のクリーニング方法を提供することができる。 According to the cleaning method of the SiC single crystal growth furnace of the present invention, the SiC single crystal capable of selectively removing the SiC deposit by suppressing damage to the SiC coat or the SiC bulk constituting the base material in the furnace. A method of cleaning the growth furnace can be provided.

クリーニング試験で使用した反応炉の断面模式図である。It is sectional drawing of the reaction furnace used in the cleaning test. クリーニング試験で用いたサンプルの断面SEM像であり、下段は対照サンプルのSEM像、上段は評価用サンプルのSEM像であり、(A)はクリーニング試験前のものであり、(B)は実施例1のクリーニング試験後のものであり、(C)は実施例2のクリーニング試験後のものである。The cross-sectional SEM image of the sample used in the cleaning test, the lower row is the SEM image of the control sample, the upper row is the SEM image of the evaluation sample, (A) is the one before the cleaning test, and (B) is the example. 1 is after the cleaning test, and (C) is after the cleaning test of Example 2.

以下、本発明を適用したSiC単結晶成長炉のクリーニング方法について、図面を用いてその構成を説明する。なお、以下の説明で用いる図面は、特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際と同じであるとは限らない。また、以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、発明の効果を奏する範囲で適宜変更して実施することが可能である。 Hereinafter, the configuration of a cleaning method for a SiC single crystal growth furnace to which the present invention is applied will be described with reference to the drawings. In the drawings used in the following description, the featured parts may be enlarged for convenience in order to make the features easier to understand, and the dimensional ratios of each component may not be the same as the actual ones. .. Further, the materials, dimensions, etc. exemplified in the following description are examples, and the present invention is not limited thereto, and can be appropriately modified and carried out within the range in which the effects of the invention are exhibited.

本発明の一実施形態に係るSiC単結晶成長炉のクリーニング方法は、少なくとも表面が粉末XRD分析での他の結晶面に対する(111)面の強度比が85%以上、100%以下である3C−SiC多結晶からなる炉内基材を備えたSiC単結晶成長炉を、ガスを用いてクリーニングする方法であって、フッ素ガスと不活性ガスおよび空気の少なくとも一方との混合ガスを、ノンプラズマ状態でSiC単結晶成長炉内に流通させて、SiC単結晶成長炉内に堆積したSiC堆積物を選択的に除去する。 In the method for cleaning a SiC single crystal growth furnace according to an embodiment of the present invention, the intensity ratio of the (111) plane to another crystal plane in powder XRD analysis is at least 85% or more and 100% or less. A method of cleaning a SiC single crystal growth furnace provided with an in-core substrate made of SiC polycrystals using a gas, in which a mixed gas of fluorine gas, an inert gas, and at least one of air is put into a non-plasma state. The SiC single crystal growth furnace is circulated to selectively remove the SiC deposits deposited in the SiC single crystal growth furnace.

ここで、「SiC単結晶成長炉」としては上述したように、SiC単結晶の成長を行う炉であれば制限なく含み、例えば、SiCエピタキシャル膜を含むSiC単結晶膜の成膜装置やSiC単結晶(インゴット)製造装置などが備える炉(容器、チャンバ)が挙げられる。SiC単結晶膜の成膜装置としては、通常、高周波電源を用いてサセプタを1400〜1600℃程度に誘導加熱させ、そのサセプタ上にSiC基板を設置して原料ガスを導入する方法が用いられる。
また、「炉内基材」は上述のとおり、SiC単結晶成長炉の内壁およびSiC単結晶成長炉内の部材を含む。本発明のクリーニング方法の適用対象となる炉内基材の一例としては、少なくとも一部がカーボン母材からなり、そのカーボン母材の表面を炭化珪素の保護膜で被覆した1500℃以上の高温条件に耐えうる基材が挙げられる。
また、「少なくとも表面が粉末XRD分析での他の結晶面に対する(111)面の強度比が85%以上、100%以下である3C−SiC多結晶からなる炉内基材」とは、粉末XRD分析での他の結晶面に対する(111)面の強度比が85%以上、100%以下である3C−SiC多結晶によって表面が被覆された炉内基材(すなわち、その3C−SiC多結晶とは異なる材料からなる部分を有する炉内基材)、及び、粉末XRD分析での他の結晶面に対する(111)面の強度比が85%〜100%である3C−SiC多結晶からなる炉内基材の両方を含む。前者は3C−SiC多結晶コートを有する炉内基材であり、後者は3C−SiC多結晶バルクでなる炉内基材である。
また、「ノンプラズマ状態」は、プラズマになっていない状態を指す。
また、「SiC単結晶成長炉内に堆積したSiC堆積物」は、SiC単結晶成長炉の内壁やSiC単結晶成長炉内の部材に堆積したSiC堆積物である。従って、「少なくとも表面が粉末XRD分析での他の結晶面に対する(111)面の強度比が85%以上、100%以下である3C−SiC多結晶からなる炉内基材」上に堆積したSiC堆積物だけでなく、それ以外の炉内基材上に堆積したSiC堆積物も含む。
Here, as described above, the "SiC single crystal growth furnace" includes, as long as it is a furnace for growing a SiC single crystal, without limitation. Examples thereof include furnaces (containers, chambers) provided in crystal (ingot) manufacturing equipment and the like. As a film forming apparatus for a SiC single crystal film, a method is usually used in which a susceptor is induced and heated to about 1400 to 1600 ° C. using a high-frequency power source, and a SiC substrate is placed on the susceptor to introduce a raw material gas.
Further, as described above, the "base material in the furnace" includes the inner wall of the SiC single crystal growth furnace and the members in the SiC single crystal growth furnace. As an example of the base material in the furnace to which the cleaning method of the present invention is applied, a high temperature condition of 1500 ° C. or higher in which at least a part is made of a carbon base material and the surface of the carbon base material is coated with a protective film of silicon carbide. A base material that can withstand the above can be mentioned.
Further, "a base material in a furnace composed of 3C-SiC polycrystals having at least a surface having a strength ratio of the (111) plane to another crystal plane in powder XRD analysis of 85% or more and 100% or less" is defined as powder XRD. With the in-core substrate (ie, its 3C-SiC polycrystal) whose surface is coated with a 3C-SiC polycrystal having an intensity ratio of the (111) plane to the other crystal plane in the analysis of 85% or more and 100% or less. Is an in-core substrate having parts made of different materials) and in-furnace consisting of 3C-SiC polycrystals in which the strength ratio of the (111) plane to the other crystal planes in the powder XRD analysis is 85% to 100%. Includes both substrates. The former is an in-core base material having a 3C-SiC polycrystalline coat, and the latter is an in-core base material made of 3C-SiC polycrystalline bulk.
Further, the "non-plasma state" refers to a state in which the plasma is not generated.
Further, the "SiC deposit deposited in the SiC single crystal growth furnace" is a SiC deposit deposited on the inner wall of the SiC single crystal growth furnace and the members in the SiC single crystal growth furnace. Therefore, SiC deposited on "a base material in a furnace composed of 3C-SiC polycrystals having at least a surface having a strength ratio of the (111) plane to another crystal plane in powder XRD analysis of 85% or more and 100% or less". It includes not only deposits but also SiC deposits deposited on other in-core substrates.

「粉末XRD分析での他の結晶面に対する(111)面の強度比が85%以上、100%以下である3C−SiC多結晶」において「他の結晶面」は(111)面以外の結晶面全てであるが、(200)面、(220)面、(311)面が観測されることが多い。
ここで、“3C−”は立方晶系を意味する。
In "3C-SiC polycrystal in which the intensity ratio of the (111) plane to the other crystal plane in the powder XRD analysis is 85% or more and 100% or less", the "other crystal plane" is a crystal plane other than the (111) plane. Although all, the (200) plane, the (220) plane, and the (311) plane are often observed.
Here, "3C-" means a cubic system.

炉内基材の表面の3C−SiC多結晶の損傷の抑制の観点で、粉末XRD分析での他の結晶面に対する(111)面の強度比が90%以上である方が本発明の効果が発揮されやすく、95%以上である方がより効果が発揮されやい。 From the viewpoint of suppressing damage to 3C-SiC polycrystals on the surface of the substrate in the furnace, the effect of the present invention is that the strength ratio of the (111) plane to the other crystal planes in the powder XRD analysis is 90% or more. It is easy to exert, and it is easier to exert the effect when it is 95% or more.

本発明によって除去対象となるSiC堆積物はSiCを主成分として含むものであり、具体的には、化学的気相堆積法(CVD法)、有機金属気相成長法(MOCVD法)、スパッタリング法、ゾルゲル法、蒸着法等の方法を用いて薄膜、厚膜、粉体、ウイスカ等を製造する際に、炉内基材の表面に付随的に堆積した不要なSiC堆積物が挙げられる。
本発明のクリーニング方法を適用した際に、SiC堆積物以外の不要な堆積物が除去されても構わない。
The SiC deposit to be removed by the present invention contains SiC as a main component, and specifically, a chemical vapor deposition method (CVD method), a metalorganic vapor phase growth method (MOCVD method), and a sputtering method. , Unnecessary SiC deposits incidentally deposited on the surface of the base material in the furnace when thin films, thick films, powders, whiskers, etc. are produced by using a method such as a sol-gel method or a vapor deposition method.
When the cleaning method of the present invention is applied, unnecessary deposits other than SiC deposits may be removed.

本発明の適用対象となるSiC堆積物は、粉末XRD分析での他の結晶面に対する(111)面の強度比が85%未満の3C−SiC多結晶であり、一例を挙げると、70%以上〜85%未満である。他の結晶面は(111)面以外の結晶面全てであるが、(200)面、(220)面、(311)面が観測されることが多い。 The SiC deposit to which the present invention is applied is a 3C-SiC polycrystal in which the intensity ratio of the (111) plane to the other crystal plane in the powder XRD analysis is less than 85%, for example, 70% or more. ~ 85% or less. The other crystal planes are all crystal planes other than the (111) plane, but the (200) plane, the (220) plane, and the (311) plane are often observed.

上記粉末XRD分析の評価方法としては特に限定されないが、例えば装置は、PANalytical製のX’pert Pro MPDを用い、条件はX線源としてCuKα、出力 45kV−40mAで、集中光学系、半導体検出器を使用し、走査域としては2θ:20〜100deg、ステップサイズ 0.01deg、走査速度 0.1deg/minで実施することができる。それぞれの結晶面の強度は、ピーク高さで評価する。 The evaluation method for the powder XRD analysis is not particularly limited, but for example, the apparatus uses X'pert Pro MPD manufactured by PANalytical, the conditions are CuKα as an X-ray source, an output of 45 kV-40 mA, a centralized optical system, and a semiconductor detector. Can be carried out at a scanning area of 2θ: 20 to 100 deg, a step size of 0.01 deg, and a scanning speed of 0.1 deg / min. The strength of each crystal plane is evaluated by the peak height.

本発明のSiC単結晶成長炉のクリーニング方法は、不要な堆積物が堆積しやすい製造装置の内壁または半導体ウエハを設置するためのサセプタ、半導体デバイス、コーティング工具などの薄膜を形成する炭化珪素製膜装置やウイスカ、粉末などを製造する炭化珪素製造装置の内壁またはその付属部品に堆積したSiC堆積物の除去に適用できる。また、炭化珪素の薄膜、厚膜等のみではなく六方晶SiCウエハなどの大型バルク結晶成長を行う製造装置の内壁またはその付属部品に付着した不要なSiC堆積物にも適用可能である。これらのうち、成膜装置への適用が好ましく、特に、高温条件での成膜が行われる炭化珪素のエピタキシャル膜成長を行う製膜装置の内壁またはその付属部品に堆積したSiC堆積物への適用がさらに好ましい。これらの中でも、不要な堆積物が堆積しやすい製造装置の内壁及び半導体ウエハを設置するためのサセプタが特に好適である。 The method for cleaning a SiC single crystal growth furnace of the present invention is a silicon carbide film forming a thin film such as a susceptor, a semiconductor device, or a coating tool for installing an inner wall of a manufacturing apparatus or a semiconductor wafer on which unnecessary deposits are likely to be deposited. It can be applied to the removal of SiC deposits deposited on the inner wall of a silicon carbide manufacturing device for manufacturing devices, whiskers, powders, etc. or its accessories. Further, it can be applied not only to thin films and thick films of silicon carbide, but also to unnecessary SiC deposits attached to the inner wall of a manufacturing apparatus for growing large bulk crystals such as hexagonal SiC wafers or its accessories. Of these, application to a film forming apparatus is preferable, and in particular, application to SiC deposits deposited on the inner wall of a film forming apparatus or its accessories that grow an epitaxial film of silicon carbide that is formed under high temperature conditions. Is even more preferable. Among these, the inner wall of the manufacturing apparatus where unnecessary deposits are likely to be deposited and the susceptor for installing the semiconductor wafer are particularly suitable.

SiC単結晶成長炉の内壁に付着するSiC堆積物と、内壁を構成するSiC膜(SiCコート膜)はいずれもSiC多結晶であることは知られていたが、その明確な違いは明らかではなく、せいぜい表面粗さRaだけの違いと考えられていた。しかし、その評価方法では、表面粗さが内壁を構成するSiCコート膜と同等なSiC堆積物を見分けられないことからクリーニング方法を正しく評価できず、実際の装置においては期待通りの効果が得られない、すなわち実際の炭化珪素単結晶成長での結晶欠陥の低減が確認できなかった。
そこで、本発明者らは、SiC単結晶成長炉の内壁に付着するSiC堆積物と内壁を構成するSiCコート膜の構造的な違いを明らかにすべく種々の分析、確認を行ったところ、どちらも同じ3C−SiCの多結晶体であるものの、粉末XRD分析により定量的に構造を区別でき、その違いは結晶方位面(111)配向性の割合に強く現れることを見出した。
内壁を構成するSiCコート膜は3C−SiCの多結晶で、その結晶方位面が(111)配向性が強く、粉末XRD分析での他の結晶面に対する(111)面の強度比が通常、85%以上、100%以下である。ここで他の結晶面は(111)面以外のもの全てであるが、(200)面、(220)面、(311)面が観測されることが多い。これは結晶面がそろっていることで、その表面反応性は単結晶に近い物性を示すことを意味する。これにより、構造的、化学的安定性を高く保つことができると考えられる。
一方、余分なSiC堆積物は同じ3C−SiC多結晶であるが、その結晶方位面が無配向に近い。内壁を構成するSiCコート膜における配向性が強い(111)面の強度比は85%未満である。ここで他の結晶面は(111)面以外のもの全てであるが、(200)面、(220)面、(311)面が観測されることが多い。SiC堆積物は内壁を構成するSiCコート膜に対して無配向に近いため、構造的、化学的安定性が劣るものと考えられる。ただし、完全なる無配向ではなく、(111)面に配向性がやや認められるのは内壁を構成するSiCコート膜の配向性の影響を受けているためと考えられる。
It was known that the SiC deposits adhering to the inner wall of the SiC single crystal growth furnace and the SiC film (SiC coat film) constituting the inner wall are both SiC polycrystals, but the clear difference is not clear. At best, it was thought that the difference was only the surface roughness Ra. However, with that evaluation method, the cleaning method cannot be evaluated correctly because the surface roughness cannot distinguish the SiC deposits equivalent to the SiC coat film constituting the inner wall, and the expected effect can be obtained in an actual device. No, that is, the reduction of crystal defects in the actual growth of silicon carbide single crystal could not be confirmed.
Therefore, the present inventors conducted various analyzes and confirmations in order to clarify the structural difference between the SiC deposit adhering to the inner wall of the SiC single crystal growth furnace and the SiC coat film constituting the inner wall. Although they are the same 3C-SiC polycrystals, the structures can be quantitatively distinguished by powder XRD analysis, and it was found that the difference appears strongly in the ratio of crystal orientation plane (111) orientation.
The SiC coat film constituting the inner wall is a 3C-SiC polycrystal, and its crystal orientation plane is strongly (111) oriented, and the intensity ratio of the (111) plane to other crystal planes in powder XRD analysis is usually 85. % Or more and 100% or less. Here, the other crystal planes are all other than the (111) plane, but the (200) plane, the (220) plane, and the (311) plane are often observed. This means that the crystal planes are aligned and the surface reactivity is close to that of a single crystal. It is considered that this makes it possible to maintain high structural and chemical stability.
On the other hand, the extra SiC deposits are the same 3C-SiC polycrystals, but their crystal orientation planes are close to non-oriented. The strength ratio of the highly oriented (111) plane in the SiC coat film constituting the inner wall is less than 85%. Here, the other crystal planes are all other than the (111) plane, but the (200) plane, the (220) plane, and the (311) plane are often observed. Since the SiC deposit is almost non-oriented with respect to the SiC coat film constituting the inner wall, it is considered that the structural and chemical stability is inferior. However, it is considered that the reason why the (111) plane is slightly oriented rather than completely non-oriented is that it is influenced by the orientation of the SiC coat film constituting the inner wall.

本発明のSiC単結晶成長炉のクリーニング方法では、炉内基材を構成するSiCコート膜あるいはSiCバルク材と余分なSiC堆積物とを構造的に区別することで、構造的、化学的安定性の劣る、余分なSiC堆積物のみを選択的に除去することができる。
特に所定の濃度範囲に希釈されたフッ素ガスを用い、炉内基材をヒーター等で所定の温度範囲に加熱しながら、炉内基材の表面に堆積したSiCを含有する堆積物を効率的に選択的に除去することができる。炉内基材に堆積した不要な堆積物が除去される機構としては、フッ素の熱分解によって生じたフッ素ラジカルが堆積物中のSiCと反応し、SiF、CFとなることにより除去されると考えられる。
ただし、炉内基材を構成するSiCコート膜あるいはSiCバルク材と、SiC堆積物とは結晶方位面の割合は異なるものの、両者とも3C−SiCである点では同じであるので、100%のFガスを用いた場合には、反応性が強すぎてSiCコート膜、SiCバルク材およびSiC堆積物が区別なく除去されてしまうので、最適な選択比とはならない。
そこで、本発明者らは、Fガスを不活性ガスで希釈した混合ガスをエッチングガスとして用いたところ、フッ素濃度が1体積%以上、20体積%以下、好ましくは5体積%以上、15%以下の範囲で、十分な選択比が得られることを確認した。この濃度範囲に希釈したFガスを用いることで、緻密な多結晶のSiC膜あるいはSiCバルク材と、緻密でない多結晶のSiC堆積物との間のエッチングレートに明確な差を設けることができる。すなわち、エッチングレートの差を利用することで、炉内基材を構成するSiCコート膜あるいはSiCバルク材を実質的にエッチングすることなく、その表面に付着したSiC堆積物をエッチング除去することができる。
In the method for cleaning a SiC single crystal growth furnace of the present invention, structural and chemical stability is achieved by structurally distinguishing the SiC coat film or SiC bulk material constituting the in-furnace substrate from the excess SiC deposits. Only inferior, excess SiC deposits can be selectively removed.
In particular, using fluorine gas diluted to a predetermined concentration range, while heating the furnace base material to a predetermined temperature range with a heater or the like, the SiC-containing deposits deposited on the surface of the furnace base material can be efficiently removed. It can be selectively removed. As a mechanism for removing unnecessary deposits deposited on the base material in the furnace, fluorine radicals generated by thermal decomposition of fluorine react with SiC in the deposits to become SiC 4 and CF 4. it is conceivable that.
However, although the ratio of the crystal orientation planes of the SiC coat film or SiC bulk material constituting the base material in the furnace and the SiC deposit are different, they are the same in that they are both 3C-SiC, so 100% F. When two gases are used, the reactivity is too strong and the SiC coat film, the SiC bulk material and the SiC deposit are removed indiscriminately, so that the optimum selection ratio is not obtained.
Therefore, when the present inventors used a mixed gas obtained by diluting F 2 gas with an inert gas as the etching gas, the fluorine concentration was 1% by volume or more and 20% by volume or less, preferably 5% by volume or more and 15%. It was confirmed that a sufficient selection ratio can be obtained in the following range. By using F 2 gas diluted in this concentration range, it is possible to provide a clear difference in the etching rate between the dense polycrystalline SiC film or SiC bulk material and the non-dense polycrystalline SiC deposit. .. That is, by utilizing the difference in etching rate, it is possible to remove the SiC deposits adhering to the surface by etching without substantially etching the SiC coat film or the SiC bulk material constituting the base material in the furnace. ..

本発明で使用する希釈ガスとしては不活性ガス、空気、または、不活性ガス及び空気を用いることができる。不活性ガスとしては特に限定されるものではないが、窒素ガス(N)、アルゴンガス(Ar)、ヘリウムガス(He)が挙げられる。これらの中でも経済性と入手容易性の観点から、N、Arが好ましい。不活性ガスは複数種類を用いてもよい。As the diluting gas used in the present invention, an inert gas, air, or an inert gas and air can be used. The inert gas is not particularly limited, and examples thereof include nitrogen gas (N 2 ), argon gas (Ar), and helium gas (He). From the viewpoint of easy availability and even economics of these, N 2, Ar is preferable. A plurality of types of the inert gas may be used.

本発明のクリーニングの際の反応温度(SiCを含む堆積物が堆積した炉内基材の温度(SiC単結晶成長炉内温度))は、200℃以上、500℃以下であることが好ましい。この温度範囲であれば、十分なクリーニング性能が得られ、かつ、エッチングレートの差が十分であり、エネルギーの無駄にならず、消費電力などランニングコストも高くならないからである。250℃以上、400℃以下の範囲であることがより好ましく、250℃以上、350℃以下の範囲であることがさらに好ましい。 The reaction temperature during cleaning of the present invention (the temperature of the substrate in the furnace on which the deposit containing SiC is deposited (the temperature in the SiC single crystal growth furnace)) is preferably 200 ° C. or higher and 500 ° C. or lower. This is because within this temperature range, sufficient cleaning performance can be obtained, the difference in etching rate is sufficient, energy is not wasted, and running costs such as power consumption do not increase. It is more preferably in the range of 250 ° C. or higher and 400 ° C. or lower, and further preferably in the range of 250 ° C. or higher and 350 ° C. or lower.

反応温度は例えば、SiC単結晶成長炉の周囲に設置されたヒーターにより制御できる。ヒーターはSiC単結晶成長炉全体を温める加熱手段を用いてもよいし、加熱ターゲット部材のみを温めてその伝熱により付着物を温めるような加熱手段を用いてもよい。センサーを付着物付近に設置するのが好ましい。センサーを直接ガスに接触させられない場合には、内挿管等を用いてもよい。 The reaction temperature can be controlled, for example, by a heater installed around the SiC single crystal growth furnace. As the heater, a heating means for heating the entire SiC single crystal growth furnace may be used, or a heating means for heating only the heating target member and heating the deposits by the heat transfer may be used. It is preferable to install the sensor near the deposits. If the sensor cannot be brought into direct contact with the gas, an intubation or the like may be used.

本発明のクリーニング時の圧力については、特に制限されるものではない。通常は大気圧下で行うが、例えば、−0.10MPaG以上、0.3MPaG以下でも適用可能である。 The cleaning pressure of the present invention is not particularly limited. Normally, it is carried out under atmospheric pressure, but for example, it can be applied to −0.10 MPaG or more and 0.3 MPaG or less.

クリーニングガス(混合ガス)の流量は、特に制限されるものではないが、線速度(LV)として、0.1m/min以上、10m/min以下が好ましい。 The flow rate of the cleaning gas (mixed gas) is not particularly limited, but the linear velocity (LV) is preferably 0.1 m / min or more and 10 m / min or less.

本発明のクリーニング方法は、CVD法により半導体デバイス、コーティング工具などの薄膜を形成する炭化珪素成膜装置やウイスカ、粉末などを製造する炭化珪素製造装置の内壁またはその付属部品に堆積したSiC堆積物の除去に適用できる。また、炭化珪素の薄膜、厚膜等のみではなく六方晶SiCウエハなどの大型バルク結晶成長を行う製造装置の内壁またはその付属部品に付着した不要なSiC堆積物にも適用可能である。これらのうち、成膜装置への適用が好ましく、特に、高温条件での成膜が行われる炭化珪素のエピタキシャル膜成長を行う製膜装置の内壁またはその付属部品に堆積したSiC堆積物の除去への適用が好ましい。 The cleaning method of the present invention is a SiC deposit deposited on the inner wall of a silicon carbide film forming apparatus for forming a thin film of a semiconductor device, a coating tool, etc., or a silicon carbide manufacturing apparatus for producing whiskers, powder, etc. by a CVD method or its accessories. Can be applied to the removal of. Further, it can be applied not only to thin films and thick films of silicon carbide, but also to unnecessary SiC deposits adhering to the inner wall of a manufacturing apparatus for growing large bulk crystals such as hexagonal SiC wafers or its accessories. Of these, application to a film forming apparatus is preferable, and in particular, for removing SiC deposits deposited on the inner wall of a film forming apparatus or its accessories that grow an epitaxial film of silicon carbide that is formed under high temperature conditions. Is preferred.

以下、実施例により本発明の効果をより明らかなものとする。なお、本発明は、以下の実施例に限定されるものではなく、本発明の効果を発揮し得る範囲で適宜変更して実施することができる。 Hereinafter, the effects of the present invention will be made clearer by examples. The present invention is not limited to the following examples, and can be appropriately modified and implemented as long as the effects of the present invention can be exhibited.

図1に、クリーニング試験で使用した反応炉の断面模式図を示す。
反応炉としては、円筒形の反応管1(ニッケル製)を備えた外熱式縦型反応炉を使用した。円筒形の反応管1には、クリーニングガスを供給するフッ素ガス供給部2と希釈用ガス供給部3が接続されており、反応管1の下流には、ガスを反応管から排出する排気部4が設けられている。さらに、反応管1の外周部には外部ヒーターとして誘導加熱コイル5が設置され、この誘導コイルによって反応管の内部を加熱することができる構成とした。クリーニング試験は、サンプル7(評価用サンプルと対照サンプル)を反応管内部の裁置台6に設置して行った。
FIG. 1 shows a schematic cross-sectional view of the reactor used in the cleaning test.
As the reaction furnace, an external heat type vertical reaction furnace equipped with a cylindrical reaction tube 1 (made of nickel) was used. A fluorine gas supply unit 2 for supplying cleaning gas and a dilution gas supply unit 3 are connected to the cylindrical reaction tube 1, and an exhaust unit 4 for discharging gas from the reaction tube is downstream of the reaction tube 1. Is provided. Further, an induction heating coil 5 is installed as an external heater on the outer peripheral portion of the reaction tube 1, and the inside of the reaction tube can be heated by the induction coil. The cleaning test was carried out by placing the sample 7 (evaluation sample and control sample) on the cutting table 6 inside the reaction tube.

(実施例1)
カーボン母材にSiCコートされた炉内基材を有するSiC単結晶成長炉において、堆積物が堆積していない部分を1cm角の大きさに切り出し、対照サンプルとした。この炉においてSiCエピタキシャル成長工程を繰り返し行い、SiC堆積物が堆積した炉内基材を5mm角の大きさに切り出し、評価用サンプルとした。
(Example 1)
In a SiC single crystal growth furnace having an in-furnace base material coated with SiC on a carbon base material, a portion where no deposits were deposited was cut out to a size of 1 cm square and used as a control sample. The SiC epitaxial growth step was repeated in this furnace, and the in-furnace base material on which the SiC deposits were deposited was cut out to a size of 5 mm square and used as an evaluation sample.

これら2つのサンプルを粉末XRD分析により解析した。対照サンプルの正常なSiCコート膜は3C−SiCの多結晶で、(111)面の強度比は99%であった。これに対して、評価用サンプルの堆積物面も3C−SiCの多結晶であったが(111)面の強度比は76%であった。(111)面以外の結晶方位面としては(200)面、(220)面、(311)面が観測された。 These two samples were analyzed by powder XRD analysis. The normal SiC coated film of the control sample was a 3C-SiC polycrystalline film, and the intensity ratio of the (111) plane was 99%. On the other hand, the sediment surface of the evaluation sample was also a 3C-SiC polycrystalline, but the intensity ratio of the (111) plane was 76%. As the crystal orientation planes other than the (111) plane, the (200) plane, the (220) plane, and the (311) plane were observed.

粉末XRD分析装置はPANalytical製のX’pert Pro MPDを用い、条件はX線源としてCuKα、出力 45kV−40mAで、集中光学系、半導体検出器を使用し、走査域としては2θ:20〜100deg、ステップサイズ 0.01deg、走査速度 0.1deg/minで実施した。 The powder XRD analyzer uses PANalytical's X'pert Pro MPD, the conditions are CuKα as the X-ray source, the output is 45 kV-40 mA, a centralized optical system and a semiconductor detector are used, and the scanning range is 2θ: 20 to 100 deg. The step size was 0.01 deg and the scanning speed was 0.1 deg / min.

断面をSEM(Scanning Electron Microscope)観察した結果、図2(A)に示す通り、SiCコート膜の厚みはいずれも70μm、評価用サンプルのSiC堆積物(デポ)の厚みはおよそ250μmであった。 As a result of observing the cross section with an SEM (Scanning Electron Microscope), as shown in FIG. 2 (A), the thickness of each SiC coat film was 70 μm, and the thickness of the SiC deposit (depot) of the evaluation sample was about 250 μm.

これら2つのサンプルを、図1に示す内挿管を有するニッケル(Ni)製の反応管(φ3/4インチ、長さ30mm)内の中心位置のサンプル裁置台に設置した。内挿管内のサンプル設置場所付近に熱電対T1を設置した。 These two samples were placed on a sample arranging table at the center of a nickel (Ni) reaction tube (φ3/4 inch, length 30 mm) having an intubation as shown in FIG. A thermocouple T1 was installed near the sample installation location in the intubation.

反応管を、電気炉を用いて280℃に加熱し、大気圧条件下、F濃度10体積%、N濃度90体積%のガスを線速度(LV)1m/minとなるように流量180ml/minで60分間流通させた。その結果、図2(B)に示す通り、SiC堆積物層は210μmまで減少したが、SiCコート膜は70μmで変わらなかった。つまり、ここでは測定限界が5μmなので、SiCコート膜の減少量は5μm未満となる。The reaction tube was heated to 280 ° C. using an electric furnace, under atmospheric conditions, F 2 concentration of 10 vol%, N 2 concentration of 90% by volume of the gas linear velocity (LV) 1m / min to become like flow 180ml It was circulated at / min for 60 minutes. As a result, as shown in FIG. 2 (B), the SiC deposit layer decreased to 210 μm, but the SiC coat film did not change at 70 μm. That is, since the measurement limit is 5 μm here, the amount of reduction of the SiC coat film is less than 5 μm.

エッチングレートは、SiC堆積物層については0.67μm/min、SiCコート膜については<0.08μm/min(5μm未満のエッチング量/60分間)であり、SiCコート膜に対するSiC堆積物層のエッチングレート比は>8.4であった。 The etching rate is 0.67 μm / min for the SiC deposit layer and <0.08 μm / min (etching amount less than 5 μm / 60 minutes) for the SiC coat film, and the etching of the SiC deposit layer on the SiC coat film. The rate ratio was> 8.4.

(実施例2)
クリーニングガスの流通時間を350分間としたこと以外は実施例1と同じ条件にてクリーニング試験を行った。その結果、図2(C)に示す通り、SiC堆積物層は消失したが、SiCコート膜の厚みは65μmであった。
(Example 2)
The cleaning test was carried out under the same conditions as in Example 1 except that the circulation time of the cleaning gas was 350 minutes. As a result, as shown in FIG. 2C, the SiC deposit layer disappeared, but the thickness of the SiC coat film was 65 μm.

エッチングレートは、SiC堆積物層については0.71μm/min以上であり、SiCコート膜については0.014μ/minであり、SiCコート膜に対するSiC堆積物層のエッチングレート比は51以上であった。 The etching rate was 0.71 μm / min or more for the SiC deposit layer, 0.014 μ / min for the SiC coat film, and the etching rate ratio of the SiC deposit layer to the SiC coat film was 51 or more. ..

(実施例3)
炉内基材に使用したSiCコート膜として、結晶方位面強度が異なるもの、すなわち粉末XRD分析による(111)面の強度比が95%のものを使用した。その際のSiC堆積物層の結晶方位面(111)面の強度比は73%であった。
(Example 3)
As the SiC coat film used for the substrate in the furnace, one having a different crystal orientation plane strength, that is, one having a strength ratio of the (111) plane by powder XRD analysis of 95% was used. At that time, the strength ratio of the crystal orientation plane (111) plane of the SiC sediment layer was 73%.

ガスの流通時間を200分間とした以外は実施例1と同じ条件にてクリーニング試験を行った。なお、断面をSEM観察した結果、SiCコート膜の厚みはいずれも70μm、評価用サンプルのSiC堆積物(デポ)の厚みはおよそ250μmであり、実施例1と同じであった。
その結果、SiC堆積物層は95μmまで減少したが、SiCコート膜は66μmまでの減少に留まった。
The cleaning test was carried out under the same conditions as in Example 1 except that the gas circulation time was set to 200 minutes. As a result of SEM observation of the cross section, the thickness of the SiC coat film was 70 μm, and the thickness of the SiC deposit (depot) of the evaluation sample was about 250 μm, which was the same as in Example 1.
As a result, the SiC deposit layer decreased to 95 μm, but the SiC coat film decreased to 66 μm.

エッチングレートは、SiC堆積物層については0.78μm/min、SiCコート膜については0.020μm/minであり、SiCコート膜に対するSiC堆積物層のエッチングレート比は39であった。 The etching rate was 0.78 μm / min for the SiC deposit layer and 0.020 μm / min for the SiC coat film, and the etching rate ratio of the SiC deposit layer to the SiC coat film was 39.

(実施例4)
炉内基材に使用したSiCコート膜として、結晶方位面強度が異なるもの、すなわち粉末XRD分析による(111)面の強度比が90%のものを使用した。その際のSiC堆積物層の結晶方位面(111)面の強度比は70%であった。
(Example 4)
As the SiC coat film used for the substrate in the furnace, one having a different crystal orientation plane strength, that is, one having a strength ratio of the (111) plane by powder XRD analysis of 90% was used. At that time, the strength ratio of the crystal orientation plane (111) plane of the SiC sediment layer was 70%.

ガスの流通時間を200分間とした以外は実施例1と同じ条件にてクリーニング試験を行った。なお、断面をSEM観察した結果、SiCコート膜の厚みはいずれも70μm、評価用サンプルの堆積物(デポ)の厚みはおよそ250μmであり、実施例1と同じであった。
その結果、SiC堆積物層は80μmまで減少したが、SiCコート膜は65μmまでの減少に留まった。
The cleaning test was carried out under the same conditions as in Example 1 except that the gas circulation time was set to 200 minutes. As a result of SEM observation of the cross section, the thickness of the SiC coat film was 70 μm, and the thickness of the deposit (depot) of the evaluation sample was about 250 μm, which was the same as in Example 1.
As a result, the SiC deposit layer decreased to 80 μm, but the SiC coat film decreased to 65 μm.

エッチングレートは、SiC堆積物層については0.85μm/min、SiCコート膜については0.025μm/minであり、SiCコート膜に対するSiC堆積物層のエッチングレート比は34であった。 The etching rate was 0.85 μm / min for the SiC deposit layer and 0.025 μm / min for the SiC coat film, and the etching rate ratio of the SiC deposit layer to the SiC coat film was 34.

(実施例5)
ガス組成をF濃度5体積%、N濃度95体積%とした以外は実施例1と同じ条件にてクリーニング試験を行った。その結果、SiC堆積物層は220μmまで減少したが、SiCコート膜は70μmを保っていた。つまり、ここでは測定限界が5μmなので、SiCコート膜の減少量は5μm未満となる。
(Example 5)
A cleaning test was carried out under the same conditions as in Example 1 except that the gas composition was F 2 concentration 5% by volume and N 2 concentration 95% by volume. As a result, the SiC deposit layer decreased to 220 μm, but the SiC coat film maintained 70 μm. That is, since the measurement limit is 5 μm here, the amount of reduction of the SiC coat film is less than 5 μm.

エッチングレートは、SiC堆積物層については0.50μm/min、SiCコート膜については<0.08μm/min(5μm未満のエッチング量/60分間)であり、SiCコート膜に対するSiC堆積物層のエッチングレート比は>6.3であった。 The etching rate is 0.50 μm / min for the SiC deposit layer and <0.08 μm / min (etching amount less than 5 μm / 60 minutes) for the SiC coat film, and the etching of the SiC deposit layer on the SiC coat film. The rate ratio was> 6.3.

(実施例6)
ガス組成をF濃度15体積%、N濃度85体積%とした以外は実施例1と同じ条件にてクリーニング試験を行った。その結果、SiC堆積物層は190μmまで減少したが、SiCコート膜は65μmまでの減少に留まった。
エッチングレートは、SiC堆積物層については1.0μm/min、SiCコート膜については0.083μm/minであり、SiCコート膜に対するSiC堆積物層のエッチングレート比は12であった。
(Example 6)
A cleaning test was carried out under the same conditions as in Example 1 except that the gas composition was F 2 concentration 15% by volume and N 2 concentration 85% by volume. As a result, the SiC deposit layer decreased to 190 μm, but the SiC coat film decreased to 65 μm.
The etching rate was 1.0 μm / min for the SiC deposit layer and 0.083 μm / min for the SiC coat film, and the etching rate ratio of the SiC deposit layer to the SiC coat film was 12.

(実施例7)
反応管の温度を400℃にした以外は実施例1と同じ条件にてクリーニング試験を行った。その結果、SiC堆積物層は190μmまで減少したが、SiCコート膜は65μmまでの減少に留まった。
(Example 7)
The cleaning test was carried out under the same conditions as in Example 1 except that the temperature of the reaction tube was set to 400 ° C. As a result, the SiC deposit layer decreased to 190 μm, but the SiC coat film decreased to 65 μm.

エッチングレートは、SiC堆積物層については1.0μm/min、SiCコート膜については0.083μm/minであり、SiCコート膜に対するSiC堆積物層のエッチングレート比は12であった。 The etching rate was 1.0 μm / min for the SiC deposit layer and 0.083 μm / min for the SiC coat film, and the etching rate ratio of the SiC deposit layer to the SiC coat film was 12.

(実施例8)
ガス組成をF濃度1体積%、N濃度99体積%とし、クリーニングガスの流通時間を350分間とした以外は実施例1と同じ条件にてクリーニング試験を行った。その結果、SiC堆積物層は215μmまで減少したが、SiCコート膜は70μmを保っていた。つまり、ここでは測定限界が5μmなので、SiCコート膜の減少量は5μm未満となる。
エッチングレートは、SiC堆積物層については0.10μm/min、SiCコート膜については<0.014μm/min(5μm未満のエッチング量/350分間)であり、SiCコート膜に対するSiC堆積物層のエッチングレート比は>9.3であった。
(Example 8)
The cleaning test was carried out under the same conditions as in Example 1 except that the gas composition was F 2 concentration 1% by volume and N 2 concentration 99% by volume, and the circulation time of the cleaning gas was 350 minutes. As a result, the SiC deposit layer decreased to 215 μm, but the SiC coat film maintained 70 μm. That is, since the measurement limit is 5 μm here, the amount of reduction of the SiC coat film is less than 5 μm.
The etching rate is 0.10 μm / min for the SiC deposit layer and <0.014 μm / min (etching amount less than 5 μm / 350 minutes) for the SiC coat film, and the etching of the SiC deposit layer on the SiC coat film. The rate ratio was> 9.3.

(実施例9)
ガス組成をF濃度20体積%、N濃度80体積%とした以外は実施例1と同じ条件にてクリーニング試験を行った。その結果、SiC堆積物層は135μmまで減少したが、SiCコート膜は60μmまでの減少に留まった。
エッチングレートは、SiC堆積物層については1.9μm/min、SiCコート膜については0.17μm/minであり、SiCコート膜に対するSiC堆積物層のエッチングレート比は11であった。
(Example 9)
The gas composition F 2 concentration of 20% by volume, except that the N 2 concentration of 80% by volume were cleaning test under the same conditions as in Example 1. As a result, the SiC deposit layer decreased to 135 μm, but the SiC coat film decreased to 60 μm.
The etching rate was 1.9 μm / min for the SiC deposit layer and 0.17 μm / min for the SiC coat film, and the etching rate ratio of the SiC deposit layer to the SiC coat film was 11.

(比較例1)
炉内基材に使用したSiCコート膜として、結晶方位面強度が異なるもの、すなわち粉末XRD分析による(111)面の強度比が80%のものを使用した。その際のSiC堆積物層の結晶方位面(111)面の強度比は52%であった。
(Comparative Example 1)
As the SiC coat film used for the substrate in the furnace, one having a different crystal orientation plane strength, that is, one having a strength ratio of the (111) plane by powder XRD analysis of 80% was used. At that time, the strength ratio of the crystal orientation plane (111) plane of the SiC sediment layer was 52%.

ガスの流通時間を100分間とした以外は実施例1と同じ条件にてクリーニング試験を行った。なお、断面をSEM観察した結果、SiCコート膜の厚みはいずれも70μm、評価用サンプルの堆積物(デポ)の厚みはおよそ250μmであり、実施例1と同じであった。
その結果、堆積物層は70μmまで減少し、SiCコート膜も10μmまで減少した。
The cleaning test was carried out under the same conditions as in Example 1 except that the gas circulation time was set to 100 minutes. As a result of SEM observation of the cross section, the thickness of the SiC coat film was 70 μm, and the thickness of the deposit (depot) of the evaluation sample was about 250 μm, which was the same as in Example 1.
As a result, the sediment layer was reduced to 70 μm, and the SiC coat film was also reduced to 10 μm.

エッチングレートは、SiC堆積物層については1.8μm/min、コート層については0.60μm/minであり、SiCコート膜に対するSiC堆積物層のエッチングレート比は3.0であった。 The etching rate was 1.8 μm / min for the SiC deposit layer and 0.60 μm / min for the coat layer, and the etching rate ratio of the SiC deposit layer to the SiC coat film was 3.0.

(比較例2)
炉内基材に使用したSiCコート膜として、結晶方位面強度が異なるもの、すなわち粉末XRD分析による(111)面の強度比が70%のものを使用した。その際のSiC堆積物層の結晶方位面(111)面の強度比は38%であった。
(Comparative Example 2)
As the SiC coat film used for the substrate in the furnace, one having a different crystal orientation plane strength, that is, one having a strength ratio of the (111) plane by powder XRD analysis of 70% was used. At that time, the strength ratio of the crystal orientation plane (111) plane of the SiC sediment layer was 38%.

ガスの流通時間を100分間とした以外は実施例1と同じ条件にてクリーニング試験を行った。なお、断面をSEM観察した結果、SiCコート膜の厚みはいずれも70μm、評価用サンプルの堆積物(デポ)の厚みはおよそ250μmであり、実施例1と同じであった。
その結果、SiC堆積物層は60μmまで減少し、SiCコート膜はわずかに残存が確認できるのみでほぼ消滅した。
エッチングレートは、SiC堆積物層については1.9μm/min、SiCコート膜については0.70μm/minであり、SiCコート膜に対するSiC堆積物層のエッチングレート比は2.7であった。
The cleaning test was carried out under the same conditions as in Example 1 except that the gas circulation time was set to 100 minutes. As a result of SEM observation of the cross section, the thickness of the SiC coat film was 70 μm, and the thickness of the deposit (depot) of the evaluation sample was about 250 μm, which was the same as in Example 1.
As a result, the SiC deposit layer decreased to 60 μm, and the SiC coat film almost disappeared with only a slight residual confirmation.
The etching rate was 1.9 μm / min for the SiC deposit layer and 0.70 μm / min for the SiC coat film, and the etching rate ratio of the SiC deposit layer to the SiC coat film was 2.7.

(比較例3)
反応管の温度を550℃にした以外は実施例1と同じ条件にてクリーニング試験を行った。その結果、SiC堆積物層は200μmまで減少し、SiCコート膜も50μmまで減少した。
エッチングレートは、SiC堆積物層については0.83/min、コート層については0.17μm/minであり、SiCコート膜に対するSiC堆積物層のエッチングレート比は4.9であった。
(Comparative Example 3)
The cleaning test was carried out under the same conditions as in Example 1 except that the temperature of the reaction tube was set to 550 ° C. As a result, the SiC deposit layer was reduced to 200 μm, and the SiC coat film was also reduced to 50 μm.
The etching rate was 0.83 / min for the SiC deposit layer and 0.17 μm / min for the coat layer, and the etching rate ratio of the SiC deposit layer to the SiC coat film was 4.9.

(比較例4)
反応管の温度を150℃にした以外は実施例1と同じ条件にてクリーニング試験を行った。その結果、SiC堆積物層は250μmのまま変化せず、SiCコート膜も70μmのまま変化しなかった。
(Comparative Example 4)
The cleaning test was carried out under the same conditions as in Example 1 except that the temperature of the reaction tube was set to 150 ° C. As a result, the SiC deposit layer remained unchanged at 250 μm, and the SiC coat film remained unchanged at 70 μm.

(比較例5)
ガス組成をF濃度30体積%、N濃度70体積%とした以外は実施例1と同じ条件にてクリーニング試験を行った。その結果、SiC堆積物層は210μmまで減少し、SiCコート膜も50μmまで減少した。
エッチングレートは、SiC堆積物層については0.67μm/minSiCコート膜については0.17μm/minであり、SiCコート膜に対するSiC堆積物層のエッチングレート比は3.9であった。
(Comparative Example 5)
A cleaning test was carried out under the same conditions as in Example 1 except that the gas composition had an F 2 concentration of 30% by volume and an N 2 concentration of 70% by volume. As a result, the SiC deposit layer was reduced to 210 μm, and the SiC coat film was also reduced to 50 μm.
The etching rate was 0.67 μm / min for the SiC deposit layer and 0.17 μm / min for the SiC coat film, and the etching rate ratio of the SiC deposit layer to the SiC coat film was 3.9.

(比較例6)
ガス組成をF濃度体積0.5%、N濃度99.5体積%とした以外は実施例1と同じ条件にてクリーニング試験を行った。その結果、SiC堆積物層は250μmのまま変化せず、SiCコート膜も70μmのまま変化しなかった。
(Comparative Example 6)
A cleaning test was carried out under the same conditions as in Example 1 except that the gas composition was F 2 concentration volume 0.5% and N 2 concentration 99.5 volume%. As a result, the SiC deposit layer remained unchanged at 250 μm, and the SiC coat film remained unchanged at 70 μm.

実施例及び比較例の結果を表1にまとめて示す。 The results of Examples and Comparative Examples are summarized in Table 1.

Figure 0006964520
Figure 0006964520

実施例1と比較例4とを比較すると、実施例1と同じフッ素ガス濃度および反応時間でも、反応温度が150℃ではSiC堆積物をエッチングすることができないことがわかった。また、実施例1と比較例3とを比較すると、実施例1と同じフッ素ガス濃度および反応時でも、反応温度が550℃ではエッチングレート比は十分に得られないことがわかった。
実施例1と比較例6とを比較すると、実施例1と同じ反応温度および反応時間でも、フッ素ガス濃度が0.5体積%ではSiC堆積物をエッチングすることができないことがわかった。また、実施例1と比較例5とを比較すると、実施例1と同じ反応温度および反応時でも、フッ素ガス濃度が30体積%ではエッチングレート比は十分に得られないことがわかった。
実施例1と比較例1および比較例2とを比較すると、炉内基材の表面を構成する3C−SiC多結晶の粉末XRD分析での他の結晶面に対する(111)面の強度比が85%未満では、十分なエッチングレート比が得られないことがわかった。
Comparing Example 1 and Comparative Example 4, it was found that the SiC deposit could not be etched at a reaction temperature of 150 ° C. even at the same fluorine gas concentration and reaction time as in Example 1. Further, when Example 1 and Comparative Example 3 were compared, it was found that the etching rate ratio could not be sufficiently obtained when the reaction temperature was 550 ° C. even at the same fluorine gas concentration and reaction as in Example 1.
Comparing Example 1 and Comparative Example 6, it was found that the SiC deposit could not be etched at a fluorine gas concentration of 0.5% by volume even at the same reaction temperature and reaction time as in Example 1. Further, when Example 1 and Comparative Example 5 were compared, it was found that the etching rate ratio could not be sufficiently obtained when the fluorine gas concentration was 30% by volume even at the same reaction temperature and reaction time as in Example 1.
Comparing Example 1 with Comparative Example 1 and Comparative Example 2, the intensity ratio of the (111) plane to the other crystal planes in the powder XRD analysis of the 3C-SiC polycrystals constituting the surface of the substrate in the furnace was 85. It was found that a sufficient etching rate ratio could not be obtained when the ratio was less than%.

1 反応管
2 フッ素ガス供給部
3 希釈用ガス供給部
4 排気部
5 誘導加熱コイル
6 サンプル裁置台
7 サンプル
1 Reaction tube 2 Fluorine gas supply unit 3 Dilution gas supply unit 4 Exhaust unit 5 Induction heating coil 6 Sample cutting table 7 Sample

Claims (4)

少なくとも表面が粉末XRD分析での他の結晶面に対する(111)面の強度比が85%以上、100%以下である3C−SiC多結晶からなる炉内基材を備えたSiC単結晶成長炉を、ガスを用いてクリーニングする方法であって、
フッ素ガスと不活性ガスとの混合ガスを、ノンプラズマ状態で前記SiC単結晶成長炉内に流通させて、該SiC単結晶成長炉内に堆積したSiC堆積物を選択的に除去するものであり、
前記SiC堆積物は、粉末XRD分析での他の結晶面に対する(111)面の強度比が85%未満の3C−SiC多結晶であり、
前記混合ガスは1体積%以上、20体積%以下のフッ素ガスと80体積%以上、99体積%以下の不活性ガスとからなり、SiC単結晶成長炉内温度が200℃以上、500℃以下であることを特徴とするSiC単結晶成長炉のクリーニング方法。
A SiC single crystal growth furnace having an in-core substrate composed of 3C-SiC polycrystalline having at least a surface having a strength ratio of the (111) plane to another crystal plane of 85% or more and 100% or less in powder XRD analysis. , A method of cleaning with gas,
A mixed gas of fluorine gas and an inert gas, were then circulated to the SiC single crystal growth furnace in a non-plasma state, intended to selectively remove the SiC deposits deposited on the SiC single crystal growth furnace can be,
The SiC deposit is a 3C-SiC polycrystal having a (111) plane intensity ratio of less than 85% to other crystal planes in powder XRD analysis.
The mixed gas is composed of 1% by volume or more and 20% by volume or less of fluorine gas and 80% by volume or more and 99% by volume or less of an inert gas, and the temperature in the SiC single crystal growth furnace is 200 ° C. or more and 500 ° C. or less. A method for cleaning a SiC single crystal growth furnace, which is characterized by being present.
前記不活性ガスが、窒素ガス、アルゴンガス、及びヘリウムガスからなる群から選択されたものであることを特徴とする請求項1に記載のSiC単結晶成長炉のクリーニング方法。 The method for cleaning a SiC single crystal growth furnace according to claim 1, wherein the inert gas is selected from the group consisting of nitrogen gas, argon gas, and helium gas. 前記不活性ガスが窒素ガスまたはアルゴンガスのいずれかであることを特徴とする請求項2に記載のSiC単結晶成長炉のクリーニング方法。 The method for cleaning a SiC single crystal growth furnace according to claim 2, wherein the inert gas is either nitrogen gas or argon gas. 前記SiC単結晶成長炉は、SiCインゴット製造装置が備える炉である、請求項1〜3のいずれか一項に記載のSiC単結晶成長炉のクリーニング方法。 The method for cleaning a SiC single crystal growth furnace according to any one of claims 1 to 3, wherein the SiC single crystal growth furnace is a furnace included in a SiC ingot manufacturing apparatus.
JP2017559181A 2015-12-28 2016-12-26 Cleaning method for SiC single crystal growth furnace Active JP6964520B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015256287 2015-12-28
JP2015256287 2015-12-28
PCT/JP2016/088697 WO2017115750A1 (en) 2015-12-28 2016-12-26 METHOD FOR CLEANING SiC MONOCRYSTAL GROWTH FURNACE

Publications (2)

Publication Number Publication Date
JPWO2017115750A1 JPWO2017115750A1 (en) 2018-10-18
JP6964520B2 true JP6964520B2 (en) 2021-11-10

Family

ID=59224725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017559181A Active JP6964520B2 (en) 2015-12-28 2016-12-26 Cleaning method for SiC single crystal growth furnace

Country Status (8)

Country Link
US (1) US11028474B2 (en)
EP (1) EP3399076B1 (en)
JP (1) JP6964520B2 (en)
KR (1) KR102136942B1 (en)
CN (1) CN108541278B (en)
SG (1) SG11201805276VA (en)
TW (1) TWI637072B (en)
WO (1) WO2017115750A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024134941A1 (en) * 2022-12-22 2024-06-27 東海カーボン株式会社 Polycrystalline sic molded article, and method for producing same

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000355779A (en) 1999-04-07 2000-12-26 Ngk Insulators Ltd Corrosion resistant parts of etching device
US6562183B1 (en) 1999-04-07 2003-05-13 Ngk Insulators, Ltd. Anti-corrosive parts for etching apparatus
JP2001267241A (en) * 2000-03-10 2001-09-28 L'air Liquide Method and apparatus for cleaning, and method and apparatus for etching
US20030216041A1 (en) * 2002-05-08 2003-11-20 Herring Robert B. In-situ thermal chamber cleaning
JP4102876B2 (en) 2003-01-27 2008-06-18 独立行政法人産業技術総合研究所 Single crystal growth equipment
JP4531833B2 (en) * 2007-12-05 2010-08-25 株式会社日立国際電気 Substrate processing apparatus, semiconductor device manufacturing method, and cleaning method
US8136354B2 (en) * 2008-03-14 2012-03-20 Energy Compression Inc. Adsorption-enhanced compressed air energy storage
JP2012019081A (en) 2010-07-08 2012-01-26 Hitachi Kokusai Electric Inc Substrate treatment apparatus, semiconductor device manufacturing method and substrate manufacturing method
JP5542560B2 (en) * 2010-07-20 2014-07-09 株式会社ニューフレアテクノロジー Semiconductor manufacturing apparatus and susceptor cleaning method
JP5698043B2 (en) 2010-08-04 2015-04-08 株式会社ニューフレアテクノロジー Semiconductor manufacturing equipment
CN103282557B (en) 2010-12-24 2017-02-15 东洋炭素株式会社 Unit for liquid phase epitaxial growth of monocrystalline silicon carbide, and method for liquid phase epitaxial growth of monocrystalline silicon carbide
JP5700538B2 (en) * 2011-03-29 2015-04-15 東京エレクトロン株式会社 Thin film forming apparatus cleaning method, thin film forming method, and thin film forming apparatus
TW201341572A (en) 2011-12-22 2013-10-16 Solvay Plasma apparatus and a method for cleaning a chamber
JP5933347B2 (en) 2012-06-04 2016-06-08 大陽日酸株式会社 Silicon carbide removal method
JP6107198B2 (en) 2013-02-14 2017-04-05 セントラル硝子株式会社 Cleaning gas and cleaning method
JP6232680B2 (en) 2013-09-06 2017-11-22 大陽日酸株式会社 How to clean the susceptor

Also Published As

Publication number Publication date
WO2017115750A1 (en) 2017-07-06
CN108541278B (en) 2022-03-08
KR20180084979A (en) 2018-07-25
TWI637072B (en) 2018-10-01
JPWO2017115750A1 (en) 2018-10-18
US20190003046A1 (en) 2019-01-03
US11028474B2 (en) 2021-06-08
SG11201805276VA (en) 2018-07-30
TW201736623A (en) 2017-10-16
EP3399076B1 (en) 2022-05-11
EP3399076A4 (en) 2019-08-21
KR102136942B1 (en) 2020-07-22
EP3399076A1 (en) 2018-11-07
CN108541278A (en) 2018-09-14

Similar Documents

Publication Publication Date Title
EP2735630B1 (en) Method for producing a sic epitaxial wafer
EP2549522A1 (en) Semiconductor thin-film manufacturing method, seminconductor thin-film manufacturing apparatus, susceptor, and susceptor holding tool
US20080026591A1 (en) Sintered metal components for crystal growth reactors
KR102270548B1 (en) Film forming apparatus and its cleaning method
TWI505990B (en) Cleaning gas and cleaning methods
JP2018186252A (en) Epitaxial growth system and epitaxial growth method
JP6541257B2 (en) Method of cleaning a silicon carbide film deposition apparatus
JP6964520B2 (en) Cleaning method for SiC single crystal growth furnace
WO2021060368A1 (en) Sic single crystal manufacturing method, sic single crystal manufacturing device, and sic single crystal wafer
JP6639022B2 (en) Cleaning method for silicon carbide deposits
US10351949B2 (en) Vapor phase growth method
JP6335683B2 (en) SiC epitaxial wafer manufacturing equipment
JP2016190762A (en) Manufacturing apparatus for aluminum nitride single crystal
JP5252495B2 (en) Method for producing aluminum nitride single crystal
JP2015103652A (en) Vapor phase growth apparatus
JP2006103997A (en) Method for manufacturing semiconductor crystal
KR102652637B1 (en) Film formation method and film formation equipment
JP5360136B2 (en) Method for producing Ga-containing nitride semiconductor
JP2010150110A (en) Nitride single crystal and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211019

R150 Certificate of patent or registration of utility model

Ref document number: 6964520

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350