JP6911775B2 - 車両用制御装置 - Google Patents

車両用制御装置 Download PDF

Info

Publication number
JP6911775B2
JP6911775B2 JP2018003740A JP2018003740A JP6911775B2 JP 6911775 B2 JP6911775 B2 JP 6911775B2 JP 2018003740 A JP2018003740 A JP 2018003740A JP 2018003740 A JP2018003740 A JP 2018003740A JP 6911775 B2 JP6911775 B2 JP 6911775B2
Authority
JP
Japan
Prior art keywords
engine
rotation speed
resonance frequency
fluctuation
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018003740A
Other languages
English (en)
Other versions
JP2019124143A (ja
Inventor
隆裕 菰田
隆裕 菰田
研二 後藤田
研二 後藤田
祐紀 桑本
祐紀 桑本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018003740A priority Critical patent/JP6911775B2/ja
Priority to CN201910024939.4A priority patent/CN110040121B/zh
Priority to US16/247,093 priority patent/US11273839B2/en
Publication of JP2019124143A publication Critical patent/JP2019124143A/ja
Application granted granted Critical
Publication of JP6911775B2 publication Critical patent/JP6911775B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/17Control strategies specially adapted for achieving a particular effect for noise reduction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/042Testing internal-combustion engines by monitoring a single specific parameter not covered by groups G01M15/06 - G01M15/12
    • G01M15/046Testing internal-combustion engines by monitoring a single specific parameter not covered by groups G01M15/06 - G01M15/12 by monitoring revolutions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/11Testing internal-combustion engines by detecting misfire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/42Electrical machine applications with use of more than one motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/46Wheel motors, i.e. motor connected to only one wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/20Reducing vibrations in the driveline
    • B60W2030/206Reducing vibrations in the driveline related or induced by the engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0043Signal treatments, identification of variables or parameters, parameter estimation or state estimation
    • B60W2050/0052Filtering, filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0043Signal treatments, identification of variables or parameters, parameter estimation or state estimation
    • B60W2050/0057Frequency analysis, spectral techniques or transforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/02Modifications to reduce the effects of instability, e.g. due to vibrations, friction, abnormal temperature, overloading or imbalance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Power Engineering (AREA)
  • Mathematical Physics (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Description

本発明は車両用制御装置に係り、特に、ダンパ装置等の回転部材の回転特性を考慮して各種の制御を行なう車両用制御装置の改良に関するものである。
エンジンと、電動機と、それ等のエンジンと電動機との間に設けられ、入力トルクに関連する回転特性を有する回転部材と、を備える車両が知られている。回転部材は、例えばエンジンの回転振動を吸収するダンパ装置や、所定の剛性を有する動力伝達シャフトなどで、その回転特性は、ねじり角の変化に対する入力トルクの変化の割合に相当する剛性値(ねじり剛性)や、ねじり角の増加時と減少時との入力トルクの差であるヒステリシス、入力トルクの正負の逆転時のねじり角の変化量であるガタ寸法などである。このような回転部材の回転特性により、動力性能や振動、騒音等が影響を受ける場合がある。特許文献1では、電動機を駆動力源として用いて走行する際に、ダンパ装置の剛性に起因して車両に共振が発生することを防止するため、ダンパ装置の入力トルクと剛性値との関係(回転特性)に基づいて、そのダンパ装置の剛性値を変化させるように電動機のトルクを変更する技術が提案されている。
特開2016−107673号公報
ところで、回転部材のねじり剛性に応じて定まる共振周波数領域では、爆発等による回転振動を伴うエンジン回転速度が共振によって大きく回転振動するため、例えば検出したエンジン回転速度を表す信号からフィルタ等により共振周波数の振動成分を減衰させてその後の制御に用いることが考えられる。しかしながら、回転部材の個体差や経時変化などによってねじり剛性がばらつくと共振周波数が変化するため、エンジン回転速度信号から共振による振動成分を適切に減衰させることができない場合があった。
本発明は以上の事情を背景として為されたもので、その目的とするところは、回転部材の個体差等による回転特性(特にねじり剛性)のばらつきに拘らず、回転部材のねじり剛性に応じて定まる共振周波数の振動成分が適切に低減されたエンジン回転速度信号が得られるようにすることにある。
かかる目的を達成するために、第1発明は、エンジンと、電動機と、それ等のエンジンと電動機との間に設けられ、入力トルクに関連する回転特性を有する回転部材と、を備える車両用の制御装置において、(a) 前記車両は、前記回転部材の前記エンジン側の連結部の少なくとも一方向の回転を阻止する回転ロック機構と、前記エンジンの回転速度を検出するエンジン回転速度センサと、を備えており、(b) 前記回転ロック機構により前記連結部の回転を阻止した状態で、前記電動機により前記回転部材にトルクを加えてその回転部材のねじり角を計測することにより、前記回転特性として少なくともねじり剛性を検出する特性検出部と、(c) 前記特性検出部によって検出された前記ねじり剛性に基づいて実共振周波数を算出し、前記エンジン回転速度センサから供給されるエンジン回転速度信号の中の前記実共振周波数の振動成分が減衰されるようにそのエンジン回転速度信号をフィルタリングするエンジン回転フィルタリング部と、を有することを特徴とする。
第2発明は、第1発明の車両用制御装置において、(a) 前記実共振周波数と予め定められた設定共振周波数との周波数差に基づいて、その設定共振周波数に応じて予め定められた減衰周波数帯域および減衰ゲインに関する基準フィルタ特性を補正するフィルタ補正部を有し、(b) 前記エンジン回転フィルタリング部は、前記フィルタ補正部によって前記基準フィルタ特性が補正された後のフィルタ特性に従って前記エンジン回転速度信号をフィルタリングすることを特徴とする。
第3発明は、第2発明の車両用制御装置において、前記フィルタ補正部は、前記実共振周波数と前記設定共振周波数との周波数差が予め定められた大小判定値以上の場合は、前記基準フィルタ特性の前記減衰周波数帯域を共振周波数のずれ方向へ移動補正し、前記周波数差が前記大小判定値よりも小さい場合は、前記基準フィルタ特性の前記減衰ゲインを大きくするとともに前記減衰周波数帯域を狭くする強調補正を行なうことを特徴とする。
第4発明は、第1発明〜第3発明の何れかの車両用制御装置において、前記電動機により前記回転部材を介して前記エンジンを回転駆動する際に、前記エンジン回転フィルタリング部によってフィルタリングされた後の前記エンジン回転速度信号を用いて所定の制御を行なうエンジン回転駆動部を有することを特徴とする。
第5発明は、第1発明〜第3発明の何れかの車両用制御装置において、前記エンジンの作動中に、前記エンジン回転フィルタリング部によってフィルタリングされた後の前記エンジン回転速度信号の回転変動に基づいて前記エンジンの失火判定を行なう失火検出部を有することを特徴とする。
第6発明は、第1発明〜第3発明の何れかの車両用制御装置において、前記エンジンの作動中に、前記エンジン回転フィルタリング部によってフィルタリングされた後の前記エンジン回転速度信号の回転変動に基づいて動力伝達経路の異音判定を行なう異音検出部を有することを特徴とする。
第7発明は、エンジンと、電動機と、それ等のエンジンと電動機との間に設けられ、入力トルクに関連する回転特性を有する回転部材と、を備える車両用の制御装置において、(a) 前記車両は、前記回転部材の前記エンジン側の連結部の少なくとも一方向の回転を阻止する回転ロック機構と、前記エンジンの回転速度を検出するエンジン回転速度センサと、を備えており、(b) 前記回転ロック機構により前記連結部の回転を阻止した状態で、前記電動機により前記回転部材にトルクを加えてその回転部材のねじり角を計測することにより、前記回転特性として少なくともねじり剛性を検出する特性検出部と、(c) 前記特性検出部によって検出された前記ねじり剛性に基づいて実共振周波数を算出し、前記電動機により前記回転部材を介して前記エンジンを回転させる際に、前記実共振周波数に起因して生じる前記エンジンの回転振動が抑制されるように、前記電動機の目標回転速度を前記実共振周波数に応じて周期変動させる電動機回転変動付与部と、を有することを特徴とする。
第8発明は、第7発明の車両用制御装置において、(a) 前記実共振周波数と予め定められた設定共振周波数との周波数差に基づいて、前記目標回転速度に付与する周期変動の振幅および変動周波数帯域に関して前記設定共振周波数に応じて予め定められた基準変動特性を補正する変動特性補正部を有し、(b) 前記電動機回転変動付与部は、前記変動特性補正部によって前記基準変動特性が補正された後の変動特性に従って前記目標回転速度を周期変動させることを特徴とする。
第9発明は、第8発明の車両用制御装置において、前記変動特性補正部は、前記実共振周波数と前記設定共振周波数との周波数差が予め定められた大小判定値以上の場合は、前記基準変動特性の前記変動周波数帯域を共振周波数のずれ方向へ移動補正し、前記周波数差が前記大小判定値よりも小さい場合は、前記基準変動特性の前記振幅を大きくするとともに前記変動周波数帯域を狭くする強調補正を行なうことを特徴とする。
このような車両用制御装置においては、回転部材のエンジン側の連結部の回転を回転ロック機構により阻止した状態で、電動機により回転部材にトルクを加えて回転部材のねじり角を計測することにより回転部材のねじり剛性を検出し、検出したねじり剛性に基づいて実共振周波数を算出する。このため、回転部材の個体差等によるねじり剛性のばらつきに拘らず、実際のねじり剛性に基づいて実共振周波数を適切に算出することができる。そして、第1発明では、エンジン回転速度センサから供給されるエンジン回転速度信号の中の実共振周波数の振動成分が減衰されるようにそのエンジン回転速度信号がフィルタリングされることにより、共振による振動成分が適切に低減されたエンジン回転速度信号が得られる。また、第7発明では、電動機によりエンジンを回転させる際に、実共振周波数に起因して生じるエンジンの回転振動が抑制されるように、電動機の目標回転速度が実共振周波数に応じて周期変動させられることにより、共振によるエンジンの回転振動そのものが抑制されるため、共振による振動成分が適切に低減されたエンジン回転速度信号が得られる。したがって、第1発明、第7発明の何れの場合も、そのエンジン回転速度信号を用いたその後の制御が適切に行なわれるようになる。
第2発明は、実共振周波数と設定共振周波数との周波数差に基づいて、その設定共振周波数に応じて予め定められた減衰周波数帯域および減衰ゲインに関する基準フィルタ特性が補正され、その補正された後のフィルタ特性に従ってエンジン回転速度信号がフィルタリングされるため、共振による振動成分が適切に低減される。
第3発明は、実共振周波数と設定共振周波数との周波数差が大きい場合には、基準フィルタ特性の減衰周波数帯域が共振周波数のずれ方向へ移動補正されるため、周波数差が大きくてもエンジン回転速度信号から共振による振動成分が適切に低減される。一方、実共振周波数と設定共振周波数との周波数差が小さい場合には、基準フィルタ特性の減衰ゲインを大きくするとともに減衰周波数帯域を狭くする強調補正が行なわれるため、エンジン回転速度信号から共振による振動成分だけを一層適切に低減することができる。
第4発明は、電動機により回転部材を介してエンジンを回転駆動する場合で、フィルタリングされた後のエンジン回転速度信号が用いられることにより、共振によるエンジン回転振動に影響されることなく、エンジン回転速度を高い精度で制御したり、エンジン回転速度が所定の判定値に達したことを高い精度で判定したりすることができるなど、エンジン回転速度信号を用いた制御が適切に行なわれるようになる。
第5発明は、エンジンの作動中にエンジン回転速度信号の回転変動に基づいてエンジンの失火判定を行なう場合で、フィルタリングされた後のエンジン回転速度信号が用いられることにより、共振によるエンジン回転振動に影響されることなく失火判定が高い精度で適切に行なわれるようになる。
第6発明は、エンジンの作動中にエンジン回転速度信号の回転変動に基づいて動力伝達経路の異音判定を行なう場合で、フィルタリングされた後のエンジン回転速度信号が用いられることにより、共振によるエンジン回転振動に影響されることなく異音判定が高い精度で適切に行なわれるようになる。
第8発明は、実共振周波数と設定共振周波数との周波数差に基づいて、その設定共振周波数に応じて予め定められた振幅および変動周波数帯域に関する基準変動特性が補正され、その補正された後の変動特性に従って電動機の目標回転速度が周期変動させられるため、共振によるエンジンの回転振動そのものが適切に抑制され、共振による振動成分が適切に低減されたエンジン回転速度信号が得られる。
第9発明は、実共振周波数と設定共振周波数との周波数差が大きい場合には、基準変動特性の変動周波数帯域が共振周波数のずれ方向へ移動補正されるため、周波数差が大きくても共振によるエンジンの回転振動が適切に抑制される。一方、実共振周波数と設定共振周波数との周波数差が小さい場合には、基準変動特性の振幅を大きくするとともに変動周波数帯域を狭くする強調補正が行なわれるため、共振によるエンジンの回転振動を一層適切に抑制することができる。
本発明が適用されたハイブリッド車両の駆動系統を説明する骨子図で、制御系統の要部を併せて示した図である。 図1のハイブリッド車両の差動機構の共線図の一例である。 図1のダンパ装置の入力トルクTinとねじり角Φとの関係の一例を示した図である。 図3の関係から求められる剛性値K1、K2、K3を例示した図である。 エンジンを回転駆動して回転上昇させる際の共振によるエンジン回転速度信号SNeの回転振動をフィルタリングによって減衰させた場合のタイムチャートの一例である。 図1の特性学習部によって実行される信号処理を具体的に説明するフローチャートである。 図6のステップS4、S5でダンパ装置の入力トルクTinを変化させつつねじり角Φを計測する際の原理図である。 図1のフィルタ補正部およびエンジン回転フィルタリング部によって実行されるエンジン回転速度信号SNeのフィルタリング処理を説明するフローチャートである。 図8のステップF1−6で周波数差Δfrが大きい場合に、エンジン回転速度信号SNeをフィルタリングする基準フィルタ特性(バンドストップフィルタ)を補正する際の一例を説明する図である。 図8のステップF1−6で周波数差Δfrが小さい場合に、エンジン回転速度信号SNeをフィルタリングする基準フィルタ特性(バンドストップフィルタ)を補正する際の一例を説明する図である。 図8のステップF1−6で周波数差Δfrが大きい場合に、図9とは異なる基準フィルタ特性(ローパスフィルタ)を補正する際の一例を説明する図である。 図8のステップF1−6で周波数差Δfrが小さい場合に、図10とは異なる基準フィルタ特性(ローパスフィルタ)を補正する際の一例を説明する図である。 図1のエンジン回転駆動部がエンジン回転速度信号SNeを用いてエンジンを回転駆動する際の作動(信号処理)を説明するフローチャートである。 図1の失火・異音検出部がエンジン回転速度信号SNeに基づいてエンジンの失火判定、および動力伝達経路の異音判定を行なう際の作動(信号処理)を説明するフローチャートである。 本発明の他の実施例を説明する図で、図1に対応するハイブリッド車両の骨子図である。 図15の変動特性補正部により予め定められた基準変動特性をダンパ装置の実際のねじり剛性に応じて補正する際の作動(信号処理)を説明するフローチャートである。 図16のステップF2−6で周波数差Δfrが大きい場合に、第1モータジェネレータの目標回転速度Nmg1tに付与する周期変動に関する基準変動特性を補正する際の一例を説明する図である。 図16のステップF2−6で周波数差Δfrが小さい場合に、第1モータジェネレータの目標回転速度Nmg1tに付与する周期変動に関する基準変動特性を補正する際の一例を説明する図である。 図15のエンジン回転駆動部がエンジンを回転駆動する際の作動(信号処理)を説明するフローチャートである。 図19のフローチャートに従ってエンジンの回転駆動制御が行なわれた場合の各部の回転速度の変化を示したタイムチャートの一例である。 エンジン回転速度信号から共振による振動成分を減衰させるためのフィルタの設定特性に対し、ダンパ装置のねじり剛性のばらつきによって実際の共振による振動特性がずれた場合を例示した図である。 図21に示す設定フィルタ特性のずれに起因して生じるエンジン回転速度信号SNeの遅れや回転振動を説明する図である。
エンジンは、ガソリンエンジンやディーゼルエンジン等の燃料の燃焼で動力を発生する内燃機関で、爆発等により回転振動が生じ、その回転振動がダンパ装置等のねじり剛性を有する回転部材の共振によって拡大する場合がある。電動機としては、発電機としても用いることができるモータジェネレータが好適に用いられる。入力トルクに対する回転特性を有する回転部材は、例えばエンジンの回転振動を吸収するダンパ装置や、所定のねじり剛性を有する動力伝達シャフトなどである。ダンパ装置は、例えばスプリング等の弾性体および摩擦機構を備えて構成されるが、弾性体を備えるだけでも良い。回転部材の入力トルクに対する回転特性としては、ねじり角の変化に対する入力トルクの変化の割合に相当するねじり剛性の剛性値、ねじり角の増加時と減少時との入力トルクの差であるヒステリシス、或いは入力トルクの正負の逆転時のねじり角の変化量であるガタ寸法などがあるが、少なくともねじり剛性が含まれる。ねじり剛性としては上記剛性値が適当であるが、剛性値に相当する他の物理量でも良い。
回転部材のエンジン側の連結部の少なくとも一方向の回転を阻止する回転ロック機構は、油圧式等の摩擦ブレーキや噛合式ブレーキ、或いは一方向クラッチなどが好適に用いられる。一方向クラッチの場合、例えばエンジンの逆回転方向の回転が阻止されるように設けられるが、エンジンと回転部材との間の動力伝達がクラッチ等により遮断される場合は、任意の一方向の回転を阻止できれば良い。回転部材の回転特性を検出する特性検出部は、例えばエンジンが停止しており且つ車速が0の車両停止中に検出することが望ましいが、エンジンを停止させた状態で第2の電動機を駆動力源として用いて走行するモータ走行時に検出することもできる。また、その検出タイミングは、車両点検時に検出して記憶しておくだけでも良いし、所定の走行距離或いは走行時間等に基づいて定期的に検出して更新(学習)しても良いなど、種々の態様が可能である。経時変化の影響が大きい場合には、一定の条件下で定期的に学習することが望ましい。
上記回転特性を検出する際に駆動力が発生する場合、駆動力源として利用できる第2の電動機のトルクを制御して駆動力を相殺することが望ましいが、車両停止中に検出する場合には、例えばブレーキが踏込み操作されていることや、シフトレバーがP(パーキング)位置へ操作されてパーキングギヤが噛合状態とされていること、或いはパーキングブレーキが作動中であること、等を条件として検出するようにしても良い。ホイールブレーキのブレーキ力を自動的に制御できる自動ブレーキシステムを備えている場合には、そのホイールブレーキを作動させるようにしても良い。車両走行中の検出を含めて駆動力変動が軽微な場合、或いは出荷前や車両点検時に検出する場合には、相殺制御を省略しても良い。また、相殺制御は必ずしも駆動力変動を完全に無くすものである必要はなく、駆動力変動が軽減されれば良い。
本発明は、例えばエンジンの出力を電動機および駆動輪側へ分配する差動機構を有する車両に適用されるが、エンジンおよび電動機がダンパ装置等の回転部材を挟んで直列に接続されている車両や、エンジンおよび電動機の出力を遊星歯車装置等により合成して駆動輪側へ伝達する車両など、種々の車両に適用され得る。エンジンと回転部材との間、回転部材と電動機との間には、必要に応じてクラッチ等の断接装置や変速ギヤ等が設けられても良い。エンジンと回転部材とが連結軸等を介して直接連結されている場合、回転ロック機構によって阻止される少なくとも一方向の回転はエンジンの逆回転が阻止されるように定められ、特性検出部はその逆回転方向のトルクを回転部材に加えることになるが、エンジンと回転部材との間に断接装置が設けられている場合には、阻止する回転方向は特に限定されない。また、回転ロック機構によって両方向の回転が阻止される場合には、特性検出部によって検出する際に回転部材に加えられるトルクの方向は必ずしも限定されない。正負の両方向へトルクを変化させて回転特性を求めることもできる。
エンジン回転フィルタリング部や電動機回転変動付与部は、例えば特性検出部によって検出されたねじり剛性および慣性モーメントに基づいて、予め定められたマップや演算式等に従って実共振周波数を算出することができる。慣性モーメントは、例えばエンジンや回転部材、フライホイール等の質量や大きさ等に基づいて予め設定される。エンジン回転フィルタリング部は、エンジン回転速度信号をフィルタリングするフィルタ特性について、例えば予め設定共振周波数に応じて定められた基準フィルタ特性を、実共振周波数と設定共振周波数との周波数差に基づいて補正するように構成されるが、実共振周波数のみに基づいてフィルタ特性を選択或いは設定することも可能である。基準フィルタ特性を、実共振周波数と設定共振周波数との周波数差に基づいて補正する場合、その周波数差の大きさによって補正の態様を変更することもできるが、周波数差の大きさに関係無く常に一定の態様で補正することも可能で、例えば周波数差に応じて減衰周波数帯域をずらすだけでも良いし、周波数差に応じて減衰ゲインおよび減衰周波数帯域を共に変更しても良いなど、種々の態様が可能である。
エンジン回転フィルタリング部によってフィルタリングされた後のエンジン回転速度信号は、例えばエンジンの始動時に電動機によりエンジンを回転駆動してクランキングする際に、そのクランキングを終了する終了判定値に達したか否かを判定する場合や、エンジンの作動中にエンジン回転速度信号の回転変動に基づいてエンジンの失火判定や動力伝達経路の異音判定(異音が発生するエンジン状態)を行なう場合に好適に用いられる。フィルタリング後のエンジン回転速度信号はまた、例えば回転部材の共振周波数帯域を跨いでエンジン回転速度を変化させる場合、その共振周波数帯域の近傍でエンジンを作動させる場合など、エンジン回転速度に基づく制御やエンジン回転速度を用いた制御等を行なう種々のエンジン関連制御に用いることができる。エンジン回転速度信号をフィルタリングするフィルタ特性の減衰周波数帯域や減衰ゲインは、エンジン回転速度信号の使用目的等に応じて個別に適宜定められるが、同一のフィルタ特性でフィルタリングしたエンジン回転速度信号を複数の制御で用いることもできる。
電動機回転変動付与部は、目標回転速度に対して付与する周期変動の変動特性について、例えば予め設定共振周波数に応じて定められた基準変動特性を、実共振周波数と設定共振周波数との周波数差に基づいて補正するように構成されるが、実共振周波数のみに基づいて変動特性を選択或いは設定することも可能である。基準変動特性を、実共振周波数と設定共振周波数との周波数差に基づいて補正する場合、その周波数差の大きさによって補正の態様を変更することもできるが、周波数差の大きさに関係無く常に一定の態様で補正することも可能で、例えば周波数差に応じて変動周波数帯域をずらすだけでも良いし、周波数差に応じて振幅および変動周波数帯域を共に変更しても良いなど、種々の態様が可能である。
本発明は、例えば前記エンジンの出力を前記電動機および駆動輪側へ分配する差動機構と、前記回転部材として前記エンジンと前記差動機構との間に設けられたダンパ装置とを備えており、前記電動機のトルク制御で前記エンジンを駆動力源として用いて走行できるハイブリッド車両に好適に適用されるが、エンジンが専ら発電機を回転駆動して発電するために用いられるシリーズ型のハイブリッド車両に適用することも可能である。このようなハイブリッド車両には、例えば上記差動機構と駆動輪との間の動力伝達経路、或いは他の動力伝達部位に、駆動力源として利用できる第2の電動機が必要に応じて設けられる。
以下、本発明の実施例を、図面を参照して詳細に説明する。
図1は、本発明が適用されたハイブリッド車両10の駆動系統を説明する骨子図で、制御系統の要部を併せて示した図である。ハイブリッド車両10は、例えばFF(前置エンジン前輪駆動)型等の横置き用の駆動系統を有するもので、エンジン12と左右一対の駆動輪14との間の動力伝達経路に、第1駆動部16、第2駆動部18、終減速装置20、および左右一対の車軸22等を備えて構成されている。エンジン12は、ガソリンエンジン、ディーゼルエンジン等の内燃機関で、そのクランク軸24には、トルク変動を吸収するダンパ装置26が接続されている。ダンパ装置26は、クランク軸24に連結される第1回転要素26a、および入力軸28を介して差動機構30に連結される第2回転要素26bとを備えているとともに、それ等の第1回転要素26aと第2回転要素26bとの間には複数種類のスプリング32および摩擦機構34が介在させられており、ねじり角Φの変化に対する入力トルクTinの変化の割合に対応する剛性値(ばね定数)が段階的に変化させられる。また、ダンパ装置26の外周端部にはトルクリミッタ35が設けられている。このダンパ装置26は、入力トルクTinに関連する回転特性を有する回転部材に相当し、第1回転要素26aはエンジン12側の連結部に相当する。
第1回転要素26aに一体的に連結されたクランク軸24は、噛合式ブレーキ36を介してハウジング38に連結され、回転が阻止されるようになっている。噛合式ブレーキ36は、クランク軸24に設けられた噛合歯24aと、ハウジング38に設けられた噛合歯38aと、それ等の噛合歯24a、38aに跨がって噛み合うことができる噛合歯が内周面に設けられた噛合スリーブ36aとを有し、その噛合スリーブ36aが軸方向へ移動させられることにより、クランク軸24がハウジング38に対して相対回転不能に係合させられ、或いはハウジング38から解放されて回転自在とされる。噛合スリーブ36aは、例えば油圧制御回路58に設けられた電磁切換弁等が電子制御装置90から供給される油圧制御信号Sacに従って切り換えられることにより、油圧シリンダ等を介して軸方向へ移動させられて噛合式ブレーキ36を係合、解放する。電動式の送りねじ機構など他の駆動装置を用いて噛合スリーブ36aを軸方向へ移動させることもできる。この噛合式ブレーキ36には、必要に応じてコーン式等の同期機構が設けられる。噛合式ブレーキ36は回転ロック機構に相当し、噛合式ブレーキ36の代わりに、エンジン12の逆回転方向の回転のみを阻止する一方向クラッチや摩擦ブレーキを回転ロック機構として採用することもできる。また、エンジン12と噛合歯24aとの間に、動力伝達を接続、遮断できるエンジン断接クラッチを設けることもできる。
第1駆動部16は、上記エンジン12、差動機構30、および噛合式ブレーキ36の他に、第1モータジェネレータMG1、出力歯車40を含んで構成されている。差動機構30は、シングルピニオン型の遊星歯車装置で、サンギヤS、リングギヤR、およびキャリアCAの3つの回転要素を差動回転可能に備えており、サンギヤSに第1モータジェネレータMG1が連結され、キャリアCAに入力軸28が連結され、リングギヤRに出力歯車40が連結されている。したがって、エンジン12からダンパ装置26を介して差動機構30のキャリアCAに伝達されたトルクは、その差動機構30によって第1モータジェネレータMG1および出力歯車40に分配され、第1モータジェネレータMG1の回転速度(MG1回転速度)Nmg1が回生制御等によって制御されると、エンジン12の回転速度(エンジン回転速度)Neが無段階に変速されて出力歯車40から出力される。すなわち、この差動機構30および第1モータジェネレータMG1は、電気式無段変速機として機能する。第1モータジェネレータMG1は、電動機および発電機として択一的に機能するもので、インバータ60を介してバッテリー等の蓄電装置62に接続されている。
一方、噛合式ブレーキ36によりクランク軸24の回転が阻止された状態、すなわちダンパ装置26を介してキャリアCAの回転が阻止された状態で、第1モータジェネレータMG1をエンジン12の回転方向と反対の負回転方向へ回転駆動すると、噛合式ブレーキ36によって発生する反力により、出力歯車40にはエンジン12の回転方向と同じ正回転方向(車両前進方向)のトルクが加えられ、その正回転方向へ回転駆動される。また、第1モータジェネレータMG1をエンジン12の回転方向と同じ正回転方向へ回転駆動すると、噛合式ブレーキ36によって発生する反力により、出力歯車40にはエンジン12の回転方向と反対の逆回転方向(車両後進方向)のトルクが加えられ、その逆回転方向へ回転駆動される。このような場合、キャリアCAに連結されたダンパ装置26には、第1モータジェネレータMG1のトルクが差動機構30のギヤ比ρに応じて増幅されて加えられる。第1モータジェネレータMG1は、差動機構30を介してダンパ装置26にトルクを加えることができる電動機である。
図2は、差動機構30の3つの回転要素であるサンギヤS、リングギヤR、およびキャリアCAの回転速度を直線で結ぶことができる共線図で、図の上向き方向がエンジン12の回転方向、すなわち正回転方向であり、差動機構30のギヤ比ρ(=サンギヤSの歯数/リングギヤRの歯数)に応じて縦軸の間隔が定められている。そして、例えば第1モータジェネレータMG1により出力歯車40を車両前進方向へ回転駆動する場合について説明すると、噛合式ブレーキ36によりキャリアCAの回転が阻止された状態で、第1モータジェネレータMG1の力行制御によりサンギヤSに矢印P1で示すようにエンジン12の回転方向と反対の負回転方向(図の下向き方向)へ回転するトルクが加えられ、その負回転方向へ回転駆動されると、出力歯車40が連結されたリングギヤRには、矢印P2で示すようにエンジン12の回転方向と同じ正回転方向(図の上向き方向)へ回転するトルクが伝達され、前進方向の駆動力が得られる。
出力歯車40は、入力軸28と平行な中間軸42に配設された大径歯車44と噛み合わされている。大径歯車44と中間軸42との間には噛合式クラッチ43が設けられており、それ等の間の動力伝達が接続、遮断されるようになっている。この噛合式クラッチ43は、前記噛合式ブレーキ36と同様に構成されており、油圧制御回路58に設けられた別の電磁切換弁等が電子制御装置90から供給される油圧制御信号Sacに従って切り換えられることにより、油圧シリンダ等を介して係合状態と解放状態とが切り換えられ、大径歯車44と中間軸42との間の動力伝達が接続、遮断される。中間軸42には、大径歯車44よりも小径の小径歯車46が設けられており、その小径歯車46は前記終減速装置20のデフリングギヤ48と噛み合わされている。したがって、出力歯車40の回転は、その出力歯車40と大径歯車44との歯数比、および小径歯車46とデフリングギヤ48との歯数比に応じて減速されて終減速装置20に伝達され、更に終減速装置20の差動歯車機構を介して一対の車軸22から駆動輪14に伝達される。上記中間軸42にはまた、パーキングギヤ45が相対回転不能に設けられており、シフトレバーが駐車用のP位置へ操作されるなどしてパーキングレンジが選択されると、図示しないパーキングロックポールがスプリング等の付勢力に従ってパーキングギヤ45に押し付けられて噛み合わされ、その中間軸42から駆動輪14側の各部材の回転が阻止される。
前記第2駆動部18は、第2モータジェネレータMG2と、その第2モータジェネレータMG2のモータ軸50に設けられたモータ出力歯車52とを備えて構成されており、モータ出力歯車52は前記大径歯車44と噛み合わされている。したがって、第2モータジェネレータMG2の回転(MG2回転速度Nmg2)は、モータ出力歯車52と大径歯車44との歯数比、および小径歯車46とデフリングギヤ48との歯数比に応じて減速されて終減速装置20に伝達され、一対の車軸22を介して駆動輪14を回転駆動する。この第2モータジェネレータMG2は、電動機および発電機として択一的に機能するもので、インバータ60を介して蓄電装置62に接続されている。第2モータジェネレータMG2は、駆動力源として利用できる第2の電動機に相当する。
ハイブリッド車両10はまた、自動ブレーキシステム66を備えている。自動ブレーキシステム66は、駆動輪14および図示しない従動輪(非駆動輪)に設けられた各ホイールブレーキ67のブレーキ力すなわちブレーキ油圧を、電子制御装置90から供給されるブレーキ制御信号Sbに従って電気的に制御する。ホイールブレーキ67にはまた、図示しないブレーキペダルが足踏み操作されることにより、ブレーキマスターシリンダを介してブレーキ油圧が供給されるようになっており、そのブレーキ油圧すなわちブレーキ操作力に応じたブレーキ力を機械的に発生する。
以上のように構成された駆動系統を有するハイブリッド車両10は、前記エンジン12の出力制御やモータジェネレータMG1、MG2のトルク制御、噛合式ブレーキ36、噛合式クラッチ43の係合解放制御、自動ブレーキシステム66による自動ブレーキ制御等の各種の制御を行うコントローラとして電子制御装置90を備えている。電子制御装置90は、CPU、RAM、ROM、入出力インターフェース等を有する所謂マイクロコンピュータを備えて構成されており、RAMの一時記憶機能を利用しつつ予めROMに記憶されたプログラムに従って信号処理を行うことにより各種制御を実行する。この電子制御装置90には、例えばエンジン回転速度センサ70、車速センサ72、MG1回転速度センサ74、MG2回転速度センサ76、アクセル操作量センサ78、シフトポジションセンサ80、SOCセンサ64等から、エンジン回転速度Ne、車速V、MG1回転速度Nmg1、MG2回転速度Nmg2、アクセル操作量(アクセルペダルの踏込み操作量)Acc、蓄電装置62の蓄電残量SOC、シフトレバーの操作位置Pshなど、制御に必要な各種の情報を表す信号が供給される。シフトレバーの操作位置Pshとしては、前進走行用のD位置、後進走行用のR位置、駐車用のP位置、ニュートラル用のN位置等があり、P位置へ操作されてパーキングレンジが選択されると、中間軸42に設けられたパーキングギヤ45にパーキングロックポールが噛み合わされて回転が機械的に阻止される。また、電子制御装置90からは、例えば、前記エンジン12の電子スロットル弁や燃料噴射装置、点火装置等を介してエンジン出力を制御するためのエンジン制御信号Se、モータジェネレータMG1、MG2のトルク(力行トルクおよび回生トルク)を制御するためのモータ制御信号Sm、油圧制御回路58の電磁切換弁等を介して噛合式ブレーキ36、噛合式クラッチ43の係合、解放を切り換える油圧制御信号Sac、自動ブレーキシステム66を介してホイールブレーキ67のブレーキ力を制御するブレーキ制御信号Sb等が出力される。
ここで、前記ダンパ装置26は、前記スプリング32および摩擦機構34等の作用で、例えば図3に示すような入力トルクTinとねじり角Φとの関係を有する。図3は、原点0に対して対称的に変化しているが、非対称に変化するダンパ装置26を採用することもできる。そして、この入力トルクTinとねじり角Φとの関係から、図4に示すねじり剛性に関する回転特性を特定することができる。ねじり剛性は、ねじり角Φに対する入力トルクTinの変化特性で、ねじり角Φの変化ΔΦに対する入力トルクTinの変化ΔTinの割合、すなわちΔTin/ΔΦに相当するK1、K2、K3の3種類の剛性値を有し、入力トルクTinが異なる2つの変化点A1、A2で剛性値が変化している。すなわち、入力トルクTinがA1以下の領域では剛性値K1で、A1〜A2の領域では剛性値K2で、A2より大きい領域では剛性値K3になる。ダンパ装置26は、この剛性値K1〜K3に応じて定まる所定の周波数領域で共振する。
一方、エンジン12は、爆発等により回転振動が生じ、ダンパ装置26の剛性値K1〜K3に応じて定まる共振周波数付近では、その回転振動が共振によって拡大する。このため、エンジン回転速度センサ70によって検出されたエンジン回転速度Neを表すエンジン回転速度信号SNeも回転振動を含み、このエンジン回転速度信号SNeを用いて各種の制御を行なう場合、回転振動で制御精度が損なわれる可能性がある。これに対し、共振周波数の振動成分が減衰されるように、ダンパ装置26のねじり剛性に応じてエンジン回転速度信号SNeをフィルタリングすることが考えられる。図5は、第1モータジェネレータMG1によりダンパ装置26を介してエンジン12を回転駆動し、エンジン回転速度Neを上昇させる場合のエンジン回転速度信号SNeのタイムチャートの一例である。エンジン回転速度Neはダンパ装置26の共振周波数領域で共振による回転振動(脈動)を生じるため、エンジン回転速度センサ70から供給されるエンジン回転速度信号SNeも実線で示すように回転振動を有するが、共振による回転振動を減衰させるようにダンパ装置26のねじり剛性に応じて定められたフィルタリングによって破線で示すように平滑化することができる。
しかしながら、ダンパ装置26の回転特性、すなわちねじり剛性に関する剛性値K1〜K3および変化点A1、A2は、ダンパ装置26の個体差、すなわち構成部品の寸法誤差やスプリング32のばね定数のばらつき、摩擦機構34の摩擦材の摩擦係数のばらつき、等によってばらつくとともに、経時変化によって変化する可能性がある。このようにねじり剛性がばらくつと共振周波数が変化するため、エンジン回転速度信号SNeから共振による振動成分を適切に減衰させることができなくなる。図21および図22を参照して具体的に説明すると、図21の実線は、共振周波数の振動成分を減衰させるフィルタリングのために予め設定されたフィルタ特性の一例で、この設定フィルタ特性に対して実際の共振によって生じる回転振動の振動特性が破線で示すようにずれている場合、過剰部分E1や不足部分E2が生じる。このように過剰部分E1や不足部分E2が生じると、エンジン回転速度信号SNeは、図22に実線で示すように過剰部分E1に起因して遅れが発生するとともに、不足部分E2に起因して回転振動が残る。このため、その後のエンジン回転速度信号SNeを用いた制御が適切に実行されなくなる可能性があった。なお、図22の破線は、実際の共振の振動特性が設定フィルタ特性と略一致し、共振による回転振動がフィルタリングによって適切に減衰させられた場合のエンジン回転速度信号SNeである。
これに対し、前記電子制御装置90は、機能的に特性学習部92、特性記憶部94、およびエンジン関連制御部96を備えており、ダンパ装置26の実際のねじり剛性に基づいてエンジン回転速度信号SNeをフィルタリングし、共振による回転振動が適切に減衰させられたエンジン回転速度信号SNeを用いて各種の制御が行なわれるようになっている。電子制御装置90は車両用制御装置に相当する。
特性学習部92は、図6のフローチャートのステップS1〜S13(以下、単にS1〜S13という。他のフローチャートについてもステップを省略する。)に従って学習制御を行う。この学習制御は、本実施例では走行距離或いは走行時間等に基づいて定められた一定の条件下で定期的に実施する。S1では、エンジン12が停止しているか否かを判断し、エンジン12が停止状態であればS2を実行するが、エンジン12が作動中の場合はそのまま終了する。S2では、予め定められた学習禁止条件を満たすか否かを判断する。この学習禁止条件としては、例えば以下の(a) 、(b) 等が定められる。
(a) 蓄電装置62の蓄電残量SOCが、エンジン12の始動性確保等のために予め定められた下限値以下である。
(b) エンジン始動要求がある(エアコン要求、運転者のアクセル操作など)。
上記学習禁止条件の何れか一つでも満たす場合はそのまま終了し、何れも満たさない場合は学習が可能であるためS3以下を実行する。S3では、ハイブリッド車両10が停車状態か否か、すなわち車速V=0か否かを判断し、停車状態の場合はS4以下を実行する。S4では、噛合式ブレーキ36を係合させてクランク軸24を回転不能にロックし、S5では第1モータジェネレータMG1を力行制御してダンパ装置26にトルク(入力トルクTin)を加えてねじり角Φを計測する。図7は、このように入力トルクTinを加えてねじり角Φを計測する際の原理を説明する図で、噛合式ブレーキ36を係合させてクランク軸24をロックした状態で、第1モータジェネレータMG1を力行制御し、差動機構30を介してダンパ装置26にトルク(入力トルクTin)を加えることにより、図3に示すような関係を求めることができる。すなわち、第1モータジェネレータMG1のトルクを連続的に増減変化させつつ、レゾルバ等のMG1回転速度センサ74によりMG1回転速度Nmg1を計測することにより、図3に示すような入力トルクTinとねじり角Φとの関係を求めることができる。差動機構30のギヤ比ρに基づいて、第1モータジェネレータMG1のモータトルクから入力トルクTinを算出できるとともに、MG1回転速度Nmg1からねじり角Φを算出できる。本実施例のダンパ装置26の入力トルクTinとねじり角Φとの関係は、図3に示すように原点0に対して対称的に変化しているため、正側および負側の何れか一方を計測するだけでも良い。噛合式ブレーキ36の代わりに一方向クラッチが設けられ、エンジン12の逆回転方向の回転のみを阻止する場合は、入力トルクTinとしてその逆回転方向のトルクが加えられるようにしてねじり角Φを計測すれば良い。
S6は、上記S5の実行と並行して実施され、第1モータジェネレータMG1の力行制御に拘らず車両が停止状態に保持されるように車両の挙動を抑制する。すなわち、第1モータジェネレータMG1を力行制御してダンパ装置26にトルクを加えると、その反力で出力歯車40にトルクが伝達されて駆動力が発生するため、その駆動力に起因する車両の挙動を制止するのである。具体的には、例えばパーキングレンジが選択されてパーキングロックポールがパーキングギヤ45と噛み合うように付勢されている場合には、第2モータジェネレータMG2を力行制御して中間軸42を僅かに回転させることにより、パーキングロックポールを確実にパーキングギヤ45と噛み合わせる。別の手段としては、自動ブレーキシステム66によりホイールブレーキ67にブレーキ力を発生させるようにしても良い。また、噛合式クラッチ43を解放して駆動輪14側への動力伝達を遮断するとともに、第2モータジェネレータMG2のトルクを制御して出力歯車40の回転を阻止することにより、ダンパ装置26に所定の入力トルクTinが加えられるようにする。言い換えれば、第1モータジェネレータMG1の力行制御で生じる駆動力を相殺するように、第2モータジェネレータMG2のトルクを制御するのであり、噛合式クラッチ43を係合したままでも実行できるし、噛合式クラッチ43を備えていない車両にも適用できる。なお、パーキングレンジが選択されている場合は、パーキングロックポールがパーキングギヤ45と噛み合わされて駆動輪14の回転が阻止されるため、S6の車両の挙動抑制制御を省略することも可能である。
前記S3の判断がNO(否定)の場合、すなわち車両が停車状態ではなく走行中の場合には、S7〜S9を実行して入力トルクTinとねじり角Φとの関係を求める。具体的には、S7およびS8で、前記S4、S5と同様に噛合式ブレーキ36によりクランク軸24を回転不能にロックした状態で、第1モータジェネレータMG1を力行制御してダンパ装置26にトルク(入力トルクTin)を加えてねじり角Φを計測する。この場合は、図2に示されるように車速Vに応じて出力歯車40が回転させられ、更に第1モータジェネレータMG1が逆回転方向へ回転させられるため、その回転速度分を除いてねじり角Φを算出する。なお、第1モータジェネレータMG1を駆動力源として用いる両モータ駆動による走行時には、一旦第2モータジェネレータMG2のみを駆動力源として走行する単モータ駆動に切り換えることにより、第1モータジェネレータMG1のトルクを連続的に増減変化させつつ、レゾルバ等のMG1回転速度センサ74によりねじり角Φを計測することができる。また、S9では、第1モータジェネレータMG1の力行制御で生じる駆動力を相殺するように、第2モータジェネレータMG2のトルクを増減制御することにより、車両の駆動力変化を抑制する。ハイブリッド車両10が惰性走行の場合には、噛合式クラッチ43を解放して駆動輪14側への動力伝達を遮断するとともに、第1モータジェネレータMG1の力行制御で生じる駆動力を相殺するように第2モータジェネレータMG2のトルクを制御しても良い。所定の駆動力で走行中の場合でも、同様に噛合式クラッチ43を解放して駆動輪14側への動力伝達を遮断した状態で、第1モータジェネレータMG1の力行制御で生じる駆動力を相殺するように第2モータジェネレータMG2のトルクを制御するようにしても良い。
S6またはS9に続いて実行するS10では、予め定められた学習中止条件を満たすか否かを判断する。この学習中止条件としては、例えば以下の(a) 〜(g) 等が定められる。
(a) 蓄電装置62の蓄電残量SOCが、エンジン12の始動性確保等のために予め定められた下限値以下である。
(b) エンジン始動要求がある(エアコン要求、運転者のアクセル操作など)。
(c) 車両が共振する条件である(タイヤ入力サージ、波状路など)。
(d) 駆動力不足になる(坂路、縁石、高駆動力走行など)。
(e) 他の要件でモータトルクを発生する必要がある(モータ押し当てトルク、エンジン始動時など)。
(f) モータコギングトルクが大きい低回転領域(低車速領域)である。
(g) 車両停車状態の計測時に車両が移動している。
上記学習中止条件の何れか一つでも満たす場合は、S13で学習制御を中止して終了し、何れも満たさない場合はS11を実行する。S11では、S5或いはS8の実行による一連の計測が終了したか否かを判断し、計測が終了するまでS10を繰り返し実行する。S10の学習中止条件を満たすことなく計測が終了した場合は、S11の判断がYES(肯定)になってS12を実行し、ダンパ装置26の回転特性を特定して特性記憶部94に記憶(上書き)する。すなわち、S5或いはS8の実行で求められた図3に示すような入力トルクTinとねじり角Φとの関係から、少なくとも図4に示す剛性値K1〜K3を抽出し、その剛性値K1〜K3を特性記憶部94に記憶する。これにより、エンジン関連制御部96は、特性記憶部94に記憶された新たな剛性値K1〜K3に基づいてエンジン回転速度信号SNeをフィルタリングし、共振による回転振動が減衰させられたエンジン回転速度信号SNeを用いて各種の制御を実行することができる。
エンジン関連制御部96は、エンジン回転速度信号SNeを用いて各種の制御を行なうもので、具体的にはエンジン回転駆動部100および失火・異音検出部110を機能的に備えている。これ等のエンジン回転駆動部100および失火・異音検出部110は、エンジン回転速度センサ70から供給されるエンジン回転速度信号SNeからダンパ装置26の共振による振動成分を減衰させるために、それぞれフィルタ補正部102、112およびエンジン回転フィルタリング部104、114を備えている。図8は、フィルタ補正部102、112およびエンジン回転フィルタリング部104、114による信号処理を具体的に説明するフローチャートで、F1−1〜F1−6はフィルタ補正部102、112に相当し、F1−7〜F1−9はエンジン回転フィルタリング部104、114に相当する。エンジン回転駆動部100および失火・異音検出部110におけるエンジン回転速度信号SNeのフィルタリングは、フィルタリングの際のフィルタ特性が相違するだけであるため、共通のフローチャートを用いて説明する。
図8のF1−1では、ダンパ装置26の実共振周波数frを算出するために必要な慣性モーメントMを読み込む。慣性モーメントMは、エンジン12やダンパ装置26、フライホイール等の質量や大きさ等に基づいて予め一定値が設定されている。F1−2では、初期設定による基準フィルタ特性Fpを読み込む。基準フィルタ特性Fpは、エンジン回転速度信号SNeから共振による回転変動の周波数成分だけをフィルタリングにより減衰させるためのもので、予め定められた設定共振周波数froに基づいて設定されており、図9〜図12に実線で示すように設定共振周波数froを含んで定められた減衰周波数帯域、およびその減衰周波数帯域内の減衰ゲインGoについて定められている。図9および図10は減衰周波数帯域の上限および下限が定められたバンドストップフィルタで、図11および図12は減衰周波数帯域の下限だけが定められたローパスフィルタであり、エンジン回転速度信号SNeの使用目的等に応じて何れか一方が定められる。例えば共振周波数よりも高い周波数の回転変動を検出する場合は、図9、図10のバンドストップフィルタが用いられる。この基準フィルタ特性Fpは、エンジン回転駆動部100および失火・異音検出部110で別々に設定されているが、エンジン回転駆動部100および失火・異音検出部110で共通の基準フィルタ特性Fpが用いられても良い。また、失火・異音検出部110に関しては、失火検出用および異音検出用の基準フィルタ特性Fpが別々に定められても良い。
F1−3では、特性記憶部94に記憶された剛性値K1〜K3の何れかを読み込む。読み込む剛性値K1〜K3は、ダンパ装置26の入力トルクに応じて定められるが、前記基準フィルタ特性Fpとの関係で予め定められている。例えばエンジン12を回転駆動するエンジン回転駆動部100では、ダンパ装置26の入力トルクが小さいため剛性値K1を読み込む。F1−4では、剛性値K1〜K3および慣性モーメントMに基づいて、予め定められたマップや演算式に従って実共振周波数frを算出する。F1−5では、この実共振周波数frと前記設定共振周波数froとの周波数差Δfrを算出し、F1−6では、その周波数差Δfrに応じて基準フィルタ特性Fpを補正する。具体的には、周波数差Δfrが予め定められた大小判定値α以上か否かを判断し、大小判定値α以上の場合は、図9または図11に破線で示すように、その周波数差Δfr分だけ基準フィルタ特性Fpの減衰周波数帯域を実共振周波数frのずれ方向へ移動補正する。また、周波数差Δfrが予め定められた大小判定値αよりも小さい場合は、図10または図12に破線で示すように、基準フィルタ特性Fpの減衰ゲインGoを大きくするとともに減衰周波数帯域を狭くする強調補正を行なう。この強調補正は、設定共振周波数froの近傍部分の減衰ゲインGoを大きくする一方、設定共振周波数froから遠い周波数部分の減衰ゲインGoを連続的に小さくすることによって行なわれる。図12のローパスフィルタの場合は、減衰ゲインGoの最大値を大きくするとともに、減衰周波数帯域の下限側だけ設定共振周波数froから遠くなるに従って減衰ゲインGoを連続的に小さくすれば良い。
そして、次のF1−7ではエンジン回転速度信号SNeを読み込み、F1−8では、その読み込んだエンジン回転速度信号SNeを、F1−6で基準フィルタ特性Fpを補正した後の補正後フィルタ特性Fsに従ってフィルタリングする。これにより、ダンパ装置26の実際のねじり剛性に応じて生じる共振によるエンジン回転速度信号SNeの回転振動が適切に減衰させられる。すなわち、例えば前記図5に示すように第1モータジェネレータMG1でエンジン12を回転駆動してエンジン回転速度Neを上昇させる場合、ダンパ装置26の共振周波数領域で共振によりエンジン12の回転振動が生じるため、エンジン回転速度信号SNeも実線で示されるように回転振動を有するが、F1−8でフィルタリングされることにより、ダンパ装置26のねじり剛性のばらつきや経時変化に拘らず破線で示すように適切に平滑化される。F1−9では、このように回転振動が低減されたエンジン回転速度信号SNeが出力され、エンジン回転駆動部100によるエンジン回転駆動、或いは失火・異音検出部110による失火検出や異音検出に用いられる。
図13は、エンジン回転駆動部100によるエンジン回転駆動制御を具体的に説明するフローチャートで、第1モータジェネレータMG1によりエンジン12をクランキングして始動する場合のものである。Q1−1では、第1モータジェネレータMG1によるクランキングでエンジン12を始動するエンジン回転要求が供給されたか否かを判断し、エンジン回転要求が供給されなければそのまま終了するが、エンジン回転要求が供給された場合はQ1−2以下を実行する。Q1−2では、第1モータジェネレータMG1によりエンジン12を回転駆動する。すなわち、ハイブリッド車両10が停止状態であれば、第1モータジェネレータMG1を力行トルクによりエンジン回転方向である正回転方向へ回転させることにより、エンジン12を正方向へ回転駆動することができる。ハイブリッド車両10が走行状態の場合は、逆回転状態の第1モータジェネレータMG1を回生制御等により正回転方向のトルクを加えて制動することにより、エンジン12を正回転方向へ回転駆動することができる。
Q1−3では、前記エンジン回転フィルタリング部104によってフィルタリングされた後のエンジン回転速度信号SNeを読み込み、Q1−4では、回転駆動および点火、燃料噴射等による始動制御でエンジン回転速度信号SNeが表すエンジン回転速度Neが予め定められた回転駆動終了判定値Ne1に達したか否かを判断する。そして、エンジン回転速度Neが回転駆動終了判定値Ne1に達したらQ1−5を実行し、第1モータジェネレータMG1によるエンジン12の回転駆動(クランキング)を終了する。これにより、エンジン回転速度Neが例えばダンパ装置26の共振周波数帯域よりも上の回転駆動終了判定値Ne1まで速やかに上昇させられ、その後は、爆発による自力回転でアイドル回転速度等の所定の目標エンジン回転速度まで上昇させられる。なお、Q1−3において、前記図8のF1−7〜F1−9のフィルタリング処理を実行しても良い。フィルタ補正を含むF1−1〜F1−9の総ての信号処理をQ1−3で行なうようにしても良い。
このように、第1モータジェネレータMG1によりダンパ装置26を介してエンジン12を回転駆動してクランキングする場合に、フィルタリングされた後のエンジン回転速度信号SNeを用いて回転駆動終了判定値Ne1に達したか否かを判断するため、ダンパ装置26の共振によるエンジン回転振動に影響されることなく、エンジン回転速度Neが回転駆動終了判定値Ne1に達したことを高い精度で判断でき、回転駆動終了判定値Ne1に達した時点で第1モータジェネレータMG1によるクランキングを適切に終了することができる。特に、ダンパ装置26のねじり剛性(剛性値K1〜K3)を検出して求められた実共振周波数frに基づいて、エンジン回転フィルタリング部104により共振による振動成分が除去されるように、エンジン回転速度センサ70から供給されたエンジン回転速度信号SNeがフィルタリングされるため、ダンパ装置26の個体差や経時変化によるねじり剛性のばらつきに拘らず、共振による振動成分が適切に除去されたエンジン回転速度信号SNeに基づいて、回転駆動終了判定値Ne1に達したか否かを常に適切に判断できる。
図14は、失火・異音検出部110による失火検出制御および異音検出制御を具体的に説明するフローチャートである。Q2−1では、エンジン12が爆発により自力回転している作動状態か否かを判断し、作動状態でなければそのまま終了するが、作動状態の場合はQ2−2以下を実行する。Q2−2では、前記エンジン回転フィルタリング部114によってフィルタリングされた後のエンジン回転速度信号SNeを読み込む。このQ2−2において、前記図8のF1−7〜F1−9のフィルタリング処理を実行しても良い。フィルタ補正を含むF1−1〜F1−9の総ての信号処理をQ2−2で行なうようにしても良い。
Q2−3では、そのエンジン回転速度信号SNeが回転変動を有するか否かを判断する。回転変動が無い場合、すなわち回転変動量ΔSNeが予め定められた有無判定値ΔSNe1以下であればそのまま終了し、ΔSNe>ΔSNe1の場合はQ2−4を実行する。Q2−4では、回転変動量ΔSNeが大きいか否か、すなわち予め定められた失火判定値ΔSNe2以上か否かを判断し、ΔSNe≧ΔSNe2の場合はQ2−5でエンジン12の失火判定を行う。エンジン12が失火すると、爆発が不規則になって通常の爆発による回転変動とは周期や大きさが異なる回転変動が発生するため、回転変動量ΔSNeに基づいてエンジン12の失火を判定することができる。この場合は、例えばエンジン12のトルクTeやエンジン回転速度Neを変更するなどして、エンジン12の失火を抑制することができる。
一方、Q2−4の判断がNO(否定)の場合、すなわち回転変動量ΔSNeが小さくてΔSNe<ΔSNe2の場合は、Q2−6を実行して異音判定を行なう。エンジン12の気筒間トルクのばらつきなどにより通常の爆発による回転振動とは周期や大きさが異なる回転振動が発生すると、動力伝達経路の歯車噛合い部で歯当り音等の異音(タッピング現象)が発生する可能性があるため、回転変動量ΔSNeに基づいて異音判定を行なうことができる。この場合は、例えばエンジン12のトルクTeやエンジン回転速度Neを変更するなどして、エンジン回転速度Neの回転変動を低減して異音の発生を抑制することができる。
このように、エンジン12の作動中に、フィルタリングされた後のエンジン回転速度信号SNeの回転変動に基づいてエンジン12の失火判定や異音判定が行なわれるため、ダンパ装置26の共振によるエンジン回転振動に影響されることなく、失火判定や異音判定を高い精度で適切に行なうことができる。特に、ダンパ装置26のねじり剛性(剛性値K1〜K3)を検出して求められた実共振周波数frに基づいて、エンジン回転フィルタリング部114により共振による振動成分が除去されるように、エンジン回転速度センサ70から供給されたエンジン回転速度信号SNeがフィルタリングされるため、ダンパ装置26の個体差や経時変化によるねじり剛性のばらつきに拘らず、共振による振動成分が適切に除去されたエンジン回転速度信号SNeに基づいて、失火判定や異音判定が常に適切に行なわれるようになる。
このように、本実施例のハイブリッド車両10においては、噛合式ブレーキ36によりクランク軸24の回転をロックした状態で、第1モータジェネレータMG1の力行制御でダンパ装置26にトルクTinを加えてねじり角Φを計測することによりねじり剛性(剛性値K1など)を検出し、検出したねじり剛性に基づいて実共振周波数frを算出する。このため、ダンパ装置26の個体差等によるねじり剛性のばらつきや経時変化に拘らず、実際のねじり剛性に基づいて実共振周波数frを適切に算出することができる。そして、エンジン回転速度センサ70から供給されるエンジン回転速度信号SNeの中の実共振周波数frの振動成分が減衰されるようにフィルタリングされることにより、共振による振動成分が適切に低減されたエンジン回転速度信号SNeが得られ、そのエンジン回転速度信号SNeを用いたその後の制御、具体的にはエンジン回転駆動部100によるエンジン12の回転駆動制御や失火・異音検出部110による失火判定、異音判定が適切に行なわれるようになる。
また、上記エンジン回転速度信号SNeのフィルタリングに際しては、実共振周波数frと設定共振周波数froとの周波数差Δfrに基づいて、その設定共振周波数froに応じて減衰周波数帯域および減衰ゲインGoが予め定められた基準フィルタ特性Fpが補正され、その補正された後のフィルタ特性Fsに従ってエンジン回転速度信号SNeがフィルタリングされるため、共振による振動成分が適切に低減される。
また、実共振周波数frと設定共振周波数froとの周波数差Δfrが大きい場合には、基準フィルタ特性Fpの減衰周波数帯域が共振周波数のずれ方向へ移動補正されるため、周波数差Δfrが大きくてもエンジン回転速度信号SNeから共振による振動成分が適切に低減される。一方、実共振周波数frと設定共振周波数froとの周波数差Δfrが小さい場合には、基準フィルタ特性Fpの減衰ゲインGoを大きくするとともに減衰周波数帯域を狭くする強調補正が行なわれるため、エンジン回転速度信号SNeから共振による振動成分だけを一層適切に低減することができる。
次に、本発明の他の実施例を説明する。なお、以下の実施例において前記実施例と実質的に共通する部分には同一の符号を付して詳しい説明を省略する。
図15は、本発明が適用されたハイブリッド車両200の駆動系統を説明する骨子図で、制御系統の要部を併せて示した図であり、前記図1に対応する図である。ハイブリッド車両200は、前記実施例に比較して電子制御装置202が機能的に備えるエンジン関連制御部204内のエンジン回転駆動部210が相違する。このエンジン回転駆動部210は、第1モータジェネレータMG1によりエンジン12を回転駆動するもので、ダンパ装置26の実共振周波数frに起因して生じるエンジン12の回転振動そのものを抑制するために、変動特性補正部212および電動機回転変動付与部214を機能的に備えている。電動機回転変動付与部214は、エンジン12の回転振動を抑制するために、ダンパ装置26の実共振周波数frに応じて第1モータジェネレータMG1の目標回転速度Nmg1tに周期変動を付与するためのもので、変動特性補正部212は、その周期変動の振幅および変動周波数帯域に関する変動特性をダンパ装置26の実共振周波数frに応じて設定するものである。
図16は、変動特性補正部212による信号処理を具体的に説明するフローチャートである。図16のF2−1では、前記F1−1と同様にダンパ装置26の実共振周波数frを算出するために必要な慣性モーメントMを読み込む。F2−2では、初期設定による基準変動特性Wpを読み込む。基準変動特性Wpは、ダンパ装置26の共振によって生じるエンジン12の回転振動と逆位相の回転変動をMG1目標回転速度Nmg1tに付与するためのもので、予め定められた設定共振周波数froに基づいて設定されており、図17および図18に実線で示すように設定共振周波数froを含んで定められた変動周波数帯域、およびその変動周波数帯域内の振幅Aoについて定められている。
F2−3では、特性記憶部94に記憶された剛性値K1を読み込む。前記基準変動特性Wpは、入力トルクが小さい領域の剛性値K1(初期設定値)に基づいて設定されている。F2−4では、前記F1−4と同様に剛性値K1および慣性モーメントMに基づいて、予め定められたマップや演算式に従って実共振周波数frを算出する。F2−5では、前記F1−5と同様に実共振周波数frと設定共振周波数froとの周波数差Δfrを算出し、F2−6では、その周波数差Δfrに応じて基準変動特性Wpを補正する。具体的には、周波数差Δfrが予め定められた大小判定値β以上か否かを判断し、大小判定値β以上の場合は、図17に破線で示すように、その周波数差Δfr分だけ基準変動特性Wpの変動周波数帯域を実共振周波数frのずれ方向へ移動補正する。また、周波数差Δfrが予め定められた大小判定値βよりも小さい場合は、図18に破線で示すように、基準変動特性Wpの振幅Aoを大きくするとともに変動周波数帯域を狭くする強調補正を行なう。この強調補正は、設定共振周波数froの近傍部分の振幅Aoを大きくする一方、設定共振周波数froから遠い周波数部分の振幅Aoを連続的に小さくすることによって行なわれる。大小判定値βは、前記大小判定値αと同じであっても良いし、異なる値が定められても良い。
そして、このような補正後の変動特性Wsにより第1モータジェネレータMG1の目標回転速度Nmg1tに変動を加えれば、その第1モータジェネレータMG1によりエンジン12を回転駆動する際に、ダンパ装置26の実際のねじり剛性のばらつきに拘らず、そのダンパ装置26のねじり剛性に応じて生じる共振によるエンジン回転速度Neの周期変化が適切に抑制される。図19は、エンジン回転駆動部210によるエンジン回転駆動制御を具体的に説明するフローチャートで、第1モータジェネレータMG1によりエンジン12をクランキングして始動する場合のものであり、電動機回転変動付与部214により補正後変動特性Wsに従って第1モータジェネレータMG1の目標回転速度Nmg1tに回転変動を付与する制御を含む。図19のQ3−2およびQ3−3は電動機回転変動付与部214に相当する。
図19のQ3−1では、第1モータジェネレータMG1によるクランキングでエンジン12を始動するエンジン回転要求が供給されたか否かを判断し、エンジン回転要求が供給されなければそのまま終了するが、エンジン回転要求が供給された場合はQ3−2以下を実行する。Q3−2〜Q3−4では、エンジン12を始動するために第1モータジェネレータMG1によりエンジン12を回転駆動(クランキング)する。すなわち、ハイブリッド車両10が停止状態であれば、第1モータジェネレータMG1を力行トルクによりエンジン回転方向である正回転方向へ回転させることにより、エンジン12を正方向へ回転駆動することができる。ハイブリッド車両10が走行状態の場合は、逆回転状態の第1モータジェネレータMG1を回生制御等により正回転方向のトルクを加えて制動することにより、エンジン12を正回転方向へ回転駆動することができる。その場合に、本実施例ではQ3−2においてMG1目標回転速度Nmg1tを読み込み、Q3−3で、前記変動特性補正部212により補正された後の補正後変動特性Wsに従ってMG1目標回転速度Nmg1tに回転変動を付与する。また、Q3−4では、その回転変動が付与されたMG1目標回転速度Nmg1tを出力し、そのMG1目標回転速度Nmg1tに従って第1モータジェネレータMG1を作動させてエンジン12を回転駆動する。なお、Q3−3において、前記図16のF2−1〜F2−6の変動特性補正処理を行なうようにしても良い。
このようにダンパ装置26の実際のねじり剛性に応じて定められた補正後変動特性Wsに従ってMG1目標回転速度Nmg1tに回転変動が加えられることにより、ダンパ装置26のねじり剛性のばらつきに拘らず、そのダンパ装置26のねじり剛性に応じて生じる共振によるエンジン回転速度Neの周期変化を抑制する(打ち消す)ことができる。MG1目標回転速度Nmg1tに加えられる回転変動の位相は、共振によるエンジン回転速度Neの変動が低減されるように、例えばエンジン回転速度センサ70から供給されるエンジン回転速度信号SNeに基づいて調整される。図20は、このように補正後変動特性Wsに従ってMG1目標回転速度Nmg1tに回転変動が加えられた場合の、MG1目標回転速度Nmg1t、MG1回転速度Nmg1、およびエンジン回転速度Neの変化を示すタイムチャートの一例であり、破線で示すように、回転変動無しのMG1目標回転速度Nmg1tによりエンジン12を回転駆動した場合には、共振によってエンジン回転速度Neやエンジン回転速度信号SNeが周期変化する。これに対し、本実施例では、エンジン回転速度Neの周期変化と逆位相の周期変動が補正後変動特性Wsに従ってMG1目標回転速度Nmg1tに付加されることにより、実線で示すように共振によるエンジン回転速度Neの周期変化が相殺されて、エンジン回転速度Neがダンパ装置26の共振に拘らず滑らかに上昇させられる。エンジン回転速度センサ70から供給されるエンジン回転速度信号SNeも、エンジン回転速度Neと同様に滑らかに変化する。
図19に戻って、Q3−5では、エンジン回転速度センサ70から供給されるエンジン回転速度信号SNeを読み込み、Q3−6では、回転駆動および点火、燃料噴射等による始動制御でエンジン回転速度信号SNeが表すエンジン回転速度Neが予め定められた回転駆動終了判定値Ne1に達したか否かを判断する。そして、そのエンジン回転速度信号SNeが表すエンジン回転速度Neが回転駆動終了判定値Ne1に達したらQ3−7を実行し、第1モータジェネレータMG1によるエンジン12の回転駆動(クランキング)を終了する。これにより、エンジン回転速度Neが例えばダンパ装置26の共振周波数領域よりも上の回転駆動終了判定値Ne1まで速やかに上昇させられ、その後は、爆発による自力回転でアイドル回転速度等の所定の目標エンジン回転速度まで上昇させられる。
このように、第1モータジェネレータMG1によりダンパ装置26を介してエンジン12を回転駆動してクランキングする場合に、ダンパ装置26のねじり剛性に起因して生じるエンジン12の回転振動が抑制されるように、MG1目標回転速度Nmg1tが実共振周波数frに応じて周期変動させられることにより、共振によるエンジン回転速度Neの回転振動そのものが抑制されるため、共振による振動成分が適切に低減されたエンジン回転速度信号SNeが得られる。これにより、そのエンジン回転速度信号SNeに基づいてエンジン回転速度Neが回転駆動終了判定値Ne1に達したことを高い精度で判断でき、回転駆動終了判定値Ne1に達した時点で第1モータジェネレータMG1によるクランキングを適切に終了することができる。特に、ダンパ装置26のねじり剛性(剛性値K1)を検出して求められた実共振周波数frに基づいて、MG1目標回転速度Nmg1tに付与する回転変動の変動特性(補正後変動特性Ws)が定められるため、ダンパ装置26の個体差や経時変化によるねじり剛性のばらつきに拘らず、共振によるエンジン回転速度Neの周期変化が適切に抑制され、そのエンジン回転速度Neを検出するエンジン回転速度センサ70から供給されるエンジン回転速度信号SNeに基づいて、回転駆動終了判定値Ne1に達したか否かを常に高い精度で適切に判断できる。
また、噛合式ブレーキ36によりクランク軸24の回転をロックした状態で、第1モータジェネレータMG1の力行制御でダンパ装置26にトルクTinを加えてねじり角Φを計測することによりねじり剛性(剛性値K1など)を検出し、検出したねじり剛性に基づいて実共振周波数frを算出するため、ダンパ装置26の個体差等によるねじり剛性のばらつきや経時変化に拘らず、実際のねじり剛性に基づいて実共振周波数frを適切に算出することができる。
また、MG1目標回転速度Nmg1tに対する周期変動の変動特性については、実共振周波数frと設定共振周波数froとの周波数差Δfrに基づいて、その設定共振周波数froに応じて振幅Aoおよび変動周波数帯域が予め定められた基準変動特性Wpが補正され、その補正された後の変動特性Wsに従ってMG1目標回転速度Nmg1tが周期変動させられるため、共振によるエンジン回転速度Neの回転振動そのものが適切に抑制され、共振による振動成分が適切に低減されたエンジン回転速度信号SNeが得られる。
また、実共振周波数frと設定共振周波数froとの周波数差Δfrが大きい場合には、基準変動特性Wpの変動周波数帯域が共振周波数のずれ方向へ移動補正されるため、周波数差Δfrが大きくても共振によるエンジン回転速度Neの回転振動が適切に抑制される。一方、実共振周波数frと設定共振周波数froとの周波数差Δfrが小さい場合には、基準変動特性Wpの振幅Aoを大きくするとともに変動周波数帯域を狭くする強調補正が行なわれるため、共振によるエンジン回転速度Neの回転振動、更にはエンジン回転速度信号SNeの回転振動を一層適切に低減することができる。
以上、本発明の実施例を図面に基づいて詳細に説明したが、これ等はあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。
10、200:ハイブリッド車両(車両) 12:エンジン 14:駆動輪 26:ダンパ装置(回転部材) 26a:第1回転要素(エンジン側の連結部) 36:噛合式ブレーキ(回転ロック機構) 70:エンジン回転速度センサ 90、202:電子制御装置(車両用制御装置) 92:特性学習部(特性検出部) 100:エンジン回転駆動部 102、112:フィルタ補正部 104、114:エンジン回転フィルタリング部 110:失火・異音検出部(失火検出部、異音検出部) 210:エンジン回転駆動部 212:変動特性補正部 214:電動機回転変動付与部 MG1:第1モータジェネレータ(電動機) Tin:入力トルク Φ:ねじり角 K1、K2、K3:剛性値(回転特性、ねじり剛性) Ne:エンジン回転速度 SNe:エンジン回転速度信号 Nmg1t:MG1目標回転速度(電動機の目標回転速度) fr:実共振周波数 fro:設定共振周波数 Δfr:周波数差 Fp:基準フィルタ特性 Fs:補正後フィルタ特性 Wp:基準変動特性 Ws:補正後変動特性

Claims (9)

  1. エンジンと、電動機と、該エンジンと該電動機との間に設けられ、入力トルクに関連する回転特性を有する回転部材と、を備える車両用の制御装置において、
    前記車両は、前記回転部材の前記エンジン側の連結部の少なくとも一方向の回転を阻止する回転ロック機構と、前記エンジンの回転速度を検出するエンジン回転速度センサと、を備えており、
    前記回転ロック機構により前記連結部の回転を阻止した状態で、前記電動機により前記回転部材にトルクを加えて該回転部材のねじり角を計測することにより、前記回転特性として少なくともねじり剛性を検出する特性検出部と、
    前記特性検出部によって検出された前記ねじり剛性に基づいて実共振周波数を算出し、前記エンジン回転速度センサから供給されるエンジン回転速度信号の中の前記実共振周波数の振動成分が減衰されるように該エンジン回転速度信号をフィルタリングするエンジン回転フィルタリング部と、
    を有することを特徴とする車両用制御装置。
  2. 前記実共振周波数と予め定められた設定共振周波数との周波数差に基づいて、該設定共振周波数に応じて予め定められた減衰周波数帯域および減衰ゲインに関する基準フィルタ特性を補正するフィルタ補正部を有し、
    前記エンジン回転フィルタリング部は、前記フィルタ補正部によって前記基準フィルタ特性が補正された後のフィルタ特性に従って前記エンジン回転速度信号をフィルタリングする
    ことを特徴とする請求項1に記載の車両用制御装置。
  3. 前記フィルタ補正部は、前記実共振周波数と前記設定共振周波数との周波数差が予め定められた大小判定値以上の場合は、前記基準フィルタ特性の前記減衰周波数帯域を共振周波数のずれ方向へ移動補正し、前記周波数差が前記大小判定値よりも小さい場合は、前記基準フィルタ特性の前記減衰ゲインを大きくするとともに前記減衰周波数帯域を狭くする強調補正を行なう
    ことを特徴とする請求項2に記載の車両用制御装置。
  4. 前記電動機により前記回転部材を介して前記エンジンを回転駆動する際に、前記エンジン回転フィルタリング部によってフィルタリングされた後の前記エンジン回転速度信号を用いて所定の制御を行なうエンジン回転駆動部を有する
    ことを特徴とする請求項1〜3の何れか1項に記載の車両用制御装置。
  5. 前記エンジンの作動中に、前記エンジン回転フィルタリング部によってフィルタリングされた後の前記エンジン回転速度信号の回転変動に基づいて前記エンジンの失火判定を行なう失火検出部を有する
    ことを特徴とする請求項1〜3の何れか1項に記載の車両用制御装置。
  6. 前記エンジンの作動中に、前記エンジン回転フィルタリング部によってフィルタリングされた後の前記エンジン回転速度信号の回転変動に基づいて動力伝達経路の異音判定を行なう異音検出部を有する
    ことを特徴とする請求項1〜3の何れか1項に記載の車両用制御装置。
  7. エンジンと、電動機と、該エンジンと該電動機との間に設けられ、入力トルクに関連する回転特性を有する回転部材と、を備える車両用の制御装置において、
    前記車両は、前記回転部材の前記エンジン側の連結部の少なくとも一方向の回転を阻止する回転ロック機構と、前記エンジンの回転速度を検出するエンジン回転速度センサと、を備えており、
    前記回転ロック機構により前記連結部の回転を阻止した状態で、前記電動機により前記回転部材にトルクを加えて該回転部材のねじり角を計測することにより、前記回転特性として少なくともねじり剛性を検出する特性検出部と、
    前記特性検出部によって検出された前記ねじり剛性に基づいて実共振周波数を算出し、前記電動機により前記回転部材を介して前記エンジンを回転させる際に、前記実共振周波数に起因して生じる前記エンジンの回転振動が抑制されるように、前記電動機の目標回転速度を前記実共振周波数に応じて周期変動させる電動機回転変動付与部と、
    を有することを特徴とする車両用制御装置。
  8. 前記実共振周波数と予め定められた設定共振周波数との周波数差に基づいて、前記目標回転速度に付与する周期変動の振幅および変動周波数帯域に関して前記設定共振周波数に応じて予め定められた基準変動特性を補正する変動特性補正部を有し、
    前記電動機回転変動付与部は、前記変動特性補正部によって前記基準変動特性が補正された後の変動特性に従って前記目標回転速度を周期変動させる
    ことを特徴とする請求項7に記載の車両用制御装置。
  9. 前記変動特性補正部は、前記実共振周波数と前記設定共振周波数との周波数差が予め定められた大小判定値以上の場合は、前記基準変動特性の前記変動周波数帯域を共振周波数のずれ方向へ移動補正し、前記周波数差が前記大小判定値よりも小さい場合は、前記基準変動特性の前記振幅を大きくするとともに前記変動周波数帯域を狭くする強調補正を行なう
    ことを特徴とする請求項8に記載の車両用制御装置。
JP2018003740A 2018-01-12 2018-01-12 車両用制御装置 Active JP6911775B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018003740A JP6911775B2 (ja) 2018-01-12 2018-01-12 車両用制御装置
CN201910024939.4A CN110040121B (zh) 2018-01-12 2019-01-11 车辆用控制装置
US16/247,093 US11273839B2 (en) 2018-01-12 2019-01-14 Vehicle control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018003740A JP6911775B2 (ja) 2018-01-12 2018-01-12 車両用制御装置

Publications (2)

Publication Number Publication Date
JP2019124143A JP2019124143A (ja) 2019-07-25
JP6911775B2 true JP6911775B2 (ja) 2021-07-28

Family

ID=67212711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018003740A Active JP6911775B2 (ja) 2018-01-12 2018-01-12 車両用制御装置

Country Status (3)

Country Link
US (1) US11273839B2 (ja)
JP (1) JP6911775B2 (ja)
CN (1) CN110040121B (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6575550B2 (ja) * 2017-03-23 2019-09-18 トヨタ自動車株式会社 内燃機関の失火検出装置
JP6900908B2 (ja) * 2018-01-09 2021-07-07 トヨタ自動車株式会社 車両用制御装置
US10955025B2 (en) * 2018-05-31 2021-03-23 GM Global Technology Operations LLC Vehicle powertrain variable vibration absorber assembly
JP6804583B2 (ja) * 2019-04-05 2020-12-23 三菱電機株式会社 エンジン失火検出装置
CN114127399B (zh) * 2019-11-08 2024-05-10 日产自动车株式会社 内燃机的控制方法以及内燃机的控制装置
JP2021147997A (ja) * 2020-03-16 2021-09-27 日産自動車株式会社 内燃機関の燃焼状態検出方法及び内燃機関の燃焼状態検出装置
JP7484702B2 (ja) * 2020-12-25 2024-05-16 スズキ株式会社 モータ制御装置
CN116605063B (zh) * 2023-05-25 2024-03-22 重庆赛力斯凤凰智创科技有限公司 基于共振频率的车辆抖动控制方法、装置及新能源汽车

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4019711B2 (ja) * 2002-01-09 2007-12-12 株式会社明電舎 エンジンベンチシステムのシャフトばね定数計測方法
JP4438858B2 (ja) * 2007-12-12 2010-03-24 トヨタ自動車株式会社 内燃機関の失火判定装置および車両並びにねじれ要素の剛性推定装置,内燃機関の失火判定方法,ねじれ要素の剛性推定方法
JP2012076537A (ja) * 2010-09-30 2012-04-19 Aisin Aw Co Ltd 制御装置
JP5440874B2 (ja) * 2010-09-30 2014-03-12 アイシン・エィ・ダブリュ株式会社 制御装置
WO2013114569A1 (ja) * 2012-01-31 2013-08-08 トヨタ自動車株式会社 制振制御装置
BR112013022228B1 (pt) * 2013-02-06 2021-07-06 Toyota Jidosha Kabushiki Kaisha dispositivo de controle de veículo híbrido
JP6205935B2 (ja) * 2013-07-19 2017-10-04 アイシン精機株式会社 ハイブリッド車両用駆動装置
US9067600B2 (en) * 2013-07-26 2015-06-30 Ford Global Technologies, Llc Engine speed control apparatus and method for a hybrid vehicle
JP2015105623A (ja) * 2013-11-29 2015-06-08 トヨタ自動車株式会社 車両の車体振動制御装置
JP6075561B2 (ja) * 2013-12-20 2017-02-08 トヨタ自動車株式会社 ねじり振動減衰器の計測装置および計測方法
JP6342747B2 (ja) * 2014-08-22 2018-06-13 株式会社デンソー 回転電機の制御装置
JP6217612B2 (ja) * 2014-12-02 2017-10-25 トヨタ自動車株式会社 車両の振動制御装置
KR101765627B1 (ko) * 2015-12-10 2017-08-07 현대자동차 주식회사 하이브리드 차량의 능동 진동 제어 방법 및 장치
JP6275761B2 (ja) * 2016-03-18 2018-02-07 本田技研工業株式会社 車両駆動装置
KR20180040883A (ko) * 2016-10-13 2018-04-23 현대자동차주식회사 하이브리드 차량의 진동 저감 장치 및 방법
JP6536543B2 (ja) 2016-11-17 2019-07-03 トヨタ自動車株式会社 車両用制御装置
KR102371234B1 (ko) * 2016-11-28 2022-03-04 현대자동차 주식회사 하이브리드 차량의 진동 추출 장치 및 방법

Also Published As

Publication number Publication date
CN110040121A (zh) 2019-07-23
US20190217852A1 (en) 2019-07-18
CN110040121B (zh) 2021-10-29
JP2019124143A (ja) 2019-07-25
US11273839B2 (en) 2022-03-15

Similar Documents

Publication Publication Date Title
JP6911775B2 (ja) 車両用制御装置
CN110027541B (zh) 车辆用控制装置
JP7027920B2 (ja) ハイブリッド車両の制御装置
JP6414031B2 (ja) ハイブリッド自動車
JP6536543B2 (ja) 車両用制御装置
JP2016088380A (ja) ハイブリッド自動車
JP2014184920A (ja) 自動車
JP6639355B2 (ja) 自動車
JP2009185738A (ja) 車両制御装置および車両制御方法
JP5569411B2 (ja) 車両用駆動装置の制御装置
JP6725434B2 (ja) ハイブリッド自動車
US20240190414A1 (en) Control apparatus for vehicle
JP7433577B2 (ja) 車両用制振制御装置
JP5626054B2 (ja) 自動車
JP5761040B2 (ja) 車両用制御装置
JP5609758B2 (ja) ハイブリッド車
JP2024017223A (ja) ハイブリッド車両の制御装置
JP2024082186A (ja) 車両の制御装置
JP2022174576A (ja) ハイブリッド車両の制御装置
JP6354739B2 (ja) 遠心振子ダンパ付きパワートレインの制御装置
JP2022078406A (ja) 駆動源制御装置
JP2014184921A (ja) ハイブリッド自動車
JP2024013121A (ja) ハイブリッド車両の制御装置
JP2011111013A (ja) 車両およびその制御方法
JP2014080129A (ja) ハイブリッド車両の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200728

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210621

R151 Written notification of patent or utility model registration

Ref document number: 6911775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151