JP6822127B2 - 磁気センサ - Google Patents

磁気センサ Download PDF

Info

Publication number
JP6822127B2
JP6822127B2 JP2016247359A JP2016247359A JP6822127B2 JP 6822127 B2 JP6822127 B2 JP 6822127B2 JP 2016247359 A JP2016247359 A JP 2016247359A JP 2016247359 A JP2016247359 A JP 2016247359A JP 6822127 B2 JP6822127 B2 JP 6822127B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetic material
sensor
cross
materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016247359A
Other languages
English (en)
Other versions
JP2018004618A (ja
Inventor
秀一 大川
秀一 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Publication of JP2018004618A publication Critical patent/JP2018004618A/ja
Application granted granted Critical
Publication of JP6822127B2 publication Critical patent/JP6822127B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Description

本発明は磁気センサに関し、特に、磁束を感磁素子に集めるための磁性体を備えた磁気センサに関する。
感磁素子を用いた磁気センサは、電流計や磁気エンコーダなどに広く用いられている。例えば、特許文献1に記載された磁気センサは、感磁素子に磁束を集めるための磁性体を備えており、これにより磁束の検出精度が高められている。
特許第5500785号公報
しかしながら、特許文献1に記載された磁気センサは、磁性体の形状が単純なブロック形状であることから集磁力が十分ではなく、このため、近年求められている非常に高い検出精度を実現することは困難である。
磁気センサの検出精度を高める方法としては、磁性体の形状を工夫し、感磁素子の近傍における径よりも感磁素子から遠い部分における径を拡大する方法が考えられる。しかしながら、このような形状を有する磁性体を用いると、複数の磁気センサをアレイ状に配列して使用する場合に磁気センサごとに検出精度がばらつき、その結果、一様な磁場中においても各磁気センサからの出力に差が生じるという現象が生じることがあった。
したがって、本発明は、非常に高い検出精度を得ることができるとともに、複数の磁気センサをアレイ状に配列して使用する場合であっても、検出精度のばらつきを抑制可能な磁気センサを提供することを目的とする。
本発明による磁気センサは、感磁素子と、前記感磁素子に磁束を集める磁性体とを備え、前記磁性体は、第1の磁性体と、前記感磁素子と前記第1の磁性体との間に位置する第2の磁性体とを含み、前記第1及び第2の磁性体の集磁方向に対して垂直な断面における断面積をそれぞれS1及びS2とし、前記第1及び第2の磁性体の前記集磁方向における長さをそれぞれL1及びL2とした場合、
S1>S2、且つ
L1/L2≦2
を満たすことを特徴とする。
本発明によれば、第1の磁性体の方が第2の磁性体よりも断面積が大きいことから、より多くの磁束を集磁することができ、これにより非常に高い検出精度を得ることが可能となる。しかも、第1の磁性体の長さが第2の磁性体の長さの2倍以下であることから、複数の磁気センサをアレイ状に配列して使用する場合であっても、磁性体間における干渉が抑えられ、その結果、感度分布のばらつきを例えば20%以下に抑制することが可能となる。
本発明において、前記第1及び第2の磁性体の前記断面における中心は、互いに略同一軸上にあることが好ましい。これによれば、第1の磁性体から第2の磁性体への磁束の流れがスムーズとなることから、検出精度を高めることが可能となる。また、中心軸周辺の磁場分布が均一化されることから、複数の磁気センサをアレイ状に配列して使用する場合において、感度分布にひずみが生じにくくなる。
本発明において、前記感磁素子はブリッジ接続される複数の感磁素子を含むことが好ましい。これによれば、ブリッジ接続によって検出精度を高めることが可能となる。この場合、前記複数の感磁素子はセンサ基板の素子形成面に形成されており、前記センサ基板の前記素子形成面は磁性体層で覆われていることが好ましい。これによれば、磁気抵抗が低下することから、よりいっそう検出精度を高めることが可能となる。
本発明において、前記感磁素子の感度方向は前記集磁方向と略平行であっても構わないし、前記感磁素子の感度方向は前記集磁方向に対して略垂直であり、前記第2の磁性体が前記集磁方向から見て前記感磁素子に対してオフセットして配置されていても構わない。前者の場合、前記感磁素子は互いに感度方向が180°異なる複数の感磁素子を含むことが好ましく、後者の場合、前記集磁方向から見て、前記第2の磁性体は前記感磁素子と重ならないことが好ましい。
本発明において、前記磁性体は第3の磁性体をさらに含み、前記感磁素子は、前記集磁方向から見て前記第2の磁性体と前記第3の磁性体の間に位置することが好ましい。これによれば、感磁素子を通過する磁束の密度が高められることから、よりいっそう検出精度を高めることが可能となる。
本発明において、前記磁性体は、第4の磁性体と、前記感磁素子と前記第4の磁性体との間に位置する第5の磁性体とをさらに含み、前記感磁素子は、前記第1及び第2の磁性体と前記第4及び第5の磁性体の間に位置し、前記第4及び第5の磁性体の前記集磁方向に対して垂直な断面における断面積をそれぞれS4及びS5とし、前記第4及び第5の磁性体の前記集磁方向における長さをそれぞれL4及びL5とした場合、
S4>S5、且つ
L4/L5≦2
を満たすことが好ましい。これによれば、垂直方向における磁束の選択性をより高めることが可能となる。この場合、前記第1の磁性体と前記第4の磁性体は互いに略同一形状を有し、前記第2の磁性体と前記第5の磁性体は互いに略同一形状を有することが好ましい。これによれば、第1の磁性体側からの磁束に対する精度と第4の磁性体側からの磁束に対する精度をほぼ等しくすることができる。
本発明において、前記感磁素子は磁気抵抗素子であることが好ましい。この場合、前記感磁素子を構成する磁気抵抗素子は、スピンバルブ型GMR素子であることがより好ましい。
本発明による磁気センサは、前記感磁素子が形成された素子形成面を有するセンサ基板と、前記センサ基板及び前記第2の磁性体が搭載された搭載面を有する回路基板と、をさらに備え、前記センサ基板は、前記素子形成面が前記回路基板の前記搭載面に対して略直交するよう、前記回路基板に搭載されていることが好ましい。これによれば、センサ基板及び第2の磁性体を寝かせた状態で回路基板に搭載していることから、第2の磁性体の長さが長い場合であっても、これを安定的に支持することが可能となる。
本発明において、前記感磁素子は、前記集磁方向に延在する磁性体と、前記磁性体の周囲に巻回されたコイル導体とを含むものであっても構わない。この場合、前記磁性体はバルク状であっても構わないし、基板上に形成されているものであっても構わない。
このように、本発明によれば、非常に高い検出精度を得ることができるとともに、複数の磁気センサをアレイ状に配列して使用する場合であっても、検出精度のばらつきを抑制することが可能となる。
図1は、本発明の第1の実施形態による磁気センサ10Aの外観を示す略斜視図である。 図2は、磁気センサ10Aの分解斜視図である。 図3は、磁性体40の形状を説明するための略斜視図である。 図4(a)は磁性体40のxz断面図であり、図4(b)は磁性体40のz方向から見た上面図である。 図5は、センサ基板30の断面図である。 図6は、感磁素子R1〜R4と端子電極E11〜E14の接続関係を説明するための回路図である。 図7は、複数の磁気センサ10Aをアレイ状に配列したシミュレーションモデルである。 図8(a)はモデルAの測定領域4における略斜視図であり、図8(b)はモデルBの測定領域4における略斜視図である。 図9は、シミュレーション結果を示す図である。 図10は、L1/L2の値と感度分布のばらつきとの関係を示すシミュレーション結果である。 変形例による磁性体40の構造を示す略斜視図である。 図12は、本発明の第2の実施形態による磁気センサ10Bの構成を示す略斜視図である。 図13は、本発明の第3の実施形態による磁気センサ10Cの構成を示す略斜視図である。 図14は、本発明の第4の実施形態による磁気センサ10Dの構成を示す略斜視図である。 図15は、本発明の第5の実施形態による磁気センサ10Eの構成を示す略斜視図である。 図16は、本発明の第6の実施形態による磁気センサ10Fの構成を示す略斜視図である。 図17は、本発明の第7の実施形態による磁気センサ10Gの構成を示す略斜視図である。 図18は、本発明の第8の実施形態による磁気センサ10Hの構成を示す略斜視図である。 図19は、センサ基板80の主要部の構造を説明するための略分解斜視図である。
以下、添付図面を参照しながら、本発明の好ましい実施形態について詳細に説明する。
図1は、本発明の第1の実施形態による磁気センサ10Aの外観を示す略斜視図である。また、図2は、磁気センサ10Aの分解斜視図である。
図1及び図2に示すように、本実施形態による磁気センサ10Aは、回路基板20と、回路基板20の搭載面21に搭載されたセンサ基板30と、センサ基板30の素子形成面31に接続された磁性体40によって構成される。
回路基板20は、樹脂などの絶縁性基体に配線パターンが形成された基板であり、一般的なプリント基板やインターポーザ基板などを用いることができる。回路基板20の搭載面21はxz平面を構成し、この搭載面21にセンサ基板30及び磁性体40の一部が搭載される。回路基板20の搭載面21には4つのランドパターンE21〜E24が設けられており、これらランドパターンE21〜E24には、後述する定電圧源及び電圧検出回路が接続される。定電圧源及び電圧検出回路は、回路基板20自体に設けられていても構わないし、回路基板20とは別の基板に設けられていても構わない。
センサ基板30は略直方体形状を有しており、素子形成面31には4つの感磁素子R1〜R4が形成されている。図1及び図2に示すように、素子形成面31はxy面を構成している。つまり、センサ基板30は、素子形成面31が回路基板20の搭載面21に対して略直交するよう、回路基板20の実装領域22に寝かせて搭載されている。センサ基板30の作製方法としては、集合基板に多数のセンサ基板30を同時に形成し、これらを分離することによって多数個取りする方法が一般的であるが、本発明がこれに限定されるものではなく、個々のセンサ基板30を別個に作製しても構わない。
感磁素子R1〜R4は、磁束密度によって物理特性の変化する素子であれば特に限定されないが、本実施形態においては磁界の向きに応じて電気抵抗が変化する磁気抵抗素子を用いており、スピンバルブ型GMR素子を用いることが特に好ましい。本実施形態においては、感磁素子R1〜R4の感度方向(固定磁化方向)は、図2の矢印Pが示す方向(x方向におけるプラス側)に全て揃えられている。
さらに、センサ基板30の素子形成面31には、4つの端子電極E11〜E14が設けられている。これら端子電極E11〜E14は、ハンダSを介してそれぞれランドパターンE21〜E24に接続されている。端子電極E11〜E14と感磁素子R1〜R4との接続関係については後述する。感磁素子R1,R3と感磁素子R2,R4の間に位置する中央領域32は、磁性体40によって覆われる。
磁性体40は、フェライトなどの高透磁率材料からなるブロックであり、本実施形態においては、第1の磁性体41と第2の磁性体42によって構成されている。第1の磁性体41は回路基板20の外側に位置するのに対し、第2の磁性体42は回路基板20上に搭載される。第2の磁性体42は、第1の磁性体41と感磁素子R1〜R4との間に位置しており、第1の磁性体41によって集められたz方向の磁束を感磁素子R1〜R4に集中させる役割を果たす。第2の磁性体42は、センサ基板30の中央領域32に当接するよう配置される。中央領域32は、感磁素子R1〜R4が設けられていない部分である。このため、感磁素子R1〜R4はz方向から見て第2の磁性体42とは重ならないよう、x方向にオフセットして配置されることになる。
磁性体40は単一のブロックからなるものであっても構わないし、第1の磁性体41と第2の磁性体42がそれぞれ異なるブロックからなるものであっても構わないが、製造の容易さを考慮すれば、第1の磁性体41と第2の磁性体42をそれぞれ異なるブロックによって構成することが好ましい。この場合、第1の磁性体41と第2の磁性体42との間の磁気抵抗を低くすべく、両者を密着させることが好ましい。
図3は、磁性体40の形状を説明するための略斜視図である。また、図4(a)は磁性体40のxz断面図であり、図4(b)は磁性体40のz方向から見た上面図である。
図3及び図4に示すように、第1の磁性体41及び第2の磁性体42はいずれも略直方体形状を有している。特に限定されるものではないが、第2の磁性体42は、第1の磁性体41のxy面の略中央部に接続されていることが好ましい。この場合、図4に示すように、第1の磁性体41と第2の磁性体42の中心軸Cは互いに一致することが好ましい。これによれば、第1の磁性体41から第2の磁性体42への磁束の流れがスムーズとなることから、検出精度が高められる。また、多数の磁気センサ10Aをアレイ状に配列して使用する場合であっても、磁気センサ10Aごとの検出精度のばらつきを抑制することも可能となる。
ここで、第1及び第2の磁性体41,42のxy断面、つまり、集磁方向であるz方向に垂直な断面における断面積をそれぞれS1及びS2とした場合、
S1>S2
を満たしている。さらに、第1及び第2の磁性体41,42の集磁方向であるz方向における長さをそれぞれL1及びL2とした場合、
L1/L2≦2
を満たしている。
このように、第1の磁性体41の断面積S1が第2の磁性体42の断面積S2よりも大きいことから、z方向における磁束を選択的に集め、感磁素子R1〜R4に集中させることができる。また、第1の磁性体41のz方向における長さL1が第2の磁性体42のz方向における長さの2倍以下であることから、後述するように、複数の磁気センサ10Aをアレイ状に配列して使用する場合であっても、磁性体間における干渉を抑えることができる。
特に限定されるものではないが、本実施形態においては、第2の磁性体42が回路基板20の搭載面21に寝かせて配置されている。これにより、第2の磁性体42の端面とセンサ基板30の中央領域32との位置関係を回路基板20上において固定することが可能となる。第1の磁性体41については回路基板20の外部に位置しており、これにより、断面積S1の大きい第1の磁性体41が回路基板20と干渉することがない。
図5は、センサ基板30の断面図である。
図5に示すように、センサ基板30の素子形成面31には、磁性体層51〜53が形成されている。磁性体層51は、素子形成面31の略中央に位置し、そのx方向における両側に磁性体層52,53が配置される。そして、磁性体層51と磁性体層52によって形成されるギャップに感磁素子R1,R3が配置され、磁性体層51と磁性体層53によって形成されるギャップに感磁素子R2,R4が配置される。特に限定されるものではないが、磁性体層51〜53としては、樹脂材料に磁性フィラーが分散された複合磁性材料からなる膜であっても構わないし、ニッケル又はパーマロイなどの軟磁性材料からなる薄膜もしくは箔であっても構わないし、フェライトなどからなる薄膜又はバルクシートであっても構わない。
本発明においてこのような磁性体層51〜53を設けることは必須でないが、磁性体層51〜53を設けることにより磁気抵抗が低下し、磁性体40から供給される磁束φが効率よく感磁素子R1〜R4を通過することから、検出精度を高めることが可能となる。
図6は、感磁素子R1〜R4と端子電極E11〜E14の接続関係を説明するための回路図である。
図6に示すように、端子電極E11,E14には、定電圧源からそれぞれグランド電位Gnd及び電源電位Vddが供給される。また、端子電極E11,E14間には、感磁素子R1,R2が直列に接続されるとともに、感磁素子R4,R3が直列に接続される。そして、感磁素子R3,R4の接続点は端子電極E12に接続され、感磁素子R1,R2の接続点は端子電極E13に接続される。このようなブリッジ接続により、端子電極E13に現れる電位Vaと端子電極E12に現れる電位Vbを参照することにより、磁束密度に応じた感磁素子R1〜R4の電気抵抗の変化を高精度に検出することが可能となる。
具体的には、感磁素子R1〜R4が全て同一の磁化固定方向(図2に示すP方向)を有していることから、第2の磁性体42からみて一方側に位置する感磁素子R1,R3の抵抗変化量と、第2の磁性体42からみて他方側に位置する感磁素子R2,R4の抵抗変化量との間には差が生じる。この差は、図6に示した差動ブリッジ回路によって2倍に増幅され、端子電極E12,E13に現れる。回路基板20又は図示しないマザーボードには電圧検出回路が設けられており、端子電極E12,E13に現れる電位Va,Vbの差を電圧検出回路によって検出することにより、磁束密度を測定することが可能となる。
そして、本実施形態による磁気センサ10Aは、磁性体40が断面積S1の大きな第1の磁性体41と断面積S2の小さな第2の磁性体42によって構成されており、第1の磁性体41から第2の磁性体42に集められた磁束が感磁素子R1〜R4に分配されることから、磁性体40が単純なブロック形状である場合と比べて、高い検出精度を得ることが可能となる。
しかも、第1の磁性体41のz方向における長さL1が第2の磁性体42のz方向における長さの2倍以下であることから、複数の磁気センサ10Aをアレイ状に配列して使用する場合であっても、磁性体間における干渉を抑えることができる。
図7は、複数の磁気センサ10Aをアレイ状に配列したシミュレーションモデルである。図7に示すモデルは、x方向に6個、y方向に6個の磁気センサ10Aがアレイ状に配列されている。このようなモデルを用いて、z方向における均一磁場を複数の磁気センサ10Aによって測定した場合に検出される磁束密度の分布をシミュレーションした。シミュレーションの結果は、測定領域1〜4において共通となるはずであるから、測定領域4のデータのみを評価した。
ここで、モデルAは、図8(a)に示すように第1の磁性体41のz方向における長さL1が短く、
L1/L2=0.14
である。一方、モデルBは、図8(b)に示すように第1の磁性体41のz方向における長さL1が長く
L1/L2=3
である。つまり、モデルAは本発明に規定する条件を満たしている一方、モデルBは本発明に規定する条件を満たしていない。尚、モデルA,Bともに、断面積S1,S2については共通であり、いずれも
S1>S2
である。
また、モデルA,Bとも、36個の磁気センサ10Aをz方向にミラー配置し、これにより合計で72個の磁気センサ10Aによって構成した。
シミュレーション結果を図9に示す。尚、シミュレーション結果は、図7に示す測定領域1〜4に対して共通となることから、図9には測定領域4におけるシミュレーション結果のみが示されている。
モデルAのシミュレーション結果である図9(a)に示す磁束密度の値は、モデルBのシミュレーション結果である図9(b)に示す磁束密度の値よりもばらつきが小さいことが分かる。ここで、各モデルにおける最大磁束密度をBmax、最小磁束密度をBmin、平均磁束密度をBaveとした場合、
(Bmax−Bmin)/Bave
によって得られる値を感度分布のばらつきと定義した。
その結果、モデルAにおける感度分布のばらつきは約14%に抑えられているのに対し、モデルBにおける感度分布のばらつきは約24%に達した。しかも、図9に示すように、最大磁束密度BmaxについてはモデルAとモデルBとの間にほとんど差がないことも確認できる。
モデルA,Bにおいて感度分布にばらつきが生じるのは、z方向に一様な磁場中であっても、より中心部に近い磁気センサ10Aについては、他の磁気センサ10Aに吸い込まれる磁束が多いため検出される磁束密度が低下しやすい一方、より端部に近い磁気センサ10Aについては、他の磁気センサ10Aに吸い込まれる磁束が少ないため、検出される磁束密度が低下しにくいからである。したがって、感度分布のばらつきを小さくするためには、他の磁気センサ10Aに吸い込まれる磁束をできる限り少なくする必要があり、そのためには、S1及びL1の値を小さくすることが有効である。しかしながら、S1の値を小さくすると集磁できる磁束が減少するため、高い検出精度を得ることが困難となる。そこで、本発明においてはL1の値を小さくし、これにより高い検出精度を確保しつつ、感度分布にばらつきを抑制している。
但し、L1の値に合わせてL2の値を小さくしてしまうと、z方向の磁束に対する選択性が低下してしまう。このため、z方向の磁束に対する選択性を確保するためには、L2の値を小さくすることなく、L1の値を小さくする必要がある。
図10は、L1/L2の値と感度分布のばらつきとの関係を示すシミュレーション結果である。図10に示すように、感度分布のばらつきはL1/L2の値が小さくなるに従って低下する傾向が見られ、その値が2以下になると、感度分布のばらつきが20%以下になることが分かる。
磁気センサをアレイ状に配列する場合、感度分布のばらつきをゼロにすることは現実的ではなく、どのようなレイアウトを採用しても感度分布にある程度のばらつきが生じる。このようなばらつきは信号処理によってある程度補正可能であるが、ばらつきが20%を超えると、信号処理によって補正した場合であって感度分布にひずみが残りやすく、正しい測定結果を得ることが困難となる。これに対し、感度分布のばらつきが20%以下であれば、信号処理によってかなり正確な測定結果を得ることが可能となる。
そして、本実施形態においては、L1/L2の値が2以下となるよう、第1の磁性体41と第2の磁性体42の長さを設計していることから、感度分布のばらつきを20%以下とすることができ、これにより、正確な測定結果を得ることが可能となる。
尚、第1の磁性体41の断面積S1については、第2の磁性体42の断面積S2よりも大きい限り特に限定されない。また、第1の磁性体41の断面積S1はz方向に一定であることは必須でなく、図11に示すように、z方向における位置が第2の磁性体42に近づくにつれて小さくなるテーパー形状であっても構わない。このように、第1の磁性体41の断面積S1がz方向における位置によって変化する形状を有している場合、第1の磁性体41の断面積S1は最大の断面積を指す。
同様に、第2の磁性体42の断面積S2についてもz方向に一定である必要はなく、z方向における位置がセンサ基板30に近づくについて小さくなるテーパー形状であっても構わない。このような場合も、第2の磁性体42の断面積S2は最大の断面積を指す。
以下、本発明の他のいくつかの実施形態による磁気センサについて説明する。
図12は、本発明の第2の実施形態による磁気センサ10Bの構成を示す略斜視図である。
図12に示す磁気センサ10Bは、磁性体40が第3の磁性体43を含む点において、図1に示した第1の実施形態による磁気センサ10Aと相違する。その他の構成は、図1に示した第1の実施形態による磁気センサ10Aと同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。
第3の磁性体43は、第1及び第2の磁性体41,42と同様、フェライトなどの高透磁率材料からなるブロックであり、センサ基板30の素子形成面31とは反対側に位置するxy面及び一対のyz面を覆うよう、コの字型を有している。このため、感磁素子R1,R3はz方向から見て第2の磁性体42と第3の磁性体43の一部との間に位置し、感磁素子R2,R4はz方向から見て第2の磁性体42と第3の磁性体43の別の一部との間に位置することになる。かかる構成により、第1及び第2の磁性体41,42を介してセンサ基板30の素子形成面31に入力された磁束は、x方向に曲がりやすくなるため、感磁素子R1〜R4による検出感度を高めることが可能となる。
図13は、本発明の第3の実施形態による磁気センサ10Cの構成を示す略斜視図である。
図13に示す磁気センサ10Cは、磁性体40が第4及び第5の磁性体44,45を含む点において、図1に示した第1の実施形態による磁気センサ10Aと相違する。その他の構成は、図1に示した第1の実施形態による磁気センサ10Aと同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。
第4及び第5の磁性体44,45は、第1及び第2の磁性体41,42と同様、フェライトなどの高透磁率材料からなるブロックであり、センサ基板30を介して第1及び第2の磁性体41,42とは対称に配置されている。本実施形態においては、第2及び第5の磁性体42,45が回路基板20に搭載されている一方、第1及び第4の磁性体41,44については回路基板20の外部に配置されている。このような第4及び第5の磁性体44,45を用いれば、センサ基板30からみて第1の磁性体41とは反対側からの磁束についても集磁されることから、z方向における磁束の選択性をより高めることが可能となる。
ここで、第4及び第5の磁性体44,45のxy断面、つまり、集磁方向であるz方向に垂直な断面における断面積をそれぞれS4及びS5とした場合、
S4>S5
を満たしていることが好ましい。さらに、第4及び第5の磁性体44,45の集磁方向であるz方向における長さをそれぞれL4及びL5とした場合、
L4/L5≦2
を満たしていることが好ましい。これによれば、z方向の磁束に対する検出精度をより高めることが可能となるとともに、複数の磁気センサ10Cをアレイ状に配列して使用する場合であっても、磁性体間における干渉を抑えることができる。
本実施形態においては、第1の磁性体41と第4の磁性体44が互いに略同一形状を有し、且つ、第2の磁性体42と第5の磁性体45が互いに略同一形状を有することが好ましい。これによれば、第1の磁性体41側からの磁束に対する検出精度と第4の磁性体44側からの磁束に対する検出精度をほぼ等しくすることが可能となる。また、第1の磁性体41と第4の磁性体44を作り分ける必要が無く、且つ、第2の磁性体42と第5の磁性体45を作り分ける必要が無くなるので、製造コストを削減することも可能となる。
図14は、本発明の第4の実施形態による磁気センサ10Dの構成を示す略斜視図である。
図14に示す磁気センサ10Dは、磁性体40が第3の磁性体43を含む点において、図13に示した第3の実施形態による磁気センサ10Cと相違する。その他の構成は、図13に示した第3の実施形態による磁気センサ10Cと同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。
第3の磁性体43は、第2の実施形態において用いたものと同様であり、センサ基板30の素子形成面31とは反対側に位置するxy面及び一対のyz面を覆うよう、コの字型を有している。このような第3の磁性体43を追加することにより、感磁素子R1〜R4による検出感度をよりいっそう高めることが可能となる。
図15は、本発明の第5の実施形態による磁気センサ10Eの構成を示す略斜視図である。
図15に示す磁気センサ10Eは、センサ基板30の搭載角度が90°異なる点において、図13に示した第3の実施形態による磁気センサ10Cと相違する。センサ基板30の素子形成面31には、2つの感磁素子R5,R6がz方向に並べて配置されており、これらの固定磁化方向は、それぞれ矢印P1,P2が示す方向(z方向におけるマイナス側及びプラス側)に向いている。つまり、感磁素子R5,R6の固定磁化方向は互いに180°異なっている。その他の構成は、図3に示した第3の実施形態による磁気センサ10Cと同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。
本実施形態においては、磁性体40による集磁方向(z方向)と感磁素子R5,R6の固定磁化方向(z方向)が一致しているものの、感磁素子R5,R6の固定磁化方向は互いに180°異なっていることから、z方向における磁束密度に応じて、感磁素子R5,R6の抵抗値に差が生じる。これにより、z方向における磁束密度を検出することができる。
このように、本発明においてセンサ基板30の素子形成面31が集磁方向(z方向)に対して略垂直である必要はなく、本実施形態が例示するように、センサ基板30の素子形成面31が集磁方向(z方向)に対して略平行であっても構わない。
図16は、本発明の第6の実施形態による磁気センサ10Fの構成を示す略斜視図である。
図16に示す磁気センサ10Fは、センサ基板30の代わりにz方向に延在するバルク状の磁性体60を備える点において、図15に示した磁気センサ10Eと相違する。磁性体60は、アモルファス磁性材料などの高透磁率磁性材料からなり、その周囲には励磁コイル61及び検出コイル62が巻回されている。その他の構成は、図15に示した第5の実施形態による磁気センサ10Eと同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。
励磁コイル61及び検出コイル62は、それぞれ図示しない励磁回路及び検出回路に接続される。これにより、磁性体60、励磁コイル61及び検出コイル62は、フラックスゲート型の感磁素子を構成する。
本実施形態が例示するように、本発明において使用する感磁素子が磁気抵抗素子であることは必須でなく、フラックスゲート型の感磁素子を用いることも可能である。
図17は、本発明の第7の実施形態による磁気センサ10Gの構成を示す略斜視図である。
図17に示す磁気センサ10Gは、磁性体60の代わりにz方向に延在するバルク状のアモルファスワイヤ70を備える点において、図16に示した磁気センサ10Fと相違する。アモルファスワイヤ70の両端には図示しない駆動回路によってパルス状の電圧が印加されるとともに、アモルファスワイヤ70の周囲には検出コイル71が巻回されている。その他の構成は、図16に示した第6の実施形態による磁気センサ10Fと同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。
上述の通り、アモルファスワイヤ70の両端には図示しない駆動回路によってパルス状の電圧が印加される。また、検出コイル71は、図示しない検出回路に接続される。これにより、アモルファスワイヤ70及び検出コイル71は、磁気インピーダンス型の感磁素子を構成する。
本実施形態が例示するように、本発明において使用する感磁素子は、磁気インピーダンス型の感磁素子であっても構わない。
図18は、本発明の第8の実施形態による磁気センサ10Hの構成を示す略斜視図である。
図18に示す磁気センサ10Hは、センサ基板30の代わりにセンサ基板80を備える点において、図15に示した磁気センサ10Eと相違する。その他の構成は、図15に示した第5の実施形態による磁気センサ10Eと同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。
図19は、センサ基板80の主要部の構造を説明するための略分解斜視図である。
図19に示すように、センサ基板80は、絶縁層81〜83と、絶縁層82の表面に形成された磁性体84と、磁性体84の周囲に巻回された励磁コイル85及び検出コイル86とを備える。励磁コイル85は、絶縁層81の表面に形成された導体パターン85aと絶縁層83の表面に形成された導体パターン85bを含み、平面視で(y方向から見て)互いに重なる端部同士をスルーホール導体85cによって接続することにより、磁性体84の周囲に巻回される。同様に、検出コイル86は、絶縁層81の表面に形成された導体パターン86aと絶縁層83の表面に形成された導体パターン86bを含み、平面視で(y方向から見て)互いに重なる端部同士をスルーホール導体86cによって接続することにより、磁性体84の周囲に巻回される。磁性体84としては、アモルファス磁性材料などの高透磁率磁性材料の薄膜又は箔を用いることができる。この場合、磁性体84、励磁コイル85及び検出コイル86は、フラックスゲート型の感磁素子を構成する。
本実施形態が例示するように、本発明において使用する感磁素子は、基板上に形成された磁性体の周囲にコイル導体が巻回されたタイプの感磁素子であっても構わない。
以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。
1〜4 測定領域
10A〜10H 磁気センサ
20 回路基板
21 搭載面
22 実装領域
30 センサ基板
31 素子形成面
32 中央領域
40 磁性体
41 第1の磁性体
42 第2の磁性体
43 第3の磁性体
44 第4の磁性体
45 第5の磁性体
51〜53 磁性体層
60,70,84 磁性体
61,85 励磁コイル
62,71,86 検出コイル
80 センサ基板
81〜83 絶縁層
C 中心軸
E11〜E14 端子電極
E21〜E24 ランドパターン
L1,L2 長さ
R1〜R6 感磁素子
S ハンダ
S1,S2 断面積
φ 磁束

Claims (12)

  1. 感磁素子と、前記感磁素子に磁束を集める磁性体とを備え、
    前記磁性体は、第1の磁性体と、前記感磁素子と前記第1の磁性体との間に位置する第2の磁性体とを含み、
    前記第1及び第2の磁性体の集磁方向に対して垂直な断面における断面積をそれぞれS1及びS2とし、前記第1及び第2の磁性体の前記集磁方向における長さをそれぞれL1及びL2とした場合、
    S1>S2、且つ
    L1/L2≦2
    を満たし、
    前記感磁素子は、ブリッジ接続される複数の感磁素子を含み、
    前記複数の感磁素子はセンサ基板の素子形成面に形成されており、前記センサ基板の前記素子形成面は磁性体層で覆われていることを特徴とする磁気センサ。
  2. 感磁素子と、前記感磁素子に磁束を集める磁性体とを備え、
    前記磁性体は、第1の磁性体と、前記感磁素子と前記第1の磁性体との間に位置する第2の磁性体とを含み、
    前記第1及び第2の磁性体の集磁方向に対して垂直な断面における断面積をそれぞれS1及びS2とし、前記第1及び第2の磁性体の前記集磁方向における長さをそれぞれL1及びL2とした場合、
    S1>S2、且つ
    L1/L2≦2
    を満たし、
    前記感磁素子の感度方向は、前記集磁方向と略平行であり、
    前記感磁素子は、互いに感度方向が180°異なる複数の感磁素子を含むことを特徴とする磁気センサ。
  3. 感磁素子と、前記感磁素子に磁束を集める磁性体とを備え、
    前記磁性体は、第1の磁性体と、前記感磁素子と前記第1の磁性体との間に位置する第2の磁性体とを含み、
    前記第1及び第2の磁性体の集磁方向に対して垂直な断面における断面積をそれぞれS1及びS2とし、前記第1及び第2の磁性体の前記集磁方向における長さをそれぞれL1及びL2とした場合、
    S1>S2、且つ
    L1/L2≦2
    を満たし、
    前記感磁素子の感度方向は前記集磁方向に対して略垂直であり、前記第2の磁性体は前記集磁方向から見て前記感磁素子に対してオフセットして配置されていることを特徴とする磁気センサ。
  4. 前記集磁方向から見て、前記第2の磁性体は前記感磁素子と重ならないことを特徴とする請求項に記載の磁気センサ。
  5. 前記磁性体は第3の磁性体をさらに含み、
    前記感磁素子は、前記集磁方向から見て前記第2の磁性体と前記第3の磁性体の間に位置することを特徴とする請求項3又は4に記載の磁気センサ。
  6. 感磁素子と、前記感磁素子に磁束を集める磁性体とを備え、
    前記磁性体は、第1の磁性体と、前記感磁素子と前記第1の磁性体との間に位置する第2の磁性体とを含み、
    前記第1及び第2の磁性体の集磁方向に対して垂直な断面における断面積をそれぞれS1及びS2とし、前記第1及び第2の磁性体の前記集磁方向における長さをそれぞれL1及びL2とした場合、
    S1>S2、且つ
    L1/L2≦2
    を満たし、
    前記磁性体は、第4の磁性体と、前記感磁素子と前記第4の磁性体との間に位置する第5の磁性体とをさらに含み、
    前記感磁素子は、前記第1及び第2の磁性体と前記第4及び第5の磁性体の間に位置し、
    前記第4及び第5の磁性体の前記集磁方向に対して垂直な断面における断面積をそれぞれS4及びS5とし、前記第4及び第5の磁性体の前記集磁方向における長さをそれぞれL4及びL5とした場合、
    S4>S5、且つ
    L4/L5≦2
    を満たすことを特徴とする磁気センサ。
  7. 前記第1の磁性体と前記第4の磁性体は互いに略同一形状を有し、前記第2の磁性体と前記第5の磁性体は互いに略同一形状を有することを特徴とする請求項に記載の磁気センサ。
  8. 感磁素子と、前記感磁素子に磁束を集める磁性体とを備え、
    前記磁性体は、第1の磁性体と、前記感磁素子と前記第1の磁性体との間に位置する第2の磁性体とを含み、
    前記第1及び第2の磁性体の集磁方向に対して垂直な断面における断面積をそれぞれS1及びS2とし、前記第1及び第2の磁性体の前記集磁方向における長さをそれぞれL1及びL2とした場合、
    S1>S2、且つ
    L1/L2≦2
    を満たし、
    前記感磁素子が形成された素子形成面を有するセンサ基板と、
    前記センサ基板及び前記第2の磁性体が搭載された搭載面を有する回路基板と、をさらに備え、
    前記センサ基板は、前記素子形成面が前記回路基板の前記搭載面に対して略直交するよう、前記回路基板に搭載されていることを特徴とする磁気センサ。
  9. 前記第1及び第2の磁性体の前記断面における中心は、互いに略同一軸上にあることを特徴とする請求項1乃至8のいずれか一項に記載の磁気センサ。
  10. 前記感磁素子の感度方向は、前記集磁方向と略平行であることを特徴とする請求項に記載の磁気センサ。
  11. 前記感磁素子は、磁気抵抗素子であることを特徴とする請求項1乃至10のいずれか一項に記載の磁気センサ。
  12. 前記感磁素子を構成する磁気抵抗素子は、スピンバルブ型GMR素子であることを特徴とする請求項11に記載の磁気センサ。
JP2016247359A 2016-06-23 2016-12-21 磁気センサ Active JP6822127B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016124237 2016-06-23
JP2016124237 2016-06-23

Publications (2)

Publication Number Publication Date
JP2018004618A JP2018004618A (ja) 2018-01-11
JP6822127B2 true JP6822127B2 (ja) 2021-01-27

Family

ID=60946187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016247359A Active JP6822127B2 (ja) 2016-06-23 2016-12-21 磁気センサ

Country Status (1)

Country Link
JP (1) JP6822127B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10392706B2 (en) * 2014-02-27 2019-08-27 Jfe Steel Corporation Galvanized steel sheet and method for producing the same
CN106062250B (zh) * 2014-02-27 2019-07-09 杰富意钢铁株式会社 镀锌系钢板及其制造方法
JP7061421B2 (ja) * 2018-01-24 2022-04-28 横河電機株式会社 磁気センサ、センサヘッド及び電流センサ
JP7069960B2 (ja) * 2018-03-29 2022-05-18 Tdk株式会社 磁気センサ
JP7070020B2 (ja) * 2018-04-20 2022-05-18 Tdk株式会社 磁路形成部材及びこれを用いた磁気センサ
JP6658823B2 (ja) 2018-08-24 2020-03-04 Tdk株式会社 磁気センサおよび磁気センサシステム
JP6936405B2 (ja) 2018-12-26 2021-09-15 旭化成エレクトロニクス株式会社 磁場計測装置
US11497425B2 (en) 2019-03-08 2022-11-15 Asahi Kasei Microdevices Corporation Magnetic field measurement apparatus
JPWO2021100252A1 (ja) * 2019-11-22 2021-05-27
JP2022152037A (ja) * 2021-03-29 2022-10-12 Tdk株式会社 磁気センサ
WO2023145064A1 (ja) * 2022-01-31 2023-08-03 Tdk株式会社 磁気センサ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH082630Y2 (ja) * 1990-08-27 1996-01-29 星和電機株式会社 磁気感知器
JPH0618278A (ja) * 1992-06-30 1994-01-25 Murata Mfg Co Ltd 磁気センサ
US5493220A (en) * 1993-03-05 1996-02-20 Northeastern University Magneto-optic Kerr effect stress sensing system
JPH07210833A (ja) * 1994-01-11 1995-08-11 Murata Mfg Co Ltd 磁気センサ装置
JPH11248808A (ja) * 1998-03-05 1999-09-17 Hitachi Cable Ltd 磁気センサ及びその製造方法
JPH11261130A (ja) * 1998-03-10 1999-09-24 Hitachi Cable Ltd 磁気センサ

Also Published As

Publication number Publication date
JP2018004618A (ja) 2018-01-11

Similar Documents

Publication Publication Date Title
JP6822127B2 (ja) 磁気センサ
JP6610178B2 (ja) 磁気センサ
JP2011196798A (ja) 電流センサ
JP7020176B2 (ja) 磁気センサ
TWI638140B (zh) 磁場感測裝置
JP2015219227A (ja) 磁気センサ
JP7070532B2 (ja) 磁気センサ
JP7095350B2 (ja) 磁気センサ
JP7115242B2 (ja) 磁気センサ
CN109407017A (zh) 磁传感器
JP5413866B2 (ja) 磁気検出素子を備えた電流センサ
JP2019074481A (ja) 磁気センサ
US11022660B2 (en) Magnetic sensor including a magnetic member offset from a magnetoresistive effect element
JP6185298B2 (ja) 磁気センサ
JP6927044B2 (ja) 磁気センサ
JP7077679B2 (ja) 磁気センサ
JP2013047610A (ja) 磁気平衡式電流センサ
JP7070020B2 (ja) 磁路形成部材及びこれを用いた磁気センサ
JP7119351B2 (ja) 磁気センサ
JP2019219293A (ja) 磁気センサ
JP6222897B2 (ja) 多軸磁気センサ、および、その製造方法
JP2559474Y2 (ja) 電流検出装置
KR20230089608A (ko) 3축 자기저항 센서
JP2023046271A (ja) 磁気センサ
JP2022143682A (ja) 磁気センサ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201221

R150 Certificate of patent or registration of utility model

Ref document number: 6822127

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150