JP6705314B2 - ステアリング制御装置 - Google Patents

ステアリング制御装置 Download PDF

Info

Publication number
JP6705314B2
JP6705314B2 JP2016133100A JP2016133100A JP6705314B2 JP 6705314 B2 JP6705314 B2 JP 6705314B2 JP 2016133100 A JP2016133100 A JP 2016133100A JP 2016133100 A JP2016133100 A JP 2016133100A JP 6705314 B2 JP6705314 B2 JP 6705314B2
Authority
JP
Japan
Prior art keywords
steering
steering torque
torque
response
characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016133100A
Other languages
English (en)
Other versions
JP2018002013A (ja
Inventor
青木 崇
崇 青木
大治 渡部
大治 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2016133100A priority Critical patent/JP6705314B2/ja
Priority to US15/637,167 priority patent/US20180009465A1/en
Priority to DE102017211068.6A priority patent/DE102017211068A1/de
Priority to CN201710537092.0A priority patent/CN107571911B/zh
Publication of JP2018002013A publication Critical patent/JP2018002013A/ja
Application granted granted Critical
Publication of JP6705314B2 publication Critical patent/JP6705314B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D1/00Steering controls, i.e. means for initiating a change of direction of the vehicle
    • B62D1/02Steering controls, i.e. means for initiating a change of direction of the vehicle vehicle-mounted
    • B62D1/04Hand wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/001Mechanical components or aspects of steer-by-wire systems, not otherwise provided for in this maingroup

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)

Description

本発明は、ステアリング制御装置に関する。
従来、目標操舵トルクに対し操舵トルクを一致させるように制御することでアシスト量を演算するステアリング制御装置が知られている。例えば特許文献1に開示された装置では、推定負荷及び車速に基づいて、目標生成部が目標操舵トルクを演算する。コントローラ部は、目標操舵トルクと操舵トルクとの差であるトルク偏差が0になるようにアシスト量を演算する。
特許第5533822号公報
特許文献1の技術において、目標操舵トルクから操舵トルクまでの伝達特性は、調整自由度が小さいため、操舵系メカの共振による特性が含まれたり、ドライバの感性に合った応答特性が得られなかったりする可能性がある。
また、目標操舵トルクから操舵トルクまでの伝達特性を所望の特性にしようとすると、高次(例えば8次)の伝達関数が必要となり、実装後の微調整や応用技術の適用が困難となる。また、アシスト量を演算するコントローラをハイゲインにしなければならないため制御系の安定余裕度が小さくなり、振動が発生しやすくなるという問題がある。
本発明は、このような点に鑑みて創作されたものであり、その目的は、制御の安定性を確保しつつ、操舵フィールを向上させるステアリング制御装置を提供することにある。
本発明は、操舵トルク(Ts)を発生する操舵系メカ(100)に接続されたモータ(80)が出力するアシストトルクを制御するステアリング制御装置に係る発明である。
このステアリング制御装置は、目標生成部(40)と、応答補償フィルタ(50)と、サーボ制御器(60)と、を備える。
目標生成部は、操舵トルクの目標値である目標操舵トルク(Ts*)を生成する。
応答補償フィルタは、入力された目標操舵トルクに対し特定の周波数帯域における応答を補償するフィルタ処理を行い、応答補償後目標操舵トルク(Ts**)を出力する。
サーボ制御器は、操舵トルクと応答補償後目標操舵トルクとの差であるトルク偏差(ΔTs)が0になるようにアシストトルクの指令値(Ta*)を演算する。なお、サーボ制御器は、特許文献1の「アシストコントローラ」に相当する。
応答補償フィルタの伝達特性は、「目標操舵トルクから操舵トルクまでの伝達特性」において操舵系メカの共振によりゲインが大きくなる「メカ共振特性」が現れる周波数帯域で、当該メカ共振特性を抑制するように設定されている。
本発明のステアリング制御装置は、目標操舵トルクの特定周波数帯域におけるゲインを応答補償フィルタにより増減させることを特徴とする。具体的に、応答補償フィルタは、メカ共振特性が現れる周波数帯域で伝達特性のゲインを抑制する。これにより、メカ共振による操舵時のざらつき感を低減し、操舵フィールを向上させることができる。
このような応答補償は、概して、「目標操舵トルクから操舵トルクまでの伝達特性」をフラットにするものである。仮に応答補償フィルタを用いずに伝達特性をフラットにしようとすると、サーボ制御器をハイゲインにしなければならず、制御が不安定になるおそれがある。それに対し、本発明では応答補償フィルタを用いることで、制御の安定性を向上させることができる。
また、高次の伝達関数により所望の伝達特性を実現する構成に比べ、応答補償フィルタを用いることで、サーボ制御器を低次にすることができる。したがって、サーボ制御器の実装が容易となり、アシストトルク指令の出力制限や不感帯処理等の応用技術を適用しやすくなる。
好ましくは、応答補償フィルタの伝達特性は、メカ共振特性を抑制する周波数帯域よりも低周波数側の帯域で、「目標操舵トルクから操舵トルクまでの伝達特性」のゲインを増加させるように設定されている。これにより、ドライバの感性に合わせて応答性を向上させ、操舵時の手応えを向上させることができる。
さらに、応答補償フィルタの伝達特性は、メカ共振特性を抑制する周波数帯域よりも高周波数側の帯域で、「目標操舵トルクから操舵トルクまでの伝達特性」のゲインを増加させるように設定されてもよい。
電動パワーステアリングシステムの概略構成図。 各実施形態によるECU(ステアリング制御装置)の構成図。 応答補償フィルタの一つの構成例を示す図。 伝達特性の入力及び出力を示すモデル図。 第1実施形態の「応答補償フィルタの伝達特性」の図。 第1実施形態の「目標操舵トルクから操舵トルクまでの伝達特性」の図。 (a)第2、(b)第3実施形態の「応答補償フィルタの伝達特性」の図。 (a)第2、(b)第3実施形態の「目標操舵トルクから操舵トルクまでの伝達特性」の図。 応答補償フィルタの他の構成例を示す図。
以下、ステアリング制御装置の複数の実施形態を図面に基づいて説明する。各実施形態において、「ステアリング制御装置」としてのECUは、車両の電動パワーステアリングシステムに適用され、操舵アシストトルクを発生させるモータにアシストトルク指令を出力する。
[電動パワーステアリングシステムの構成]
図1に示すように、電動パワーステアリングシステム1はドライバによるハンドル91の操作を操舵アシストモータ80のトルクによってアシストするものである。
ステアリングシャフト92の一端にはハンドル91が固定されており、ステアリングシャフト92の他端側にはインターミディエイトシャフト93が設けられている。ステアリングシャフト92とインターミディエイトシャフト93との間には、トルクセンサ94が設けられている。ステアリングシャフト92とインターミディエイトシャフト93とは、トルクセンサ94のトーションバーにより接続されている。
以下、ステアリングシャフト92からトルクセンサ94を経てインターミディエイトシャフト93に至る軸全体を、まとめて操舵軸95とする。
トルクセンサ94は、操舵トルクTsを検出する。トルクセンサ94は、ステアリングシャフト92とインターミディエイトシャフト93とを連結するトーションバーを有し、トーションバーの捩れ角に基づき、トーションバーに加えられているトルクを検出する。トルクセンサ94の検出値は、操舵トルクTsに係る検出値として、ECU10に出力される。
インターミディエイトシャフト93のトルクセンサ94と反対側の端部には、ギアボックス96が設けられている。ギアボックス96は、ピニオンギア961及びラック962を含む。ピニオンギア961は、インターミディエイトシャフト93のトルクセンサ94と反対側の端部に設けられ、ラック962の歯と噛み合っている。
ドライバがハンドル91を回すと、インターミディエイトシャフト93とともにピニオンギア961が回転し、ピニオンギア961の回転に伴って、ラック962が左右に移動する。
ラック962の両端には、タイロッド97が設けられている。タイロッド97は、ラック962とともに左右の往復運動を行う。タイロッド97は、ナックルアーム98を介して操舵輪99と接続されている。タイロッド97がナックルアーム98を引っ張ったり押したりすることで、操舵輪99の向きが変わる。
モータ80は、例えば3相交流ブラシレスモータであり、ECU10から出力された駆動電圧Vdに応じて、ハンドル91の操舵力をアシストするアシストトルクを出力する。3相交流モータの場合、駆動電圧Vdは、U相、V相、W相の各相電圧を意味する。
モータ80の回転は、減速機構85を経由して、インターミディエイトシャフト93に伝達される。
なお、図1に示す電動パワーステアリングシステム1は、モータ80の回転が操舵軸95に伝達されるコラムアシスト式であるが、本実施形態のECU10は、ラックアシスト式の電動パワーステアリングシステム、或いは、ハンドルと操舵輪とが機械的に切り離されているステアバイワイヤシステムにも同様に適用可能である。
また、他の実施形態では、操舵アシストモータとして、3相以外の多相交流モータや、ブラシ付DCモータを用いてもよい。
減速機構85は、ウォームギア86及びウォームホイール87を有する。ウォームギア86は、モータ80の回転軸の先端に設けられている。ウォームホイール87は、ウォームギア86と噛み合った状態でインターミディエイトシャフト93と同軸に設けられている。これにより、モータ80の回転がインターミディエイトシャフト93に伝達される。また、ハンドル91の操舵や、路面からの反力によってインターミディエイトシャフト93が回転すると、この回転が減速機構85を経由してモータ80に伝達され、モータ80が回転する。
ここで、ハンドル91から操舵輪99に至る、ハンドル91の操舵力が伝達される機構全体を「操舵系メカ100」という。ECU10は、操舵系メカ100に接続されたモータ80が出力するアシストトルクを制御することにより、操舵系メカ100が発生する操舵トルクTsを制御する。
操舵系メカ100は、ばねを含む様々な機械要素が連結されて構成されており、固有の共振周波数を有する。一般に、操舵系メカ100の共振周波数帯域は10〜20Hz程度である。
また、車両の所定の部位には、車速Vを検出する車速センサ71が設けられている。
ECU10は、図示しない車載バッテリからの電力によって動作し、トルクセンサ94により検出された操舵トルクTsや車速センサ71により検出された車速V等に基づき、アシストトルク指令Ta*を演算する。そして、ECU10は、アシストトルク指令Ta*に基づいて演算した駆動電圧Vdをモータ80へ印加することにより、操舵系メカ100に操舵トルクTsを発生させる。
[ECUの構成]
図2に示すように、ECU10は、負荷推定器20、目標生成部40、応答補償フィルタ50、偏差演算器59、サーボ制御器60、及び電流フィードバック(図中「FB」)部70等を備える。
ECU10における各種演算処理は、ROM等の実体的なメモリ装置に予め記憶されたプログラムをCPUで実行することによるソフトウェア処理であってもよいし、専用の電子回路によるハードウェア処理であってもよい。
負荷推定器20は、加算器21及びローパスフィルタ(図中「LPF」)22を含む。図2に例示する形態では、加算器21は、アシストトルク指令Ta*と目標操舵トルクTs*とを加算する。ローパスフィルタ22は、加算されたトルクから、所定の周波数、例えば10Hz以下の帯域の成分を抽出する。負荷推定器20は、ローパスフィルタ22により抽出された周波数成分を推定負荷Txとして出力する。
目標生成部40は、負荷推定器20にて推定された推定負荷Txと車速Vとに基づき、特許文献1に開示されているようなアシストマップを用いて、操舵トルクTsの目標値である目標操舵トルクTs*を生成する。ただし、マップ化された車速V以外の車速では、マップの値から補間して目標操舵トルクTs*を求める。
応答補償フィルタ50は、本実施形態に特有の構成である。
応答補償フィルタ50は、入力された目標操舵トルクTs*に対し特定の周波数帯域における応答を補償するフィルタ処理を行い、応答補償後目標操舵トルクTs**を出力する。応答補償フィルタ50の入出力の関係を示す伝達特性の具体例については後述する。
応答補償フィルタ50の構成の一例を図3に示す。
図3に示す応答補償フィルタ501は、複数のバンドパスフィルタ(図中「BPF」)511、512、513を組み合わせて構成されている。各バンドパスフィルタ511、512、513は、低次フィルタである二次のフィルタで構成され、互いに異なる周波数帯域の入力信号を通過させる。
図3の構成では、直列接続された減算器541、542、543にて、各入力信号から各バンドパスフィルタ511、512、513の出力が減算された値が出力される。
偏差演算器59は、トルクセンサ94で検出された操舵トルクTsと、応答補償後目標操舵トルクTs**との差であるトルク偏差ΔTs(=Ts**−Ts)を演算する。
サーボ制御器60は、特許文献1の「アシストコントローラ」に相当するものである。サーボ制御器60は、トルク偏差ΔTsが0になるように、つまり、操舵トルクTsを応答補償後目標操舵トルクTs**に追従させるように「サーボ制御」を実行し、アシストトルク指令Ta*を演算する。
電流フィードバック部70は、アシストトルク指令Ta*に応じたアシストトルクが、特にトルクセンサ94よりも操舵輪99側の操舵軸95に付与されるように、モータ80へ駆動電圧Vdを印加する。
具体的に電流フィードバック部70は、電流フィードバック制御回路、駆動回路、及びインバータ等の電力変換回路を含む。
電流フィードバック制御回路は、アシストトルク指令Ta*に基づいてモータ80の各相に通電する目標電流を演算し、実電流を目標電流に対してフィードバックすることにより各相電圧指令を演算する。駆動回路は、電圧指令に基づくPWM制御等により、インバータをスイッチング動作させる駆動信号を指令する。インバータは、複数の駆動信号に従ってスイッチング動作することにより、バッテリ等から入力された電力を変換し、操舵軸95に所望のアシストトルクを発生させるように駆動電圧Vdを出力する。
このような電流フィードバック制御の技術は、モータ制御分野における周知技術であるため、詳細な説明を省略する。
次に上記構成によるECU10の作用効果について、「応答補償フィルタの伝達特性」及び「目標操舵トルクから操舵トルクまでの伝達特性」により説明する。図4に示すように、「応答補償フィルタの伝達特性」は、目標操舵トルクTs*を入力とし、応答補償後目標操舵トルクTs**を出力とする伝達関数の周波数特性である。「目標操舵トルクから操舵トルクまでの伝達特性」は、目標操舵トルクTs*を入力とし、操舵系メカ100が発生する操舵トルクTsを出力とする伝達関数の周波数特性である。
ここでは、周波数特性として主にゲインの増減について着目し、位相には言及しない。ゲインに関しては、0[dB]、すなわち1倍を基準として、dB単位で正のゲインにより入力を増幅するか、又は、dB単位で負のゲインにより入力を抑制するという視点で、特性を説明する。以下、「ゲインが正/負」という記述は、dB単位を前提とする。
「応答補償フィルタの伝達特性」が全周波数帯域にわたってゲイン0[dB]のフラットな特性の場合、応答補償フィルタ50は、入力された目標操舵トルクTs*をそのまま応答補償後目標操舵トルクTs**として出力する。つまり、実質的な「応答補償」を行わない。
一方、ゲイン0[dB]のフラットな特性に対し、特定の帯域でゲインが正方向に増加する伝達特性の場合、応答補償フィルタ50は、入力された目標操舵トルクTs*をその帯域で増幅した応答補償後目標操舵トルクTs**を出力する。逆に、特定の帯域でゲインが負方向に減少する伝達特性の場合、応答補償フィルタ50は、入力された目標操舵トルクTs*をその帯域で抑制した応答補償後目標操舵トルクTs**を出力する。
以下、「応答補償フィルタの伝達特性」について「ゲインを増加/減少させる」という記述は、ゲインを0[dB]、すなわち1倍から、増加又は減少させることを意味する。
続いて、「応答補償フィルタの伝達特性」、及び、それに対応する「目標操舵トルクから操舵トルクまでの伝達特性」の3通りの具体例を第1〜第3実施形態として説明する。
(第1実施形態)
まず、第1実施形態の「応答補償フィルタの伝達特性」を図5に、「目標操舵トルクから操舵トルクまでの伝達特性」を図6に示す。図6(a)は1〜100Hzの周波数帯域における特性を示す。図6(b)は、図6(a)の1〜10Hzの帯域の拡大図である。
図6には、本実施形態による「応答補償あり」の場合の伝達特性を実線で示す。また、比較例として、「応答補償なし」の場合の伝達特性を破線で示す。この比較例は、応答補償フィルタを備えない特許文献1の従来技術に相当する。
比較例の伝達特性は、ゲインが約1〜7Hzの帯域で負、約7〜30Hzの帯域で正、約30Hz以上の帯域で負となる連続的な曲線で表される。
約1〜7Hzの帯域での負のゲインは0[dB]よりわずかに小さい程度であり、目標操舵トルクTs*に対する操舵トルクTsの応答がやや低下していると考えられる。
約7〜30Hzの帯域での正のゲインは、20Hzよりやや低い18Hz付近をピークとする山形を呈している。この山形の特性は、操舵系メカ100の共振によって生ずるものである。以下、操舵系メカ100の共振特性を「メカ共振特性」という。
この山形特性のピークより高周波数側の帯域では、周波数が高くなるにつれてゲインが急激に低下する。そして、ゲインは、約30Hzでゼロクロスし、30Hz以上の帯域で負の値となる。つまり、共振特性帯域の高周波側の帯域では、周波数が高くなるほど応答が低下し、目標操舵トルクTs*に比べて操舵トルクTsの出力が小さくなる。
なお、数十〜100Hz以上の高周波帯域での応答性は、操舵フィールに与える影響が比較的小さい。したがって、以後、約50Hz以上の特性については詳しく言及しない。
このように、応答補償フィルタを備えない比較例のステアリング制御装置では、目標操舵トルクTs*がそのまま操舵トルクTsに伝達されるわけではなく、メカ共振特性の影響や応答性低下の影響を受けた伝達特性を有する。その結果、ドライバは、メカ共振特性による操舵時のざらつき感や、応答性低下による手応え不足を感じるおそれがある。
そこで、本実施形態の応答補償フィルタ50は、目標操舵トルクTs*を入力として、メカ共振特性の影響や応答性低下の影響を抑制するように応答を補償するものである。
第1実施形態の「応答補償フィルタの伝達特性」は、次のように設定されている。
(I)約1〜7Hzの帯域でゲインを少し増加させている。
(II)約18Hzを負のピークとして約7〜30Hzの帯域でゲインを比較的大きく減少させている。
(III)40〜50Hzを正のピークとして約30〜300Hzの帯域でゲインを比較的大きく増加させている。
これに応じて、第1実施形態の「目標操舵トルクから操舵トルクまでの伝達特性」は、比較例の伝達特性に対し次のように変化する。図6中、(I)及び(III)の変化をハッチング入りのブロック矢印で示し、(II)の変化を白抜きブロック矢印で示す。
(I)約1〜7Hzの帯域では、ゲインがほぼ0[dB]でフラットになる。つまり、応答補償なしの場合に比べ、ゲインが負、すなわち1倍未満の状態から、0[dB]、すなわち1倍に近づく方向に少し増加する。これにより、応答性が向上し、操舵時の手応えが向上する。
(II)約7〜30Hzの帯域でも、ゲインがほぼ0[dB]でフラットになる。この帯域では、応答補償なしの場合に比べ、ゲインが正、すなわち1倍を超えた状態から、0[dB]、すなわち1倍に近づく方向に減少する。ここで、山形のピークである20Hz付近ほど減少度合いが大きい。これにより、メカ共振特性が抑制され、操舵時のざらつき感が低減する。
(III)約30〜60Hzの帯域では、ゲインは、周波数が高くなるにつれて直線的に低下する。このとき、右下がりの特性線は、比較例の特性線に対し高ゲイン側にオフセットしている。これにより、応答性が向上し、操舵時の手応えが向上する。
第1実施形態では、(II)の帯域が「メカ共振特性を抑制する周波数帯域」である。また、(I)の帯域が「メカ共振特性を抑制する周波数帯域よりも低周波数側の帯域」に相当し、(III)の帯域が「メカ共振特性を抑制する周波数帯域よりも高周波数側の帯域」に相当する。(I)及び(III)の帯域では、応答性を向上させる。
このように、第1実施形態の「目標操舵トルクから操舵トルクまでの伝達特性」は、約1〜30Hzの周波数帯域にわたって、ゲインがほぼ0[dB]でフラットになる。言い換えれば、そうなるように「応答補償フィルタの伝達特性」が設定されている。したがって、約1〜30Hzの周波数帯域では、操舵系メカ100が出力する操舵トルクTsは、目標操舵トルクTs*とほぼ一致する。これにより、操舵フィールが向上する。
しかも、本実施形態の構成では、サーボ制御器60をハイゲインにする必要がないため、制御の安定性を向上させることができる。また、応答補償フィルタ50を用いることで、サーボ制御器60を低次にすることができ、サーボ制御器60の実装が容易になる。
ここで、特開2014−237375号公報には、サーボ制御器60においてアシストトルク指令Ta*を出力制限する技術が開示されている。また、特開2015−33941号公報には、サーボ制御器60において、トルク偏差ΔTsに基づく入力の絶対値が所定値未満のときアシストトルク指令Ta*を不感帯処理する技術が開示されている。サーボ制御器60の実装が容易になることで、これらの応用技術を適用しやすくなる。
さらに、図3に示す応答補償フィルタ501のように、低次のバンドバスフィルタ511、512、513を組み合わせて応答補償フィルタを構成することにより、応答補償フィルタの実装が容易になる。
加えて、図5に示す通り、「応答補償フィルタの伝達特性」は直感的に理解しやすい特性であるため、設定が容易である。さらに、目標値追従性能と外乱抑制性能、すなわち、「外乱が入力されたときに目標値からのずれを生じにくくする性能」とを独立に確保することができるため、高性能な制御を容易に実現することができる。
(第2、第3実施形態)
図5、図6に示した例とは別の「応答補償フィルタの伝達特性」及び「目標操舵トルクから操舵トルクまでの伝達特性」の二つの例を、第2、第3実施形態として、図7、図8に示す。図8に破線で示す比較例の伝達特性は、図6と同じものである。
第2、第3実施形態の伝達特性についても、メカ共振特性の抑制によるざらつき感の低減や、応答性の向上による手応え感の向上を図るという点で、第1実施形態と共通する。ただし、共振抑制や応答性向上の度合いは各実施形態によって異なる。
図7(a)及び図8(a)に、第2実施形態の伝達特性を示す。
第2実施形態の「応答補償フィルタの伝達特性」は、次のように設定されている。
(I)約1〜8Hzの帯域でゲインを少し増加させている。
(II)約20Hzを負のピークとして約8〜300Hzの帯域でゲインを比較的大きく減少させている。
これに応じて、第2実施形態の「目標操舵トルクから操舵トルクまでの伝達特性」は、比較例の伝達特性に対し次のように変化する。図8(a)中、(I)の変化をハッチング入りのブロック矢印で示し、(II)の変化を白抜きブロック矢印で示す。
(I)約1〜8Hzの帯域では、ゲインが0[dB]よりも少し大きい範囲で、周波数が高くなるにつれてなだらかに増加する。そのうち、約1〜7Hzの帯域では、比較例における負のゲインが、0[dB]、すなわち1倍を少し上回る程度にまで増加する。約7〜8Hzの帯域では、比較例における正のゲインの絶対値が増加する。これにより、応答性が向上し、操舵時の手応えが向上する。
(II)約8〜30Hzの帯域では、正のゲインが減少する。そのうち約8〜12Hzの帯域では、ゲインが正のまま減少し、0[dB]、すなわち1倍よりも少し大きい値となる。約12〜30Hzの帯域では、ゲインが0[dB]、すなわち1倍を下回り、負の値にまで減少する。これにより、メカ共振特性が抑制され、操舵時のざらつき感が低減する。
図7(b)及び図8(b)に、第3実施形態の伝達特性を示す。
第3実施形態の「応答補償フィルタの伝達特性」は、次のように設定されている。
(I)約1〜9Hzの帯域でゲインを少し増加させている。
(II)約20Hzを負のピークとして約9〜300Hzの帯域でゲインを比較的大きく減少させている。ただし、その減少の程度は、第2実施形態よりも小さい。
これに応じて、第3実施形態の「目標操舵トルクから操舵トルクまでの伝達特性」は、比較例の伝達特性に対し次のように変化する。図8(b)中、(I)の変化をハッチング入りのブロック矢印で示し、(II)の変化を白抜きブロック矢印で示す。
(I)約1〜9Hzの帯域では、第2実施形態と同様の変化を示す。細かくは、第2実施形態に対し、帯域(II)との境界周波数が約8Hzから約9Hzにシフトしている。
これにより、応答性が向上し、操舵時の手応えが向上する。
(II)約9〜30Hzの帯域では、正のゲインが減少する。そのうち約9〜20Hzの帯域では、ゲインが正のまま減少し、0[dB]、すなわち1倍よりも少し大きい値となる。約20〜30Hzの帯域では、ゲインが0[dB]、すなわち1倍を下回り、負の値にまで減少する。第3実施形態では、約1〜20Hzの帯域でゲインが正となり、第2実施形態に比べ、ゲインが正となる帯域が高周波数側に広がる。これにより、メカ共振特性が抑制され、操舵時のざらつき感が低減する。
第2、第3実施形態では、(II)の帯域が「メカ共振特性を抑制する周波数帯域」である。また、「メカ共振特性を抑制する周波数帯域よりも低周波数側の帯域」に相当する(I)の帯域では、第1実施形態と同様に応答性を向上させる。
ただし、第2、第3実施形態では、「目標操舵トルクから操舵トルクまでの伝達特性」の「メカ共振特性を抑制する周波数帯域よりも高周波数側の帯域」におけるゲインは、比較例のゲインよりも小さい。このように、第1実施形態の(III)の帯域での特性とは異なり、「メカ共振特性を抑制する周波数帯域よりも高周波数側の帯域」で応答性を向上させないようにしてもよい。
現実の車両において応答補償フィルタ50の伝達特性を設定するにあたっては、車両の特性やドライバの感性等に応じて、第1〜第3実施形態のいずれかに近い特性や、それらを組み合わせた特性のうち、最適なものを採用すればよい。目標操舵トルクTs*の応答補償によって得られる共振特性や応答性向上の効果の度合いを適宜選択することで、その車両やドライバにとって最適の操舵フィールを実現することができる。
(その他の実施形態)
(1)応答補償フィルタの構成は、図3に記載した複数のバンドパスフィルタを用いるものに限らず、特定の周波数帯域のゲインを増減可能なものであればよい。
図9(a)に示す応答補償フィルタ502は、それぞれ異なる阻止帯域を有する複数のノッチフィルタ521、522、523が直列に接続されて構成されている。
図9(b)に示す応答補償フィルタ503は、高次伝達関数53によって構成されている。
各応答補償フィルタの構成によって、厳密には伝達特性が全く一致するわけではない。しかし、操舵フィールを向上させるという本発明の目的の観点からは、実質的にほぼ同一の効果が得られる伝達特性を実現することができる。
(2)上記実施形態の図1における負荷推定器20の加算器21の入力として、目標操舵トルクTs*に代えて、操舵トルクTsを用いてもよい。また、アシストトルク指令Ta*に代えて、アシストトルクの検出値を用いてもよい。さらに、負荷を推定するのでなく直接検出してもよい。
(3)例えば特許文献1の図2等には、モータ速度ωに基づいて操舵トルクTsを補正するトルク補正部の構成が記載されている。本発明のステアリング制御装置も同様のトルク補正部を備えてもよい。その場合、本明細書におけるアシストトルク指令Ta*を、補正トルクが加算される前のべースアシスト指令と読み替えればよい。
以上、本発明は、上記実施形態になんら限定されるものではなく、発明の趣旨を逸脱しない範囲において種々の形態で実施可能である。
10・・・ECU(ステアリング制御装置)
40・・・目標生成部
50(501、502、503)・・・応答補償フィルタ
80・・・(操舵アシスト)モータ
100・・・操舵系メカ

Claims (4)

  1. 操舵トルク(Ts)を発生する操舵系メカ(100)に接続されたモータ(80)が出力するアシストトルクを制御するステアリング制御装置であって、
    前記操舵トルクの目標値である目標操舵トルク(Ts*)を生成する目標生成部(40)と、
    入力された前記目標操舵トルクに対し特定の周波数帯域における応答を補償するフィルタ処理を行い、応答補償後目標操舵トルク(Ts**)を出力する応答補償フィルタ(50)と、
    前記操舵トルクと前記応答補償後目標操舵トルクとの差であるトルク偏差(ΔTs)が0になるように前記アシストトルクの指令値(Ta*)を演算するサーボ制御器(60)と、
    を備え、
    前記応答補償フィルタの伝達特性は、
    前記目標操舵トルクから前記操舵トルクまでの伝達特性において前記操舵系メカの共振によりゲインが大きくなるメカ共振特性が現れる周波数帯域で、当該メカ共振特性を抑制するように設定されているステアリング制御装置。
  2. 前記応答補償フィルタの伝達特性は、
    前記メカ共振特性を抑制する周波数帯域よりも低周波数側の帯域で、前記目標操舵トルクから前記操舵トルクまでの伝達特性のゲインを増加させるように設定されている請求項1に記載のステアリング制御装置。
  3. 前記応答補償フィルタの伝達特性は、
    前記メカ共振特性を抑制する周波数帯域よりも高周波数側の帯域で、前記目標操舵トルクから前記操舵トルクまでの伝達特性のゲインを増加させるように設定されている請求項1または2に記載のステアリング制御装置。
  4. 前記応答補償フィルタ(501)は、
    複数のバンドパスフィルタ(511、512、513)により構成されている請求項1〜3のいずれか一項に記載のステアリング制御装置。
JP2016133100A 2016-07-05 2016-07-05 ステアリング制御装置 Active JP6705314B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016133100A JP6705314B2 (ja) 2016-07-05 2016-07-05 ステアリング制御装置
US15/637,167 US20180009465A1 (en) 2016-07-05 2017-06-29 Device and method of controlling steering system mounted in vehicles
DE102017211068.6A DE102017211068A1 (de) 2016-07-05 2017-06-29 Vorrichtung und verfahren zum steuern eines in fahrzeugen verbauten lenksystems
CN201710537092.0A CN107571911B (zh) 2016-07-05 2017-07-04 用于控制安装在车辆中的转向***的装置和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016133100A JP6705314B2 (ja) 2016-07-05 2016-07-05 ステアリング制御装置

Publications (2)

Publication Number Publication Date
JP2018002013A JP2018002013A (ja) 2018-01-11
JP6705314B2 true JP6705314B2 (ja) 2020-06-03

Family

ID=60676738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016133100A Active JP6705314B2 (ja) 2016-07-05 2016-07-05 ステアリング制御装置

Country Status (4)

Country Link
US (1) US20180009465A1 (ja)
JP (1) JP6705314B2 (ja)
CN (1) CN107571911B (ja)
DE (1) DE102017211068A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6737026B2 (ja) * 2016-07-20 2020-08-05 株式会社デンソー ステアリング制御装置
JP7014029B2 (ja) * 2018-04-20 2022-02-15 株式会社デンソー ステアリング制御装置
KR20200042634A (ko) * 2018-10-16 2020-04-24 현대자동차주식회사 차량 조향 시스템의 모터토크 제어 장치
US11407442B2 (en) * 2019-07-31 2022-08-09 Steering Solutions Ip Holding Corporation Steer-by-wire system
CN114080345B (zh) * 2020-04-21 2023-08-08 日本精工株式会社 转向装置
CN113998002B (zh) * 2021-12-06 2022-11-08 上海洛轲智能科技有限公司 电子辅助转向***的控制方法、装置和控制器

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08282519A (ja) * 1995-04-10 1996-10-29 Mitsubishi Electric Corp 電動パワーステアリング装置の制御装置
GB9919277D0 (en) * 1999-08-17 1999-10-20 Trw Lucas Varity Electric Method and apparatus for controlling an electric power assisted steering system using an adaptive blending torque filter
JP3922010B2 (ja) * 2001-12-11 2007-05-30 日本精工株式会社 電動パワーステアリング装置の制御装置
US6885927B2 (en) * 2002-04-17 2005-04-26 Honda Giken Kogyo Kabushiki Kaisha Apparatus for controlling an electric power steering system
US6911794B2 (en) * 2003-05-08 2005-06-28 Wavecrest Laboratories, Llc Precision adaptive motor control in cruise control system having various motor control schemes
JP2005208028A (ja) * 2003-12-22 2005-08-04 Minebea Co Ltd バリアブルリラクタンスレゾルバ用角度演算方法とそのための角度演算装置
US7207412B2 (en) * 2004-02-17 2007-04-24 Denso Corporation Motor-driven power steering system
JP4412006B2 (ja) * 2004-03-05 2010-02-10 株式会社ジェイテクト 電動パワーステアリング装置
WO2007005533A2 (en) * 2005-06-30 2007-01-11 Globe Motors, Inc. Steering system torque sensor
JP5003427B2 (ja) * 2007-11-20 2012-08-15 トヨタ自動車株式会社 操舵制御装置及びこれを用いた車両用操舵装置
US8452493B2 (en) * 2008-01-25 2013-05-28 Steering Solutions Ip Holding Corporation Methods and systems involving return torque
JP5348963B2 (ja) * 2008-08-08 2013-11-20 株式会社豊田中央研究所 操舵装置
JP2010100217A (ja) * 2008-10-24 2010-05-06 Jtekt Corp 電動パワーステアリング装置
JP5398826B2 (ja) * 2009-05-15 2014-01-29 三菱電機株式会社 モータ駆動制御装置
JP5383818B2 (ja) * 2009-10-30 2014-01-08 三菱電機株式会社 電動パワーステアリング制御装置
JP5573126B2 (ja) * 2009-11-27 2014-08-20 株式会社ジェイテクト 電動パワーステアリング装置
DE102010031211A1 (de) * 2010-07-12 2012-01-12 Zf Lenksysteme Gmbh Verfahren und Vorrichtung zur Kompensation von Lenkraddrehschwingungen in einem Lenksystem
WO2012160850A1 (ja) * 2011-05-25 2012-11-29 三菱電機株式会社 電動パワーステアリングの制御装置
JP5803422B2 (ja) * 2011-08-22 2015-11-04 株式会社ジェイテクト モータ制御装置及び電動パワーステアリング装置
JP5533822B2 (ja) * 2011-09-05 2014-06-25 株式会社デンソー 電動パワーステアリング制御装置
JP5440889B2 (ja) * 2012-01-10 2014-03-12 株式会社デンソー 電動パワーステアリング装置
DE102012005780A1 (de) * 2012-03-21 2013-09-26 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Lenkvorrichtung mit elektrischem Lenkantrieb und Verfahren zu dessen Steuern
JP2014058295A (ja) * 2012-09-19 2014-04-03 Nsk Ltd 電動パワーステアリング装置
JP5962586B2 (ja) * 2013-05-24 2016-08-03 株式会社デンソー ステアリング制御装置
JP6160860B2 (ja) * 2013-06-11 2017-07-12 株式会社ジェイテクト 電動パワーステアリング装置
US9533702B2 (en) * 2014-01-08 2017-01-03 Nsk Ltd. Electric power steering apparatus
CN105083370B (zh) * 2014-05-09 2018-01-16 现代摩比斯株式会社 Mdps的补偿控制装置
US10124826B2 (en) * 2014-07-10 2018-11-13 Trw Automotive U.S. Llc System and method for robust active disturbance rejection in electric power steering
JP6314752B2 (ja) * 2014-08-28 2018-04-25 株式会社デンソー 電動ステアリング制御装置
JP6173608B2 (ja) * 2014-09-12 2017-08-02 三菱電機株式会社 操舵制御装置
JP6327198B2 (ja) * 2015-04-30 2018-05-23 株式会社デンソー 電動パワーステアリング制御装置
JP6413955B2 (ja) * 2015-06-30 2018-10-31 株式会社デンソー 逸脱回避装置
JP6593098B2 (ja) * 2015-10-27 2019-10-23 株式会社ジェイテクト 操舵制御装置
DE102016221500B4 (de) * 2015-11-13 2020-02-27 Denso Corporation Lenksteuerung
US9988074B2 (en) * 2015-11-24 2018-06-05 Denso Corporation Steering control apparatus
CN108698634B (zh) * 2016-05-31 2019-06-14 株式会社小松制作所 作业车辆以及作业车辆的控制方法
JP6976255B2 (ja) * 2016-08-26 2021-12-08 株式会社小松製作所 作業車両および作業車両の制御方法

Also Published As

Publication number Publication date
CN107571911B (zh) 2021-02-09
CN107571911A (zh) 2018-01-12
US20180009465A1 (en) 2018-01-11
DE102017211068A1 (de) 2018-01-11
JP2018002013A (ja) 2018-01-11

Similar Documents

Publication Publication Date Title
JP6705314B2 (ja) ステアリング制御装置
US10099721B2 (en) Electric power steering apparatus
JP4737402B2 (ja) 電動パワーステアリング装置
JP5575919B2 (ja) 電動パワーステアリング装置
JP5493690B2 (ja) 電動パワーステアリング装置
JP4412006B2 (ja) 電動パワーステアリング装置
JP5387878B2 (ja) モータ制御装置
JP6790452B2 (ja) ステアリング制御装置
WO2009122606A1 (ja) 電動式パワーステアリング制御装置
JP5994480B2 (ja) 電動パワーステアリング装置
US10358161B2 (en) Steering controller
US9061701B2 (en) Dynamic system compensator for actively controlled power steering systems
US20230202554A1 (en) Control device, electric power steering device, and control method
WO2015145962A1 (ja) 電動パワーステアリング装置
JP6413633B2 (ja) 電動パワーステアリング装置
JP6519281B2 (ja) 電動パワーステアリング装置
CN107640212B (zh) 转向控制设备
JP2009214711A (ja) 電動パワーステアリング装置
JP6252059B2 (ja) ステアリング制御装置
JP5160663B2 (ja) 電動パワーステアリング装置
JP5585422B2 (ja) 電動パワーステアリング装置及び車両
JP7014029B2 (ja) ステアリング制御装置
JP5936277B2 (ja) 電動パワーステアリングの制御装置
US20230202560A1 (en) Control device, electric power steering device, and control method
JP2004203113A (ja) 電動パワーステアリング装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200427

R151 Written notification of patent or utility model registration

Ref document number: 6705314

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250