JP6678044B2 - Composite particles, method for producing the same, and oil / water separation material - Google Patents

Composite particles, method for producing the same, and oil / water separation material Download PDF

Info

Publication number
JP6678044B2
JP6678044B2 JP2016040689A JP2016040689A JP6678044B2 JP 6678044 B2 JP6678044 B2 JP 6678044B2 JP 2016040689 A JP2016040689 A JP 2016040689A JP 2016040689 A JP2016040689 A JP 2016040689A JP 6678044 B2 JP6678044 B2 JP 6678044B2
Authority
JP
Japan
Prior art keywords
oil
water
composite particles
group
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016040689A
Other languages
Japanese (ja)
Other versions
JP2016180097A (en
Inventor
英夫 澤田
英夫 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Hirosaki University NUC
Original Assignee
Nippon Chemical Industrial Co Ltd
Hirosaki University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd, Hirosaki University NUC filed Critical Nippon Chemical Industrial Co Ltd
Publication of JP2016180097A publication Critical patent/JP2016180097A/en
Application granted granted Critical
Publication of JP6678044B2 publication Critical patent/JP6678044B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、コンポジット粒子、その製造方法、該コンポジット粒子を用いた油水分離材に関するものである。   TECHNICAL FIELD The present invention relates to a composite particle, a method for producing the same, and an oil-water separator using the composite particle.

フッ素化合物は、撥水・撥油性、酸素透過性、低屈折率などの特徴を活かして塗料や化粧品等への応用が期待できる。しかしながら、フッ素系化合物は撥水・撥油性が高すぎるため非フッ素原料に対して、分散安定性を保持させることが難しい。   Fluorine compounds can be expected to be applied to paints, cosmetics, and the like by utilizing features such as water / oil repellency, oxygen permeability, and low refractive index. However, since fluorine-based compounds have too high water and oil repellency, it is difficult to maintain dispersion stability with respect to non-fluorine materials.

また、空気中で高い撥油性を発現するフッ素化合物は、水中では逆に撥油性が消失し、油が濡れ拡がるという欠点がある。   On the other hand, a fluorine compound which exhibits high oil repellency in air has a disadvantage that oil repellency disappears in water and oil spreads wet.

油分を含んだ廃水は、環境を汚染する大きな原因となり、適切に処理することが求められている。従来、油水分離処理には、比重分離等の静置分離、遠心分離、吸着分離等の方法が用いられている。   Wastewater containing oil is a major cause of environmental pollution and is required to be properly treated. Conventionally, methods such as static separation such as specific gravity separation, centrifugal separation, and adsorption separation have been used for oil-water separation treatment.

しかし、静置分離は多大な時間を要し、遠心分離は大がかりな装置を必要とし、吸着分離は大量の油水混合液の処理に不向きである。   However, static separation requires a great deal of time, centrifugation requires a large-scale apparatus, and adsorption separation is not suitable for treating a large amount of an oil-water mixture.

本発明者らは、先にフルオロアルキル基含有オリゴマーを用い、フルオロアルキル基含有オリゴマーに起因した優れた特性を付与した各種の新しい機能性材料を提案している(例えば、特許文献1〜3等参照)。   The present inventors have previously proposed various new functional materials using a fluoroalkyl group-containing oligomer and imparting excellent properties derived from the fluoroalkyl group-containing oligomer (for example, Patent Documents 1 to 3 and the like). reference).

また、本発明者らは、先にアルコキシシリル基を有するフルオロアルキル基含有オリゴマー、タルク、更に2−ヒロドキシー4−メトキシベンゾフェノン、ビスフェノールAF、ビスフェノールA等の種々の有機化合物の存在下、アルカリ条件下でのゾルーゲル反応によりタルク及び有機化合物がカプセル化されたナノコンポジット粒子を提案した(非特許文献1参照。)。   In addition, the present inventors have found that in the presence of various organic compounds such as a fluoroalkyl group-containing oligomer having an alkoxysilyl group, talc, 2-hydroxy-4-methoxybenzophenone, bisphenol AF, and bisphenol A under alkaline conditions. Have proposed nanocomposite particles in which talc and an organic compound are encapsulated by a sol-gel reaction (see Non-Patent Document 1).

特開2010−209300号公報JP 2010-209300 A 特開2010−235943号公報JP 2010-235943 A 特開2013−185071号公報JP 2013-185071 A

日本化学会講演予稿集,Vol.94th, No.3, Page.825(2014)Proceedings of the Chemical Society of Japan, Vol.94th, No.3, Page.825 (2014)

しかしながら、非特許文献1のナノコンポジット粒子では、油水分離材として用いたときに、溶剤への耐久性等の問題が懸念され、油水分離材として使用することが難しい。   However, the nano-composite particles of Non-Patent Document 1 are difficult to use as an oil-water separation material when used as an oil-water separation material because of problems such as durability to a solvent.

従って、本発明の目的は、油水分離材として好適に利用することが出来るコンポジット粒子、その工業的に有利な製造方法及び該コンポジット粒子を用いた油水分離材を提供することにある。   Accordingly, an object of the present invention is to provide a composite particle which can be suitably used as an oil-water separator, an industrially advantageous production method thereof, and an oil-water separator using the composite particle.

本発明者らは、フロオルアルキル基含有オリゴマーを用いた新しい機能性材料の開発を進める中で、特定のフルオロアルキル基含有オリゴマーを縮合させた縮合物、タルク及び架橋ポリスチレンを含有するコンポジット粒子は優れた撥水性、親油性を有し、油水分離材として好適に利用できるものであること。更に水と油を含むエマルションに対しても、油水分離材として好適に利用することができるものであることを見出し、本発明を完成するに到った。   The present inventors have been proceeding with the development of a new functional material using a fluoroalkyl group-containing oligomer, and have developed a condensate obtained by condensing a specific fluoroalkyl group-containing oligomer, talc, and composite particles containing crosslinked polystyrene. It has excellent water repellency and lipophilicity and can be suitably used as an oil-water separator. Furthermore, they have found that the emulsion containing water and oil can be suitably used as an oil-water separator, and have completed the present invention.

すなわち、本発明が提供しようとする第一の発明は、下記一般式(1)で表されるアルコキシシリル基を有するフルオロアルキル基含有オリゴマーの縮合物、タルク及び架橋ポリスチレンを含むことを特徴とするコンポジット粒子である。
(式中、R1及びR2は、−(CF2)p−Y基、又は−CF(CF3)−[OCF2CF(CF3)]q−OC37基を示し、R1及びR2は、同一の基であっても異なる基であってもよく、R1及びR2中のYは水素原子、フッ素原子又は塩素原子を示し、p及びqは0〜10の整数である。R3、R4及びR5は同一の基であっても異なる基であってもよく、R3、R4及びR5は炭素数1〜5の直鎖状若しくは分岐状のアルキル基を示す。mは2〜3の整数である。)
That is, the first invention to be provided by the present invention is characterized by containing a condensate of a fluoroalkyl group-containing oligomer having an alkoxysilyl group represented by the following general formula (1), talc, and crosslinked polystyrene. Composite particles.
(Wherein, R 1 and R 2, - (CF 2) p- Y group, or -CF (CF 3) - [OCF 2 CF (CF 3)] indicates the q-OC 3 F 7 group, R 1 And R 2 may be the same or different groups, and Y in R 1 and R 2 represents a hydrogen atom, a fluorine atom or a chlorine atom, and p and q are integers of 0 to 10. R 3 , R 4 and R 5 may be the same or different groups, and R 3 , R 4 and R 5 are linear or branched alkyl groups having 1 to 5 carbon atoms. And m is an integer of 2 to 3.)

また、本発明が提供しようとする第二の発明は、下記一般式(1)で表されるアルコキシシリル基を有するフルオロアルキル基含有オリゴマー、タルク、架橋ポリスチレン及び反応溶媒を含む反応原料溶液に、アルカリを加えて、該アルコキシシリル基の加水分解反応を行う反応工程を有することを特徴とするコンポジット粒子の製造方法である。
(式中、R1及びR2は、−(CF2)p−Y基、又は−CF(CF3)−[OCF2CF(CF3)]q−OC37基を示し、R1及びR2は、同一の基であっても異なる基であってもよく、R1及びR2中のYは水素原子、フッ素原子又は塩素原子を示し、p及びqは0〜10の整数である。R3、R4及びR5は同一の基であっても異なる基であってもよく、R3、R4及びR5は炭素数1〜5の直鎖状若しくは分岐状のアルキル基を示す。mは2〜3の整数である。)
A second invention that the present invention intends to provide is a reaction raw material solution containing a fluoroalkyl group-containing oligomer having an alkoxysilyl group represented by the following general formula (1), talc, crosslinked polystyrene, and a reaction solvent. A method for producing composite particles, comprising a reaction step of adding an alkali to carry out a hydrolysis reaction of the alkoxysilyl group.
(Wherein, R 1 and R 2, - (CF 2) p- Y group, or -CF (CF 3) - [OCF 2 CF (CF 3)] indicates the q-OC 3 F 7 group, R 1 And R 2 may be the same or different groups, and Y in R 1 and R 2 represents a hydrogen atom, a fluorine atom or a chlorine atom, and p and q are integers of 0 to 10. R 3 , R 4 and R 5 may be the same or different groups, and R 3 , R 4 and R 5 are linear or branched alkyl groups having 1 to 5 carbon atoms. And m is an integer of 2 to 3.)

また、本発明が提供しようとする第三の発明は、前記第一の発明のコンポジット粒子を用いたことを特徴とする油水分離材である。   A third invention to be provided by the present invention is an oil-water separation material using the composite particles of the first invention.

本発明によれば、優れた撥水性、親油性を有したコンポジット粒子を提供することができる。また、該コンポジット粒子は水と油を分離する油水分離材として好適に利用することができる。
また、本発明によれば、該コンポジット粒子を工業的に有利な方法で提供することができる。
According to the present invention, composite particles having excellent water repellency and lipophilicity can be provided. In addition, the composite particles can be suitably used as an oil-water separator for separating water and oil.
Further, according to the present invention, the composite particles can be provided by an industrially advantageous method.

本発明の油水分離材を用いて油水分離を行う実施形態の一つを示す概略図。The schematic diagram showing one of the embodiments which performs oil-water separation using the oil-water separation material of the present invention. 本発明の油水分離材を用いて油水分離を行う実施形態の一つを示す概略図。The schematic diagram showing one of the embodiments which performs oil-water separation using the oil-water separation material of the present invention. 評価1で、本発明のコンポジット粒子で改質した濾紙を用いて1,2−ジクロロエタンと水の混合液を分離処理した際の写真。7 is a photograph of a mixed liquid of 1,2-dichloroethane and water subjected to separation treatment using a filter paper modified with the composite particles of the present invention in Evaluation 1. 評価2で実際に分離に用いたクロマトグラフィー用カラムの写真。9 is a photograph of a chromatography column actually used for separation in Evaluation 2. 評価2で、濾過材として本発明のコンポジット粒子を用い、処理水1を分離処理した際の写真。FIG. 4 is a photograph of the composite water of the present invention used as a filtering material in the evaluation 2, and the treated water 1 was subjected to a separation treatment. 評価2で、濾過材として本発明のコンポジット粒子(a)又はWakogel C−500HG(b)を用い、処理水2を分離処理した際の写真。A photograph of the composite water (A) or Wakogel C-500HG (b) of the present invention as a filter medium in Evaluation 2, and the treated water 2 was separated.

以下、本発明をその好ましい実施形態に基づき説明する。
本発明に係るコンポジット粒子は、前記一般式(1)で表されるアルコキシシリル基を有するフルオロアルキル基含有オリゴマー(以下、「フルオロアルキル基含有オリゴマー」ということもある)を縮合させた縮合物、タルク及び架橋ポリスチレンを含むことを特徴とするものである。
Hereinafter, the present invention will be described based on preferred embodiments.
The composite particle according to the present invention is a condensate obtained by condensing a fluoroalkyl group-containing oligomer having an alkoxysilyl group represented by the general formula (1) (hereinafter, also referred to as “fluoroalkyl group-containing oligomer”), It is characterized by containing talc and cross-linked polystyrene.

本発明に係るコンポジット粒子は、フルオロアルキル基含有オリゴマー、タルク、架橋ポリスチレン及び反応溶媒を含む反応原料溶液に、アルカリを加えて加水分解反応を行う反応工程を行い得られるものであることが好ましい。   The composite particles according to the present invention are preferably obtained by performing a reaction step of adding an alkali to a reaction raw material solution containing a fluoroalkyl group-containing oligomer, talc, crosslinked polystyrene and a reaction solvent to carry out a hydrolysis reaction.

反応工程に係るフルオロアルキル基含有オリゴマーは、下記一般式(1)で表され、加水分解可能なアルコキシシリル基を有するものである。
(式中、R1及びR2は、−(CF2)p−Y基、又は−CF(CF3)−[OCF2CF(CF3)]q−OC37基を示し、R1及びR2は、同一の基であっても異なる基であってもよく、R1及びR2中のYは水素原子、フッ素原子又は塩素原子を示し、p及びqは0〜10の整数である。R3、R4及びR5は同一の基であっても異なる基であってもよく、R3、R4及びR5は炭素数1〜5の直鎖状又は分岐状のアルキル基を示す。mは2〜3の整数である。)
The fluoroalkyl group-containing oligomer according to the reaction step is represented by the following general formula (1) and has a hydrolyzable alkoxysilyl group.
(Wherein, R 1 and R 2, - (CF 2) p- Y group, or -CF (CF 3) - [OCF 2 CF (CF 3)] indicates the q-OC 3 F 7 group, R 1 And R 2 may be the same or different groups, and Y in R 1 and R 2 represents a hydrogen atom, a fluorine atom or a chlorine atom, and p and q are integers of 0 to 10. R 3 , R 4 and R 5 may be the same group or different groups, and R 3 , R 4 and R 5 are linear or branched alkyl groups having 1 to 5 carbon atoms. And m is an integer of 2 to 3.)

一般式(1)で表されるフルオロアルキル基含有オリゴマーは、本発明のコンポジット粒子に、主に優れた撥水性を付与するために用いられる。   The fluoroalkyl group-containing oligomer represented by the general formula (1) is used mainly for imparting excellent water repellency to the composite particles of the present invention.

一般式(1)中のR3、R4及びR5で示される炭素数1〜5の直鎖状又は分岐状のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基等が挙げられる。
一般式(1)中のR1及びR2の−(CF2)p−Y基、又は−CF(CF3)−[OCF2CF(CF3)]q−OC37基のp及びqは、0〜10、好ましくは0〜3である。特にR1及びR2は、−CF(CF3)OC37であることが好ましい。
Examples of the linear or branched alkyl group having 1 to 5 carbon atoms represented by R 3 , R 4 and R 5 in the general formula (1) include a methyl group, an ethyl group, a propyl group, a butyl group and a pentyl group. And the like.
In general formula (1), p and R of — (CF 2 ) p—Y group of R 1 and R 2 , or —CF (CF 3 ) — [OCF 2 CF (CF 3 )] q—OC 3 F 7 group q is 0-10, preferably 0-3. In particular, R 1 and R 2 are preferably —CF (CF 3 ) OC 3 F 7 .

一般式(1)で表されるフルオロアルキル基含有オリゴマーは、例えば、トリメトキシビニルシラン等のトリアルコキシビニルシランを過酸化フルオロアルカノイルと反応させることにより製造される(例えば、特開2002−338691号公報、特開2010−77383号公報参照)。   The fluoroalkyl group-containing oligomer represented by the general formula (1) is produced, for example, by reacting a trialkoxyvinylsilane such as trimethoxyvinylsilane with a fluoroalkanoyl peroxide (for example, JP-A-2002-338691, Japanese Patent Application Laid-Open No. 2010-77383).

反応工程に係るタルク(Mg3Si410(OH)2)は、本発明のコンポジット粒子に、主に優れた親油性を付与する成分である。 The talc (Mg 3 Si 4 O 10 (OH) 2 ) related to the reaction step is a component that mainly gives excellent lipophilicity to the composite particles of the present invention.

タルクは、微細なコンポジット粒子を製造する観点から微細なものを用いることが好ましく、動的光散乱法により求められる平均粒子径が5〜1000nm、好ましくは20〜500nmであることが好ましい。本発明においてタルクは、市販品を好適に用いることが出来る。   It is preferable to use fine talc from the viewpoint of producing fine composite particles, and it is preferable that the average particle diameter determined by a dynamic light scattering method is 5 to 1000 nm, preferably 20 to 500 nm. In the present invention, commercially available talc can be suitably used.

反応工程に係る架橋ポリスチレンは、本発明のコンポジット粒子に溶剤への耐久性及び優れた油水分離能を付与するために用いられる。   The crosslinked polystyrene used in the reaction step is used for imparting durability to a solvent and excellent oil / water separation ability to the composite particles of the present invention.

本発明において、架橋ポリスチレンとは、スチレン、ビニルキシレン、ビニルナフタレン、クロロメチルスチレン等のモノビニル芳香族化合物と、ジビニルベンゼン、ジビニルトルエン、ジビニルキシレン、ジビニルナフタレン、トリビニルベンゼン等のポリビニル芳香族化合物との架橋共重合体である。   In the present invention, the cross-linked polystyrene, styrene, vinyl xylene, vinyl naphthalene, monovinyl aromatic compounds such as chloromethylstyrene, and divinylbenzene, divinyltoluene, divinylxylene, divinylnaphthalene, polyvinylaromatic compounds such as trivinylbenzene and Is a crosslinked copolymer of

架橋ポリスチレンの物性は、微細なコンポジット粒子を製造する観点から微細なものを用いることが好ましい。微細な架橋ポリスチレンは、凝集している場合が多く、一次粒子の粒子径を測定することは困難であるが、レーザー光散乱法により求められる二次粒子の平均粒子径が0.1〜500μm、好ましくは5〜200μmであればよい。本発明において架橋ポリスチレンは、市販品を好適に用いることが出来る。   The physical properties of the crosslinked polystyrene are preferably fine from the viewpoint of producing fine composite particles. Fine crosslinked polystyrene is often agglomerated, and it is difficult to measure the particle size of the primary particles, but the average particle size of the secondary particles determined by a laser light scattering method is 0.1 to 500 μm, Preferably, it should be 5 to 200 μm. In the present invention, commercially available products can be suitably used as the crosslinked polystyrene.

反応工程に係る反応溶媒は、前記フルオルアルキル基含有オリゴマーが溶解できるものが用いられる。反応工程に係る反応溶媒としては、例えば、メタノール、エタノール、イソプロピルアルコール等の低級アルコールが挙げられ、この中で、メタノールが特に好ましい。   The reaction solvent used in the reaction step is one that can dissolve the fluoroalkyl group-containing oligomer. Examples of the reaction solvent in the reaction step include lower alcohols such as methanol, ethanol, and isopropyl alcohol, and among them, methanol is particularly preferable.

本発明の反応工程において、反応原料溶液を調製する際に、フルオロアルキル基含有オリゴマー、タルク及び架橋ポリスチレンを反応溶媒に混合する順序は特に制限されるものではない。   In the reaction step of the present invention, the order of mixing the fluoroalkyl group-containing oligomer, talc and crosslinked polystyrene with the reaction solvent when preparing the reaction raw material solution is not particularly limited.

反応原料溶液中のタルクの含有量は、前記一般式(1)で表されるフルオロアルキル基含有オリゴマー100mgに換算した値で、1〜500mg、好ましくは20〜300mgである。反応原料溶液中の前記タルクの含有量が、上記範囲にあることにより、親油性、撥水性が優れたものになる。   The content of talc in the reaction raw material solution is 1 to 500 mg, preferably 20 to 300 mg in terms of a value converted to 100 mg of the fluoroalkyl group-containing oligomer represented by the general formula (1). When the content of the talc in the reaction raw material solution is within the above range, lipophilicity and water repellency are excellent.

反応原料溶液中の架橋ポリスチレンの含有量は、前記一般式(1)で表されるフルオロアルキル基含有オリゴマー100mgに換算した値で、5〜800mg、好ましくは10〜500mgである。反応原料溶液中の前記架橋ポリスチレンの含有量が、上記範囲にあることにより、耐久性及び油水分離能が優れたものになる。   The content of the crosslinked polystyrene in the reaction raw material solution is 5 to 800 mg, preferably 10 to 500 mg in terms of a value converted to 100 mg of the fluoroalkyl group-containing oligomer represented by the general formula (1). When the content of the crosslinked polystyrene in the reaction raw material solution is within the above range, the durability and the oil-water separation ability are excellent.

反応工程において、反応原料溶液に加えるアルカリとしては、フルオロアルキル基含有オリゴマー中のアルコキシシリル基の加水分解を行うことができるものであれば、特に制限されず、例えば、アルカリとしては、水酸化アンモニウム、水酸化ナトリウム又は水酸化カリウム等が挙げられ、反応性が高い点で、好ましくは水酸化アンモニウムである。   In the reaction step, the alkali to be added to the reaction raw material solution is not particularly limited as long as it can hydrolyze the alkoxysilyl group in the fluoroalkyl group-containing oligomer. Examples of the alkali include ammonium hydroxide. , Sodium hydroxide or potassium hydroxide, and ammonium hydroxide is preferred because of its high reactivity.

反応原料溶液に加えるアルカリの混合量は、特に制限されず、適宜選択される。また、反応原料溶液に、アルカリを混合して、フルオロアルキル基含有オリゴマー中のアルコキシシリル基の加水分解を行う際の反応温度は、−5〜50℃、好ましくは0〜30℃である。反応温度が、−5℃未満だと、アルコキシシリル基の加水分解速度が遅くなり過ぎるので、反応効率が悪く、また、50℃を超えると、コンポジット粒子の分散安定性が低くなり易い。また、反応原料溶液に、アルカリを混合して、アルコキシシリル基の加水分解を行う際の反応時間は、特に制限されず、適宜選択されるが、好ましくは1〜72時間、特に好ましくは1〜24時間である。   The mixing amount of the alkali added to the reaction raw material solution is not particularly limited, and is appropriately selected. The reaction temperature when the alkali is mixed with the reaction raw material solution to hydrolyze the alkoxysilyl group in the fluoroalkyl group-containing oligomer is -5 to 50C, preferably 0 to 30C. If the reaction temperature is lower than -5 ° C, the hydrolysis rate of the alkoxysilyl group becomes too slow, so that the reaction efficiency is poor. If the reaction temperature is higher than 50 ° C, the dispersion stability of the composite particles tends to be low. The reaction time when the alkali is mixed with the reaction raw material solution to hydrolyze the alkoxysilyl group is not particularly limited and may be appropriately selected, but is preferably 1 to 72 hours, particularly preferably 1 to 72 hours. 24 hours.

そして、反応工程を行うことにより、シロキサン結合を主骨格とするコンポジット粒子が生成し、本発明に係るコンポジット粒子を含有する反応液が得られる。   Then, by performing the reaction step, composite particles having a siloxane bond as a main skeleton are generated, and a reaction liquid containing the composite particles according to the present invention is obtained.

反応終了後、常法により減圧下に溶媒を除去、必要により洗浄等の精製を行ってコンポジット粒子を得る。   After completion of the reaction, the solvent is removed under reduced pressure by a conventional method, and if necessary, purification such as washing is performed to obtain composite particles.

本発明において、前記コンポジット粒子を含有する反応液は、後述するように油水分離材として使用するための、各種基材の改質を行う改質液としてそのまま使用することが出来る。   In the present invention, the reaction liquid containing the composite particles can be used as it is as a reforming liquid for modifying various base materials for use as an oil-water separator as described below.

また、本発明のコンポジット粒子の他の好ましい物性としては、動的光散乱法により求められる平均粒子径が好ましくは0.1〜500μm、好ましくは10〜250μmである。平均粒子径が前記範囲内にあると、種々の分散溶媒、樹脂材料、各種基材等への分散性が良好である点で好ましい。   Further, as other preferable physical properties of the composite particles of the present invention, the average particle diameter determined by a dynamic light scattering method is preferably from 0.1 to 500 µm, and more preferably from 10 to 250 µm. It is preferable that the average particle diameter is within the above range, since the dispersibility in various dispersion solvents, resin materials, various base materials, and the like is good.

本発明に係る油水分離材は、前記コンポジット粒子を用いたことを特徴とするものである。   The oil-water separation material according to the present invention is characterized by using the composite particles.

本発明に係る油水分離材と、水と油を含む混合液を接触させることにより水と油を分離することが出来る。   Water and oil can be separated by bringing the oil-water separator according to the present invention into contact with a mixed solution containing water and oil.

発明のコンポジット粒子は、例えば、以下の2つの方法により油水分離材として用いることが出来る。
(1)水に不溶な基材を本発明のコンポジット粒子で改質する方法。
(2)本発明のコンポジット粒子自体をそのまま濾過材として用いる方法。
The composite particles of the invention can be used as an oil / water separator by the following two methods, for example.
(1) A method of modifying a water-insoluble substrate with the composite particles of the present invention.
(2) A method of using the composite particles of the present invention per se as a filtering material.

前記(1)に係る基材としては、水に不溶である無機物や有機物を用いることが出来る。無機物としては、例えば、ガラス繊維、シリカ、シリカゲル、アルミナ、スラグウール、モレキュラーシーブ、ゼオライト、活性炭、珪藻土、砂、石綿等が挙げられる。有機物としては、天然高分子または合成高分子であってもよい。天然高分子としては、例えば、セルロース、羊毛、綿、絹等が挙げられる。合成高分子としては、ポリウレタン、ポリエチレンテレフタレート、ナイロン、ポリカーボネート等の縮合系または付加系重合高分子重合体や、ポリエチレン、ポリプロピレン、塩化ビニル、酢酸ビニル等のエチレン系不飽和高分子重合体等が挙げられる。   As the substrate according to the above (1), an inorganic or organic substance that is insoluble in water can be used. Examples of the inorganic substance include glass fiber, silica, silica gel, alumina, slag wool, molecular sieve, zeolite, activated carbon, diatomaceous earth, sand, and asbestos. The organic substance may be a natural polymer or a synthetic polymer. Examples of the natural polymer include cellulose, wool, cotton, silk and the like. Examples of the synthetic polymer include condensation or addition polymer polymers such as polyurethane, polyethylene terephthalate, nylon and polycarbonate, and ethylenically unsaturated polymer polymers such as polyethylene, polypropylene, vinyl chloride and vinyl acetate. Can be

また、基材の形状は、特に制限されるものではなく、例えば、細片状、海綿状、リボン状、フィブリル状、ウェブ状、マット状、綿布状、不織布状等が挙げられる。   The shape of the substrate is not particularly limited, and examples thereof include a strip, a sponge, a ribbon, a fibril, a web, a mat, a cotton cloth, and a nonwoven cloth.

また、本発明においては、市販の濾紙等を改質する基材として用いてもよい。この場合、濾紙の孔径は5μm以下、好ましくは0.1〜3μmとすることが効率的に油水分離を行う観点から好ましい。   Further, in the present invention, a commercially available filter paper or the like may be used as a base material for modifying. In this case, the pore size of the filter paper is preferably 5 μm or less, and more preferably 0.1 to 3 μm, from the viewpoint of efficient oil-water separation.

前記(1)において、基材を本発明のコンポジット粒子で改質する方法としては、本発明のコンポジット粒子を基材の表面や内部に固定或いは担持することが出来る方法であれば特に制限はなく公知の方法を用いることが出来る。その一例を挙げると、本発明のコンポジット粒子が1〜50wt%の濃度で分散した分散液に、基材を接触させた後、乾燥する方法等がある。また、分散液と基材との接触は、基材を分散液へ浸漬する方法、スプレーにより基材に吹き付ける方法、或いは基材へ分散液を塗布する方法等により行うことが出来る。   In the above (1), the method for modifying the substrate with the composite particles of the present invention is not particularly limited as long as the method can fix or support the composite particles of the present invention on the surface or inside of the substrate. A known method can be used. As an example, there is a method in which a base material is brought into contact with a dispersion liquid in which the composite particles of the present invention are dispersed at a concentration of 1 to 50% by weight, and then dried. The contact between the dispersion and the substrate can be carried out by a method of dipping the substrate into the dispersion, a method of spraying the substrate with a spray, or a method of applying the dispersion to the substrate.

なお、コンポジット粒子が分散した分散液は、前記した反応終了後のコンポジット粒子を含む反応液をそのまま用いてもよい。   As the dispersion liquid in which the composite particles are dispersed, the reaction liquid containing the composite particles after the above-described reaction may be used as it is.

図1は、本発明のコンポジット粒子により改質を行った濾紙を用いて、水と油の混合液を分離処理する場合の一つの実施形態を示す概略図である。   FIG. 1 is a schematic view showing one embodiment of a case where a mixed liquid of water and oil is separated using a filter paper modified with the composite particles of the present invention.

図1に示す実施形態では、カラム(1b)、改質した濾紙(1a)からなる簡単な分離システム(A)を備え、改質した濾紙(1a)は本発明のコンポジット粒子で改質したものである。
カラム(1b)の途中に改質した濾紙(1a)を噛ませることで、カラム(1b)に投入された水と油の混合液(1)は改質した濾紙(1a)と接触する。油(1')は改質した濾紙(1a)を通過し、水は改質した濾紙(1a)を通過することが出来ないので、水と油を分離することが出来る。なお、必要により分離効率を高めるため分離操作は圧力をかけたり、或いは減圧下に行うことができる。この場合、先に油(1’)は改質した濾紙(1a)を選択的に通過し、次いで強い外力により水は遅れて改質した濾紙(1a)を通過する場合があるが、水が溶出する前に、油水分離操作を終える等の手段により改質した濾紙(1a)を介して水と油を分離することができる。
The embodiment shown in FIG. 1 comprises a simple separation system (A) consisting of a column (1b) and a modified filter paper (1a), the modified filter paper (1a) being modified with the composite particles of the invention. It is.
By biting the modified filter paper (1a) in the middle of the column (1b), the water-oil mixture (1) charged into the column (1b) comes into contact with the modified filter paper (1a). The oil (1 ′) passes through the modified filter paper (1a), and water cannot pass through the modified filter paper (1a), so that water and oil can be separated. The separation operation can be performed under pressure or under reduced pressure, if necessary, to increase the separation efficiency. In this case, first, the oil (1 ′) selectively passes through the modified filter paper (1a), and then the water may pass through the modified filter paper (1a) later due to a strong external force. Before elution, water and oil can be separated through the modified filter paper (1a) by means such as finishing the oil-water separation operation.

図2は、本発明のコンポジット粒子を濾過材として用いて、水と油の混合液を分離処理する場合の一つの実施形態を示す概略図である。
図2に示す実施形態では、カラム(2b)、濾過材(2c)を含む濾過材層(2a)からなる簡単な分離システム(B)を備えている。
カラム(2b)には濾過材(2c)として本発明のコンポジット粒子が充填されて濾過材層(2a)が形成されている。カラム(2b)に水と油の混合液(1)を投入することにより、濾過材(2c)と混合液を接触させることが出来る。油(1')は濾過材層(2a)を通過し、水は濾過材層(2a)を通過することが出来ないので、水と油を分離することが出来る。なお、必要により分離効率を高めるため分離操作は圧力をかけたり、或いは減圧下に行うことができる。また、目詰まり等を抑制するため、濾過材層(2a)の上部及び/又は下部に濾過助剤を充填した層を必要により設けることが出来る。
FIG. 2 is a schematic diagram showing one embodiment in the case where a mixed liquid of water and oil is separated using the composite particles of the present invention as a filtering material.
In the embodiment shown in FIG. 2, a simple separation system (B) comprising a column (2b) and a filter medium layer (2a) including a filter medium (2c) is provided.
The column (2b) is filled with the composite particles of the present invention as a filter medium (2c) to form a filter medium layer (2a). By putting the mixed liquid (1) of water and oil into the column (2b), the filter medium (2c) can be brought into contact with the mixed liquid. The oil (1 ′) passes through the filter medium layer (2a) and water cannot pass through the filter medium layer (2a), so that water and oil can be separated. The separation operation can be performed under pressure or under reduced pressure, if necessary, to increase the separation efficiency. Further, in order to suppress clogging or the like, a layer filled with a filter aid may be provided on the upper and / or lower part of the filter medium layer (2a) if necessary.

用いることができる濾過助剤としては、特に制限はなく広く公知のものを用いることができる。例えば、珪藻土、砂粒子、真珠岩、アンスラサイト、セルロース、羊毛、綿、絹、炭素質濾過助剤、酸性白土、ベントナイト、セライト、タルク、マイカ、カオリナイト等が挙げられ、これらは1種又は2種以上で用いることが出来る。   The filter aid that can be used is not particularly limited, and widely known ones can be used. For example, diatomaceous earth, sand particles, perlite, anthracite, cellulose, wool, cotton, silk, carbonaceous filter aid, acid clay, bentonite, celite, talc, mica, kaolinite, etc. Two or more types can be used.

本発明に係る油水分離材で処理対象する水と油の混合液は、溶液状態のものであってもエマルションであってもよい。   The mixed liquid of water and oil to be treated by the oil-water separation material according to the present invention may be in a solution state or an emulsion.

本発明に係る油水分離材は、例えば、油を含んだ廃水処理、各種産業分野での生産現場での水と油の分離或いは精製手段等に利用することが出来る。   The oil-water separation material according to the present invention can be used for, for example, treatment of wastewater containing oil, separation or purification of water and oil at production sites in various industrial fields, and the like.

以下、本発明を実施例により説明するが、本発明はこれらの実施例に限定されるものではない。
<フルオロアルキル基含有オリゴマー試料>
フルオロアルキル基含有オリゴマー(以下、「VM」という)として下記表1のものを使用した。
表1中、分子量は、ゲル浸透クロマトグラフィー(GPC、ポリスチレン換算)による数平均分子量である。
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples.
<Fluoroalkyl group-containing oligomer sample>
As the fluoroalkyl group-containing oligomer (hereinafter, referred to as “VM”), those shown in Table 1 below were used.
In Table 1, the molecular weight is a number average molecular weight determined by gel permeation chromatography (GPC, converted to polystyrene).

{実施例1〜4}
VM(100mg)をメタノール溶液5mlに溶解し、タルク(浅田製粉社製 平均粒子径;131nm)100mg及び表2に示す量の架橋ポリスチレン(東京化成工業社製 平均粒子径;92μm)を添加し、次いで25wt%アンモニア水溶液(2ml)を添加し、マグネチックスターラーにより室温(25℃)で1時間撹拌を行って、反応液試料を得た。
反応終了後、反応液試料から減圧下で溶媒を除去し、得られた粗生成物をメタノール中に一晩分散させた。次いで、遠心分離処理して目的物を固形分として分離し、得られた固形分をメタノールで数回洗浄し、溶媒除去後に、50℃で真空乾燥して目的物(コンポジット粒子試料)を得た。
また、得られたコンポジット粒子試料をFT−IRで測定した。
IR(KBr、cm-1);1600(ポリスチレン)、1338、1240(C−F)、1016(Si−O−Si)、750(C−C)、1687(C=C)
{Examples 1-4}
VM (100 mg) was dissolved in 5 ml of a methanol solution, and 100 mg of talc (average particle diameter; 131 nm, manufactured by Asada Milling Co., Ltd.) and crosslinked polystyrene (average particle diameter: 92 μm, manufactured by Tokyo Chemical Industry Co., Ltd.) in the amount shown in Table 2 were added. Next, a 25 wt% aqueous ammonia solution (2 ml) was added, and the mixture was stirred for 1 hour at room temperature (25 ° C.) with a magnetic stirrer to obtain a reaction liquid sample.
After completion of the reaction, the solvent was removed from the reaction solution sample under reduced pressure, and the obtained crude product was dispersed in methanol overnight. Next, the target substance was separated as a solid by centrifugation, and the obtained solid was washed several times with methanol, and after removing the solvent, vacuum-dried at 50 ° C. to obtain a target (composite particle sample). .
Moreover, the obtained composite particle sample was measured by FT-IR.
IR (KBr, cm -1 ); 1600 (polystyrene), 1338, 1240 (CF), 1016 (Si-O-Si), 750 (CC), 1687 (C = C)

{比較例1〜2}
タルク又は架橋ポリスチレンを添加しないで反応を行う以外は実施例1と同様な反応条件にて反応を行い、反応液試料及びコンポジット粒子試料を得た。
{Comparative Examples 1-2}
The reaction was performed under the same reaction conditions as in Example 1 except that the reaction was performed without adding talc or crosslinked polystyrene, to obtain a reaction liquid sample and a composite particle sample.

<物性の評価>
上記で調製したコンポジット粒子について平均粒子径及びドデカンと水の接触角を測定した。
なお、平均粒子径とドデカンと水の接触角は下記のように測定した。
(平均粒子径の評価)
得られたコンポジット粒子を、メタノールに再分散させて粒度分測定計(島津製のSALD-200 V)を用いて測定した。
(ドデカンと水の接触角の評価)
各実施例及び比較例で得られた反応液試料に、ガラス板を1分間、室温(25℃)で浸し、ガラス板を引き上げた後、自然乾燥、さらに一晩真空乾燥を行って改質ガラス板試料を調製した。この改質ガラス板試料の表面のドデカンと水の接触角を協和界面科学製のDrop Master.300を使用して評価した。その結果を表3に示した。
なお、接触角の評価は、水及びドデカンを滴下30分後の値として評価した。
また、VMのみで処理したものをブランク1とし、タルクのみで処理したものをブランク2として評価し、その評価結果を表3に併記した。
<Evaluation of physical properties>
The average particle diameter and the contact angle of dodecane and water were measured for the composite particles prepared above.
In addition, the average particle diameter and the contact angle of dodecane and water were measured as follows.
(Evaluation of average particle size)
The obtained composite particles were redispersed in methanol and measured using a particle size analyzer (SALD-200 V manufactured by Shimadzu).
(Evaluation of contact angle between dodecane and water)
The glass plate was immersed in the reaction solution samples obtained in each of Examples and Comparative Examples for 1 minute at room temperature (25 ° C.), pulled up, then naturally dried, and further vacuum dried overnight to perform modified glass. Plate samples were prepared. The contact angle between dodecane and water on the surface of the modified glass plate sample was evaluated using Drop Master.300 manufactured by Kyowa Interface Science. Table 3 shows the results.
The contact angle was evaluated as a value after 30 minutes of dropping water and dodecane.
Further, those treated with only VM were evaluated as blank 1, and those treated with only talc were evaluated as blank 2, and the evaluation results are shown in Table 3.

(油水分離材としての評価)
評価1;
実施例1で得られた反応液試料に、3cm四方にカットした濾紙(Advantec: 131、孔径3μm)を1分間、室温(25℃)で浸し、濾紙を引き上げた後、自然乾燥、さらに一晩真空乾燥を行って改質濾紙試料を調製した。
この改質濾紙による水―油分離について、1,2−ジクロロエタンと水の混合液(1:1vol.)2mlにより検討を行った。混合液中の水は硫酸銅五水和物により青色に着色した。
また、改質処理を行わない濾紙を用いた場合についても同様に評価を行った。
(Evaluation as oil-water separation material)
Evaluation 1;
A filter paper (Advantec: 131, pore size: 3 μm) cut into a 3 cm square was immersed in the reaction solution sample obtained in Example 1 at room temperature (25 ° C.) for 1 minute, the filter paper was pulled up, air-dried, and further overnight. Vacuum drying was performed to prepare a modified filter paper sample.
The water-oil separation by the modified filter paper was examined using 2 ml of a mixture of 1,2-dichloroethane and water (1: 1 vol.). The water in the mixture was colored blue by copper sulfate pentahydrate.
In addition, the same evaluation was performed for a case where a filter paper not subjected to the modification treatment was used.

(評価1の結果)
図3に示したように改質濾紙試料を漏斗で挟み、減圧下における混合液の濾過により水―油の分離試験を行った。評価1の結果を表4に示す。なお表4中の記号は下記のことを示す。
○;目視で濾液に水が観察されない。
△;目視で濾液に若干の水の混入が観察される。
×;目視で濾液に多くの水の混入が観察される。
また、図3に示すように、改質濾紙試料を用いて減圧下において混合液を濾過することにより、改質濾紙を1,2−ジクロロエタンのみが通過し、水と1,2−ジクロロエタンを分離することができた。
一方、改質処理を行わない濾紙を用いて減圧下において混合液を濾過したところ、水と1,2−ジクロロエタンの両方が濾紙を通過したため、水と1,2−ジクロロエタンを分離することができなかった。
(Result of evaluation 1)
As shown in FIG. 3, a modified filter paper sample was sandwiched between funnels, and a water-oil separation test was conducted by filtering the mixture under reduced pressure. Table 4 shows the results of Evaluation 1. The symbols in Table 4 indicate the following.
;: No water was observed in the filtrate visually.
Δ: Some water was mixed into the filtrate visually.
×: A large amount of water was observed in the filtrate by visual observation.
Further, as shown in FIG. 3, by filtering the mixture under reduced pressure using a modified filter paper sample, only 1,2-dichloroethane passes through the modified filter paper, and water and 1,2-dichloroethane are separated. We were able to.
On the other hand, when the mixture was filtered under reduced pressure using a filter paper not subjected to the modification treatment, both water and 1,2-dichloroethane passed through the filter paper, so that water and 1,2-dichloroethane could be separated. Did not.

評価2;
クロマトグラフィー用カラム(内径10mm)に海砂を層厚が約2mmになるに充填し、次いで実施例1で得られたコンポジット粒子200mg(層厚約4mm)を充填し、更にその上に海砂を層厚が約2mmになるに充填した(図4参照)。なお、図4中の「Rf-(VM-SiO2)n-Rf/Talc/Pst」は、コンポジット粒子を示す。
このクロマトグラフィー用カラムを用いて、下記の2種類の処理水について水−油の分離試験を行った。
また、コンポジット粒子に代えてWakogel C−500HGを用いたものを同様に試験した。
処理水1(混合液);
1,2−ジクロロエタンと水の混合液(1:1vol.)2mlを調製した。なお、混合液中の水は硫酸銅五水和物により青色に着色した。
処理水2(エマルション);
1,2−ジクロロエタン(5ml)と水(0.05ml)及び乳化剤としてSpan80(20mg)を混合し、エマルションを調製した。
Evaluation 2;
A chromatography column (inner diameter: 10 mm) was packed with sea sand to a layer thickness of about 2 mm, and then 200 mg (layer thickness: about 4 mm) of the composite particles obtained in Example 1 were further packed thereon. Was filled to a layer thickness of about 2 mm (see FIG. 4). In addition, "Rf- (VM-SiO2) n-Rf / Talc / Pst" in FIG. 4 indicates a composite particle.
Using this chromatography column, a water-oil separation test was performed on the following two types of treated water.
In addition, a test using Wakogel C-500HG instead of the composite particles was performed in the same manner.
Treated water 1 (mixture);
2 ml of a mixture of 1,2-dichloroethane and water (1: 1 vol.) Was prepared. The water in the mixture was colored blue by copper sulfate pentahydrate.
Treated water 2 (emulsion);
An emulsion was prepared by mixing 1,2-dichloroethane (5 ml), water (0.05 ml), and Span80 (20 mg) as an emulsifier.

(評価2の結果)
評価2の結果を表5に示す。なお表5中の記号は下記のことを示す。
○;目視で濾液に水が観察されない。
△;目視で濾液に若干の水の混入が観察される。
×;目視で濾液に多くの水の混入が観察される。又は目視で濾液にエマルションが観察される。
また、図5に示すように、本発明のコンポジット粒子を濾過材として用いて減圧下において処理水1を濾過することにより、濾過材層を1,2−ジクロロエタンのみが通過し、水と1,2−ジクロロエタンを分離することができた。
一方、処理水1を濾過材としてWakogel C−500HGを用いて処理した場合は、濾過後の濾液に1,2−ジクロロエタンに加えて若干水が混入していることが目視でも確認できた。
(Result of evaluation 2)
Table 5 shows the results of Evaluation 2. The symbols in Table 5 indicate the following.
;: No water was observed in the filtrate visually.
Δ: Some water was mixed into the filtrate visually.
×: A large amount of water was observed in the filtrate by visual observation. Alternatively, an emulsion is visually observed in the filtrate.
In addition, as shown in FIG. 5, by filtering the treated water 1 under reduced pressure using the composite particles of the present invention as a filtering material, only 1,2-dichloroethane passes through the filtering material layer, and water and 1, 2-Dichloroethane could be separated.
On the other hand, when the treated water 1 was treated using Wakogel C-500HG as a filtering material, it was also visually confirmed that the filtrate after filtration contained a small amount of water in addition to 1,2-dichloroethane.

また、図6(a)に示すように、本発明のコンポジット粒子を濾過材として用いて減圧下において処理水2を濾過することにより、濾過材層を1,2−ジクロロエタンのみが通過し、エマルションから水と1,2−ジクロロエタンを分離することができた。
一方、図6(b)に示すように、処理水2を濾過材としてWakogel C−500HGを用いて処理した場合は、濾過材層をエマルションごと通過し、エマルションから水と1,2−ジクロロエタンを分離することができなかった。
Further, as shown in FIG. 6 (a), by filtering the treated water 2 under reduced pressure using the composite particles of the present invention as a filter, only 1,2-dichloroethane passes through the filter, and the emulsion From water and 1,2-dichloroethane.
On the other hand, as shown in FIG. 6 (b), when the treated water 2 was used as a filter medium and treated using Wakogel C-500HG, the water and 1,2-dichloroethane were passed through the filter medium layer together with the emulsion, and from the emulsion. Could not be separated.

Claims (7)

下記一般式(1)で表されるアルコキシシリル基を有するフルオロアルキル基含有オリゴマーの縮合物、タルク及び架橋ポリスチレンを含むことを特徴とするコンポジット粒子。

(式中、R1及びR2−CF(CF3)−[OCF2CF(CF3)]q−OC37基を示し、R1及びR2は、同一の基であっても異なる基であってもよく、qは0〜3の整数である。R3、R4及びR5は同一の基であっても異なる基であってもよく、R3、R4及びR5は炭素数1〜5の直鎖状アルキル基を示す。mは2〜3の整数である。)
A composite particle comprising a condensate of a fluoroalkyl group-containing oligomer having an alkoxysilyl group represented by the following general formula (1), talc, and crosslinked polystyrene.

(Wherein, R 1 and R 2 represent a —CF (CF 3 ) — [OCF 2 CF (CF 3 )] q-OC 3 F 7 group, and R 1 and R 2 are the same group. May be different groups, and q is an integer of 0 to 3. R 3 , R 4 and R 5 may be the same or different groups, and R 3 , R 4 and R 5 .m showing a linear alkyl group of 1 to 5 carbon atoms is 2-3 integer.)
一般式(1)の式中のR1及びR2が、−CF(CF3)OC37であることを特徴とする請求項1記載のコンポジット粒子。 R 1 and R 2 in the formula of the general formula (1) is, -CF (CF 3) composite particles of claim 1, wherein it is OC 3 F 7. 平均粒子径が、0.1〜500μmであることを特徴とする請求項1又は2の何れか一項に記載のコンポジット粒子。   The composite particles according to claim 1, wherein the composite particles have an average particle diameter of 0.1 to 500 μm. 下記一般式(1)で表されるアルコキシシリル基を有するフルオロアルキル基含有オリゴマー、タルク、架橋ポリスチレン及び反応溶媒を含む反応原料溶液に、アルカリを加えて、該アルコキシシリル基の加水分解反応を行う反応工程を有することを特徴とするコンポジット粒子の製造方法。
(式中、R1及びR2−CF(CF3)−[OCF2CF(CF3)]q−OC37基を示し、R1及びR2は、同一の基であっても異なる基であってもよく、qは0〜3の整数である。R3、R4及びR5は同一の基であっても異なる基であってもよく、R3、R4及びR5は炭素数1〜5の直鎖状アルキル基を示す。mは2〜3の整数である。)
An alkali is added to a reaction raw material solution containing a fluoroalkyl group-containing oligomer having an alkoxysilyl group represented by the following general formula (1), talc, cross-linked polystyrene, and a reaction solvent to perform a hydrolysis reaction of the alkoxysilyl group. A method for producing composite particles, comprising a reaction step.
(Wherein, R 1 and R 2 represent a —CF (CF 3 ) — [OCF 2 CF (CF 3 )] q-OC 3 F 7 group, and R 1 and R 2 are the same group. May be different groups, and q is an integer of 0 to 3. R 3 , R 4 and R 5 may be the same or different groups, and R 3 , R 4 and R 5 .m showing a linear alkyl group of 1 to 5 carbon atoms is 2-3 integer.)
請求項1乃至3のいずれか一項に記載のコンポジット粒子を用いたことを特徴とする油水分離材。   An oil-water separator comprising the composite particles according to any one of claims 1 to 3. 請求項5記載の油水分離材に、水と油を含む混合液を接触させることを特徴とする油水分離方法。   An oil / water separation method, comprising bringing a mixed liquid containing water and oil into contact with the oil / water separation material according to claim 5. 請求項5記載の油水分離材に、水と油を含むエマルションを接触させることを特徴とする油水分離方法。   An oil-water separation method, comprising bringing an emulsion containing water and oil into contact with the oil-water separation material according to claim 5.
JP2016040689A 2015-03-06 2016-03-03 Composite particles, method for producing the same, and oil / water separation material Active JP6678044B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015044668 2015-03-06
JP2015044668 2015-03-06

Publications (2)

Publication Number Publication Date
JP2016180097A JP2016180097A (en) 2016-10-13
JP6678044B2 true JP6678044B2 (en) 2020-04-08

Family

ID=57130876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016040689A Active JP6678044B2 (en) 2015-03-06 2016-03-03 Composite particles, method for producing the same, and oil / water separation material

Country Status (1)

Country Link
JP (1) JP6678044B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018087277A (en) * 2016-11-28 2018-06-07 日本化学工業株式会社 Composite particle, method for producing the same, and oil-water separation material comprising the same
JP6843324B2 (en) * 2017-02-28 2021-03-17 藤倉コンポジット株式会社 Nanocomposite particles and their production methods, column fillers, surface treatment agents, filters, and nanocomposite particle dispersions production methods and surface treatment methods
JP2020063375A (en) * 2018-10-17 2020-04-23 日本化学工業株式会社 Composite particle, method for producing the same, oil separation agent, and oil-water separation method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4002320B2 (en) * 1997-03-25 2007-10-31 株式会社日本触媒 Silica composite resin particles and production method thereof
JP5602996B2 (en) * 2008-02-08 2014-10-08 日本化学工業株式会社 Powdered silica composite particles and production method thereof, silica composite particle dispersion, and resin composition
JP2010235943A (en) * 2009-03-12 2010-10-21 Nippon Chem Ind Co Ltd Nano composite powdery particle having siloxane bond as main skeleton and method for producing the same, nano composite powdery particle dispersion liquid having siloxane bond as main skeleton, and resin composition
JP2011190292A (en) * 2010-03-11 2011-09-29 Nippon Chem Ind Co Ltd Ionic liquid-containing gel, manufacturing method of the same, and ionic conductor
JP5727323B2 (en) * 2011-03-17 2015-06-03 積水化成品工業株式会社 Organic-inorganic composite particles, production method thereof, and use thereof
JP6061239B2 (en) * 2012-03-05 2017-01-18 藤倉ゴム工業株式会社 Flame retardant imparting agent, flame retardant article and method for producing them
JP6236676B2 (en) * 2014-03-26 2017-11-29 国立大学法人弘前大学 Fluorine-containing nanocomposite particles and method for producing the same, coating agent containing the same, oil-water separation membrane, and resin composition

Also Published As

Publication number Publication date
JP2016180097A (en) 2016-10-13

Similar Documents

Publication Publication Date Title
JP6681220B2 (en) Oil-water separation material and oil-water separation method
Qiu et al. Asymmetric superwetting stainless steel meshes for on-demand and highly effective oil-water emulsion separation
Brown et al. Ultrafast oleophobic–hydrophilic switching surfaces for antifogging, self-cleaning, and oil–water separation
Zhang et al. Preparation of cellulose-coated cotton fabric and its application for the separation of emulsified oil in water
JP6678044B2 (en) Composite particles, method for producing the same, and oil / water separation material
Peng et al. Superhydrophobic melamine sponge coated with striped polydimethylsiloxane by thiol–ene click reaction for efficient oil/water separation
Demirel et al. Robust and flexible superhydrophobic/superoleophilic melamine sponges for oil-water separation
JP2006522855A (en) Highly dispersed phase emulsion foam containing polyelectrolytes
Yu et al. Recycling papermill waste lignin into recyclable and flowerlike composites for effective oil/water separation
CN105771322A (en) Super hydrophilic oil-water separation filter paper and preparation method thereof
WO2016143651A1 (en) Oil-water separating material and oil-water separation method
CN109289531A (en) A kind of preparation method of the dimethyl silicone polymer for organic solvent nanofiltration/meso-porous nano silicon composite membrane
CN104475053B (en) Graphene oxide/Polyethylene Glycol coating stirring rod and preparation method and application
Mir et al. Recent advances in oil/water separation using nanomaterial-based filtration methods for crude oil processing-a review
Pethsangave et al. Super-hydrophobic carrageenan cross-linked graphene sponge for recovery of oil and organic solvent from their water mixtures
JP6637792B2 (en) Composite particles, method for producing the same, gelling agent, and oil-water separation material
Cao et al. A hierarchically porous sponge for stabilized emulsion separation with high filtration flux and separation efficiency
CN103157388A (en) Hydrophilic reverse osmosis composite membrane and preparation method thereof
CN108394949A (en) A kind of application of MOF powder in water-oil separating
Liu et al. Superhydrophobic MOF based materials and their applications for oil-water separation
JP6637795B2 (en) Composite particles and method for producing the same
JP6644588B2 (en) Composite particles, method for producing the same, and oil / water separation material
JP6644589B2 (en) Composite particles, method for producing the same, and oil / water separation material
JP6819955B2 (en) Composite particles, their manufacturing methods, oil-water separators using them, and organic compound adsorbents using them.
JP2018087277A (en) Composite particle, method for producing the same, and oil-water separation material comprising the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160407

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181005

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20181005

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20181024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200316

R150 Certificate of patent or registration of utility model

Ref document number: 6678044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250