WO2016143651A1 - Oil-water separating material and oil-water separation method - Google Patents

Oil-water separating material and oil-water separation method Download PDF

Info

Publication number
WO2016143651A1
WO2016143651A1 PCT/JP2016/056543 JP2016056543W WO2016143651A1 WO 2016143651 A1 WO2016143651 A1 WO 2016143651A1 JP 2016056543 W JP2016056543 W JP 2016056543W WO 2016143651 A1 WO2016143651 A1 WO 2016143651A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
oil
group
composite particles
particles
Prior art date
Application number
PCT/JP2016/056543
Other languages
French (fr)
Japanese (ja)
Inventor
英夫 澤田
Original Assignee
日本化学工業株式会社
国立大学法人弘前大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化学工業株式会社, 国立大学法人弘前大学 filed Critical 日本化学工業株式会社
Publication of WO2016143651A1 publication Critical patent/WO2016143651A1/en

Links

Images

Definitions

  • the present invention relates to an oil / water separator and an oil / water separation method.
  • Fluorine compounds can be expected to be applied to paints and cosmetics, taking advantage of their water / oil repellency, oxygen permeability, and low refractive index. However, since the fluorine-based compound has too high water and oil repellency, it is difficult to maintain dispersion stability with respect to the non-fluorine raw material.
  • Fluorine compounds that exhibit high oil repellency in air have the disadvantage that the oil repellency disappears in water and the oil spreads wet.
  • wastewater containing oil is a major cause of environmental pollution and is required to be treated appropriately.
  • methods such as stationary separation such as specific gravity separation, centrifugal separation, and adsorption separation are used for oil-water separation treatment.
  • Patent Documents 1 to 3 have previously proposed various new functional materials using fluoroalkyl group-containing oligomers and imparting excellent characteristics resulting from the fluoroalkyl group-containing oligomers (eg, Patent Documents 1 to 3). reference).
  • Non-Patent Document 1 the present inventors previously proposed composite particles obtained by complexing polytetrafluoroethylene (also referred to as “PTFE”) particles with a fluoroalkyl group-containing oligomer (see Non-Patent Document 1).
  • PTFE polytetrafluoroethylene
  • the inventors of the present invention have prepared a condensate obtained by condensing a fluoroalkyl group-containing oligomer having an alkoxysilyl group represented by the following general formula (1) and a composite particle containing a specific component, which contains water and oil. It can be suitably used as an oil / water separator that separates water and oil from the liquid. Furthermore, it has been found that water and oil emulsions can be suitably used as an oil / water separator, and the present invention has been completed.
  • an object of the present invention is to provide an oil / water separation material and an oil / water separation method capable of separating water and oil from a mixed liquid containing water and oil.
  • the first invention to be provided by the present invention is an oil-water separator using composite particles
  • the composite particle includes a condensate of a fluoroalkyl group-containing oligomer having an alkoxysilyl group represented by the following general formula (1) and any one of the following components (A) to (C): It is an oil-water separator.
  • a second invention to be provided by the present invention is an oil-water separation method characterized by bringing a mixed liquid containing water and oil into contact with the oil-water separator of the first invention.
  • a third invention to be provided by the present invention is an oil-water separation method characterized by bringing an emulsion containing water and oil into contact with the oil-water separator of the first invention.
  • water and oil can be separated from a mixed solution containing water and oil, and further, water and oil can be separated from an emulsion containing water and oil.
  • FIG. 3 is a photograph when a mixed liquid of 1,2-dichloroethane and water is separated using filter paper modified with the composite particles of the present invention in Evaluation 1 of Embodiment 1.
  • FIG. 3 is a photograph when a mixed liquid of 1,2-dichloroethane and water is separated using filter paper modified with the composite particles of the present invention in Evaluation 1 of Embodiment 1.
  • FIG. The photograph of the column for chromatography actually used for separation in Evaluation 2 of Embodiment 1.
  • 6 is an SEM photograph of the composite particle sample obtained in Example 6 of Embodiment 2.
  • FIG. 10 is an SEM photograph of the composite particle sample obtained in Example 7 of Embodiment 2.
  • FIG. 10 is an SEM photograph of the composite particle sample obtained in Example 8 of Embodiment 2.
  • the oil-water separator according to the present invention is a condensate obtained by condensing a fluoroalkyl group-containing oligo having an alkoxysilyl group represented by the following general formula (1) (hereinafter also referred to as “fluoroalkyl group-containing oligomer”). And (A) talc and crosslinked polystyrene, (B) condensate of methyltrimethoxysilane, and (C) composite particles containing one component selected from polytetrafluoroethylene particles. It is.
  • R 1 and R 2 may be the same group or different groups
  • Y in R 1 and R 2 represents a hydrogen atom, a fluorine atom or a chlorine atom
  • p and q are integers of 0 to 10
  • R 3 , R 4 and R 5 may be the same or different
  • R 3 , R 4 and R 5 are linear or branched alkyl groups having 1 to 5 carbon atoms.
  • M is an integer of 2 to 3.
  • Embodiment 1 Composite particles containing a fluoroalkyl group-containing oligomer and the component (A).
  • Embodiment 2 Composite particles containing a fluoroalkyl group-containing oligomer and the component (B).
  • Embodiment 3 Composite particles containing a fluoroalkyl group-containing oligomer and the component (C).
  • the condensate of the fluoroalkyl group-containing oligomer represented by the general formula (1) is mainly used for imparting excellent water repellency to the oil / water separator of the present invention.
  • Examples of the linear or branched alkyl group having 1 to 5 carbon atoms represented by R 3 , R 4 and R 5 in the general formula (1) include a methyl group, an ethyl group, a propyl group, a butyl group, and a pentyl group.
  • R 1 and R 2 — (CF 2 ) pY group, or —CF (CF 3 ) — [OCF 2 CF (CF 3 )] q—OC 3 F 7 group p and q is 0 to 10, preferably 0 to 3.
  • R 1 and R 2 are preferably —CF (CF 3 ) OC 3 F 7 .
  • the fluoroalkyl group-containing oligomer represented by the general formula (1) is produced, for example, by reacting a trialkoxyvinylsilane such as trimethoxyvinylsilane with a fluoroalkanoyl peroxide (for example, JP-A-2002-338691, JP, 2010-77383, A).
  • a fluoroalkanoyl peroxide for example, JP-A-2002-338691, JP, 2010-77383, A.
  • Talc (Mg 3 Si 4 O 10 (OH) 2 ) according to the component (A) of Embodiment 1 is a component that mainly imparts excellent lipophilicity to the oil-water separator of the present invention.
  • the talc it is preferable to use a fine talc from the viewpoint of producing fine composite particles, and the average particle size determined by the dynamic light scattering method is preferably 5 to 1000 nm, and preferably 20 to 500 nm. In the present invention, a commercially available talc can be suitably used.
  • the crosslinked polystyrene according to the component (A) of Embodiment 1 is used for imparting durability to a solvent and excellent oil / water separation ability to the oil / water separator of the present invention.
  • cross-linked polystyrene means monovinyl aromatic compounds such as styrene, vinyl xylene, vinyl naphthalene, chloromethyl styrene, and polyvinyl aromatic compounds such as divinyl benzene, divinyl toluene, divinyl xylene, divinyl naphthalene, trivinyl benzene, and the like. Is a cross-linked copolymer.
  • the physical properties of the crosslinked polystyrene it is preferable to use fine ones from the viewpoint of producing fine composite particles.
  • Fine crosslinked polystyrene is often agglomerated and it is difficult to measure the particle size of primary particles, but the average particle size of secondary particles obtained by a laser light scattering method is 0.1 to 500 ⁇ m, The thickness is preferably 5 to 200 ⁇ m.
  • a commercially available product can be suitably used as the crosslinked polystyrene.
  • the composite particle according to Embodiment 1 is a reaction raw material solution containing 1 to 500 mg, preferably 20 to 300 mg of talc and 5 to 800 mg, preferably 10 to 500 mg of crosslinkable polystyrene, in terms of a value converted to 100 mg of a fluoroalkyl group-containing oligomer. And is obtained by a reaction step of hydrolyzing the alkoxysilyl group of the fluoroalkyl group-containing oligomer, it is excellent in lipophilicity and water repellency, and further in durability and oil-water separation ability. It is preferable from the viewpoint.
  • methyltrimethoxysilane (b) is different from tetraethoxysilane (TEOS), which is a tetrafunctional alkoxysilane, and ⁇ Si—O—. Since the methyl group is directly substituted on the main chain, the function of the organic group can be expressed in the ⁇ Si—O— network even after the hydrolysis / condensation reaction.
  • TEOS tetraethoxysilane
  • ⁇ Si—O— tetraethoxysilane
  • methyltrimethoxysilane (b) can be used without particular limitation on physical properties and the like as long as it is industrially available.
  • the condensate of methyltrimethoxysilane is used to impart excellent lipophilicity to the oil-water separator according to the present invention while maintaining excellent water repellency due to the fluoroalkyl group-containing oligomer. .
  • the composite particles according to Embodiment 2 use a reaction raw material solution containing 0.01 to 10 ml, preferably 0.05 to 5 ml of methyltrimethoxysilane (b) in terms of a value converted to 100 mg of a fluoroalkyl group-containing oligomer. It is preferable that it is obtained by a reaction step in which an alkyl group-containing oligomer and methyltrimethoxysilane are hydrolyzed from the viewpoint of being excellent in lipophilicity and water repellency, and further excellent in oil / water separation ability.
  • the polytetrafluoroethylene particles according to the component (C) of Embodiment 3 are not particularly limited as long as they are industrially available, but are fine from the viewpoint of producing fine composite particles (1).
  • the average particle size determined by the dynamic light scattering method is 10 to 2000 nm, preferably 50 to 1000 nm.
  • commercially available polytetrafluoroethylene particles can be suitably used.
  • the composite particle according to Embodiment 3 is a value converted to 300 mg of a fluoroalkyl group-containing oligomer, and a reaction raw material solution containing 10 to 1000 mg, preferably 20 to 500 mg of polytetrafluoroethylene particles is used. It is preferable that it is obtained by a reaction step in which a decomposition reaction is performed, from the viewpoint of being excellent in lipophilicity and water repellency and further excellent in oil / water separation ability.
  • the composite particles of Embodiments 1 to 3 when the composite particles of Embodiments 1 to 3 further contain silica particles (D) to form composite particles, the oil / water separation performance can be improved.
  • the silica particles (D) that can be used are, for example, those produced by particle growth from sodium silicate or active silicic acid solution, those produced using an organic silicon compound as a raw material, fumed silica, silica gel, etc. There are no particular restrictions on the porous silica.
  • the average particle diameter of the silica particles (D) is 1 to 500 ⁇ m, preferably 3 to 100 ⁇ m. When the average particle diameter of the silica particles (D) is within the above range, the dispersibility of the composite particles in a solvent, a resin material, a base material, or the like is improved.
  • the composite particle further containing silica particles is a value converted to 300 mg of fluoroalkyl group-containing oligomer, and a reaction raw material solution containing 10 to 1000 mg, preferably 50 to 500 mg of silica particles (D) is used. It is preferable that it is obtained by a reaction step in which the contained oligomer is hydrolyzed from the viewpoint of being excellent in lipophilicity and water repellency and further improving oil-water separation ability.
  • the average particle diameter determined by the dynamic light scattering method is preferably 0.05 to 500 ⁇ m, preferably 0.1 to 300 ⁇ m.
  • the average particle diameter is within the above range, it is preferable in terms of good dispersibility in various dispersion solvents, resin materials, various base materials and the like.
  • the composite particles used in the present invention include a fluoroalkyl group-containing oligomer having an alkoxysilyl group represented by the general formula (1), (A) talc and crosslinked polystyrene, (b) methyltrimethoxysilane, and (C). It can manufacture by adding the catalyst chosen from an acid or an alkali in the reaction raw material solution containing the component chosen from a polytetrafluoroethylene particle, and performing a hydrolysis reaction of this fluoroalkyl group containing oligomer.
  • the composite particle according to Embodiment 1 is a reaction raw material solution containing 1 to 500 mg, preferably 20 to 300 mg of talc and 5 to 800 mg, preferably 10 to 500 mg of crosslinkable polystyrene, in terms of a value converted to 100 mg of a fluoroalkyl group-containing oligomer. It is preferable to carry out the hydrolysis reaction of the alkoxysilyl group of the fluoroalkyl group-containing oligomer from the viewpoint of obtaining a product having excellent lipophilicity and water repellency, and having excellent durability and oil-water separation ability.
  • the composite particles according to Embodiment 2 use a reaction raw material solution containing 0.01 to 10 ml, preferably 0.05 to 5 ml of methyltrimethoxysilane (b) in terms of a value converted to 100 mg of a fluoroalkyl group-containing oligomer. It is preferable to carry out a hydrolysis reaction between the alkyl group-containing oligomer and methyltrimethoxysilane from the viewpoint of obtaining a product having excellent lipophilicity and water repellency and also excellent oil / water separation ability.
  • the composite particle according to Embodiment 3 is a value converted to 300 mg of a fluoroalkyl group-containing oligomer, and a reaction raw material solution containing 10 to 1000 mg, preferably 20 to 500 mg of polytetrafluoroethylene particles is used. It is preferable to carry out the decomposition reaction from the viewpoint of obtaining a product that is excellent in lipophilicity and water repellency and further excellent in oil-water separation ability.
  • the composite particle further containing silica particles (D) is a value converted to 300 mg of fluoroalkyl group-containing oligomer, and a reaction raw material solution containing 10 to 1000 mg, preferably 50 to 500 mg of silica particles (D) is used. It is preferable to carry out the hydrolysis reaction of the alkyl group-containing oligomer from the viewpoint of being excellent in lipophilicity and water repellency and further improving oil-water separation ability.
  • reaction solvent for the reaction step a solvent that can dissolve the fluoroalkyl group-containing oligomer and is inert to the raw material components is used.
  • solvent for the reaction step for example, lower alcohols such as methanol, ethanol and isopropyl alcohol are preferably used.
  • the acid or alkali added to the reaction raw material solution is not particularly limited as long as it can hydrolyze alkoxysilane.
  • the alkali includes ammonium hydroxide, sodium hydroxide or water.
  • examples include potassium oxide
  • examples of the acid include sulfuric acid, hydrochloric acid, nitric acid, and acetic acid. From the viewpoint of high reactivity, ammonium hydroxide or hydrochloric acid is preferable, and ammonium hydroxide is particularly preferable.
  • the mixing amount of the acid or alkali added to the reaction raw material solution is not particularly limited and is appropriately selected.
  • the reaction temperature when the alkoxysilane is hydrolyzed by mixing an acid or alkali with the reaction raw material solution is ⁇ 5 to 50 ° C., preferably 0 to 30 ° C. If the reaction temperature is less than ⁇ 5 ° C., the hydrolysis rate of the alkoxysilane becomes too slow, so that the reaction efficiency is poor, and if it exceeds 50 ° C., the dispersion stability of the composite particles tends to be lowered.
  • the reaction time when the reaction raw material solution is mixed with an acid or an alkali for hydrolysis is not particularly limited and is appropriately selected, but is preferably 1 to 72 hours, particularly preferably 1 to 24 hours. It is.
  • the hydrolysis reaction can be further continued in the presence of a base as necessary for the purpose of improving the yield.
  • the base examples include ammonia, ethylenediamine, ammonium carbonate, ammonium hydrogen carbonate, ammonium formate, ammonium acetate, sodium carbonate, sodium hydrogen carbonate, and the like. is there.
  • the mixing amount of the base added to the reaction raw material solution is not particularly limited and is appropriately selected.
  • the reaction temperature at the time of hydrolysis by mixing a base with the reaction raw material solution is 20 to 100 ° C., preferably 50 to 100 ° C.
  • the reaction time is 1 hour or more, preferably 1 to 10 hours.
  • the reaction liquid containing the composite particles after completion of the reaction is used as it is as a modifying liquid for modifying the base material with the composite particles and using it as an oil-water separator, as will be described later. I can do it.
  • the oil / water separator according to the present invention uses the composite particles. Water and oil can be separated by bringing the oil / water separator according to the present invention into contact with a mixed liquid containing water and oil.
  • the composite particles can be used, for example, as an oil / water separator by the following two methods. (1) A method of modifying a base material insoluble in water with the composite particles. (2) A method in which the composite particle itself is used as a filter medium as it is.
  • an inorganic substance or an organic substance that is insoluble in water can be used as the base material according to (1).
  • the inorganic substance include glass fiber, silica, silica gel, alumina, slag wool, molecular sieve, zeolite, activated carbon, diatomaceous earth, sand, asbestos and the like.
  • the organic substance may be a natural polymer or a synthetic polymer. Examples of the natural polymer include cellulose, wool, cotton, silk and the like.
  • Examples of synthetic polymers include condensation-type or addition-type polymer polymers such as polyurethane, polyethylene terephthalate, nylon, and polycarbonate, and ethylenically unsaturated polymer polymers such as polyethylene, polypropylene, vinyl chloride, and vinyl acetate. It is done.
  • the shape of the substrate is not particularly limited, and examples thereof include strips, sponges, ribbons, fibrils, webs, mats, cottons, and nonwovens.
  • a commercially available filter paper or the like may be used as a base material for modifying.
  • the pore diameter of the filter paper is preferably 5 ⁇ m or less, preferably 0.1 to 3 ⁇ m from the viewpoint of efficient oil-water separation.
  • the method for modifying the substrate with the composite particles is not particularly limited as long as the method can fix or carry the composite particles on the surface or inside of the substrate.
  • a base material is brought into contact with a dispersion in which the composite particles are dispersed at a concentration of 0.1 to 50 wt% and then dried.
  • the contact between the dispersion and the substrate can be performed by a method of immersing the substrate in the dispersion, a method of spraying the substrate by spraying, a method of applying the dispersion to the substrate, or the like.
  • the reaction liquid containing the composite particles after the completion of the reaction may be used as it is.
  • FIG. 1 is a schematic view showing an embodiment in the case where a mixed liquid of water and oil is separated using a filter paper modified with composite particles.
  • a simple separation system (A) comprising a column (1b) and a modified filter paper (1a) is provided, and the modified filter paper (1a) is modified with the composite particles.
  • the mixed liquid (1) of water and oil charged into the column (1b) comes into contact with the modified filter paper (1a). Since oil (1 ′) passes through the modified filter paper (1a) and water cannot pass through the modified filter paper (1a), water and oil can be separated. If necessary, the separation operation can be performed under pressure or under reduced pressure in order to increase the separation efficiency. In this case, the oil (1 ′) may first pass through the modified filter paper (1a), and then the water may be delayed by the strong external force to pass through the modified filter paper (1a). Before elution, water and oil can be separated through the filter paper (1a) modified by means such as finishing the oil-water separation operation.
  • FIG. 2 is a schematic view showing one embodiment in the case where a mixed liquid of water and oil is separated using the composite particles as a filter medium.
  • a simple separation system including a filter medium layer (2a) including a column (2b) and a filter medium (2c).
  • the column (2b) is filled with the composite particles as a filter medium (2c) to form a filter medium layer (2a).
  • the filter medium (2c) and the mixed liquid can be brought into contact with each other. Since oil (1 ′) passes through the filter medium layer (2a) and water cannot pass through the filter medium layer (2a), water and oil can be separated. If necessary, the separation operation can be performed under reduced pressure in order to increase the separation efficiency.
  • the layer which filled the filter aid in the upper part and / or lower part of the filter medium (2a) can be provided if necessary.
  • the filter aid that can be used is not particularly limited and a wide variety of known ones can be used.
  • the mixed liquid of water and oil to be treated with the oil / water separator according to the present invention may be in a solution state or an emulsion.
  • the oil / water separator according to the present invention can be used for, for example, treatment of wastewater containing oil, means for separating or purifying water and oil at production sites in various industrial fields, and the like.
  • VM fluoroalkyl group-containing oligomer sample
  • GPC gel permeation chromatography
  • VM 100 mg was dissolved in 5 ml of methanol solution, 100 mg of talc (Asada Flour Mills average particle size; 131 nm) and cross-linked polystyrene in the amount shown in Table 2 (Tokyo Chemical Industry average particle size: 92 ⁇ m) were added, Next, a 25 wt% aqueous ammonia solution (2 ml) was added, and the mixture was stirred with a magnetic stirrer at room temperature (25 ° C.) for 1 hour to obtain a reaction solution sample.
  • the solvent was removed from the reaction solution sample under reduced pressure, and the resulting crude product was dispersed in methanol overnight. Subsequently, the target product was separated as a solid content by centrifugation, the obtained solid content was washed several times with methanol, and after removing the solvent, vacuum-dried at 50 ° C. to obtain the target product (composite particle sample). .
  • the obtained composite particle sample was measured by FT-IR. IR (KBr, cm ⁇ 1 ); 1600 (polystyrene), 1338, 1240 (C—F), 1016 (Si—O—Si), 750 (C—C), 1687 (C ⁇ C)
  • the contact angle of dodecane and water on the surface of the modified glass plate sample was evaluated using Drop Master 300 made by Kyowa Interface Science. The results are shown in Table 3. The contact angle was evaluated as a value 30 minutes after dropping water and dodecane. Moreover, what was processed only with VM was made into the blank 1, and what was processed only with the talc was evaluated as the blank 2, and the evaluation result was written together in Table 3.
  • Treated water 1 (mixed solution); 2 ml of a mixed solution of 1,2-dichloroethane and water (1: 1 vol.) was prepared. The water in the mixed solution was colored blue with copper sulfate pentahydrate.
  • Treated water 2 (emulsion); An emulsion was prepared by mixing 1,2-dichloroethane (5 ml), water (0.05 ml) and Span 80 (20 mg) as an emulsifier.
  • ⁇ Embodiment 2> ⁇ Examples 5 to 11 ⁇ VM was dissolved in an ethanol solution, and methyltrimethoxysilane was added to prepare a reaction raw material solution. Next, acetic acid was added, and the mixture was stirred with a magnetic stirrer at room temperature (25 ° C.) for 48 hours. Next, ammonium carbonate was added and reacted at 70 ° C. for 5 hours to obtain a reaction liquid sample. The amount of each reagent charged is as shown in Table 6. After completion of the reaction, the solvent was removed from the reaction solution sample under reduced pressure, then redispersed in methanol and centrifuged to obtain the desired product (composite particle sample) as a white powder.
  • Example 7 (Evaluation as oil / water separator) A chromatographic column (inner diameter: 10 mm) is packed with sea sand to a layer thickness of about 1 mm, and then 200 mg of the composite particle sample obtained in Example 7 (layer thickness of about 4 mm) is packed thereon. Sand was filled to a layer thickness of about 1 mm. Using this chromatography column, water-oil separation tests were conducted on the following three types of treated water. For treated water 1, instead of the composite particles of Example 7, SiO 2 (Wakogel C-500HG) and the composite particle sample of Comparative Example 3 were tested in the same manner.
  • Treated water 1 mixed solution
  • 2 ml of a mixed solution of 1,2-dichloroethane and water (1: 1 vol.) was prepared. The water in the mixed solution was colored blue with copper sulfate pentahydrate.
  • Treated water 2 emulsion
  • An emulsion was prepared by mixing 1,2-dichloroethane (5 ml), water (0.05 ml) and Span 80 (20 mg) as an emulsifier.
  • Treated water 3 emulsion
  • Toluene 5 ml
  • water (0.05 ml) and Span 80 (80 mg) as an emulsifier were mixed to prepare an emulsion.
  • Treated water 2; Table 9 shows the result of separating treated water 2.
  • the symbols in Table 9 indicate the following. A: No water is visually observed in the filtrate, and the oil recovery rate is high. ⁇ : No water is visually observed in the filtrate, and the oil recovery rate is low. ⁇ : Some water is visually observed in the filtrate. X: An emulsion is visually observed in the filtrate. Note) “-” in the table indicates no measurement.
  • FIG. 11 (a) by filtering the treated water 2 under reduced pressure using the composite particles of the present invention as a filter medium, only 1,2-dichloroethane passes through the filter medium layer, and the water from the emulsion. And 1,2-dichloroethane could be separated.
  • Treated water 3; Table 10 shows the result of separating the treated water 3.
  • the symbols in Table 10 indicate the following. A: No water is visually observed in the filtrate, and the oil recovery rate is high. ⁇ : No water is visually observed in the filtrate, and the oil recovery rate is low. ⁇ : Some water is visually observed in the filtrate. X: An emulsion is visually observed in the filtrate. Note) “-” in the table indicates no measurement.
  • FIG. 12 (a) by filtering the treated water 3 under reduced pressure using the composite particles of the present invention as a filter medium, only toluene passes through the filter medium layer, and water and toluene are separated from the emulsion. We were able to.
  • VM 300 mg was dissolved in 20 ml of methanol solution, and polytetrafluoroethylene particles (average particle size 282 nm, manufactured by Kitamura Co., Ltd.) and silica particles (particle size 5 to 20 ⁇ m Wakogel C-500HG) in the amounts shown in Table 11 were dissolved. Then, a 25 wt% aqueous ammonia solution (4 ml) was added, and the mixture was stirred with a magnetic stirrer at room temperature (25 ° C.) for 1 hour to obtain a reaction solution sample.
  • the solvent was removed from the reaction solution sample under reduced pressure, and the resulting crude product was dispersed in methanol overnight. Subsequently, the target product was separated as a solid content by centrifugation, the obtained solid content was washed several times with methanol, and after removing the solvent, vacuum-dried at 50 ° C. to obtain the target product (composite particle sample). .
  • Example 13 ⁇ VM (300 mg) was dissolved in 5 ml of methanol solution, polytetrafluoroethylene particles (average particle size 282 nm, manufactured by Kitamura Co., Ltd.) in the amount shown in Table 11 were added, and then 25 wt% aqueous ammonia solution (2 ml) was added. Then, stirring was performed at room temperature (25 ° C.) for 1 hour with a magnetic stirrer to obtain a reaction liquid sample. After completion of the reaction, the solvent was removed from the reaction solution sample under reduced pressure, and the resulting crude product was dispersed in methanol overnight.
  • the target product was separated as a solid content by centrifugation, the obtained solid content was washed several times with methanol, and after removing the solvent, vacuum-dried at 50 ° C. to obtain the target product (composite particle sample). .
  • Table 4 shows the results of separation treatment of treated water 1.
  • the symbols in Table 13 indicate the following.
  • Water is not visually observed in the filtrate.
  • Some water is visually observed in the filtrate.
  • X A lot of water is visually observed in the filtrate.
  • FIG. 13 by treating the treated water 1 using the composite particle sample of Example 12 as a filter medium, only 1,2-dichloroethane passes through the filter medium layer, and water and 1,2 -The dichloroethane could be separated.
  • treated water 1 was treated using silica particles as a filter medium, it was confirmed visually that water was mixed in the filtrate after filtration in addition to 1,2-dichloroethane.
  • Table 5 shows the results of separating the treated water 2.
  • the symbols in Table 5 indicate the following.
  • Water is not visually observed in the filtrate.
  • Some water is visually observed in the filtrate.
  • X An emulsion is visually observed in the filtrate.
  • FIG. 14A only the 1,2-dichloroethane passes through the filter medium layer by filtering the treated water 2 under reduced pressure using the composite particle sample of Example 13 as the filter medium. Water and 1,2-dichloroethane could be separated from the emulsion.
  • FIG. 14B when the treated water 2 is treated using silica particles as a filter medium, the emulsion passes through the filter medium layer to separate water and 1,2-dichloroethane from the emulsion. I could't.
  • Table 15 shows the result of separating the treated water 3.
  • the symbols in Table 15 indicate the following.
  • Water is not visually observed in the filtrate.
  • Some water is visually observed in the filtrate.
  • X An emulsion is visually observed in the filtrate.
  • FIG. 15 (a) by filtering the treated water 3 using the composite particle sample 6 as a filter medium, only toluene passes through the filter medium layer, and water and toluene can be separated from the emulsion. It was.
  • FIG. 15 (b) when the treated water 3 is treated using silica particles as a filter medium, the emulsion passes through the filter medium layer and water and toluene cannot be separated from the emulsion. It was.

Abstract

The purpose of the present invention is to provide: an oil-water separating material which is capable of separating water and an oil from a liquid mixture that contains water and the oil; and an oil-water separation method. The present invention is an oil-water separating material which uses composite particles, and which is characterized in that the composite particles contain a condensation product of a fluoroalkyl group-containing oligomer that has an alkoxysilyl group represented by general formula (1) and one of the components (A)-(C) described below. (A) talc and a crosslinked polystyrene (B) a condensation product of methyltrimethoxysilane (C) polytetrafluoroethylene particles (In the formula, R1 and R2 may be the same as or different from each other, and each represents a -(CF2)p-Y group or -CF(CF3)-[OCF2CF(CF3)]q-OC3F7 group; Y in the R1 and R2 moieties represents a hydrogen atom, a fluorine atom or a chlorine atom; each of p and q in the R1 and R2 moieties represents an integer of 0-10; R3, R4 and R5 may be the same as or different from each other, and each represents a linear or branched alkyl group having 1-5 carbon atoms; and m represents an integer of 2 or 3.)

Description

油水分離材および油水分離方法Oil / water separation material and oil / water separation method
 本発明は、油水分離材および油水分離方法に関するものである。 The present invention relates to an oil / water separator and an oil / water separation method.
 フッ素化合物は、撥水・撥油性、酸素透過性、低屈折率などの特徴を活かして塗料や化粧品等への応用が期待できる。しかしながら、フッ素系化合物は撥水・撥油性が高すぎるため非フッ素原料に対して、分散安定性を保持させることが難しい。 Fluorine compounds can be expected to be applied to paints and cosmetics, taking advantage of their water / oil repellency, oxygen permeability, and low refractive index. However, since the fluorine-based compound has too high water and oil repellency, it is difficult to maintain dispersion stability with respect to the non-fluorine raw material.
 また、空気中で高い撥油性を発現するフッ素化合物は、水中では逆に撥油性が消失し、油が濡れ拡がるという欠点がある。 Fluorine compounds that exhibit high oil repellency in air have the disadvantage that the oil repellency disappears in water and the oil spreads wet.
 また、油分を含んだ廃水は、環境を汚染する大きな原因となり、適切に処理することが求められている。従来、油水分離処理には、比重分離等の静置分離、遠心分離、吸着分離等の方法が用いられている。 Also, wastewater containing oil is a major cause of environmental pollution and is required to be treated appropriately. Conventionally, methods such as stationary separation such as specific gravity separation, centrifugal separation, and adsorption separation are used for oil-water separation treatment.
 しかし、静置分離は多大な時間を要し、遠心分離は大がかりな装置を必要とし、吸着分離は大量の油水混合液の処理に不向きである。 However, stationary separation takes a lot of time, centrifugation requires a large-scale apparatus, and adsorption separation is unsuitable for processing a large amount of oil-water mixture.
 本発明者らは、先にフルオロアルキル基含有オリゴマーを用い、フルオロアルキル基含有オリゴマーに起因した優れた特性を付与した各種の新しい機能性材料を提案している(例えば、特許文献1~3等参照)。 The present inventors have previously proposed various new functional materials using fluoroalkyl group-containing oligomers and imparting excellent characteristics resulting from the fluoroalkyl group-containing oligomers (eg, Patent Documents 1 to 3). reference).
 また、本発明者らは、先にポリテトラフルオロエチレン(「PTFE」とも言われる)粒子を、フルオロアルキル基含有オリゴマーで複合化処理したコンポジット粒子を提案した(非特許文献1参照。)。 In addition, the present inventors previously proposed composite particles obtained by complexing polytetrafluoroethylene (also referred to as “PTFE”) particles with a fluoroalkyl group-containing oligomer (see Non-Patent Document 1).
特開2010-209300号公報JP 2010-209300 A 特開2010-235943号公報JP 2010-235943 A 特開2013-185071号公報JP 2013-185071 A
 本発明者らは、下記一般式(1)で表されるアルコキシシリル基を有するフルオロアルキル基含有オリゴマーを縮合させた縮合物と、特定の成分を含有するコンポジット粒子は、水と油を含む混合液から水と油を分離する油水分離材として好適に利用できること。更に水と油のエマルションに対しても、油水分離材として好適に利用することができることを知見し、本発明を完成するに到った。 The inventors of the present invention have prepared a condensate obtained by condensing a fluoroalkyl group-containing oligomer having an alkoxysilyl group represented by the following general formula (1) and a composite particle containing a specific component, which contains water and oil. It can be suitably used as an oil / water separator that separates water and oil from the liquid. Furthermore, it has been found that water and oil emulsions can be suitably used as an oil / water separator, and the present invention has been completed.
 従って、本発明の目的は、水と油を含む混合液から水と油を分離することが出来る油水分離材及び油水分離方法を提供することにある。 Therefore, an object of the present invention is to provide an oil / water separation material and an oil / water separation method capable of separating water and oil from a mixed liquid containing water and oil.
 すなわち、本発明が提供しようとする第一の発明は、コンポジット粒子を用いた油水分離材であって、
 該コンポジット粒子が、下記一般式(1)で表されるアルコキシシリル基を有するフルオロアルキル基含有オリゴマーの縮合物と、下記の(A)~(C)の何れか1つの成分を含むことを特徴とする油水分離材である。
 (A)タルク及び架橋ポリスチレン、
 (B)メチルトリメトキシシランの縮合物、
 (C)ポリテトラフルオロエチレン粒子
Figure JPOXMLDOC01-appb-C000002

(式中、R1及びR2は、-(CF2)p-Y基、又は-CF(CF3)-[OCF2CF(CF3)]q-OC37基を示し、R1及びR2は、同一の基であっても異なる基であってもよく、R1及びR2中のYは水素原子、フッ素原子又は塩素原子を示し、p及びqは0~10の整数である。R3、R4及びR5は同一の基であっても異なる基であってもよく、R3、R4及びR5は炭素数1~5の直鎖状若しくは分岐状のアルキル基を示す。mは2~3の整数である。)
That is, the first invention to be provided by the present invention is an oil-water separator using composite particles,
The composite particle includes a condensate of a fluoroalkyl group-containing oligomer having an alkoxysilyl group represented by the following general formula (1) and any one of the following components (A) to (C): It is an oil-water separator.
(A) Talc and cross-linked polystyrene,
(B) a condensate of methyltrimethoxysilane,
(C) Polytetrafluoroethylene particles
Figure JPOXMLDOC01-appb-C000002

(Wherein, R 1 and R 2, - (CF 2) p- Y group, or -CF (CF 3) - [OCF 2 CF (CF 3)] indicates the q-OC 3 F 7 group, R 1 And R 2 may be the same group or different groups, Y in R 1 and R 2 represents a hydrogen atom, a fluorine atom or a chlorine atom, and p and q are integers of 0 to 10 R 3 , R 4 and R 5 may be the same or different, and R 3 , R 4 and R 5 are linear or branched alkyl groups having 1 to 5 carbon atoms. M is an integer of 2 to 3.)
 また、本発明が提供しようとする第二の発明は、前記第一の発明の油水分離材に、水と油を含む混合液を接触させることを特徴とする油水分離方法である。 Further, a second invention to be provided by the present invention is an oil-water separation method characterized by bringing a mixed liquid containing water and oil into contact with the oil-water separator of the first invention.
 また、本発明が提供しようとする第三の発明は、前記第一の発明の油水分離材に、水と油を含むエマルションを接触させることを特徴とする油水分離方法である。 Further, a third invention to be provided by the present invention is an oil-water separation method characterized by bringing an emulsion containing water and oil into contact with the oil-water separator of the first invention.
 本発明の油水分離材によれば、水と油を含む混合液から水と油を分離することができ、更に水と油を含むエマルションから水と油を分離することができる。 According to the oil / water separator of the present invention, water and oil can be separated from a mixed solution containing water and oil, and further, water and oil can be separated from an emulsion containing water and oil.
本発明の油水分離材を用いて油水分離を行う実施形態の一つを示す概略図。Schematic which shows one of embodiment which performs oil-water separation using the oil-water separation material of this invention. 本発明の油水分離材を用いて油水分離を行う実施形態の一つを示す概略図。Schematic which shows one of embodiment which performs oil-water separation using the oil-water separation material of this invention. 実施形態1の評価1で、本発明のコンポジット粒子で改質した濾紙を用いて1,2-ジクロロエタンと水の混合液を分離処理した際の写真。FIG. 3 is a photograph when a mixed liquid of 1,2-dichloroethane and water is separated using filter paper modified with the composite particles of the present invention in Evaluation 1 of Embodiment 1. FIG. 実施形態1の評価2で、実際に分離に用いたクロマトグラフィー用カラムの写真。The photograph of the column for chromatography actually used for separation in Evaluation 2 of Embodiment 1. 実施形態1の評価2で、濾過材として本発明のコンポジット粒子を用い、処理水1を分離処理した際の写真。The photograph at the time of carrying out the separation process of the treated water 1 using the composite particle | grains of this invention as evaluation material 2 of Embodiment 1. FIG. 実施形態1の評価2で、濾過材として本発明のコンポジット粒子(a)又はWakogel C-500HG(b)を用い、処理水2を分離処理した際の写真。The photograph at the time of separation-processing of the treated water 2 using the composite particle (a) or Wakogel C-500HG (b) of the present invention as a filter material in Evaluation 2 of Embodiment 1. 実施形態2の実施例6で得られたコンポジット粒子試料のSEM写真。6 is an SEM photograph of the composite particle sample obtained in Example 6 of Embodiment 2. FIG. 実施形態2の実施例7で得られたコンポジット粒子試料のSEM写真。10 is an SEM photograph of the composite particle sample obtained in Example 7 of Embodiment 2. FIG. 実施形態2の実施例8で得られたコンポジット粒子試料のSEM写真。10 is an SEM photograph of the composite particle sample obtained in Example 8 of Embodiment 2. FIG. 実施形態2で濾過材として、実施例7のコンポジット粒子を用い、処理水1を分離処理した際の写真。The photograph at the time of separating the treated water 1 using the composite particle of Example 7 as a filtering material in Embodiment 2. 実施形態2で濾過材として、実施例7のコンポジット粒子(a)、SiO2(b)をそれぞれ用い、処理水2を分離処理した際の写真。As filtering material in the second embodiment, the composite particles of Example 7 (a), using SiO 2 and (b) respectively, picture of the treated water 2 separate treatment. 実施形態2で濾過材として、実施例7のコンポジット粒子(a)、SiO2(b)をそれぞれ用い、処理水3を分離処理した際の写真。As filtering material in the second embodiment, the composite particles of Example 7 (a), using SiO 2 and (b) each photo upon separation the treated water 3. 実施形態3で濾過材として、実施例12のコンポジット粒子試料を用い、処理水1を分離処理した際の写真。The photograph at the time of carrying out the separation process of the treated water 1 using the composite particle sample of Example 12 as a filter medium in Embodiment 3. FIG. 実施形態3で濾過材として、実施例13のコンポジット粒子試料(a)、比較例6のシリカ粒子(b)をそれぞれ用い、処理水2を分離処理した際の写真。The photograph at the time of carrying out the separation process of the treated water 2 using the composite particle sample (a) of Example 13 and the silica particle (b) of the comparative example 6 as a filtering material in Embodiment 3, respectively. 実施形態3で濾過材として、実施例12のコンポジット粒子試料(a)、比較例7のシリカ粒子(b)をそれぞれ用い、処理水3を分離処理した際の写真。The photograph at the time of carrying out the separation process of the treated water 3 using the composite particle sample (a) of Example 12 and the silica particle (b) of the comparative example 7 as a filtering material in Embodiment 3, respectively.
 以下、本発明をその好ましい実施形態に基づき説明する。
 本発明に係る油水分離材は、下記一般式(1)で表されるアルコキシシリル基を有するフルオロアルキル基含有オリゴー(以下、「フルオロアルキル基含有オリゴマー」ということもある)を縮合させた縮合物と、(A)タルク及び架橋ポリスチレン、(B)メチルトリメトキシシランの縮合物、及び(C)ポリテトラフルオロエチレン粒子から選ばれる1種の成分を含むコンポジット粒子を用いたことを特徴とするものである。
Figure JPOXMLDOC01-appb-C000003

(式中、R1及びR2は、-(CF2)p-Y基、又は-CF(CF3)-[OCF2CF(CF3)]q-OC37基を示し、R1及びR2は、同一の基であっても異なる基であってもよく、R1及びR2中のYは水素原子、フッ素原子又は塩素原子を示し、p及びqは0~10の整数である。R3、R4及びR5は同一の基であっても異なる基であってもよく、R3、R4及びR5は炭素数1~5の直鎖状若しくは分岐状のアルキル基を示す。mは2~3の整数である。)
Hereinafter, the present invention will be described based on preferred embodiments thereof.
The oil-water separator according to the present invention is a condensate obtained by condensing a fluoroalkyl group-containing oligo having an alkoxysilyl group represented by the following general formula (1) (hereinafter also referred to as “fluoroalkyl group-containing oligomer”). And (A) talc and crosslinked polystyrene, (B) condensate of methyltrimethoxysilane, and (C) composite particles containing one component selected from polytetrafluoroethylene particles. It is.
Figure JPOXMLDOC01-appb-C000003

(Wherein, R 1 and R 2, - (CF 2) p- Y group, or -CF (CF 3) - [OCF 2 CF (CF 3)] indicates the q-OC 3 F 7 group, R 1 And R 2 may be the same group or different groups, Y in R 1 and R 2 represents a hydrogen atom, a fluorine atom or a chlorine atom, and p and q are integers of 0 to 10 R 3 , R 4 and R 5 may be the same or different, and R 3 , R 4 and R 5 are linear or branched alkyl groups having 1 to 5 carbon atoms. M is an integer of 2 to 3.)
 即ち、本発明に係る油水分離材は、下記の三つの実施形態のコンポジット粒子の一つを用いるものである。
 実施形態1;フルオロアルキル基含有オリゴマーと、(A)の成分を含有するコンポジット粒子。
 実施形態2;フルオルアルキル基含有オリゴマーと、(B)の成分を含有するコンポジット粒子。
 実施形態3;フルオルアルキル基含有オリゴマーと、(C)の成分を含有するコンポジット粒子。
That is, the oil / water separator according to the present invention uses one of the composite particles of the following three embodiments.
Embodiment 1 Composite particles containing a fluoroalkyl group-containing oligomer and the component (A).
Embodiment 2: Composite particles containing a fluoroalkyl group-containing oligomer and the component (B).
Embodiment 3: Composite particles containing a fluoroalkyl group-containing oligomer and the component (C).
 一般式(1)で表されるフルオロアルキル基含有オリゴマーの縮合物は、本発明の油水分離材に、主に優れた撥水性を付与するために用いられる。 The condensate of the fluoroalkyl group-containing oligomer represented by the general formula (1) is mainly used for imparting excellent water repellency to the oil / water separator of the present invention.
 一般式(1)中のR3、R4及びR5で示される炭素数1~5の直鎖状又は分岐状のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基等が挙げられる。
 一般式(1)中のR1及びR2の-(CF2)p-Y基、又は-CF(CF3)-[OCF2CF(CF3)]q-OC37基のp及びqは、0~10、好ましくは0~3である。特にR1及びR2は、-CF(CF3)OC37であることが好ましい。
Examples of the linear or branched alkyl group having 1 to 5 carbon atoms represented by R 3 , R 4 and R 5 in the general formula (1) include a methyl group, an ethyl group, a propyl group, a butyl group, and a pentyl group. Etc.
In formula (1), R 1 and R 2 — (CF 2 ) pY group, or —CF (CF 3 ) — [OCF 2 CF (CF 3 )] q—OC 3 F 7 group p and q is 0 to 10, preferably 0 to 3. In particular, R 1 and R 2 are preferably —CF (CF 3 ) OC 3 F 7 .
 一般式(1)で表されるフルオロアルキル基含有オリゴマーは、例えば、トリメトキシビニルシラン等のトリアルコキシビニルシランを過酸化フルオロアルカノイルと反応させることにより製造される(例えば、特開2002-338691号公報、特開2010-77383号公報参照)。 The fluoroalkyl group-containing oligomer represented by the general formula (1) is produced, for example, by reacting a trialkoxyvinylsilane such as trimethoxyvinylsilane with a fluoroalkanoyl peroxide (for example, JP-A-2002-338691, JP, 2010-77383, A).
 実施形態1の(A)の成分に係るタルク(Mg3Si410(OH)2)は、本発明の油水分離材に、主に優れた親油性を付与する成分である。 Talc (Mg 3 Si 4 O 10 (OH) 2 ) according to the component (A) of Embodiment 1 is a component that mainly imparts excellent lipophilicity to the oil-water separator of the present invention.
 タルクは、微細なコンポジット粒子を製造する観点から微細なものを用いることが好ましく、動的光散乱法により求められる平均粒子径が5~1000nm、好ましくは20~500nmであることが好ましい。本発明においてタルクは、市販品を好適に用いることが出来る。 As the talc, it is preferable to use a fine talc from the viewpoint of producing fine composite particles, and the average particle size determined by the dynamic light scattering method is preferably 5 to 1000 nm, and preferably 20 to 500 nm. In the present invention, a commercially available talc can be suitably used.
 実施形態1の(A)の成分に係る架橋ポリスチレンは、本発明の油水分離材に溶剤への耐久性及び優れた油水分離能を付与するために用いられる。 The crosslinked polystyrene according to the component (A) of Embodiment 1 is used for imparting durability to a solvent and excellent oil / water separation ability to the oil / water separator of the present invention.
 本発明において、架橋ポリスチレンとは、スチレン、ビニルキシレン、ビニルナフタレン、クロロメチルスチレン等のモノビニル芳香族化合物と、ジビニルベンゼン、ジビニルトルエン、ジビニルキシレン、ジビニルナフタレン、トリビニルベンゼン等のポリビニル芳香族化合物との架橋共重合体である。 In the present invention, cross-linked polystyrene means monovinyl aromatic compounds such as styrene, vinyl xylene, vinyl naphthalene, chloromethyl styrene, and polyvinyl aromatic compounds such as divinyl benzene, divinyl toluene, divinyl xylene, divinyl naphthalene, trivinyl benzene, and the like. Is a cross-linked copolymer.
 架橋ポリスチレンの物性は、微細なコンポジット粒子を製造する観点から微細なものを用いることが好ましい。微細な架橋ポリスチレンは、凝集している場合が多く、一次粒子の粒子径を測定することは困難であるが、レーザー光散乱法により求められる二次粒子の平均粒子径が0.1~500μm、好ましくは5~200μmであればよい。本発明において架橋ポリスチレンは、市販品を好適に用いることが出来る。 As the physical properties of the crosslinked polystyrene, it is preferable to use fine ones from the viewpoint of producing fine composite particles. Fine crosslinked polystyrene is often agglomerated and it is difficult to measure the particle size of primary particles, but the average particle size of secondary particles obtained by a laser light scattering method is 0.1 to 500 μm, The thickness is preferably 5 to 200 μm. In the present invention, a commercially available product can be suitably used as the crosslinked polystyrene.
 実施形態1に係るコンポジット粒子は、フルオロアルキル基含有オリゴマー100mgに換算した値で、タルクを1~500mg、好ましくは20~300mg、架橋性ポリスチレンを5~800mg、好ましくは10~500mg含む反応原料溶液を用い、フルオロアルキル基含有オリゴマーのアルコキシシリル基の加水分解反応を行う反応工程により得られるものであることが、親油性、撥水性に優れ、更に耐久性及び油水分離能が優れたものになる観点から好ましい。 The composite particle according to Embodiment 1 is a reaction raw material solution containing 1 to 500 mg, preferably 20 to 300 mg of talc and 5 to 800 mg, preferably 10 to 500 mg of crosslinkable polystyrene, in terms of a value converted to 100 mg of a fluoroalkyl group-containing oligomer. And is obtained by a reaction step of hydrolyzing the alkoxysilyl group of the fluoroalkyl group-containing oligomer, it is excellent in lipophilicity and water repellency, and further in durability and oil-water separation ability. It is preferable from the viewpoint.
 実施形態2の(B)成分に係るメチルトリメトキシシランの縮合物において、メチルトリメトキシシラン(b)は、4官能性アルコキシシランであるテトラエトキシシラン(TEOS)とは異なり、≡Si-O-主鎖にメチル基が直接置換しているため、加水分解・縮合反応後においても≡Si-O-ネットワーク内に有機基の機能を発現させることが出来る。本発明において、メチルトリメトキシシラン(b)は、工業的に入手できるものであれば、特に物性等に制限なく用いることができる。本発明において、メチルトリメトキシシランの縮合物は、フルオロアルキル基含有オリゴマーに起因した優れた撥水性を維持しながら、更に本発明に係る油水分離材に優れた親油性も付与するのに用いられる。 In the condensate of methyltrimethoxysilane according to component (B) of Embodiment 2, methyltrimethoxysilane (b) is different from tetraethoxysilane (TEOS), which is a tetrafunctional alkoxysilane, and ≡Si—O—. Since the methyl group is directly substituted on the main chain, the function of the organic group can be expressed in the ≡Si—O— network even after the hydrolysis / condensation reaction. In the present invention, methyltrimethoxysilane (b) can be used without particular limitation on physical properties and the like as long as it is industrially available. In the present invention, the condensate of methyltrimethoxysilane is used to impart excellent lipophilicity to the oil-water separator according to the present invention while maintaining excellent water repellency due to the fluoroalkyl group-containing oligomer. .
 実施形態2に係るコンポジット粒子は、フルオロアルキル基含有オリゴマー100mgに換算した値で、メチルトリメトキシシラン(b)が0.01~10ml、好ましくは0.05~5ml含む反応原料溶液を用い、フルオロアルキル基含有オリゴマーとメチルトリメトキシシランの加水分解反応を行う反応工程により得られるものであることが、親油性、撥水性に優れ、更に油水分離能にも優れたものになる観点から好ましい。 The composite particles according to Embodiment 2 use a reaction raw material solution containing 0.01 to 10 ml, preferably 0.05 to 5 ml of methyltrimethoxysilane (b) in terms of a value converted to 100 mg of a fluoroalkyl group-containing oligomer. It is preferable that it is obtained by a reaction step in which an alkyl group-containing oligomer and methyltrimethoxysilane are hydrolyzed from the viewpoint of being excellent in lipophilicity and water repellency, and further excellent in oil / water separation ability.
 実施形態3の(C)成分に係るポリテトラフルオロエチレン粒子は、工業的に入手できるものであれば、特に制限されるものではないが、微細なコンポジット粒子(1)を製造する観点から微細なものを用いることが好ましく、動的光散乱法により求められる平均粒子径が10~2000nm、好ましくは50~1000nmであることが好ましい。本発明においては、ポリテトラフルオロエチレン粒子は市販品を好適に用いることが出来る。 The polytetrafluoroethylene particles according to the component (C) of Embodiment 3 are not particularly limited as long as they are industrially available, but are fine from the viewpoint of producing fine composite particles (1). Preferably, the average particle size determined by the dynamic light scattering method is 10 to 2000 nm, preferably 50 to 1000 nm. In the present invention, commercially available polytetrafluoroethylene particles can be suitably used.
 実施形態3に係るコンポジット粒子は、フルオロアルキル基含有オリゴマー300mgに換算した値で、ポリテトラフルオロエチレン粒子が10~1000mg、好ましくは20~500mg含む反応原料溶液を用い、フルオロアルキル基含有オリゴマーの加水分解反応を行う反応工程により得られるものであることが、親油性、撥水性に優れ、更に油水分離能にも優れたものになる観点から好ましい。 The composite particle according to Embodiment 3 is a value converted to 300 mg of a fluoroalkyl group-containing oligomer, and a reaction raw material solution containing 10 to 1000 mg, preferably 20 to 500 mg of polytetrafluoroethylene particles is used. It is preferable that it is obtained by a reaction step in which a decomposition reaction is performed, from the viewpoint of being excellent in lipophilicity and water repellency and further excellent in oil / water separation ability.
 本発明の油水分離材において、前記実施形態1~3のコンポジット粒子に、更にシリカ粒子(D)を含有させてコンポジット粒子としたものを用いると、油水分離性能を向上させることができる。特に、本発明において、前記実施形態3のコンポジット粒子に、更にシリカ粒子(D)を含有させてコンポジット粒子としたものを用いると、いっそう油水分離性能が向上したものが得られるという観点から好ましい。 In the oil / water separator of the present invention, when the composite particles of Embodiments 1 to 3 further contain silica particles (D) to form composite particles, the oil / water separation performance can be improved. In particular, in the present invention, it is preferable to use the composite particles of Embodiment 3 that further contain silica particles (D) to obtain composite particles having improved oil-water separation performance.
 用いることができるシリカ粒子(D)は、例えば、珪酸ソーダ又は活性珪酸溶液から粒子成長を行って製造されたものや、有機珪素化合物を原料として製造されたものや、ヒュームドシリカ、或いはシリカゲル等の多孔質シリカ等が挙げられるが、特に制限されない。 The silica particles (D) that can be used are, for example, those produced by particle growth from sodium silicate or active silicic acid solution, those produced using an organic silicon compound as a raw material, fumed silica, silica gel, etc. There are no particular restrictions on the porous silica.
 シリカ粒子(D)の平均粒子径は、1~500μm、好ましくは3~100μmである。シリカ粒子(D)の平均粒子径が、上記範囲内にあることにより、溶媒、樹脂材料又は基材等へのコンポジット粒子の分散性が良好となる。 The average particle diameter of the silica particles (D) is 1 to 500 μm, preferably 3 to 100 μm. When the average particle diameter of the silica particles (D) is within the above range, the dispersibility of the composite particles in a solvent, a resin material, a base material, or the like is improved.
(D)シリカ粒子を更に含有するコンポジット粒子は、フルオロアルキル基含有オリゴマー300mgに換算した値で、シリカ粒子(D)を10~1000mg、好ましくは50~500mg含む反応原料溶液を用い、フルオロアルキル基含有オリゴマーの加水分解反応を行う反応工程により得られるものであることが、親油性、撥水性に優れ、更に油水分離能も向上したものになる観点から好ましい。 (D) The composite particle further containing silica particles is a value converted to 300 mg of fluoroalkyl group-containing oligomer, and a reaction raw material solution containing 10 to 1000 mg, preferably 50 to 500 mg of silica particles (D) is used. It is preferable that it is obtained by a reaction step in which the contained oligomer is hydrolyzed from the viewpoint of being excellent in lipophilicity and water repellency and further improving oil-water separation ability.
 また、本発明において、コンポジット粒子の他の好ましい物性としては、動的光散乱法により求められる平均粒子径が好ましくは0.05~500μm、好ましくは0.1~300μmである。平均粒子径が前記範囲内にあると、種々の分散溶媒、樹脂材料、各種基材等への分散性が良好である点で好ましい。 In the present invention, as another preferable physical property of the composite particles, the average particle diameter determined by the dynamic light scattering method is preferably 0.05 to 500 μm, preferably 0.1 to 300 μm. When the average particle diameter is within the above range, it is preferable in terms of good dispersibility in various dispersion solvents, resin materials, various base materials and the like.
 本発明で用いるコンポジット粒子は、前記一般式(1)で表されるアルコキシシリル基を有するフルオロアルキル基含有オリゴマーと、(A)タルク及び架橋ポリスチレン、(b)メチルトリメトキシシラン、及び(C)ポリテトラフルオロエチレン粒子から選ばれる成分を含む反応原料溶液中に、酸又はアルカリから選ばれる触媒を添加し、該フルオロアルキル基含有オリゴマーの加水分解反応を行うことにより製造することが出来る。 The composite particles used in the present invention include a fluoroalkyl group-containing oligomer having an alkoxysilyl group represented by the general formula (1), (A) talc and crosslinked polystyrene, (b) methyltrimethoxysilane, and (C). It can manufacture by adding the catalyst chosen from an acid or an alkali in the reaction raw material solution containing the component chosen from a polytetrafluoroethylene particle, and performing a hydrolysis reaction of this fluoroalkyl group containing oligomer.
 実施形態1に係るコンポジット粒子は、フルオロアルキル基含有オリゴマー100mgに換算した値で、タルクを1~500mg、好ましくは20~300mg、架橋性ポリスチレンを5~800mg、好ましくは10~500mg含む反応原料溶液を用い、フルオロアルキル基含有オリゴマーのアルコキシシリル基の加水分解反応を行うことが、親油性、撥水性に優れ、更に耐久性及び油水分離能が優れたものが得られる観点から好ましい。 The composite particle according to Embodiment 1 is a reaction raw material solution containing 1 to 500 mg, preferably 20 to 300 mg of talc and 5 to 800 mg, preferably 10 to 500 mg of crosslinkable polystyrene, in terms of a value converted to 100 mg of a fluoroalkyl group-containing oligomer. It is preferable to carry out the hydrolysis reaction of the alkoxysilyl group of the fluoroalkyl group-containing oligomer from the viewpoint of obtaining a product having excellent lipophilicity and water repellency, and having excellent durability and oil-water separation ability.
 実施形態2に係るコンポジット粒子は、フルオロアルキル基含有オリゴマー100mgに換算した値で、メチルトリメトキシシラン(b)が0.01~10ml、好ましくは0.05~5ml含む反応原料溶液を用い、フルオロアルキル基含有オリゴマーとメチルトリメトキシシランの加水分解反応を行うことが、親油性、撥水性に優れ、更に油水分離能にも優れたものが得られる観点から好ましい。 The composite particles according to Embodiment 2 use a reaction raw material solution containing 0.01 to 10 ml, preferably 0.05 to 5 ml of methyltrimethoxysilane (b) in terms of a value converted to 100 mg of a fluoroalkyl group-containing oligomer. It is preferable to carry out a hydrolysis reaction between the alkyl group-containing oligomer and methyltrimethoxysilane from the viewpoint of obtaining a product having excellent lipophilicity and water repellency and also excellent oil / water separation ability.
 実施形態3に係るコンポジット粒子は、フルオロアルキル基含有オリゴマー300mgに換算した値で、ポリテトラフルオロエチレン粒子が10~1000mg、好ましくは20~500mg含む反応原料溶液を用い、フルオロアルキル基含有オリゴマーの加水分解反応を行うことが、親油性、撥水性に優れ、更に油水分離能にも優れたものが得られる観点から好ましい。 The composite particle according to Embodiment 3 is a value converted to 300 mg of a fluoroalkyl group-containing oligomer, and a reaction raw material solution containing 10 to 1000 mg, preferably 20 to 500 mg of polytetrafluoroethylene particles is used. It is preferable to carry out the decomposition reaction from the viewpoint of obtaining a product that is excellent in lipophilicity and water repellency and further excellent in oil-water separation ability.
 また、更にシリカ粒子(D)を含有するコンポジット粒子は、フルオロアルキル基含有オリゴマー300mgに換算した値で、シリカ粒子(D)を10~1000mg、好ましくは50~500mg含む反応原料溶液を用い、フルオロアルキル基含有オリゴマーの加水分解反応を行うことが、親油性、撥水性に優れ、更に油水分離能も向上したものになる観点から好ましい。 Further, the composite particle further containing silica particles (D) is a value converted to 300 mg of fluoroalkyl group-containing oligomer, and a reaction raw material solution containing 10 to 1000 mg, preferably 50 to 500 mg of silica particles (D) is used. It is preferable to carry out the hydrolysis reaction of the alkyl group-containing oligomer from the viewpoint of being excellent in lipophilicity and water repellency and further improving oil-water separation ability.
 反応工程に係る反応溶媒としては、前記フルオロアルキル基含有オリゴマーが溶解でき、原料成分に対して不活性なものが用いられる。反応工程に係る溶媒としては、例えば、メタノール、エタノール、イソプロピルアルコール等の低級アルコールが好ましく用いられる。 As the reaction solvent for the reaction step, a solvent that can dissolve the fluoroalkyl group-containing oligomer and is inert to the raw material components is used. As the solvent for the reaction step, for example, lower alcohols such as methanol, ethanol and isopropyl alcohol are preferably used.
 反応工程において、反応原料溶液に加える酸又はアルカリとしては、アルコキシシランの加水分解を行うことができるものであれば、特に制限されず、例えば、アルカリとしては、水酸化アンモニウム、水酸化ナトリウム又は水酸化カリウム等が挙げられ、酸としては、硫酸、塩酸、硝酸又は酢酸等が挙げられ、反応性が高い点で、好ましくは水酸化アンモニウム又は塩酸であり、特に好ましくは水酸化アンモニウムである。 In the reaction step, the acid or alkali added to the reaction raw material solution is not particularly limited as long as it can hydrolyze alkoxysilane. For example, the alkali includes ammonium hydroxide, sodium hydroxide or water. Examples include potassium oxide, and examples of the acid include sulfuric acid, hydrochloric acid, nitric acid, and acetic acid. From the viewpoint of high reactivity, ammonium hydroxide or hydrochloric acid is preferable, and ammonium hydroxide is particularly preferable.
反応原料溶液に加える酸又はアルカリの混合量は、特に制限されず、適宜選択される。また、反応原料溶液に、酸又はアルカリを混合して、アルコキシシランの加水分解を行う際の反応温度は、-5~50℃、好ましくは0~30℃である。反応温度が、-5℃未満だと、アルコキシシランの加水分解速度が遅くなり過ぎるので、反応効率が悪く、また、50℃を超えると、コンポジット粒子の分散安定性が低くなり易い。また、反応原料溶液に、酸又はアルカリを混合して、加水分解を行う際の反応時間は、特に制限されず、適宜選択されるが、好ましくは1~72時間、特に好ましくは1~24時間である。 The mixing amount of the acid or alkali added to the reaction raw material solution is not particularly limited and is appropriately selected. The reaction temperature when the alkoxysilane is hydrolyzed by mixing an acid or alkali with the reaction raw material solution is −5 to 50 ° C., preferably 0 to 30 ° C. If the reaction temperature is less than −5 ° C., the hydrolysis rate of the alkoxysilane becomes too slow, so that the reaction efficiency is poor, and if it exceeds 50 ° C., the dispersion stability of the composite particles tends to be lowered. The reaction time when the reaction raw material solution is mixed with an acid or an alkali for hydrolysis is not particularly limited and is appropriately selected, but is preferably 1 to 72 hours, particularly preferably 1 to 24 hours. It is.
 また、前述した実施形態2の場合は、収率を向上させることを目的として、必要により塩基の存在下に、更に加水分解反応を継続して行うことが出来る。 In the case of Embodiment 2 described above, the hydrolysis reaction can be further continued in the presence of a base as necessary for the purpose of improving the yield.
 用いることが出来る塩基としては、例えば、アンモニア、エチレンジアミン、炭酸アンモニウム、炭酸水素アンモニウム、蟻酸アンモニウム、酢酸アンモニウム、炭酸ナトリウム、炭酸水素ナトリウム等が挙げられ、反応性が高い点で、好ましくは炭酸アンモニウムである。反応原料溶液に加える塩基の混合量は、特に制限されず、適宜選択される。また、反応原料溶液に、塩基を混合して、加水分解を行う際の反応温度は、20~100℃、好ましくは50~100℃である。反応時間は1時間以上、好ましくは1~10時間である。 Examples of the base that can be used include ammonia, ethylenediamine, ammonium carbonate, ammonium hydrogen carbonate, ammonium formate, ammonium acetate, sodium carbonate, sodium hydrogen carbonate, and the like. is there. The mixing amount of the base added to the reaction raw material solution is not particularly limited and is appropriately selected. Further, the reaction temperature at the time of hydrolysis by mixing a base with the reaction raw material solution is 20 to 100 ° C., preferably 50 to 100 ° C. The reaction time is 1 hour or more, preferably 1 to 10 hours.
 なお、本発明において、前記反応終了後のコンポジット粒子を含有する反応液は、後述するように、基材を該コンポジット粒子で改質し、油水分離材として使用するための改質液としてそのまま使用することが出来る。 In the present invention, the reaction liquid containing the composite particles after completion of the reaction is used as it is as a modifying liquid for modifying the base material with the composite particles and using it as an oil-water separator, as will be described later. I can do it.
 本発明に係る油水分離材は、前記コンポジット粒子を用いたものである。
 本発明に係る油水分離材と、水と油を含む混合液を接触させることにより水と油を分離することが出来る。
The oil / water separator according to the present invention uses the composite particles.
Water and oil can be separated by bringing the oil / water separator according to the present invention into contact with a mixed liquid containing water and oil.
 前記コンポジット粒子は、例えば、以下の2つの方法により油水分離材として用いることが出来る。
 (1)水に不溶な基材を前記コンポジット粒子で改質する方法。
 (2)前記コンポジット粒子自体をそのまま濾過材として用いる方法。
The composite particles can be used, for example, as an oil / water separator by the following two methods.
(1) A method of modifying a base material insoluble in water with the composite particles.
(2) A method in which the composite particle itself is used as a filter medium as it is.
 前記(1)に係る基材としては、水に不溶である無機物や有機物を用いることが出来る。無機物としては、例えば、ガラス繊維、シリカ、シリカゲル、アルミナ、スラグウール、モレキュラーシーブ、ゼオライト、活性炭、珪藻土、砂、石綿等が挙げられる。有機物としては、天然高分子または合成高分子であってもよい。天然高分子としては、例えば、セルロース、羊毛、綿、絹等が挙げられる。合成高分子としては、ポリウレタン、ポリエチレンテレフタレート、ナイロン、ポリカーボネート等の縮合系または付加系重合高分子重合体や、ポリエチレン、ポリプロピレン、塩化ビニル、酢酸ビニル等のエチレン系不飽和高分子重合体等が挙げられる。 As the base material according to (1), an inorganic substance or an organic substance that is insoluble in water can be used. Examples of the inorganic substance include glass fiber, silica, silica gel, alumina, slag wool, molecular sieve, zeolite, activated carbon, diatomaceous earth, sand, asbestos and the like. The organic substance may be a natural polymer or a synthetic polymer. Examples of the natural polymer include cellulose, wool, cotton, silk and the like. Examples of synthetic polymers include condensation-type or addition-type polymer polymers such as polyurethane, polyethylene terephthalate, nylon, and polycarbonate, and ethylenically unsaturated polymer polymers such as polyethylene, polypropylene, vinyl chloride, and vinyl acetate. It is done.
 また、基材の形状は、特に制限されるものではなく、例えば、細片状、海綿状、リボン状、フィブリル状、ウェブ状、マット状、綿布状、不織布状等が挙げられる。 Further, the shape of the substrate is not particularly limited, and examples thereof include strips, sponges, ribbons, fibrils, webs, mats, cottons, and nonwovens.
 また、本発明においては、市販の濾紙等を改質する基材として用いてもよい。この場合、濾紙の孔径は5μm以下、好ましくは0.1~3μmとすることが効率的に油水分離を行う観点から好ましい。 In the present invention, a commercially available filter paper or the like may be used as a base material for modifying. In this case, the pore diameter of the filter paper is preferably 5 μm or less, preferably 0.1 to 3 μm from the viewpoint of efficient oil-water separation.
 前記(1)において、基材を前記コンポジット粒子で改質する方法としては、前記コンポジット粒子を基材の表面や内部に固定或いは担持することが出来る方法であれば特に制限はなく公知の方法を用いることが出来る。その一例を挙げると、前記コンポジット粒子が0.1~50wt%の濃度で分散した分散液に、基材を接触させた後、乾燥する方法等がある。また、分散液と基材との接触は、基材を分散液へ浸漬する方法、スプレーにより基材に吹き付ける方法、或いは基材へ分散液を塗布する方法等により行うことが出来る。 In (1), the method for modifying the substrate with the composite particles is not particularly limited as long as the method can fix or carry the composite particles on the surface or inside of the substrate. Can be used. For example, there is a method in which a base material is brought into contact with a dispersion in which the composite particles are dispersed at a concentration of 0.1 to 50 wt% and then dried. Further, the contact between the dispersion and the substrate can be performed by a method of immersing the substrate in the dispersion, a method of spraying the substrate by spraying, a method of applying the dispersion to the substrate, or the like.
 なお、コンポジット粒子が分散した分散液は、前記した反応終了後のコンポジット粒子を含む反応液をそのまま用いてもよい。 In addition, as the dispersion liquid in which the composite particles are dispersed, the reaction liquid containing the composite particles after the completion of the reaction may be used as it is.
 図1は、コンポジット粒子により改質を行った濾紙を用いて、水と油の混合液を分離処理する場合の一つの実施形態を示す概略図である。 FIG. 1 is a schematic view showing an embodiment in the case where a mixed liquid of water and oil is separated using a filter paper modified with composite particles.
 図1に示す実施形態では、カラム(1b)、改質した濾紙(1a)からなる簡単な分離システム(A)を備え、改質した濾紙(1a)は前記コンポジット粒子で改質したものである。 In the embodiment shown in FIG. 1, a simple separation system (A) comprising a column (1b) and a modified filter paper (1a) is provided, and the modified filter paper (1a) is modified with the composite particles. .
 カラム(1b)の途中に改質した濾紙(1a)を噛ませることで、カラム(1b)に投入された水と油の混合液(1)は改質した濾紙(1a)と接触する。油(1')は改質した濾紙(1a)を通過し、水は改質した濾紙(1a)を通過することが出来ないので、水と油を分離することが出来る。なお、必要により分離効率を高めるため分離操作は圧力をかけたり、或いは減圧下に行うことができる。この場合、先に油(1’)は改質した濾紙(1a)を選択的に通過し、次いで強い外力により水は遅れて改質した濾紙(1a)を通過する場合があるが、水が溶出する前に、油水分離操作を終える等の手段により改質した濾紙(1a)を介して水と油を分離することができる。 By biting the modified filter paper (1a) in the middle of the column (1b), the mixed liquid (1) of water and oil charged into the column (1b) comes into contact with the modified filter paper (1a). Since oil (1 ′) passes through the modified filter paper (1a) and water cannot pass through the modified filter paper (1a), water and oil can be separated. If necessary, the separation operation can be performed under pressure or under reduced pressure in order to increase the separation efficiency. In this case, the oil (1 ′) may first pass through the modified filter paper (1a), and then the water may be delayed by the strong external force to pass through the modified filter paper (1a). Before elution, water and oil can be separated through the filter paper (1a) modified by means such as finishing the oil-water separation operation.
 図2は、前記コンポジット粒子を濾過材として用いて、水と油の混合液を分離処理する場合の一つの実施形態を示す概略図である。 FIG. 2 is a schematic view showing one embodiment in the case where a mixed liquid of water and oil is separated using the composite particles as a filter medium.
 図2に示す実施形態では、カラム(2b)、濾過材(2c)を含む濾過材層(2a)からなる簡単な分離システム(B)を備えている。 2 includes a simple separation system (B) including a filter medium layer (2a) including a column (2b) and a filter medium (2c).
 カラム(2b)には濾過材(2c)として前記コンポジット粒子が充填されて濾過材層(2a)が形成されている。カラム(2b)に水と油の混合液(1)を投入することにより、濾過材(2c)と混合液を接触させることが出来る。油(1')は濾過材層(2a)を通過し、水は濾過材層(2a)を通過することが出来ないので、水と油を分離することが出来る。なお、必要により分離効率を高めるため分離操作は減圧下に行うことができる。また、目詰まり等を抑制するため、濾過材(2a)の上部及び/又は下部に濾過助剤を充填した層を必要により設けることが出来る。 The column (2b) is filled with the composite particles as a filter medium (2c) to form a filter medium layer (2a). By putting the mixed liquid (1) of water and oil into the column (2b), the filter medium (2c) and the mixed liquid can be brought into contact with each other. Since oil (1 ′) passes through the filter medium layer (2a) and water cannot pass through the filter medium layer (2a), water and oil can be separated. If necessary, the separation operation can be performed under reduced pressure in order to increase the separation efficiency. Moreover, in order to suppress clogging etc., the layer which filled the filter aid in the upper part and / or lower part of the filter medium (2a) can be provided if necessary.
 用いることができる濾過助剤としては、特に制限はなく公知のものを広く用いることができる。例えば、珪藻土、砂粒子、真珠岩、アンスラサイト、セルロース、羊毛、綿、絹、炭素質濾過助剤、酸性白土、ベントナイト、セライト、タルク、マイカ、カオリナイト等が挙げられ、これらは1種又は2種以上で用いることが出来る。 The filter aid that can be used is not particularly limited and a wide variety of known ones can be used. For example, diatomaceous earth, sand particles, pearlite, anthracite, cellulose, wool, cotton, silk, carbonaceous filter aid, acid clay, bentonite, celite, talc, mica, kaolinite, etc. Two or more types can be used.
 本発明に係る油水分離材で処理対象する水と油の混合液は、溶液状態のものであってもエマルションであってもよい。 The mixed liquid of water and oil to be treated with the oil / water separator according to the present invention may be in a solution state or an emulsion.
 本発明に係る油水分離材は、例えば、油を含んだ廃水処理、各種産業分野での生産現場での水と油の分離或いは精製手段等に利用することが出来る。 The oil / water separator according to the present invention can be used for, for example, treatment of wastewater containing oil, means for separating or purifying water and oil at production sites in various industrial fields, and the like.
 以下、本発明を実施例により詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
<フルオロアルキル基含有オリゴマー試料>
 フルオロアルキル基含有オリゴマー(以下、「VM」という)として下記表1のものを使用した。
Figure JPOXMLDOC01-appb-T000004

表1中、分子量は、ゲル浸透クロマトグラフィー(GPC、ポリスチレン換算)による数平均分子量である。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these Examples.
<Fluoroalkyl group-containing oligomer sample>
As the fluoroalkyl group-containing oligomer (hereinafter referred to as “VM”), those shown in Table 1 below were used.
Figure JPOXMLDOC01-appb-T000004

In Table 1, the molecular weight is a number average molecular weight determined by gel permeation chromatography (GPC, polystyrene conversion).
<実施形態1>
{実施例1~4}
 VM(100mg)をメタノール溶液5mlに溶解し、タルク(浅田製粉社製 平均粒子径;131nm)100mg及び表2に示す量の架橋ポリスチレン(東京化成工業社製 平均粒子径;92μm)を添加し、次いで25wt%アンモニア水溶液(2ml)を添加し、マグネチックスターラーにより室温(25℃)で1時間撹拌を行って、反応液試料を得た。
 反応終了後、反応液試料から減圧下で溶媒を除去し、得られた粗生成物をメタノール中に一晩分散させた。次いで、遠心分離処理して目的物を固形分として分離し、得られた固形分をメタノールで数回洗浄し、溶媒除去後に、50℃で真空乾燥して目的物(コンポジット粒子試料)を得た。
 また、得られたコンポジット粒子試料をFT-IRで測定した。
IR(KBr、cm-1);1600(ポリスチレン)、1338、1240(C-F)、1016(Si-O-Si)、750(C-C)、1687(C=C)
<Embodiment 1>
{Examples 1 to 4}
VM (100 mg) was dissolved in 5 ml of methanol solution, 100 mg of talc (Asada Flour Mills average particle size; 131 nm) and cross-linked polystyrene in the amount shown in Table 2 (Tokyo Chemical Industry average particle size: 92 μm) were added, Next, a 25 wt% aqueous ammonia solution (2 ml) was added, and the mixture was stirred with a magnetic stirrer at room temperature (25 ° C.) for 1 hour to obtain a reaction solution sample.
After completion of the reaction, the solvent was removed from the reaction solution sample under reduced pressure, and the resulting crude product was dispersed in methanol overnight. Subsequently, the target product was separated as a solid content by centrifugation, the obtained solid content was washed several times with methanol, and after removing the solvent, vacuum-dried at 50 ° C. to obtain the target product (composite particle sample). .
The obtained composite particle sample was measured by FT-IR.
IR (KBr, cm −1 ); 1600 (polystyrene), 1338, 1240 (C—F), 1016 (Si—O—Si), 750 (C—C), 1687 (C═C)
{比較例1~2}
 タルク又は架橋ポリスチレンを添加しないで反応を行う以外は実施例1と同様な反応条件にて反応を行い、反応液試料及びコンポジット粒子試料を得た。
{Comparative Examples 1 and 2}
A reaction solution sample and a composite particle sample were obtained by performing the reaction under the same reaction conditions as in Example 1 except that the reaction was performed without adding talc or crosslinked polystyrene.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
<物性の評価>
 上記で調製したコンポジット粒子について平均粒子径及びドデカンと水の接触角を測定した。
 なお、平均粒子径とドデカンと水の接触角は下記のように測定した。
(平均粒子径の評価)
 得られたコンポジット粒子を、メタノールに再分散させて粒度分測定計(島津製のSALD-200 V)を用いて測定した。
(ドデカンと水の接触角の評価)
 各実施例及び比較例で得られた反応液試料に、ガラス板を1分間、室温(25℃)で浸し、ガラス板を引き上げた後、自然乾燥、さらに一晩真空乾燥を行って改質ガラス板試料を調製した。この改質ガラス板試料の表面のドデカンと水の接触角を協和界面科学製のDrop Master.300を使用して評価した。その結果を表3に示した。
 なお、接触角の評価は、水及びドデカンを滴下30分後の値として評価した。
 また、VMのみで処理したものをブランク1とし、タルクのみで処理したものをブランク2として評価し、その評価結果を表3に併記した。
<Evaluation of physical properties>
The average particle diameter and the contact angle between dodecane and water were measured for the composite particles prepared above.
In addition, the average particle diameter and the contact angle of dodecane and water were measured as follows.
(Evaluation of average particle size)
The obtained composite particles were redispersed in methanol and measured using a particle size meter (SALD-200 V manufactured by Shimadzu).
(Evaluation of contact angle between dodecane and water)
A glass plate is immersed in the reaction solution sample obtained in each of the examples and comparative examples for 1 minute at room temperature (25 ° C.), the glass plate is pulled up, and then naturally dried and further vacuum-dried overnight for modified glass. Plate samples were prepared. The contact angle of dodecane and water on the surface of the modified glass plate sample was evaluated using Drop Master 300 made by Kyowa Interface Science. The results are shown in Table 3.
The contact angle was evaluated as a value 30 minutes after dropping water and dodecane.
Moreover, what was processed only with VM was made into the blank 1, and what was processed only with the talc was evaluated as the blank 2, and the evaluation result was written together in Table 3.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
(油水分離材としての評価)
評価1;
 実施例1で得られた反応液試料に、3cm四方にカットした濾紙(Advantec: 131、孔径3μm)を1分間、室温(25℃)で浸し、濾紙を引き上げた後、自然乾燥、さらに一晩真空乾燥を行って改質濾紙試料を調製した。
 この改質濾紙による水―油分離について、1,2-ジクロロエタンと水の混合液(1:1vol.)2mlにより検討を行った。混合液中の水は硫酸銅五水和物により青色に着色した。
 また、改質処理を行わない濾紙を用いた場合についても同様に評価を行った。
(Evaluation as oil / water separator)
Evaluation 1;
A filter paper (Advantec: 131, pore size: 3 μm) cut into a 3 cm square was immersed in the reaction liquid sample obtained in Example 1 for 1 minute at room temperature (25 ° C.), the filter paper was pulled up, and then air-dried and further overnight. A modified filter paper sample was prepared by vacuum drying.
The water-oil separation using this modified filter paper was examined using 2 ml of a mixture of 1,2-dichloroethane and water (1: 1 vol.). The water in the mixture was colored blue with copper sulfate pentahydrate.
In addition, the same evaluation was performed for the case of using filter paper that was not subjected to the modification treatment.
(評価1の結果)
 図3に示したように改質濾紙試料を漏斗で挟み、減圧下における混合液の濾過により水―油の分離試験を行った。評価1の結果を表4に示す。なお表4中の記号は下記のことを示す。
  ○;目視で濾液に水が観察されない。
  △;目視で濾液に若干の水の混入が観察される。
  ×;目視で濾液に多くの水の混入が観察される。
Figure JPOXMLDOC01-appb-T000007

 また、図3に示すように、改質濾紙試料を用いて減圧下において混合液を濾過することにより、改質濾紙を1,2-ジクロロエタンのみが通過し、水と1,2-ジクロロエタンを分離することができた。
 一方、改質処理を行わない濾紙を用いて減圧下において混合液を濾過したところ、水と1,2-ジクロロエタンの両方が濾紙を通過したため、水と1,2-ジクロロエタンを分離することができなかった。
(Result of evaluation 1)
As shown in FIG. 3, a modified filter paper sample was sandwiched between funnels, and a water-oil separation test was performed by filtering the mixed solution under reduced pressure. The results of Evaluation 1 are shown in Table 4. The symbols in Table 4 indicate the following.
○: Water is not visually observed in the filtrate.
Δ: Some water is visually observed in the filtrate.
X: A lot of water is visually observed in the filtrate.
Figure JPOXMLDOC01-appb-T000007

Further, as shown in FIG. 3, by filtering the mixed solution under reduced pressure using a modified filter paper sample, only 1,2-dichloroethane passes through the modified filter paper, and water and 1,2-dichloroethane are separated. We were able to.
On the other hand, when the mixed solution was filtered under reduced pressure using filter paper that was not subjected to modification treatment, both water and 1,2-dichloroethane passed through the filter paper, so that water and 1,2-dichloroethane could be separated. There wasn't.
評価2;
 クロマトグラフィー用カラム(内径10mm)に海砂を層厚が約2mmになるに充填し、次いで実施例1で得られたコンポジット粒子200mg(層厚約4mm)を充填し、更にその上に海砂を層厚が約2mmになるに充填した(図4参照)。なお、図4中の「Rf-(VM-SiO2)n-Rf/Talc/Pst」は、コンポジット粒子を示す。
 このクロマトグラフィー用カラムを用いて、下記の2種類の処理水について水-油の分離試験を行った。
 また、コンポジット粒子に代えてWakogel C-500HGを用いたものを同様に試験した。
 処理水1(混合液);
 1,2-ジクロロエタンと水の混合液(1:1vol.)2mlを調製した。なお、混合液中の水は硫酸銅五水和物により青色に着色した。
 処理水2(エマルション);
 1,2-ジクロロエタン(5ml)と水(0.05ml)及び乳化剤としてSpan80(20mg)を混合し、エマルションを調製した。
Evaluation 2;
A chromatographic column (inner diameter: 10 mm) is packed with sea sand to a layer thickness of about 2 mm, then 200 mg of composite particles obtained in Example 1 (layer thickness: about 4 mm) are packed, and sea sand is further formed thereon. Was packed to a layer thickness of about 2 mm (see FIG. 4). Note that “Rf— (VM—SiO 2) n —Rf / Talc / Pst” in FIG. 4 represents composite particles.
Using this chromatography column, a water-oil separation test was conducted on the following two types of treated water.
Further, a test using Wakogel C-500HG in place of the composite particles was similarly tested.
Treated water 1 (mixed solution);
2 ml of a mixed solution of 1,2-dichloroethane and water (1: 1 vol.) Was prepared. The water in the mixed solution was colored blue with copper sulfate pentahydrate.
Treated water 2 (emulsion);
An emulsion was prepared by mixing 1,2-dichloroethane (5 ml), water (0.05 ml) and Span 80 (20 mg) as an emulsifier.
(評価2の結果)
 評価2の結果を表5に示す。なお表5中の記号は下記のことを示す。
○;目視で濾液に水が観察されない。
△;目視で濾液に若干の水の混入が観察される。
×;目視で濾液に多くの水の混入が観察される。又は目視で濾液にエマルションが観察される。
Figure JPOXMLDOC01-appb-T000008

 また、図5に示すように、本発明のコンポジット粒子を濾過材として用いて減圧下において処理水1を濾過することにより、濾過材層を1,2-ジクロロエタンのみが通過し、水と1,2-ジクロロエタンを分離することができた。
 一方、処理水1を濾過材としてWakogel C-500HGを用いて処理した場合は、濾過後の濾液に1,2-ジクロロエタンに加えて若干水が混入していることが目視でも確認できた。
(Result of evaluation 2)
The results of Evaluation 2 are shown in Table 5. The symbols in Table 5 indicate the following.
○: Water is not visually observed in the filtrate.
Δ: Some water is visually observed in the filtrate.
X: A lot of water is visually observed in the filtrate. Alternatively, an emulsion is observed in the filtrate visually.
Figure JPOXMLDOC01-appb-T000008

Further, as shown in FIG. 5, by treating the treated water 1 under reduced pressure using the composite particles of the present invention as a filter medium, only 1,2-dichloroethane passes through the filter medium layer, 2-Dichloroethane could be separated.
On the other hand, when treated water 1 was treated with Wakogel C-500HG as a filter medium, it was also confirmed visually that water was mixed in the filtrate after filtration in addition to 1,2-dichloroethane.
 また、図6(a)に示すように、本発明のコンポジット粒子を濾過材として用いて減圧下において処理水2を濾過することにより、濾過材層を1,2-ジクロロエタンのみが通過し、エマルションから水と1,2-ジクロロエタンを分離することができた。
 一方、図6(b)に示すように、処理水2を濾過材としてWakogel C-500HGを用いて処理した場合は、濾過材層をエマルションごと通過し、エマルションから水と1,2-ジクロロエタンを分離することができなかった。
Further, as shown in FIG. 6 (a), only the 1,2-dichloroethane passes through the filter medium layer by filtering the treated water 2 under reduced pressure using the composite particles of the present invention as the filter medium. Water and 1,2-dichloroethane could be separated from each other.
On the other hand, as shown in FIG. 6 (b), when the treated water 2 was treated with Wakogel C-500HG as a filter medium, it passed through the filter medium layer together with the emulsion, and water and 1,2-dichloroethane were passed from the emulsion. Could not be separated.
<実施形態2>
{実施例5~11}
 VMをエタノール溶液に溶解し、メチルトリメトキシシランを添加し反応原料溶液を調製した。次いで酢酸を添加し、マグネチックスターラーにより室温(25℃)で48時間撹拌を行った。次に炭酸アンモニウムを添加し70℃で5時間反応を行い反応液試料を得た。なお、各試薬の仕込み量は、表6に通りである。
 反応終了後、反応液試料から溶媒を減圧下で除去し、次いでメタノール中で再分散を行い、遠心分離させることにより、白色粉末として目的物(コンポジット粒子試料)を得た。
<Embodiment 2>
{Examples 5 to 11}
VM was dissolved in an ethanol solution, and methyltrimethoxysilane was added to prepare a reaction raw material solution. Next, acetic acid was added, and the mixture was stirred with a magnetic stirrer at room temperature (25 ° C.) for 48 hours. Next, ammonium carbonate was added and reacted at 70 ° C. for 5 hours to obtain a reaction liquid sample. The amount of each reagent charged is as shown in Table 6.
After completion of the reaction, the solvent was removed from the reaction solution sample under reduced pressure, then redispersed in methanol and centrifuged to obtain the desired product (composite particle sample) as a white powder.
{比較例3}
 反応原料溶液にメチルトリメトキシシランを添加しない以外は実施例7と同様にして反応を行って、反応液試料及びコンポジット粒子試料を得た。
{Comparative Example 3}
The reaction was conducted in the same manner as in Example 7 except that methyltrimethoxysilane was not added to the reaction raw material solution to obtain a reaction solution sample and a composite particle sample.
Figure JPOXMLDOC01-appb-T000009

注)MTMS;メチルトリメトキシシラン
Figure JPOXMLDOC01-appb-T000009

Note) MTMS; methyltrimethoxysilane
<物性の評価>
 上記で調製したコンポジット粒子試料について実施例1~4と同様にして平均粒子径を測定した。また、実施例6、実施例7、実施例8及び比較例3で得られたコンポジット粒子試料について実施例1~4と同様にしてドデカンと水の接触角を測定した。また、実施例6、実施例7及び実施例8で得られたコンポジット粒子試料のFE-SEM写真を図7~9にそれぞれ示す。
<Evaluation of physical properties>
The average particle diameter of the composite particle sample prepared above was measured in the same manner as in Examples 1 to 4. Further, the contact angle of dodecane and water was measured in the same manner as in Examples 1 to 4 for the composite particle samples obtained in Example 6, Example 7, Example 8, and Comparative Example 3. FE-SEM photographs of the composite particle samples obtained in Example 6, Example 7 and Example 8 are shown in FIGS. 7 to 9, respectively.
Figure JPOXMLDOC01-appb-T000010

注)「-」は未測定を示す。
Figure JPOXMLDOC01-appb-T000010

Note) “-” indicates not measured.
(油水分離材としての評価)
 クロマトグラフィー用カラム(内径10mm)に海砂を層厚が約1mmになるに充填し、次いで実施例7で得られたコンポジット粒子試料200mg(層厚約4mm)を充填し、更にその上に海砂を層厚が約1mmになるに充填した。
 このクロマトグラフィー用カラムを用いて、下記の3種類の処理水について水-油の分離試験を行った。
 処理水1については、実施例7のコンポジット粒子に代えて、SiO2(WakogelC-500HG)及び比較例3のコンポジット粒子試料を用いたものを同様に試験した。
 また、処理水2及び処理水3については、実施例7のコンポジット粒子に代えて、SiO2(Wakogel C-500HG)(比較例4)を用いたものを同様に試験した。
 処理水1(混合液);
 1,2-ジクロロエタンと水の混合液(1:1vol.)2mlを調製した。なお、混合液中の水は硫酸銅五水和物により青色に着色した。
 処理水2(エマルション);
 1,2-ジクロロエタン(5ml)と水(0・05ml)及び乳化剤としてSpan80(20mg)を混合し、エマルションを調製した。
 処理水3(エマルション);
 トルエン(5ml)と水(0.05ml)及び乳化剤としてSpan80(80mg)を混合し、エマルションを調製した。
(Evaluation as oil / water separator)
A chromatographic column (inner diameter: 10 mm) is packed with sea sand to a layer thickness of about 1 mm, and then 200 mg of the composite particle sample obtained in Example 7 (layer thickness of about 4 mm) is packed thereon. Sand was filled to a layer thickness of about 1 mm.
Using this chromatography column, water-oil separation tests were conducted on the following three types of treated water.
For treated water 1, instead of the composite particles of Example 7, SiO 2 (Wakogel C-500HG) and the composite particle sample of Comparative Example 3 were tested in the same manner.
For treated water 2 and treated water 3, those using SiO 2 (Wakogel C-500HG) (Comparative Example 4) instead of the composite particles of Example 7 were similarly tested.
Treated water 1 (mixed solution);
2 ml of a mixed solution of 1,2-dichloroethane and water (1: 1 vol.) Was prepared. The water in the mixed solution was colored blue with copper sulfate pentahydrate.
Treated water 2 (emulsion);
An emulsion was prepared by mixing 1,2-dichloroethane (5 ml), water (0.05 ml) and Span 80 (20 mg) as an emulsifier.
Treated water 3 (emulsion);
Toluene (5 ml), water (0.05 ml) and Span 80 (80 mg) as an emulsifier were mixed to prepare an emulsion.
(評価結果)
処理水1;
 処理水1を分離処理した結果を表8に示す。なお表8中の記号は下記のことを示す。
  ◎;目視的に濾液に水が観察されなく、また油の回収率も高い。
  ○;目視的に濾液に水が観察されなく、また油の回収率が低い。
  △;目視的に濾液に若干の水の混入が観察される。
  ×;目視的に濾液に多くの水の混入が観察される。
Figure JPOXMLDOC01-appb-T000011

 図10に示すように、本発明のコンポジット粒子を濾過材として用いて減圧下において処理水1を濾過することにより、濾過材層を1,2-ジクロロエタンのみが通過し、水と1,2-ジクロロエタンを分離することができた。
 一方、処理水1を比較例1の粒子を濾過材として用いて処理した場合は、僅かに水と1,2-ジクロロエタンの分離が行えたが、1,2-ジクロロエタンの回収率は低かった。処理水1をSiO2(比較例4)を用いて処理した場合は、濾過後の濾液に1,2-ジクロロエタンに加えて若干水が混入していることが目視でも確認できた。
(Evaluation results)
Treated water 1;
Table 8 shows the result of separating treated water 1. The symbols in Table 8 indicate the following.
A: No water is visually observed in the filtrate, and the oil recovery rate is high.
○: No water is visually observed in the filtrate, and the oil recovery rate is low.
Δ: Some water is visually observed in the filtrate.
X: A lot of water is visually observed in the filtrate.
Figure JPOXMLDOC01-appb-T000011

As shown in FIG. 10, by treating the treated water 1 under reduced pressure using the composite particles of the present invention as a filter medium, only 1,2-dichloroethane passes through the filter medium layer, and water and 1,2- Dichloroethane could be separated.
On the other hand, when the treated water 1 was treated using the particles of Comparative Example 1 as a filter medium, water and 1,2-dichloroethane were slightly separated, but the 1,2-dichloroethane recovery rate was low. When treated water 1 was treated with SiO 2 (Comparative Example 4), it was confirmed visually that water was mixed in the filtrate after filtration in addition to 1,2-dichloroethane.
処理水2;
 処理水2を分離処理した結果を表9に示す。なお表9中の記号は下記のことを示す。
  ◎;目視的に濾液に水が観察されなく、また油の回収率も高い。
  ○;目視的に濾液に水が観察されなく、また油の回収率が低い。
  △;目視的に濾液に若干の水の混入が観察される。
  ×;目視的に濾液にエマルションが観察される。
Figure JPOXMLDOC01-appb-T000012

注)表中の「-」は未測定を示す。
 図11(a)に示すように、本発明のコンポジット粒子を濾過材として用いて減圧下において処理水2を濾過することにより、濾過材層を1,2-ジクロロエタンのみが通過し、エマルションから水と1,2-ジクロロエタンを分離することができた。また、濾過後の濾液中に含まれる溶剤の溶剤回収率を濾過前の溶剤の質量に対する濾過後の溶剤の質量として求めた結果、回収率は90%であった。
 一方、図11(b)に示すように、処理水2をSiO2を濾過材として用いて処理した場合は、濾過材層をエマルションごと通過し、エマルションから水と1,2-ジクロロエタンを分離することができなかった。
Treated water 2;
Table 9 shows the result of separating treated water 2. The symbols in Table 9 indicate the following.
A: No water is visually observed in the filtrate, and the oil recovery rate is high.
○: No water is visually observed in the filtrate, and the oil recovery rate is low.
Δ: Some water is visually observed in the filtrate.
X: An emulsion is visually observed in the filtrate.
Figure JPOXMLDOC01-appb-T000012

Note) “-” in the table indicates no measurement.
As shown in FIG. 11 (a), by filtering the treated water 2 under reduced pressure using the composite particles of the present invention as a filter medium, only 1,2-dichloroethane passes through the filter medium layer, and the water from the emulsion. And 1,2-dichloroethane could be separated. Moreover, as a result of calculating | requiring the solvent recovery rate of the solvent contained in the filtrate after filtration as a mass of the solvent after filtration with respect to the mass of the solvent before filtration, the recovery rate was 90%.
On the other hand, as shown in FIG. 11 (b), when treated water 2 is treated using SiO 2 as a filter medium, it passes through the filter medium layer together with the emulsion to separate water and 1,2-dichloroethane from the emulsion. I couldn't.
処理水3;
 処理水3を分離処理した結果を表10に示す。なお表10中の記号は下記のことを示す。
  ◎;目視的に濾液に水が観察されなく、また油の回収率も高い。
  ○;目視的に濾液に水が観察されなく、また油の回収率が低い。
  △;目視的に濾液に若干の水の混入が観察される。
  ×;目視的に濾液にエマルションが観察される。
Figure JPOXMLDOC01-appb-T000013

注)表中の「-」は未測定を示す。
 図12(a)に示すように、本発明のコンポジット粒子を濾過材として用いて減圧下において処理水3を濾過することにより、濾過材層をトルエンのみが通過し、エマルションから水とトルエンを分離することができた。また、濾過後の濾液中に含まれる溶剤の溶剤回収率を濾過前の溶剤の質量に対する濾過後の溶剤の質量として求めた結果、回収率は87%であった。
 一方、図12(b)に示すように、処理水3をSiO2を濾過材として用いて処理した場合は、濾過材層をエマルションごと通過し、エマルションから水とトルエンを分離することができなかった。
Treated water 3;
Table 10 shows the result of separating the treated water 3. The symbols in Table 10 indicate the following.
A: No water is visually observed in the filtrate, and the oil recovery rate is high.
○: No water is visually observed in the filtrate, and the oil recovery rate is low.
Δ: Some water is visually observed in the filtrate.
X: An emulsion is visually observed in the filtrate.
Figure JPOXMLDOC01-appb-T000013

Note) “-” in the table indicates no measurement.
As shown in FIG. 12 (a), by filtering the treated water 3 under reduced pressure using the composite particles of the present invention as a filter medium, only toluene passes through the filter medium layer, and water and toluene are separated from the emulsion. We were able to. Moreover, as a result of calculating | requiring the solvent recovery rate of the solvent contained in the filtrate after filtration as a mass of the solvent after filtration with respect to the mass of the solvent before filtration, the recovery rate was 87%.
On the other hand, as shown in FIG. 12 (b), when treated water 3 is treated using SiO 2 as a filter medium, the emulsion passes through the filter medium layer and water and toluene cannot be separated from the emulsion. It was.
<実施形態3>
{実施例12}
 VM(300mg)をメタノール溶液20mlに溶解し、表11に示す量のポリテトラフルオロエチレン粒子((株)喜多村社製 平均粒子径282nm)及びシリカ粒子(粒子径5~20μm Wakogel C-500HG)を添加し、次いで25wt%アンモニア水溶液(4ml)を添加し、マグネチックスターラーにより室温(25℃)で1時間撹拌を行って、反応液試料を得た。
 反応終了後、反応液試料から減圧下で溶媒を除去し、得られた粗生成物をメタノール中に一晩分散させた。次いで、遠心分離処理して目的物を固形分として分離し、得られた固形分をメタノールで数回洗浄し、溶媒除去後に、50℃で真空乾燥して目的物(コンポジット粒子試料)を得た。
<Embodiment 3>
{Example 12}
VM (300 mg) was dissolved in 20 ml of methanol solution, and polytetrafluoroethylene particles (average particle size 282 nm, manufactured by Kitamura Co., Ltd.) and silica particles (particle size 5 to 20 μm Wakogel C-500HG) in the amounts shown in Table 11 were dissolved. Then, a 25 wt% aqueous ammonia solution (4 ml) was added, and the mixture was stirred with a magnetic stirrer at room temperature (25 ° C.) for 1 hour to obtain a reaction solution sample.
After completion of the reaction, the solvent was removed from the reaction solution sample under reduced pressure, and the resulting crude product was dispersed in methanol overnight. Subsequently, the target product was separated as a solid content by centrifugation, the obtained solid content was washed several times with methanol, and after removing the solvent, vacuum-dried at 50 ° C. to obtain the target product (composite particle sample). .
{実施例13}
 VM(300mg)をメタノール溶液5mlに溶解し、表11に示す量のポリテトラフルオロエチレン粒子((株)喜多村社製 平均粒子径282nm)を添加し、次いで25wt%アンモニア水溶液(2ml)を添加し、マグネチックスターラーにより室温(25℃)で1時間撹拌を行って、反応液試料を得た。
 反応終了後、反応液試料から減圧下で溶媒を除去し、得られた粗生成物をメタノール中に一晩分散させた。次いで、遠心分離処理して目的物を固形分として分離し、得られた固形分をメタノールで数回洗浄し、溶媒除去後に、50℃で真空乾燥して目的物(コンポジット粒子試料)を得た。
{Example 13}
VM (300 mg) was dissolved in 5 ml of methanol solution, polytetrafluoroethylene particles (average particle size 282 nm, manufactured by Kitamura Co., Ltd.) in the amount shown in Table 11 were added, and then 25 wt% aqueous ammonia solution (2 ml) was added. Then, stirring was performed at room temperature (25 ° C.) for 1 hour with a magnetic stirrer to obtain a reaction liquid sample.
After completion of the reaction, the solvent was removed from the reaction solution sample under reduced pressure, and the resulting crude product was dispersed in methanol overnight. Subsequently, the target product was separated as a solid content by centrifugation, the obtained solid content was washed several times with methanol, and after removing the solvent, vacuum-dried at 50 ° C. to obtain the target product (composite particle sample). .
Figure JPOXMLDOC01-appb-T000014

注)PTFE;ポリテトラフルオロエチレン
Figure JPOXMLDOC01-appb-T000014

Note) PTFE: Polytetrafluoroethylene
<物性の評価>
 上記で調製した実施例12~13のコンポジット粒子試料について実施例1~4と同様にして平均粒子径及びドデカンと水の接触角を測定した。
 なお、接触角の評価は、水及びドデカンを滴下30分後の値として評価した。
 また、VMのみで処理したものをブランク1とし、ポリトラフルオロエチレン粒子のみで処理したものをブランク2、無処理のガラス板をブランク3として評価し、その評価結果を表12に併記した。
<Evaluation of physical properties>
For the composite particle samples of Examples 12 to 13 prepared above, the average particle diameter and the contact angle of dodecane and water were measured in the same manner as in Examples 1 to 4.
The contact angle was evaluated as a value 30 minutes after dropping water and dodecane.
Moreover, what was processed only with VM was made into the blank 1, what was processed only with the poly trifluoroethylene particle | grains was evaluated as the blank 2, and the untreated glass plate was evaluated as the blank 3, and the evaluation result was written together in Table 12.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
(油水分離材としての評価)
(評価1)
 クロマトグラフィー用カラム(内径10mm)に海砂を層厚が約1mmになるに充填し、次いで実施例12で得られたコンポジット粒子試料200mg(層厚約4mm)を充填し、更にその上に海砂を層厚が約1mmになるに充填した。
 このクロマトグラフィー用カラムを用いて、重力を利用して下記処理水1をろ過した。なお、コンポジット粒子試料に代えてシリカ粒子(Wakogel C-500HG)を充填したものも比較例5として同様に評価した。
処理水1(混合液);
 1,2-ジクロロエタンと水の混合液(1:1vol.)2mlを調製した。なお、混合液中の水は硫酸銅五水和物により青色に着色した。
(Evaluation as oil / water separator)
(Evaluation 1)
A chromatographic column (inner diameter: 10 mm) is packed with sea sand to a layer thickness of about 1 mm, and then 200 mg of composite particle sample (layer thickness: about 4 mm) obtained in Example 12 is packed thereon. Sand was filled to a layer thickness of about 1 mm.
Using this chromatography column, the following treated water 1 was filtered using gravity. A sample filled with silica particles (Wakogel C-500HG) instead of the composite particle sample was similarly evaluated as Comparative Example 5.
Treated water 1 (mixed solution);
2 ml of a mixed solution of 1,2-dichloroethane and water (1: 1 vol.) Was prepared. The water in the mixed solution was colored blue with copper sulfate pentahydrate.
(評価結果1)
 処理水1を分離処理した結果を表4に示す。なお表13中の記号は下記のことを示す。
  ○;目視で濾液に水が観察されない。
  △;目視で濾液に若干の水の混入が観察される。
  ×;目視で濾液に多くの水の混入が観察される。
Figure JPOXMLDOC01-appb-T000016

 また、図13に示すように、実施例12のコンポジット粒子試料を濾過材として用いて処理水1を濾過することにより、濾過材層を1,2-ジクロロエタンのみが通過し、水と1,2-ジクロロエタンを分離することができた。
 一方、処理水1をシリカ粒子を濾過材として用いて処理した場合は、濾過後の濾液に1,2-ジクロロエタンに加えて若干水が混入していることが目視でも確認できた。
(Evaluation result 1)
Table 4 shows the results of separation treatment of treated water 1. The symbols in Table 13 indicate the following.
○: Water is not visually observed in the filtrate.
Δ: Some water is visually observed in the filtrate.
X: A lot of water is visually observed in the filtrate.
Figure JPOXMLDOC01-appb-T000016

Further, as shown in FIG. 13, by treating the treated water 1 using the composite particle sample of Example 12 as a filter medium, only 1,2-dichloroethane passes through the filter medium layer, and water and 1,2 -The dichloroethane could be separated.
On the other hand, when treated water 1 was treated using silica particles as a filter medium, it was confirmed visually that water was mixed in the filtrate after filtration in addition to 1,2-dichloroethane.
(評価2)
 クロマトグラフィー用カラム(内径10mm)に海砂を層厚が約1mmになるに充填し、次いで前記で調製した実施例13のコンポジット粒子試料を200mg(層厚約4mm)を充填し、更にその上に海砂を層厚が約1mmになるに充填した。
 このクロマトグラフィー用カラムを用いて、減圧下に下記処理水2を濾過した。なお、コンポジット粒子試料に代えてシリカ粒子(Wakogel C-500HG)を充填したものも比較例6として同様に評価した。
処理水2(エマルション);
 1,2-ジクロロエタン(5ml)と水(0・05ml)及び乳化剤としてSpan80(20mg)を混合し、エマルションを調製した。
(Evaluation 2)
A chromatography column (inner diameter 10 mm) is packed with sea sand to a layer thickness of about 1 mm, and then 200 mg (layer thickness of about 4 mm) of the composite particle sample of Example 13 prepared above is packed. The sea sand was filled to a layer thickness of about 1 mm.
Using this chromatography column, the following treated water 2 was filtered under reduced pressure. A sample filled with silica particles (Wakogel C-500HG) instead of the composite particle sample was similarly evaluated as Comparative Example 6.
Treated water 2 (emulsion);
An emulsion was prepared by mixing 1,2-dichloroethane (5 ml), water (0.05 ml) and Span 80 (20 mg) as an emulsifier.
(評価結果2)
 処理水2を分離処理した結果を表5に示す。なお表5中の記号は下記のことを示す。
  ○;目視で濾液に水が観察されない。
  △;目視で濾液に若干の水の混入が観察される。
  ×;目視で濾液にエマルションが観察される。
Figure JPOXMLDOC01-appb-T000017

 また、図14(a)に示すように、実施例13のコンポジット粒子試料を濾過材として用いて減圧下において処理水2を濾過することにより、濾過材層を1,2-ジクロロエタンのみが通過し、エマルションから水と1,2-ジクロロエタンを分離することができた。
 一方、図14(b)に示すように、処理水2をシリカ粒子を濾過材として用いて処理した場合は、濾過材層をエマルションごと通過し、エマルションから水と1,2-ジクロロエタンを分離することができなかった。
(Evaluation result 2)
Table 5 shows the results of separating the treated water 2. The symbols in Table 5 indicate the following.
○: Water is not visually observed in the filtrate.
Δ: Some water is visually observed in the filtrate.
X: An emulsion is visually observed in the filtrate.
Figure JPOXMLDOC01-appb-T000017

Further, as shown in FIG. 14A, only the 1,2-dichloroethane passes through the filter medium layer by filtering the treated water 2 under reduced pressure using the composite particle sample of Example 13 as the filter medium. Water and 1,2-dichloroethane could be separated from the emulsion.
On the other hand, as shown in FIG. 14B, when the treated water 2 is treated using silica particles as a filter medium, the emulsion passes through the filter medium layer to separate water and 1,2-dichloroethane from the emulsion. I couldn't.
(評価3)
 クロマトグラフィー用カラム(内径10mm)に海砂を層厚が約1mmになるに充填し、次いで前記で調製した実施例12のコンポジット粒子を200mg(層厚約4mm)を充填し、更にその上に海砂を層厚が約1mmになるに充填した。
 このクロマトグラフィー用カラムを用いて、重力を利用して下記処理水3を濾過した。なお、コンポジット粒子試料に代えてシリカ粒子(Wakogel C-500HG)を充填したものも比較例7として同様に評価した。
処理水3(エマルション);
 トルエン(5ml)と水(0.05ml)及び乳化剤としてSpan80(20mg)を混合し、エマルションを調製した。
(Evaluation 3)
A chromatography column (inner diameter: 10 mm) is packed with sea sand to a layer thickness of about 1 mm, and then 200 mg (layer thickness of about 4 mm) of the composite particles of Example 12 prepared above are packed, and further thereon Sea sand was filled to a layer thickness of about 1 mm.
Using this chromatography column, the following treated water 3 was filtered using gravity. A sample filled with silica particles (Wakogel C-500HG) instead of the composite particle sample was similarly evaluated as Comparative Example 7.
Treated water 3 (emulsion);
Toluene (5 ml), water (0.05 ml) and Span 80 (20 mg) as an emulsifier were mixed to prepare an emulsion.
(評価結果3)
 処理水3を分離処理した結果を表15に示す。なお表15中の記号は下記のことを示す。
  ○;目視で濾液に水が観察されない。
  △;目視で濾液に若干の水の混入が観察される。
  ×;目視で濾液にエマルションが観察される。
Figure JPOXMLDOC01-appb-T000018

 図15(a)に示すように、コンポジット粒子試料6を濾過材として用いて処理水3を濾過することにより、濾過材層をトルエンのみが通過し、エマルションから水とトルエンを分離することができた。
 一方、図15(b)に示すように、処理水3をシリカ粒子を濾過材として用いて処理した場合は、濾過材層をエマルションごと通過し、エマルションから水とトルエンを分離することができなかった。
(Evaluation result 3)
Table 15 shows the result of separating the treated water 3. The symbols in Table 15 indicate the following.
○: Water is not visually observed in the filtrate.
Δ: Some water is visually observed in the filtrate.
X: An emulsion is visually observed in the filtrate.
Figure JPOXMLDOC01-appb-T000018

As shown in FIG. 15 (a), by filtering the treated water 3 using the composite particle sample 6 as a filter medium, only toluene passes through the filter medium layer, and water and toluene can be separated from the emulsion. It was.
On the other hand, as shown in FIG. 15 (b), when the treated water 3 is treated using silica particles as a filter medium, the emulsion passes through the filter medium layer and water and toluene cannot be separated from the emulsion. It was.

Claims (6)

  1.  コンポジット粒子を用いた油水分離材であって、
     該コンポジット粒子が、下記一般式(1)で表されるアルコキシシリル基を有するフルオロアルキル基含有オリゴマーの縮合物と、下記の(A)~(C)の何れか1つの成分を含むことを特徴とする油水分離材。
     (A)タルク及び架橋ポリスチレン、
     (B)メチルトリメトキシシランの縮合物、
     (C)ポリテトラフルオロエチレン粒子
    Figure JPOXMLDOC01-appb-C000001

    (式中、R1及びR2は、-(CF2)p-Y基、又は-CF(CF3)-[OCF2CF(CF3)]q-OC37基を示し、R1及びR2は、同一の基であっても異なる基であってもよく、R1及びR2中のYは水素原子、フッ素原子又は塩素原子を示し、p及びqは0~10の整数である。R3、R4及びR5は同一の基であっても異なる基であってもよく、R3、R4及びR5は炭素数1~5の直鎖状若しくは分岐状のアルキル基を示す。mは2~3の整数である。)
    An oil / water separator using composite particles,
    The composite particle includes a condensate of a fluoroalkyl group-containing oligomer having an alkoxysilyl group represented by the following general formula (1) and any one of the following components (A) to (C): Oil-water separator.
    (A) Talc and cross-linked polystyrene,
    (B) a condensate of methyltrimethoxysilane,
    (C) Polytetrafluoroethylene particles
    Figure JPOXMLDOC01-appb-C000001

    (Wherein, R 1 and R 2, - (CF 2) p- Y group, or -CF (CF 3) - [OCF 2 CF (CF 3)] indicates the q-OC 3 F 7 group, R 1 And R 2 may be the same group or different groups, Y in R 1 and R 2 represents a hydrogen atom, a fluorine atom or a chlorine atom, and p and q are integers of 0 to 10 R 3 , R 4 and R 5 may be the same or different, and R 3 , R 4 and R 5 are linear or branched alkyl groups having 1 to 5 carbon atoms. M is an integer of 2 to 3.)
  2.  コンポジット粒子は、更に(D)シリカ粒子を含むことを特徴とする請求項1記載の油水分離材。 2. The oil / water separator according to claim 1, wherein the composite particles further contain (D) silica particles.
  3.  一般式(1)の式中のR1及びR2が、-CF(CF3)OC37であることを特徴とする請求項1又は2の何れか1項に記載の油水分離材。 The oil / water separator according to claim 1 or 2, wherein R 1 and R 2 in the formula (1) are -CF (CF 3 ) OC 3 F 7 .
  4.  コンポジット粒子の平均粒子径が0.05~500μmであることを特徴する請求項1乃至3の何れか1項に記載の油水分離材。 The oil-water separator according to any one of claims 1 to 3, wherein the composite particles have an average particle diameter of 0.05 to 500 µm.
  5.  請求項1乃至4の何れか1項に記載の油水分離材に、水と油を含む混合液を接触させることを特徴とする油水分離方法。 5. An oil / water separation method, wherein the oil / water separator according to any one of claims 1 to 4 is contacted with a mixed liquid containing water and oil.
  6.  請求項1乃至4の何れか1項に記載の油水分離材に、水と油を含むエマルションを接触させることを特徴とする油水分離方法。 5. An oil / water separation method, wherein an oil / water separator according to any one of claims 1 to 4 is brought into contact with an emulsion containing water and oil.
PCT/JP2016/056543 2015-03-06 2016-03-03 Oil-water separating material and oil-water separation method WO2016143651A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015-044667 2015-03-06
JP2015-044668 2015-03-06
JP2015044667 2015-03-06
JP2015044668 2015-03-06
JP2015-044666 2015-03-06
JP2015044666 2015-03-06

Publications (1)

Publication Number Publication Date
WO2016143651A1 true WO2016143651A1 (en) 2016-09-15

Family

ID=56879368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056543 WO2016143651A1 (en) 2015-03-06 2016-03-03 Oil-water separating material and oil-water separation method

Country Status (1)

Country Link
WO (1) WO2016143651A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018087277A (en) * 2016-11-28 2018-06-07 日本化学工業株式会社 Composite particle, method for producing the same, and oil-water separation material comprising the same
CN108786759A (en) * 2018-06-15 2018-11-13 山东交通学院 A kind of water-oil separating material and preparation method thereof with antifouling sterilization and Dye Adsorption function
CN117362694A (en) * 2023-12-07 2024-01-09 北京中科康仑环境科技研究院有限公司 Physical-chemical composite crosslinking high oil absorption resin and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000000401A (en) * 1998-06-15 2000-01-07 Agency Of Ind Science & Technol Water repellently treated oil/water separating filter and its production
JP2010077383A (en) * 2008-08-25 2010-04-08 Nippon Chem Ind Co Ltd Nanocomposite powdery particle with siloxane linkage as main skeleton and method for producing the same, dispersion of nanocomposite powdery particle dispersion with siloxane linkage as main skeleton, and resin composition
JP2010209300A (en) * 2009-03-12 2010-09-24 Nippon Chem Ind Co Ltd Fullerene-containing nanocomposite powdery particle and method for producing the same, nanocomposite powdery particle dispersion, and resin composition
JP2010235943A (en) * 2009-03-12 2010-10-21 Nippon Chem Ind Co Ltd Nano composite powdery particle having siloxane bond as main skeleton and method for producing the same, nano composite powdery particle dispersion liquid having siloxane bond as main skeleton, and resin composition
JP2012091168A (en) * 2010-09-30 2012-05-17 Kagawa Univ Oil separating material and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000000401A (en) * 1998-06-15 2000-01-07 Agency Of Ind Science & Technol Water repellently treated oil/water separating filter and its production
JP2010077383A (en) * 2008-08-25 2010-04-08 Nippon Chem Ind Co Ltd Nanocomposite powdery particle with siloxane linkage as main skeleton and method for producing the same, dispersion of nanocomposite powdery particle dispersion with siloxane linkage as main skeleton, and resin composition
JP2010209300A (en) * 2009-03-12 2010-09-24 Nippon Chem Ind Co Ltd Fullerene-containing nanocomposite powdery particle and method for producing the same, nanocomposite powdery particle dispersion, and resin composition
JP2010235943A (en) * 2009-03-12 2010-10-21 Nippon Chem Ind Co Ltd Nano composite powdery particle having siloxane bond as main skeleton and method for producing the same, nano composite powdery particle dispersion liquid having siloxane bond as main skeleton, and resin composition
JP2012091168A (en) * 2010-09-30 2012-05-17 Kagawa Univ Oil separating material and method for manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018087277A (en) * 2016-11-28 2018-06-07 日本化学工業株式会社 Composite particle, method for producing the same, and oil-water separation material comprising the same
CN108786759A (en) * 2018-06-15 2018-11-13 山东交通学院 A kind of water-oil separating material and preparation method thereof with antifouling sterilization and Dye Adsorption function
CN108786759B (en) * 2018-06-15 2020-10-16 山东交通学院 Oil-water separation material with antifouling, sterilizing and dye adsorbing functions and preparation method thereof
CN117362694A (en) * 2023-12-07 2024-01-09 北京中科康仑环境科技研究院有限公司 Physical-chemical composite crosslinking high oil absorption resin and preparation method and application thereof
CN117362694B (en) * 2023-12-07 2024-02-27 北京中科康仑环境科技研究院有限公司 Physical-chemical composite crosslinking high oil absorption resin and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP6681220B2 (en) Oil-water separation material and oil-water separation method
WO2016143651A1 (en) Oil-water separating material and oil-water separation method
WO2002016005A1 (en) Filter medium for air filter and method for its production
TW201223868A (en) Aerogel and method for manufacture thereof
DE2758415A1 (en) SILICIC ACID HETEROPOLYCONDENSATES, PROCESS FOR THEIR PRODUCTION AND THEIR USE AS MEMBRANES AND ADSORBENTS
JP6678044B2 (en) Composite particles, method for producing the same, and oil / water separation material
WO2016209630A1 (en) Process for modification of carbon surfaces
Ruidas et al. Non‐Fluorinated and Robust Superhydrophobic Modification on Covalent Organic Framework for Crude‐Oil‐in‐Water Emulsion Separation
CN111410723A (en) Porous boron affinity imprinted polymer and preparation method and application thereof
WO2013181345A2 (en) Synthesis of polymeric ionic liquids using a photochemical polymerization process
JP6637792B2 (en) Composite particles, method for producing the same, gelling agent, and oil-water separation material
Cao et al. A hierarchically porous sponge for stabilized emulsion separation with high filtration flux and separation efficiency
CN103908903B (en) A kind of self-cleaning aramid fiber film and preparation method thereof with separate at gas in application
CN105903452B (en) A kind of preparation method of aromatic sulphonic acid selective ion exchange resin
JP2010077383A (en) Nanocomposite powdery particle with siloxane linkage as main skeleton and method for producing the same, dispersion of nanocomposite powdery particle dispersion with siloxane linkage as main skeleton, and resin composition
JP6644588B2 (en) Composite particles, method for producing the same, and oil / water separation material
JP6644589B2 (en) Composite particles, method for producing the same, and oil / water separation material
TW201622810A (en) Filter material, filter, method of producing filter material, filtering method, copolymer and method of producing copolymer
JP6637795B2 (en) Composite particles and method for producing the same
JP2018087277A (en) Composite particle, method for producing the same, and oil-water separation material comprising the same
JP6807576B2 (en) Composite particles, their manufacturing method, oil-water separator using it
JP6819955B2 (en) Composite particles, their manufacturing methods, oil-water separators using them, and organic compound adsorbents using them.
JP2020063375A (en) Composite particle, method for producing the same, oil separation agent, and oil-water separation method
JP6807575B2 (en) Composite particles, their manufacturing method, oil-water separator using it
CN113136179A (en) Fluorinated nano silicon dioxide and modified nano dispersion liquid as well as preparation method and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761621

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16761621

Country of ref document: EP

Kind code of ref document: A1