JP6673046B2 - 電気自動車用の電源システム - Google Patents

電気自動車用の電源システム Download PDF

Info

Publication number
JP6673046B2
JP6673046B2 JP2016121214A JP2016121214A JP6673046B2 JP 6673046 B2 JP6673046 B2 JP 6673046B2 JP 2016121214 A JP2016121214 A JP 2016121214A JP 2016121214 A JP2016121214 A JP 2016121214A JP 6673046 B2 JP6673046 B2 JP 6673046B2
Authority
JP
Japan
Prior art keywords
power
main
voltage
ddc
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016121214A
Other languages
English (en)
Other versions
JP2017225320A (ja
Inventor
尭志 野澤
尭志 野澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016121214A priority Critical patent/JP6673046B2/ja
Publication of JP2017225320A publication Critical patent/JP2017225320A/ja
Application granted granted Critical
Publication of JP6673046B2 publication Critical patent/JP6673046B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本明細書は、電気自動車用の電源システムを開示する。本明細書における「電気自動車」には、モータとエンジンの双方を備えるハイブリッド車が含まれる。
電気自動車は、走行用のモータと、走行用モータの駆動電圧よりも低い電圧で作動する低電圧機器を備える。それゆえ、電気自動車の電源システムは、走行用モータを駆動する回路に高電圧の電力を供給するとともに、低電圧機器に低電圧の電力を供給する能力が要求される。そのような電源システムの一例が特許文献1に開示されている。特許文献1の電源システムは、メインバッテリ、メイン電力線、サブ電力線、システムスイッチ、2個のDC−DCコンバータ(第1及び第2DC−DCコンバータ)、コントローラを備えている。電気自動車は、メインバッテリから供給される電力を走行モータ駆動用の電力に変換する電力制御ユニットを備えており、その電力制御ユニットとメインバッテリがメイン電力線で接続されている。システムスイッチは、メイン電源線に備えられており、メインバッテリと電力制御ユニットの間の導通と非導通を切り換える。なお、メイン電力線を導通状態にすることを「システムスイッチを閉じる」と表記し、メイン電力線を非導通状態にすることを「システムスイッチを開放する」と表記する場合がある。
サブ電力線は、低電圧機器へ駆動電力を伝送する。第1DC−DCコンバータは、システムスイッチよりも電力制御ユニット側のメイン電力線とサブ電力線の間に接続されており、メイン電力線の電力を降圧してサブ電力線へ供給する降圧動作が可能である。第2DC−DCコンバータは、システムスイッチよりもメインバッテリ側のメイン電力線とサブ電力線の間に接続されており、メイン電力線の電力を降圧してサブ電力線へ供給する降圧動作が可能である。コントローラは、第1及び第2DC−DCコンバータを制御する。
システムスイッチは、ユーザが操作する車両メインスイッチ(スタートスイッチ)のON/OFFに応じて開閉される。車両メインスイッチがOFFの間、システムスイッチが開放され、高電圧系(走行用モータと電力制御ユニット)がメインバッテリから完全に切り離され、車両の確実な安全性が確保される。
システムスイッチが閉じられるまでは、コントローラは第2DC−DCコンバータを制御し、サブ電力線を介して低電圧機器に電力が供給される。システムスイッチが閉じられた後、コントローラは、第1及び第2DC−DCコンバータを適宜に制御し、低電圧機器全体の消費電力を賄う。
特許文献1の図5に例示されているように、車両メインスイッチがONからOFFに切り換えられたとき、コントローラは、第1DC−DCコンバータを停止させ、その後、システムスイッチを開放する。第1DC−DCコンバータが動作中、即ち、システムスイッチに電流が流れている状態でシステムスイッチを開放すると、スパイク状のノイズ電流が発生し、システムスイッチやシステムスイッチに導通している機器がダメージを受ける虞があるからである。
特開2008−5622号公報
近年の電気自動車は電気系が複雑化しており、複数のコントローラが互いに通信しながら様々なデバイスを制御している。典型的には、上記した第1及び第2DC−DCコンバータを制御するコントローラとは別に、車両メインスイッチの動作を監視するとともにシステムスイッチを制御するコントローラが備えられている場合がある。説明の便宜上、前者のコントローラをDDCコントローラと称し、後者のコントローラをメインコントローラと称する。メインコントローラは、車両メインスイッチがONからOFFに切り換えられると、DDCコントローラに第1DC−DCコンバータの停止を指令し、次いで、システムスイッチを開放する。
メインコントローラとDDCコントローラが上記した協調関係にあるとき、メインコントローラとDDCコントローラの間で通信不良が生じた場合、次の問題が生じる。先に述べたように、システムスイッチを開放するのに先立って第1DC−DCコンバータを停止することが望ましい。しかし、通信不良が生じた場合、DDCコントローラはメインコントローラからの指令を受けられないため、メインコントローラは、第1DC−DCコンバータの動作中にシステムスイッチを開放しなければならなくなる。システムスイッチに電流が流れている間にシステムスイッチを開放すると、先に述べたようにスパイク状のノイズ電流が発生する虞がある。システムスイッチ開放時のノイズ電流発生を避けるため、通信不良が生じたときに第1DC−DCコンバータを停止させることが考えられる。しかし、通信不良が生じた後も、車両メインスイッチがOFFされるまでは、走行可能であることが望ましい。第1DC−DCコンバータを停止してしまうと、低電圧機器に供給する電力が不足する可能性があり、その場合、走行に支障を来す虞がある。
本明細書は、DDCコントローラとメインコントローラの間で通信不良が生じた場合であっても、走行中は低電圧機器に十分な電力を供給できるとともに、車両メインスイッチがOFFされたときにシステムスイッチを安全に開放することのできる技術を提供する。
本明細書が開示する電源システムは、メインバッテリ、メイン電力線、サブ電力線、システムスイッチ、第1及び第2DC−DCコンバータ、DDCコントローラ、メインコントローラを備える。メイン電力線は、電力制御ユニットとメインバッテリを接続している。電力制御ユニットは、メインバッテリから供給される電力を走行モータ駆動用の電力に変換するデバイスである。サブ電力線は、メインバッテリよりも低い電圧で動作する低電圧機器に電力を伝送する。システムスイッチは、メイン電力線に備えられており、メインバッテリと電力制御ユニットの間の導通と非導通を切り換える。第1DC−DCコンバータは、システムスイッチよりも電力制御ユニット側のメイン電力線とサブ電力線の間に接続されており、メイン電力線の電力を降圧してサブ電力線へ供給する降圧動作が可能である。第2DC−DCコンバータは、システムスイッチよりもメインバッテリ側のメイン電力線とサブ電力線の間に接続されており、メイン電力線の電力を降圧してサブ電力線へ供給する降圧動作が可能である。DDCコントローラは、第1及び第2DC−DCコンバータを制御する。メインコントローラは、車両メインスイッチがONからOFFに切り換えられたときに、第1DC−DCコンバータを停止させる停止指令信号をDDCコントローラへ送信し、次いで、システムスイッチを開放する。DDCコントローラは、メインコントローラとの間で通信不良が生じた場合、第1DC−DCコンバータの出力目標電圧を第1電圧に設定して第1DC−DCコンバータを制御するとともに、第2DC−DCコンバータの出力目標電圧を第1電圧よりも高い第2電圧に設定して第2DC−DCコンバータを制御する。メインコントローラは、通信不良が生じている間に車両メインスイッチがONからOFFに切り換えられたとき、停止指令信号を送信することなく、複数の低電圧機器の総消費電力が第2DC−DCコンバータの最大出力電力を越えないように低電圧機器を制御するとともに、システムスイッチを開放する。
第1及び第2DC−DCコンバータはともにサブ電力線に接続されている。従って、第2電圧が第1電圧よりも高いので、第1DC−DCコンバータは動作していても事実上電力は出力されず、第2DC−DCコンバータだけが低電圧機器へ電力を供給することになる。第2DC−DCコンバータの出力電力には限界があり、低電圧機器の総消費電力が第2DC−DCコンバータの最大出力電力を越えると、第2DC−DCコンバータの出力電圧が下がる。第2DC−DCコンバータの出力電圧が第1電圧を下回ると、第1DC−DCコンバータからも電力供給が始まる。こうして、低電圧機器に十分な電力を供給することができる。
一方、メインコントローラは、通信不良が生じている間に車両メインスイッチがONからOFFに切り換わると、低電圧機器の総消費電力が第2DC−DCコンバータの最大出力電力を越えないように低電圧機器を制御する。低電圧機器の総消費電力が最大出力電圧を越えなければ、第2DC−DCコンバータはその出力目標電圧である第2電圧を保持することができ、第1DC−DCコンバータは電力を出力しない。このとき、システムスイッチには電流が流れない。そのような状態でメインコントローラはシステムスイッチを開放する。従って、スパイク状のノイズ電流が発生することもなく、安全にシステムスイッチを開放することができる。
本明細書が開示する電気自動車用の電源システムは、DDCコントローラとメインコントローラの間に通信不良が発生し、両コントローラの協調が出来なくなった場合でも、走行中は低電圧機器に十分な電力を供給できるとともに、車両メインスイッチがOFFされたときにシステムスイッチを安全に開放することができる。
本明細書が開示する技術の詳細とさらなる改良は以下の「発明を実施するための形態」にて説明する。
実施例の電源システムを含むハイブリッド車の電力系のブロック図である。 図2(A)は、通信不良が検知されたときのDDCコントローラの処理を示す。図2(B)は、通信不良発生後に車両メインスイッチがOFFされたときのメインコントローラの処理を示す。
図面を参照して実施例の電源システム2を説明する。電源システム2は、ハイブリッド車100に搭載されている。図1に電源システム2を含むハイブリッド車100の電気系統のブロック図を示す。ハイブリッド車100は、エンジン61の動力、及び/又は、第1モータ6、第2モータ8の動力により走行することができる。モータを利用する場合、ハイブリッド車100は、メインバッテリ4から供給される電力により第2モータ8を駆動し、第2モータ8の動力によって駆動輪(図示せず)を回転させる。エンジン61を利用して走行する場合には、ハイブリッド車100は、第1モータ6をセルモータとして使用しエンジン61を始動させる。そして、ハイブリッド車100は、動力分配機構62によって、エンジン61が発生させた動力の一部を駆動輪に伝達する一方で、残りの動力を第1モータ6に伝達させて第1モータ6で発電する。第1モータ6で発電した電力は、第2モータ8に供給して駆動輪の回転に利用したり、メインバッテリ4の充電に利用したりすることができる。
なお、エンジン61を利用して走行している際、メインバッテリ4から第2モータ8に電力を供給して、駆動力を増大させることも可能である。一方、走行中のハイブリッド車100が減速する際には、第2モータ8で回生発電し、第2モータ8で発電した電力でメインバッテリ4を充電することができる。このように、第1モータ6と第2モータ8は、発電機としても機能する。その意味で、第1モータ6と第2モータ8は、「モータジェネレータ」と称することができる。図1の「MG1」が第1モータ6(第1モータジェネレータ)を表し、「MG2」が第2モータ8(第2モータジェネレータ)を表す。第1モータ6と第2モータ8は、「走行モータ」と称することもできる。図1の「PCU」は、後述する電力制御ユニット12を示す。
電源システム2は、メインバッテリ4、サブバッテリ22、システムメインリレー20、第1DC−DCコンバータ28、第2DC−DCコンバータ30、DDC制御ユニット43、HV制御ユニット45を備えている。以下では説明を簡単にするため、便宜上、システムメインリレー20をSMR20と表記し、DDC制御ユニット43をDDC−ECU43と表記し、HV制御ユニット45をHV−ECU45する。さらに、第1DC−DCコンバータ28を第1DDC28と表記し、第2DC−DCコンバータ30を第2DDC30と表記する。図1では、第1DDC28は「DDC1」と表記されており、第2DDC30は「DDC2」と表記されている。また、後述する電力制御ユニット12をPCU12と表記する。
DDC−ECU43は、第1DDC28、第2DDC30、PCU12等と通信線47で接続されており、それらを制御する。PCU12(電力制御ユニット12)とは、メインバッテリ4から供給される電力を走行モータ駆動用の電力に変換するデバイスである。DDC−ECU43とHV−ECU45は、通信線44で接続されている。HV−ECU45とSMR20は通信線48で接続されている。HV−ECU45は、通信線49を介して車両メインスイッチ46に接続されている。車両メインスイッチ46は、車両の運転席に備えられているスイッチであり、車両全体システムを起動するスイッチである。車両メインスイッチ46は、イグニッションスイッチと呼ばれることがあり、電気自動車(ハイブリッド車)では、スタートスイッチと呼ばれることもある。
メインバッテリ4は、ニッケル水素電池やリチウムイオン電池などの二次電池(充電可能電池)である。本実施例では、メインバッテリ4の電圧は約300V(ボルト)である。メインバッテリ4は、メイン電力線10を介してPCU12に接続されている。メイン電力線10には、SMR20が備えられている。SMR20は、メインバッテリ4とPCU12の間の導通と非導通を切り換える。なお、「非導通」は、「遮断」と表現する場合もある。また、メインバッテリ4とPCU12の間を導通させることを、「SMR20を閉じる」と表現し、メインバッテリ4とPCU12の間を遮断することを、「SMR20」を開く、と表現する場合がある。
PCU12は、メインバッテリ4と、第1モータ6及び第2モータ8との間に設けられている。PCU12は、平滑コンデンサ14、15、コンバータ16及びインバータ17を備えている。平滑コンデンサ14は、メイン電力線10の電流を平滑化する。より詳しく表現すると、平滑コンデンサ14は、メインバッテリ4から供給される電力の電流を平滑化する。平滑コンデンサ15は、コンバータ16とインバータ17の間に流れる電力の電流を平滑化する。
PCU12は、メインバッテリ4から供給される電力を第1モータ6及び第2モータ8(走行モータ)の駆動用電力に変換する。コンバータ16は、メインバッテリ4から供給される電力の電圧を、必要に応じて第1モータ6や第2モータ8の駆動に適した電圧まで昇圧する。またコンバータ16は、第1モータ6や第2モータ8が発電した電力の電圧を、メインバッテリ4の充電に適した電圧まで降圧させたりもする。即ち、コンバータ16は、双方向DC−DCコンバータである。コンバータ16には、メインバッテリ4からの電流が流れる複数のパワー素子が実装されている。双方向DC−DCコンバータの回路構成は良く知られているので詳しい説明は省略する。本実施例では、第1モータ6や第2モータ8の駆動に用いる電圧は約600Vである。
インバータ17は、2個のモータ(第1モータ6と第2モータ8)の夫々に対応して、2組のインバータ回路を備えている。インバータ17は、コンバータ16から供給される直流電力をU相、V相、W相の交流電力に変換して第1モータ6や第2モータ8を駆動する三相交流電力を供給したり、第1モータ6や第2モータ8が発電した三相交流電力を直流電力に変換してコンバータ16へ供給したりする。また、インバータ17は、第1モータ6及び第2モータ8の一方が発電した三相交流電力を、一旦、直流電力に変換しさらに三相交流電力に変換して、第1モータ6及び第2モータ8の他方に供給したりもする。インバータ17にも、メインバッテリ4からの電流が流れる複数のパワー素子が実装されている。インバータ回路の構成もよく知られているので詳しい説明は省略する。
SMR20よりもPCU12の側のメイン電力線10aには、エアコン50も接続されている。エアコン50は消費電力が大きいので、サブ電力線24(後述)ではなく、メイン電力線10に接続されており、メインバッテリ4から電力供給を受けるようになっている。
サブバッテリ22について説明する。サブバッテリ22の出力電圧は、メインバッテリ4の出力電圧よりも低い。サブバッテリ22は、典型的には、鉛蓄電池で構成される二次電池(充電可能電池)である。本実施例では、サブバッテリ22の電圧は約13Vである。サブバッテリ22は、サブ電力線24を介して、低電圧機器41に接続されている。低電圧機器41とは、サブバッテリ22の電圧(別言すればメインバッテリ4の電圧よりも低い電圧)で動作する機器の総称である。サブ電力線24が、サブバッテリ22から(あるいは、後述する第1DDC28、第2DDC30から)低電圧機器41に電力を伝送する。低電圧機器41には、例えば、ブレーキランプ41a、ヘッドライト41bなどがある。低電圧機器41にはその他、ルームランプ、ナビゲーション装置、オーディオ装置などもある。DDC−ECU43やHV−ECU45も低電圧機器の一つとして、サブバッテリ22から電力供給を受ける。なお、DDC−ECU43やHV−ECU45など、走行能力にとって重要な制御ユニットは、独自のバッテリを備えており、所定の期間は、サブ電力線24からの電力供給がなくとも動作することができる。車両の導電性のボデーが、サブ電力線24の負極線を兼ねる場合がある。負極線の電位は接地電位(基準電位)と呼ばれることがある。
SMR20よりもPCU12側のメイン電力線10aとサブ電力線24との間に、第1DDC28(第1DC−DCコンバータ)が接続されている。第1DDC28は、メイン電力線10を流れる電力を降圧してサブ電力線24へ供給する降圧動作と、サブ電力線24を流れる電力を昇圧してメイン電力線10へ供給する昇圧動作を行うことができる。典型的には、降圧動作は、メインバッテリ4の電力を降圧してサブ電力線24に供給することである。第1DDC28も、先のコンバータ16と同様に、双方向DC−DCコンバータである。ハイブリッド車100では、第1DDC28が降圧動作を行うことで、SMR20が非導通のときであっても、第1モータ6や第2モータ8が発電した回生電力でサブバッテリ22を充電することができる。また、ハイブリッド車100では、第1DDC28が昇圧動作を行うことで、SMR20が非導通のときでも、サブバッテリ22の電力を利用して第1モータ6や第2モータ8を駆動することができる。さらに、後述する第2DDC30が降圧動作を行い、第1DDC28が昇圧動作を行うと、SMR20が非導通のときでもメインバッテリ4の電力をPCU12に供給し、第1モータ6と第2モータ8を駆動することもできる。
SMR20よりもメインバッテリ4側のメイン電力線10bとサブ電力線24の間に、第2DDC30(第2DC−DCコンバータ)が接続されている。第2DDC30は、メイン電力線10を流れる電力を降圧してサブ電力線24へ供給する降圧動作を行うことができる。第2DDC30は、いわゆる降圧コンバータである。ハイブリッド車100では、SMR20の導通時に、第1DDC28が降圧動作を行い、かつ第2DDC30が降圧動作を行う。これにより、メインバッテリ4からの電力や、第1モータ6や第2モータ8が発電した電力を、第1DDC28と第2DDC30の両方を介して、サブバッテリ22に充電することができる。この場合、第1DDC28と第2DDC30のいずれか一方を介してサブバッテリ22に充電する場合に比べて、サブバッテリ22に供給される電流が大きくなる。そのため、サブバッテリ22の充電に要する時間が短くなる。
SMR20は、車両メインスイッチ46がOFFの間は開かれており、メインバッテリ4とPCU12の間を遮断している。HV−ECU45は、車両メインスイッチ46の状態をモニタしており、車両メインスイッチ46がOFFからONに切り換えられると、SMR20を閉じ、メインバッテリ4とPCU12を接続する。メインバッテリ4とPCU12が接続されると、第1モータ6と第2モータ8に電力を供給可能な状態、即ち、走行可能な状態になる。
平滑コンデンサ14が放電された状態、即ち、平滑コンデンサ14の両端電圧が低い状態でSMR20を接続すると、メインバッテリ4からPCU12(コンバータ16とインバータ17)に突入電流が流れる。突入電流は、コンバータ16やインバータ17のパワー素子にダメージを与える可能性がある。そこで、HV−ECU45は、SMR20を閉じるのに先立って、DDC−ECU43に指令を送り、第1DDC28と第2DDC30を使って平滑コンデンサ14を充電する(プリチャージする)。より具体的には、DDC−ECU43は、第2DDC30に降圧動作を行わせてメインバッテリ4の電力をサブ電力線24に供給するとともに、第1DDC28に昇圧動作を行わせ、メインバッテリ4の電力を、サブ電力線24を介して、SMR20よりもPCU12の側のメイン電力線10aに供給する。SMR20よりもPCU12の側のメイン電力線10aには、平滑コンデンサ14が並列に接続されているため、上記の処理により、メインバッテリ4の電力で平滑コンデンサ14がプリチャージされる。プリチャージが完了すると、HV−ECU45は、SMR20を閉じる。プリチャージ後は、SMR20のメインバッテリ4の側の電圧と、PCU12の側の電圧がほぼ等しいので突入電流は流れない。
SMR20が閉じられた後は、DDC−ECU43は、第1DDC28の動作を昇圧動作から降圧動作に切り換える。即ち、DDC−ECU43は、メイン電力線10の電力を降圧してサブ電力線24に供給するように第1DDC28を制御する。SMR20が閉じられた後、DDC−ECU43は、複数の低電圧機器41の総消費電力に応じて、第1DDC28と第2DDC30の出力を調整する。
HV−ECU45とDDC−ECU43は、通信線44で通信可能に接続されている。DDC−ECU43は、PCU12、第1DDC28、第2DDC30を制御する電源系のコントローラである。これに対してHV−ECU45は、車両メインスイッチ46などユーザが操作するスイッチ類の状態をモニタしたり、アクセル開度と車速とメインバッテリ4の残量などから、車に要求される駆動トルクをエンジン61の目標駆動トルクとモータ6、8の目標駆動トルクに分配したりする。HV−ECU45は、車両全体を統括する司令塔のコントローラである。
車両メインスイッチ46がONからOFFに切り換えられたときのHV−ECU45とDDC−ECU43の処理を説明する。HV−ECU45は、車両メインスイッチ46がONからOFFに切り換えられると、DDC−ECU43に対して第1DDC28を停止させる停止指令信号を、通信線44を介して送信する。停止指令信号を受信したDDC−ECU43は、第1DDC28を停止する。なお、このとき、第2DDC30は、降圧動作を継続しており、第2DDC30を通じてメインバッテリ4からサブ電力線24へ電力供給が続けられる。それゆえ、車両メインスイッチ46がOFFに切り換えられても低電圧機器41を使用し続けることができる。
第1DDC28が停止した後、HV−ECU45は、SRM20を開く。こうして、車両メインスイッチ46がOFFに切り換えられた後、SMR20が開放され、PCU12からメインバッテリ4が完全に切り離される。なお、車両メインスイッチ46は、正確には3段階に切り換え可能であり、それらは、Ready−ON、Ready−OFF、OFFと呼ばれる。「Ready−ON」は、走行可能な状態を意味し、本実施例のこれまでの説明における「ON」に相当する。「Ready−OFF」は、SMR20は開放された状態にあり、走行することはできないが、低電圧機器41は利用可能である状態を意味する。本実施例のこれまでの説明における「OFF」が、この「Ready−OFF」に相当する。「OFF」は、システム起動のためのデバイス(HV−ECU45など)を除き、他の低電圧機器41の利用ができない状態を意味する。車両メインスイッチ46がReay−OFFからOFFに切り換わったとき、HV−ECU45はDDC−ECU43に指令し、第2DDC30を停止させる。
本明細書では、SMR20の切換時の処理に着目するので、車両メインスイッチ46の3段階(Ready−ON/Ready−OFF/OFF)のうち、実施例のこれまでの説明と同様に、「Ready−ON」を「ON」と称し、「Ready−OFF」を「OFF」と称して説明を続ける。
HV−ECU45とDDC−ECU43の間に通信不良が生じると、DDC−ECU43は、HV−ECU45から停止指令信号を受け取ることができなくなる。HV−ECU45は、車両メインスイッチ46がONからOFFに切り換えられたことを検知すると、SMR20を開放しなければならないが、SMR20の開放に先立って第1DDC28を停止することができなくなる。第1DDC28が動作しておりSMR20に電流が流れている状態でSMR20を開放すると、SMR20の接点にアーク放電が生じたり、メイン電力線10にスパイク状のノイズ電流が生じたりしてSMR20や他のデバイスがダメージを受ける虞がある。通信不良が発生した時点で第1DDC28を停止することも考えられるが、そうすると、低電圧機器41にはサブバッテリ22と第2DDC30からは電力が供給されるが、第1DDC28からの電力供給がなくなるため、走行に支障が生じる虞がある。そこで、電源システム2は、DDC−ECU43とHV−ECU45との間に通信不良が生じると、図2のフローチャートの処理を行い、走行中の低電圧機器41への十分な電力供給を確保しつつ、車両メインスイッチ46がOFFに切り換えられたときにSMR20を安全に開放する。
なお、通信不良の検知は、例えば次の手法による。通信線44は、例えばCAN(Control Area Network)である。DDC−ECU43とHV−ECU45の間の通信線44がCAN(Control Area Network)の場合は、データのやり取りにハンドシェイクプロトコルが実行されるため、そのハンドシェイクプロトコルで通信不良を検知し得る。DDC−ECU43とHV−ECU45の間の通信が他のプロトコルで行われる場合は、例えばCRCなどのチェック機能で通信不良を検知し得る。
図2(A)は、通信不良を検知したときのDDC−ECU43の処理を示す。図2(B)は、通信不良を検知した後、車両メインスイッチ46がONからOFFに切り換えられたときのHV−ECU45の処理を示す。DDC−ECU43は、通信不良を検知すると、第1DDC28に対して、出力電圧を電圧V1に保持する定電圧制御を実行する(S2)。また、DDC−ECU43は、第2DDC30に対して、出力電圧を電圧V2に保持する定電圧制御を実行する(S2)。別言すれば、DDC−ECU43は、第1DDC28の出力目標電圧を電圧V1に設定して第1DDC28を定電圧制御するとともに、第2DDC30の出力目標電圧を電圧V2に設定して第2DDC30を定電圧制御する。ここで、電圧V2は、電圧V1よりも大きい値に設定されている。また、電圧V1と電圧V2は、低電圧機器41の作動電圧以上に設定される。さらに、電圧V1と電圧V2は、サブバッテリ22の出力電圧よりも高い値に設定されている。ステップS2を実行すると、複数の低電圧機器41への電力供給は、次のようになる。複数の低電圧機器41の総消費電力が第2DDC30の最大出力電圧よりも小さい場合、第2DDC30は、出力目標電圧である電圧V2を保持できる。第1DDC28の出力目標電圧V1は電圧V2よりも低いから、第1DDC28は動作していても、実質的には出力はゼロである。すなわち、低電圧機器41へは、第2DDC30のみから電力が供給される。また、電圧V1と電圧V2はともにサブバッテリ22の出力電圧よりも高いので、第1DDC28または第2DDC30の出力電圧が電圧V1より大きい場合、サブバッテリ22からは電力が出力されない。
走行中は、様々な低電圧機器41が起動したり停止したり、出力を変更したりする。すなわち、走行中は、複数の低電圧機器41の総消費電力が変化する。第2DDC30が出力できる電力には限界があり、総消費電力が第2DDC30の最大出力電圧を越えると、第2DDC30は出力電圧を電圧V2に保持できなくなり、その出力電圧は低下する。第2DDC30の出力電圧が電圧V1以下になると、出力目標電圧が電圧V1に設定されている第1DDC28から電力が出力される。低電圧機器41には、第1DDC28と第2DDC30の双方から電力が供給されることになり、十分な電力を低電圧機器41に供給し得る。走行中にHV−ECU45とDDC−ECU43の間に通信不良が発生しても、低電圧機器41に十分な電力を供給し続けることができる。なお、第1DDC28と第2DDC30の合計出力でも電力が不足する場合、第1DDC28の出力電圧と第2DDC30の出力電圧は共に低下していく、第1DDC28、第2DDC30の出力電圧がサブバッテリ22の出力電圧よりも低くなると、サブバッテリ22からも低電圧機器41へ電力が供給される。
一方、HV−ECU45は、通信不良の発生後に車両メインスイッチ46のONからOFFへの切換を検知したら、図2(B)の処理を実行する。なお、HV−ECU45は、夫々の低電圧機器41の動作をモニタしており、動作中の全ての低電圧機器41の総消費電力を把握している。HV−ECU45は、低電圧機器41の総消費電力が第2DDC30の最大出力電力以上であるか否かをチェックする(S3)。HV−ECU45には、予め、第2DDC30の最大出力電力の値が記憶されている。低電圧機器41の総消費電力が第2DDC30の最大出力電力以上である場合(S3:YES)、HV−ECU45は、動作中の低電圧機器41の特定の一つの出力を下げる(S4)。例えば、HV−ECU45は、低電圧機器41の一つであるヒータの設定温度を下げ、ヒータの出力を下げる。そうすると、ヒータの消費電力が下がる。従って低電圧機器41の総消費電力が下がる。ステップS4を実行すると、処理はステップS3に戻り、HV−ECU45は、再度、総消費電力が第2DDC30の最大出力電力以上であるか否かをチェックする(S3)。
低電圧機器41の総消費電力が依然第2DDC30の最大出力電力以上である場合(S3:YES)、HV−ECU45は、動作中の低電圧機器41の別の一つの出力を下げる(S4)。例えば、HV−ECU45は、オーディオの出力を下げる。そうすると、オーディオの消費電力が下がり、低電圧機器41の総消費電力が下がる。HV−ECU45は、総消費電力が第2DDC30の最大出力電力を下回るまで、ステップS4の処理を繰り返す。なお、HV−ECU45には、出力を下げる低電圧機器41の順番が設定されており、その順番に沿って低電圧機器41を選定し、その出力を下げていく。
総消費電力が第2DDC30の最大出力電力を下回ると(S3:NO)、HV−ECU45は、SMR20を開放する(S5)。総消費電力が第2DDC30の最大出力電力を下回っている場合、図2(A)の説明のときに述べたように、第2DDC30の出力電圧は電圧V2に保持され、第1DDC28からは電力が出力されない。即ち、ステップS5においてHV−ECU45がSMR20を開放するとき、SMR20には電流が流れていない。SMR20を開放するときにアーク放電が発生したり、スパイク状のノイズ電流が発生したりしないので、SMR20とその周辺のデバイスにダメージを与えることがない。即ち、電源システム2は、安全にSMR20を開放することができる。
図2(A)の処理は、DDC−ECU43が実行し、図2(B)の処理はHV−ECU45が実行する。DDC−ECU43とHV−ECU45の間で通信不良が発生しているため、DDC−ECU43とHV−ECU45は相互に協調することができず、図2(A)の処理と図2(B)の処理は、それぞれ独立に実行される。実施例の電源システム2は、DDC−ECU43とHV−ECU45が連携して動作することができずとも、走行中に低電圧機器41に十分な電力を供給することができるとともに、車両メインスイッチ46がOFFされたときにSMR20を安全に開放することができる。
実施例で説明した技術に関する留意点を述べる。実施例のSMR20が請求項の「システムスイッチ」の一例に相当する。第1DDC28が請求項の「第1DC−DCコンバータ」の一例に相当する。第2DDC30が請求項の「第2DC−DCコンバータ」の一例に相当する。実施例のDDC−ECU43が請求項の「DDCコントローラ」の一例に相当する、実施例のHV−ECU45が、請求項の「メインコントローラ」の一例に相当する。
第2DDC30は、メイン電力線10の電力を降圧してサブ電力線24へ供給する降圧動作の他に、サブ電力線24の電力を昇圧してメイン電力線10に供給する昇圧動作が可能な双方向DC−DCコンバータであってもよい。実施例の電源システム2は、走行用にエンジンとモータの双方を備えるハイブリッド車に適用されている。本明細書が開示する電源システムは、エンジンを備えない電気自動車に適用することも可能である。
以上、本発明の具体例を詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
2:電源システム
4:メインバッテリ
6:第1モータ
8:第2モータ
10:メイン電力線
12:電力制御ユニット(PCU)
14、15:平滑コンデンサ
16:コンバータ
17:インバータ
20:システムメインリレー(SMR)
22:サブバッテリ
24:サブ電力線
28:第1DC−DCコンバータ(第1DDC)
30:第2DC−DCコンバータ(第2DDC)
41:低電圧機器
43:DDC制御ユニット(DDC−ECU)
45:HV制御ユニット(HV−ECU)
46:車両メインスイッチ
50:エアコン
61:エンジン
62:動力分配機構
100:ハイブリッド車

Claims (1)

  1. メインバッテリと、
    前記メインバッテリから供給される電力を走行モータ駆動用の電力に変換する電力制御ユニットと前記メインバッテリを接続するメイン電力線と、
    前記メイン電力線に備えられており、前記メインバッテリと前記電力制御ユニットの間の導通と非導通を切り換えるシステムスイッチと、
    前記メインバッテリよりも低い電圧で動作する低電圧機器へ電力を伝送するサブ電力線と、
    前記システムスイッチよりも前記電力制御ユニット側の前記メイン電力線と前記サブ電力線の間に接続されており、前記メイン電力線の電力を降圧して前記サブ電力線へ供給する降圧動作が可能な第1DC−DCコンバータと、
    前記システムスイッチよりも前記メインバッテリ側の前記メイン電力線と前記サブ電力線の間に接続されており、前記メイン電力線の電力を降圧して前記サブ電力線へ供給する降圧動作が可能な第2DC−DCコンバータと、
    前記第1及び第2DC−DCコンバータを制御するDDCコントローラと、
    車両メインスイッチがONからOFFに切り換えられたときに、前記第1DC−DCコンバータを停止させる停止指令信号を前記DDCコントローラへ送信し、次いで、前記システムスイッチを開放するメインコントローラと、
    を備えており、
    前記DDCコントローラは、前記メインコントローラとの間で通信不良が生じた場合、前記第1DC−DCコンバータの出力目標電圧を第1電圧に設定して前記第1DC−DCコンバータを制御するとともに、前記第2DC−DCコンバータの出力目標電圧を前記第1電圧よりも高い第2電圧に設定して前記第2DC−DCコンバータを制御し、
    前記メインコントローラは、前記通信不良が生じている間に前記車両メインスイッチがONからOFFに切り換えられたとき、前記停止指令信号を送信することなく、複数の前記低電圧機器の総消費電力が前記第2DC−DCコンバータの最大出力電力を越えないように前記低電圧機器を制御するとともに、前記システムスイッチを開放する、電気自動車用の電源システム。
JP2016121214A 2016-06-17 2016-06-17 電気自動車用の電源システム Active JP6673046B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016121214A JP6673046B2 (ja) 2016-06-17 2016-06-17 電気自動車用の電源システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016121214A JP6673046B2 (ja) 2016-06-17 2016-06-17 電気自動車用の電源システム

Publications (2)

Publication Number Publication Date
JP2017225320A JP2017225320A (ja) 2017-12-21
JP6673046B2 true JP6673046B2 (ja) 2020-03-25

Family

ID=60688558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016121214A Active JP6673046B2 (ja) 2016-06-17 2016-06-17 電気自動車用の電源システム

Country Status (1)

Country Link
JP (1) JP6673046B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6981271B2 (ja) * 2018-01-19 2021-12-15 株式会社デンソー 双方向dcdcコンバータ
KR102532312B1 (ko) * 2018-03-06 2023-05-16 현대자동차주식회사 차량의 전원 공급 시스템 및 이를 제어하는 방법
JP7205451B2 (ja) * 2019-12-04 2023-01-17 トヨタ自動車株式会社 車両および車両の制御方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008005622A (ja) * 2006-06-22 2008-01-10 Nissan Motor Co Ltd 車両電源装置
JP5772616B2 (ja) * 2012-01-16 2015-09-02 トヨタ自動車株式会社 車両の電源システムおよび車両
JP6201967B2 (ja) * 2014-11-26 2017-09-27 トヨタ自動車株式会社 電気自動車

Also Published As

Publication number Publication date
JP2017225320A (ja) 2017-12-21

Similar Documents

Publication Publication Date Title
US8963482B2 (en) Power supply apparatus for electrically powered vehicle and method for controlling the same
JP6696408B2 (ja) 駆動システム
JP7072424B2 (ja) 車両の電源システム
JP6187341B2 (ja) 車載充電システム
JP2004507996A (ja) 自動車用二重電圧バッテリ
KR101803153B1 (ko) 연료 전지 차량 및 그의 제어 방법
JP2010259274A (ja) 蓄電装置充電パック
JP7178892B2 (ja) 車両のバッテリ充電制御装置
JP5766640B2 (ja) 電気車制御装置
WO2013129231A1 (ja) 電源装置
JP2010130877A (ja) 車両用バッテリー制御装置、車両用バッテリーシステム、および車両用バッテリー制御方法
US20140001988A1 (en) Electric motor vehicle
JP6673046B2 (ja) 電気自動車用の電源システム
JP2014110666A (ja) 放電制御システム及び放電装置
JP6965813B2 (ja) 電源システム
JP6879170B2 (ja) 車両用電源システム
JP2006288024A (ja) 電圧変換装置および電圧変換装置の制御方法
JP7230635B2 (ja) 電力システムおよびその制御方法
JP7137341B2 (ja) 電力制御システム
JP2010215106A (ja) ハイブリッド車両の制御システム
JP6818835B1 (ja) 電力制御装置
JP5160882B2 (ja) モータ駆動回路
JP2011101590A (ja) ハイブリッド電源車両及びその第1電力装置側での断線時制御方法
JP2014060838A (ja) 給電システム
JP6885302B2 (ja) 車両用電源システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200217

R151 Written notification of patent or utility model registration

Ref document number: 6673046

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151