JP6661204B1 - Layered material cleavage method - Google Patents

Layered material cleavage method Download PDF

Info

Publication number
JP6661204B1
JP6661204B1 JP2019079849A JP2019079849A JP6661204B1 JP 6661204 B1 JP6661204 B1 JP 6661204B1 JP 2019079849 A JP2019079849 A JP 2019079849A JP 2019079849 A JP2019079849 A JP 2019079849A JP 6661204 B1 JP6661204 B1 JP 6661204B1
Authority
JP
Japan
Prior art keywords
layered material
cleaving
sheet
thermoelectric semiconductor
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019079849A
Other languages
Japanese (ja)
Other versions
JP2020178058A (en
Inventor
新太郎 生稲
新太郎 生稲
Original Assignee
ハイソル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ハイソル株式会社 filed Critical ハイソル株式会社
Priority to JP2019079849A priority Critical patent/JP6661204B1/en
Application granted granted Critical
Publication of JP6661204B1 publication Critical patent/JP6661204B1/en
Publication of JP2020178058A publication Critical patent/JP2020178058A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

【課題】所望の積層面で劈開する。【解決手段】シート状物質11が多数積層された熱電半導体化合物(例えば、ビスマス・テルル系化合物又はアンチモン・テルル系化合物)10を劈開する劈開方法であって、熱電半導体化合物10の何れかの積層面に平行に刃22を、操作部の操作速度よりも低減させた挿入速度で挿入する挿入ステップと、熱電半導体化合物10が積層面で劈開される劈開ステップとを備える。刃22は、すくい面が台形形状の片刃であることが好ましい。【選択図】図1PROBLEM TO BE SOLVED: To cleave at a desired laminated surface. Kind Code: A1 A cleavage method for cleaving a thermoelectric semiconductor compound (for example, a bismuth-tellurium compound or an antimony-tellurium compound) 10 in which a large number of sheet-shaped substances 11 are laminated, in which any one of the thermoelectric semiconductor compounds 10 is laminated. An insertion step of inserting the blade 22 parallel to the surface at an insertion speed that is lower than the operation speed of the operation portion, and a cleavage step of cleaving the thermoelectric semiconductor compound 10 on the laminated surface. The blade 22 is preferably a single blade having a trapezoidal rake face. [Selection diagram] Fig. 1

Description

本発明は、層状物質劈開方法に関する。   The present invention relates to a method for cleaving a layered material.

シート状物質(例えば、グラフェン)が多数積層された層状物質(例えば、グラファイト、黒鉛)から単層のシート状物質を剥離する方法が知られている。例えば、特許文献1には、グラファイトの表層面に粘着テープを貼り付け、その後、粘着テープを剥離する作業を実行することで、グラフェンシートを形成する、ことが開示されている。   There is known a method of peeling a single-layer sheet material from a layered material (eg, graphite, graphite) in which a large number of sheet-like materials (eg, graphene) are stacked. For example, Patent Document 1 discloses that a graphene sheet is formed by attaching an adhesive tape to a surface layer of graphite and then performing an operation of peeling the adhesive tape.

特開2013−187415号公報(要約)JP 2013-187415 A (abstract)

ところで、熱電変換素子には、例えば、ビスマス・テルル系(Bi−Te系)やアンチモン・テルル系(Sb−Te系)の結晶が使用される。これらの結晶は、グラファイトと同様に、シート状物質が積層された積層構造をしており、面状に劈開することができる。このようなシート状物質の特性評価を行う場合、特許文献1に記載の技術を適用して、粘着テープで剥離することが考えられる。   By the way, for example, a bismuth tellurium (Bi-Te) or antimony tellurium (Sb-Te) crystal is used for the thermoelectric conversion element. These crystals have a laminated structure in which sheet-like substances are laminated like graphite, and can be cleaved in a planar shape. When performing the property evaluation of such a sheet-like substance, it is conceivable to apply the technique described in Patent Document 1 and peel off the sheet-like substance with an adhesive tape.

しかしながら、粘着テープを用いて層状物質を劈開すると、シート状物質と隣接するシート層物質との結合強度が小さい層で劈開してしまう。そのため、必ずしも所望の積層面で劈開できるとは限らない。   However, when the layered material is cleaved using an adhesive tape, the layered material is cleaved in a layer having a low bonding strength between the sheet material and an adjacent sheet layer material. Therefore, cleavage cannot always be performed at a desired stacked surface.

本発明は、このような事情に鑑みてなされたものであり、所望の積層面で劈開することができる層状物質劈開方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and it is an object of the present invention to provide a method for cleaving a layered material that can be cleaved on a desired stacked surface.

前記目的を達成するために、本発明は、シート状物質が多数積層された熱電半導体化合物(例えば、ビスマス・テルル系化合物又はアンチモン・テルル系化合物)を劈開する層状物質劈開方法であって、前記熱電半導体化合物の何れかの積層面に、すくい面が台形形状の片刃を挿入する挿入ステップと、前記熱電半導体化合物が前記積層面で劈開される劈開ステップとを備えることを特徴とする。 In order to achieve the above object, the present invention provides a method of cleaving a layered material for cleaving a thermoelectric semiconductor compound (for example, a bismuth tellurium-based compound or an antimony tellurium-based compound) in which a large number of sheet-like materials are stacked, The method is characterized by comprising an insertion step of inserting a single blade having a trapezoidal rake face into any one of the laminated surfaces of the thermoelectric semiconductor compound, and a cleavage step of cleaving the thermoelectric semiconductor compound at the laminated surface.

本発明によれば、所望の積層面で劈開することができる。   According to the present invention, cleavage can be performed at a desired layer plane.

本発明の第1実施形態として、層状物質をシート状に劈開する劈開方法を説明する説明図である。FIG. 3 is an explanatory diagram illustrating a cleavage method for cleaving a layered material into a sheet as the first embodiment of the present invention. 層状物質の一例であるBiTeの結晶構造を示す図である。Is a diagram showing the crystal structure of Bi 2 Te 3, which is an example of a layered material. 層状物質の劈開に使用する刃の構造図である。FIG. 3 is a structural view of a blade used for cleaving a layered material. 劈開前の層状物質を示す写真である。4 is a photograph showing a layered material before cleavage. 層状物質を劈開した劈開面を示す写真である。It is a photograph which shows the cleavage plane which cleaved the layered material. シート状物質を細分化する細分化方法を説明する説明図である。It is explanatory drawing explaining the subdivision method which subdivides a sheet-shaped material. シート状物質を細分化した細片を示す写真である。It is a photograph which shows the fragment which subdivided the sheet-like substance. 本発明の比較例である劈開方法を説明する説明図である。It is explanatory drawing explaining the cleavage method which is a comparative example of this invention. 粘着テープを用いて層状物質を劈開した劈開面を示す写真である。4 is a photograph showing a cleavage plane obtained by cleaving a layered material using an adhesive tape. 本発明の第2実施形態で使用されるダイボンダの構成図である。It is a lineblock diagram of a die bonder used in a 2nd embodiment of the present invention.

以下、図面を参照して、本発明の実施の形態(以下、「本実施形態」と称する)につき詳細に説明する。なお、各図は、本実施形態を十分に理解できる程度に、概略的に示してあるに過ぎない。また、各図において、共通する構成要素や同様な構成要素については、同一の符号を付し、それらの重複する説明を省略する。   Hereinafter, an embodiment of the present invention (hereinafter, referred to as “the present embodiment”) will be described in detail with reference to the drawings. In addition, each figure is only schematically shown to the extent that the present embodiment can be sufficiently understood. In addition, in each of the drawings, common constituent elements and similar constituent elements are denoted by the same reference numerals, and redundant description thereof will be omitted.

(第1実施形態)
図1は、本発明の第1実施形態として、層状物質をシート状に劈開する劈開方法を説明する説明図である。
まず、作業者は、特性評価サンプルとしての層状物質10を両面テープ45で載置台40に固定する(SP1)。このとき、両面テープ45でなく、ゲルや真空吸着等で層状物質10を載置台40に固定しても構わない。層状物質10は、シート状物質11が多数積層して構成された熱電半導体化合物であり、例えば、ビスマス・テルル(Bi−Te)系化合物やアンチモン・テルル(Sb−Te)系化合物の結晶である。
(1st Embodiment)
FIG. 1 is an explanatory diagram illustrating a cleavage method for cleaving a layered material into a sheet as a first embodiment of the present invention.
First, the worker fixes the layered material 10 as a property evaluation sample to the mounting table 40 with the double-sided tape 45 (SP1). At this time, the layered material 10 may be fixed to the mounting table 40 by gel, vacuum suction, or the like instead of the double-sided tape 45. The layered substance 10 is a thermoelectric semiconductor compound formed by laminating many sheet-shaped substances 11, and is, for example, a crystal of a bismuth tellurium (Bi-Te) -based compound or an antimony tellurium (Sb-Te) -based compound. .

例えば、図2に示すBiTe系化合物は、六方晶の層状構造を有する層状化合物であり、c軸方向に、2層のBi(黒丸)と、3層のTe(白丸)とが積層したものである。ここで、中間のTeをTe(2)と表記し、両側のTeをTe(1)と表記している。隣接するTe(1)層間は、弱いファン・デル・ワールス力で結合しており、c軸に垂直な面(ab面:積層面)で容易に劈開する。なお、Te(1)−Bi間は、共有結合で強く結合しており、Bi−Te(2)間は、(共有結合+イオン結合)で強く結合している。また、BiTe系化合物は、熱電特性も異方性を示し、ファン・デル・ワールス結合を横切らないab面方向で電気伝導率が向上し、高い熱電性能を奏する。 For example, the Bi 2 Te 3 based compound shown in FIG. 2 is a layered compound having a hexagonal layered structure, and two layers of Bi (black circles) and three layers of Te (white circles) are stacked in the c-axis direction. It was done. Here, Te in the middle is described as Te (2), and Te on both sides is described as Te (1). Adjacent Te (1) layers are connected by a weak van der Waals force, and are easily cleaved on a plane perpendicular to the c-axis (ab plane: stacked plane). Note that Te (1) -Bi is strongly bonded by a covalent bond, and Bi-Te (2) is strongly bonded by (covalent bond + ionic bond). In addition, the Bi 2 Te 3 -based compound also exhibits anisotropy in thermoelectric properties, has improved electrical conductivity in the ab plane direction that does not cross Van der Waals bonds, and exhibits high thermoelectric performance.

図1の説明に戻り、作業者は、XYZθステージ30を用い、超硬カッター20の刃を層状物質10の壁面まで移動させる(SP2)。さらに、作業者は、超硬カッター20の片刃部22を層状物質10の任意のシート状物質11の積層面に略平行に挿入する(SP3)。これにより、シート状物質11が劈開(剥離)される。なお、層状物質12は、層状物質10からシート状物質11が剥離された残存物質を意味する。また、図1では、片刃部22を最上層に挿入し、シート状物質11と層状物質12とに劈開しているが、片刃部22を他の積層面(所望の積層面)に挿入すれば、層状物質と層状物質とに劈開される。さらに作業者は、劈開したシート状物質11及び層状物質12の何れか一方又は双方を用いて、熱電特性や電気抵抗等の特性評価を行う。   Returning to the description of FIG. 1, the operator moves the blade of the carbide cutter 20 to the wall surface of the layered material 10 using the XYZθ stage 30 (SP2). Further, the operator inserts the one-blade portion 22 of the carbide cutter 20 substantially parallel to the lamination surface of any sheet material 11 of the layer material 10 (SP3). Thereby, the sheet material 11 is cleaved (peeled). Note that the layered substance 12 means a remaining substance obtained by peeling the sheet-shaped substance 11 from the layered substance 10. Further, in FIG. 1, the one-blade portion 22 is inserted into the uppermost layer and is cleaved into the sheet-like material 11 and the layered material 12. Is cleaved into a layered material and a layered material. Further, the operator evaluates characteristics such as thermoelectric characteristics and electric resistance using one or both of the cleaved sheet-like material 11 and the layered material 12.

図3は、層状物質の劈開に使用する刃の構造図である。図3(a)は、平面図であり、図3(b)は、正面図であり、図3(c)は、側面図である。
超硬カッター20は、軸部21と片刃部22とを有し、軸部21と片刃部22とが接着(接合)されている。軸部21は、直径φ(例えば、φ=1.58mm)、長さL(例えば、L=16mm)の軸体であり、XYZθステージ30に固定される。
FIG. 3 is a structural diagram of a blade used for cleaving a layered material. 3A is a plan view, FIG. 3B is a front view, and FIG. 3C is a side view.
The cemented carbide cutter 20 has a shaft portion 21 and a single blade portion 22, and the shaft portion 21 and the single blade portion 22 are bonded (joined). The shaft 21 is a shaft having a diameter φ (for example, φ = 1.58 mm) and a length L (for example, L = 16 mm), and is fixed to the XYZθ stage 30.

片刃部22は、例えば、平面視で直角二等辺三角形状の超硬スチールで形成されており、頂点の近傍に軸部21が接合される。片刃部22の平面形状である二等辺三角形の底角θ4がθ4=45°であり、頂角は90°である。片刃部22の厚みTは、例えば、T=0.5mmであり、幅D(例えば、D=7.234mm)の片刃が底辺の領域に形成されている。片刃部22のすくい面22aと逃げ面22bとは、刃角θ1(例えば、θ1=20°)、逃げ角θ2(例えば、θ2=5°)、すくい角θ3(例えば、θ3=155°)で形成されている。   The single-edged portion 22 is formed of, for example, a cemented carbide steel having a right-angled isosceles triangle shape in a plan view, and the shaft portion 21 is joined near a vertex. The base angle θ4 of the isosceles triangle, which is the planar shape of the single blade portion 22, is θ4 = 45 °, and the apex angle is 90 °. The thickness T of the single blade portion 22 is, for example, T = 0.5 mm, and a single blade having a width D (for example, D = 7.234 mm) is formed in the bottom region. The rake face 22a and the flank face 22b of the single blade portion 22 have a blade angle θ1 (eg, θ1 = 20 °), a clearance angle θ2 (eg, θ2 = 5 °), and a rake angle θ3 (eg, θ3 = 155 °). Is formed.

すくい面22aは、台形形状であり(図3(b))、底辺の両端にはシャープエッジ22cが形成されている。このシャープエッジ22cは、例えば、サンプルとしての層状物質10が小さいときに使用される。シャープエッジ22cを使うことによって、作業者が容易に片刃部22を積層面に挿入することができる。なお、片刃部22は、平面視直角二等辺三角形でなくても、平面視二等辺三角形でもよく、非対称な三角形状でもよい。また、超硬カッター20は、片刃に限らず両刃であっても構わない。   The rake face 22a has a trapezoidal shape (FIG. 3B), and sharp edges 22c are formed at both ends of the base. This sharp edge 22c is used, for example, when the layered material 10 as a sample is small. By using the sharp edge 22c, the operator can easily insert the single blade portion 22 into the lamination surface. In addition, the one-blade part 22 does not need to be a right-angled isosceles triangle in plan view, may be an isosceles triangle in plan view, or may be an asymmetric triangle. Further, the carbide cutter 20 is not limited to a single blade and may be a double blade.

図4は、劈開前の層状物質を示す写真であり、図5は、層状物質を劈開した劈開面を示す写真である。図4に示す層状物質10はBiTe系化合物の結晶であり、図5で示すシート状物質11の劈開面は、金属光沢を放っている。 FIG. 4 is a photograph showing the layered material before cleavage, and FIG. 5 is a photograph showing a cleavage plane obtained by cleaving the layered material. The layered substance 10 shown in FIG. 4 is a crystal of a Bi 2 Te 3 compound, and the cleavage plane of the sheet-shaped substance 11 shown in FIG. 5 has a metallic luster.

(第2実施形態)
前記第1実施形態では、層状物質10を劈開してシート状物質11を作成した。本第2実施形態では、劈開したシート状物質11をさらに微細形状に細分化する。
(2nd Embodiment)
In the first embodiment, the sheet material 11 is formed by cleaving the layer material 10. In the second embodiment, the cleaved sheet material 11 is further subdivided into fine shapes.

図6は、シート状物質を細分化する細分化方法を説明する説明図である。
作業者は、シート状物質11の上面の端部を超硬カッター20の逃げ面22bで押圧する(SP1)。逃げ面22bは、逃げ角θ2を有しているので、逃げ面22bの先端部がシート状物質11を線状に押圧する。これにより、シート状物質11が押圧された線状領域(例えば、端部)で割れる。このとき、作業者は、シャープエッジ22c(図3(b))の部分でシート状物質11を押圧しても構わない。そして、作業者は、超硬カッター20を移動させつつ、シート状物質11の上面を逃げ面22bで押圧する(SP2)。これにより、シート状物質11がSP1と異なる他の部位で割れ、微細形状の多数の細片11bに細分化される。
FIG. 6 is an explanatory diagram illustrating a subdivision method for subdividing a sheet-like substance.
The operator presses the end of the upper surface of the sheet material 11 with the flank 22b of the carbide cutter 20 (SP1). Since the flank 22b has the flank angle θ2, the tip of the flank 22b presses the sheet-like substance 11 linearly. As a result, the sheet material 11 is broken at the pressed linear region (for example, at the end). At this time, the operator may press the sheet-like substance 11 at the portion of the sharp edge 22c (FIG. 3B). Then, the operator presses the upper surface of the sheet material 11 with the flank 22b while moving the carbide cutter 20 (SP2). As a result, the sheet-like substance 11 is broken at another portion different from SP1, and is divided into many fine pieces 11b.

図7は、シート状物質を細分化した細片を示す写真である。
シート状物質11が大きさ0.1mm程度の複数の細片11bに細分化されている。また、それぞれの細片11bの表面は、金属光沢を放っている。なお、サイズ比較のために、φ25μmの金線15が載置されている。
FIG. 7 is a photograph showing a fragment obtained by subdividing a sheet-like substance.
The sheet material 11 is subdivided into a plurality of small pieces 11b having a size of about 0.1 mm. The surface of each strip 11b has a metallic luster. In addition, a gold wire 15 of φ25 μm is placed for size comparison.

(比較例)
前記実施形態の層状物質劈開方法では、片刃部22を積層面に平行に挿入したが、層状物質10の両面に粘着テープを貼付して、両側から引き離すことにより剥離することもできる。
(Comparative example)
In the method for cleaving the layered material of the above-described embodiment, the single-edged portion 22 is inserted in parallel with the lamination surface.

図8は、本発明の比較例である劈開方法を説明する説明図である。
まず、作業者は、層状物質10の両面に粘着テープ46を貼付する(SP21)。SP21の後、作業者は、2枚の粘着テープ46を互いに反対方向に引き離す(SP22)。これにより、層状物質10の何れかの積層面で剥離する。具体的には、隣接するシート状物質11同士の密着力(ファンデルワールス力)が小さい積層面で剥離する。そのため、何れの積層面で剥離されるか予測困難である。
FIG. 8 is an explanatory diagram illustrating a cleavage method as a comparative example of the present invention.
First, the worker attaches the adhesive tape 46 to both surfaces of the layered material 10 (SP21). After SP21, the worker separates the two adhesive tapes 46 in opposite directions (SP22). As a result, the layer material is peeled off on any one of the laminated surfaces. Specifically, the sheet materials 11 are separated from each other on the lamination surface where the adhesive force (Van der Waals force) between the adjacent sheet materials 11 is small. Therefore, it is difficult to predict which lamination surface will be peeled off.

しかしながら、前記第1実施形態のように、超硬カッター20を用いた層状物質劈開方法であれば、片刃部22を所望の積層面に挿入することができる。つまり、所望の積層面の劈開面11aを露出することができる。   However, in the case of the method for cleaving a layered material using the carbide cutter 20 as in the first embodiment, the single-edged portion 22 can be inserted into a desired lamination surface. That is, the cleavage plane 11a of the desired laminated surface can be exposed.

図9は、粘着テープを用いて層状物質を劈開した劈開面を示す写真である。
劈開面11aには、細かい傷が発生している。この傷は、2枚の粘着テープ46の引き離しを手作業で行った際、劈開面同士が擦り合わせられて生じたと考えられる。この傷は、特性評価の評価結果が変わる原因となり、好ましいものではない。
FIG. 9 is a photograph showing a cleavage plane obtained by cleaving a layered material using an adhesive tape.
Fine scratches are generated on the cleavage plane 11a. This scratch is considered to have been caused by the cleavage surfaces being rubbed together when the two adhesive tapes 46 were separated manually. This flaw is not preferable because it causes a change in the evaluation result of the characteristic evaluation.

一方、前記第1実施形態の層状物質劈開方法によれば、超硬カッター20を用いて、金属光沢を放つ劈開面11aが露出するので、安定な評価結果を得ることができる。   On the other hand, according to the method for cleaving the layered material of the first embodiment, the cleavage surface 11a emitting a metallic luster is exposed using the carbide cutter 20, so that a stable evaluation result can be obtained.

(第2実施形態)
前記実施形態の層状物質劈開方法は、XYZθステージ30が超硬カッター20を移動させたが、XYZθステージ30の代わりに3軸マニュピレータを用いることもできる。
(2nd Embodiment)
Although the XYZθ stage 30 moves the carbide cutter 20 in the method for cleaving the layered material of the embodiment, a three-axis manipulator may be used instead of the XYZθ stage 30.

図10は、本発明の第2実施形態で使用されるダイボンダの外観図であり、図10(a)は、実体顕微鏡を除いた平面図であり、図10(b)は、実体顕微鏡を2点鎖線で示した側面図である。
ダイボンダ100は、実体顕微鏡50と、ステージ52と、ワークホルダ53と、3軸マニュピレータ60とを備える。3軸マニュピレータ60は、ヘッド部61と操作部62とを備える。ヘッド部61には、超硬カッター20が取り付けられ、ワークホルダ53には、層状物質10が固定される。3軸マニュピレータ60は、操作部62をXYZ方向に動かすことにより、ヘッド部61をXYZ方向に1/N(例えば、N=8)の変位量で移動させるものである(米国特許第5871136号明細書、米国特許第5931372号明細書参照)。回転ノブ66は、超硬カッター20を1対1の回転量で回転させるノブである。
FIG. 10 is an external view of a die bonder used in the second embodiment of the present invention, FIG. 10 (a) is a plan view excluding a stereo microscope, and FIG. It is the side view shown by the dotted chain line.
The die bonder 100 includes a stereo microscope 50, a stage 52, a work holder 53, and a three-axis manipulator 60. The three-axis manipulator 60 includes a head unit 61 and an operation unit 62. The carbide cutter 20 is attached to the head portion 61, and the layered material 10 is fixed to the work holder 53. The three-axis manipulator 60 moves the head unit 61 in the XYZ directions by a displacement of 1 / N (for example, N = 8) by moving the operation unit 62 in the XYZ directions (US Pat. No. 5,871,136). And U.S. Pat. No. 5,931,372). The rotation knob 66 is a knob for rotating the carbide cutter 20 by a one-to-one rotation amount.

この第2実施形態の層状物質劈開方法によれば、ヘッド部61に取り付けられている超硬カッター20が操作部62の1/Nの変位量で移動させられる。このため、作業者は、実体顕微鏡50で確認しながら、層状物質10の積層面への片刃部22の挿入速度を、操作部62の操作速度よりも低減させることができる。   According to the method for cleaving the layered material of the second embodiment, the cemented carbide cutter 20 attached to the head portion 61 is moved by a 1 / N displacement amount of the operation portion 62. For this reason, the operator can reduce the insertion speed of the single blade portion 22 to the lamination surface of the layered material 10 more than the operation speed of the operation portion 62 while checking with the stereomicroscope 50.

10,12 層状物質
11 シート状物質
11a 劈開面
20 超硬カッター
22 片刃部
22a すくい面
30 XYZθステージ
45 両面テープ
46 粘着テープ
60 3軸マニュピレータ
62 操作部
100 ダイボンダ
10, 12 Layered substance 11 Sheet-shaped substance 11a Cleavage surface 20 Carbide cutter 22 Single blade portion 22a Rake surface 30 XYZθ stage 45 Double-sided tape 46 Adhesive tape 60 Triaxial manipulator 62 Operation unit 100 Die bonder

Claims (4)

シート状物質が多数積層された熱電半導体化合物を劈開する層状物質劈開方法であって、
前記熱電半導体化合物の何れかの積層面に、すくい面が台形形状の片刃を挿入する挿入ステップと、
前記熱電半導体化合物が前記積層面で劈開される劈開ステップと
を備えることを特徴とする層状物質劈開方法。
A method for cleaving a layered material that cleaves a thermoelectric semiconductor compound in which a large number of sheet-like materials are stacked,
An insertion step of inserting a rake face with a trapezoidal single-edged blade on any one of the laminated surfaces of the thermoelectric semiconductor compound,
Cleaving the thermoelectric semiconductor compound on the lamination plane.
請求項1に記載の層状物質劈開方法であって、The method for cleaving a layered material according to claim 1, wherein
前記挿入ステップでは、前記台形形状の片刃の底辺の両端に形成されたシャープエッジの一方を前記積層面に挿入する  In the inserting step, one of the sharp edges formed at both ends of the base of the trapezoidal single blade is inserted into the lamination surface.
ことを特徴とする層状物質劈開方法。A method for cleaving a layered material, comprising:
請求項1又は請求項2に記載の層状物質劈開方法であって、
前記熱電半導体化合物は、ビスマス・テルル系化合物又はアンチモン・テルル系化合物である
ことを特徴とする層状物質劈開方法。
The method for cleaving a layered material according to claim 1 or 2 , wherein
The method for cleaving a layered material, wherein the thermoelectric semiconductor compound is a bismuth tellurium-based compound or an antimony tellurium-based compound.
請求項1乃至請求項3の何れか一項に記載の層状物質劈開方法であって、
前記挿入ステップは、操作部の操作速度よりも低減させた挿入速度で前記刃を挿入する
ことを特徴とする層状物質劈開方法。
The method for cleaving a layered material according to any one of claims 1 to 3, wherein
The insertion step, layered material cleavage method characterized by inserting said piece blade in the operating portion of the operating speed insertion speed which is also reduced from.
JP2019079849A 2019-04-19 2019-04-19 Layered material cleavage method Active JP6661204B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019079849A JP6661204B1 (en) 2019-04-19 2019-04-19 Layered material cleavage method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019079849A JP6661204B1 (en) 2019-04-19 2019-04-19 Layered material cleavage method

Publications (2)

Publication Number Publication Date
JP6661204B1 true JP6661204B1 (en) 2020-03-11
JP2020178058A JP2020178058A (en) 2020-10-29

Family

ID=69998064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019079849A Active JP6661204B1 (en) 2019-04-19 2019-04-19 Layered material cleavage method

Country Status (1)

Country Link
JP (1) JP6661204B1 (en)

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53160359U (en) * 1977-05-23 1978-12-15
JPS5874600A (en) * 1981-10-28 1983-05-06 Nec Corp Cleaving method for single crystal substrate
JPS5931111A (en) * 1982-08-17 1984-02-20 松下電器産業株式会社 Cleaving device for single crystalline board
JPS60137889A (en) * 1983-12-21 1985-07-22 Tateho Kagaku Kogyo Kk Manufacture of thin plate of high-purity magnesia single crystal
JP4426651B2 (en) * 1997-01-09 2010-03-03 パナソニック電工株式会社 Ingot plate made of thermoelectric material
JPH10203722A (en) * 1997-01-23 1998-08-04 Casio Comput Co Ltd Peeling device
JP2000106460A (en) * 1998-07-27 2000-04-11 Komatsu Ltd Thermoelectric semiconductor material and manufacture thereof
JP2002050820A (en) * 2000-08-03 2002-02-15 Victor Co Of Japan Ltd Method and device for cleaving semiconductor device
JP2002151443A (en) * 2000-11-08 2002-05-24 Victor Co Of Japan Ltd Device for cleaving semiconductor element
JP2002214038A (en) * 2001-01-17 2002-07-31 Matsushita Electric Ind Co Ltd Production method for pyroelectric infrared ray detector element
JP3550390B2 (en) * 2002-04-24 2004-08-04 京セラ株式会社 Thermoelectric conversion element and thermoelectric module
JP3548560B2 (en) * 2002-05-29 2004-07-28 京セラ株式会社 Thermoelectric module
US7422963B2 (en) * 2004-06-03 2008-09-09 Owens Technology, Inc. Method for cleaving brittle materials
JP2010205977A (en) * 2009-03-04 2010-09-16 Konica Minolta Holdings Inc Thermoelectric conversion element
JP5448860B2 (en) * 2010-01-13 2014-03-19 東京応化工業株式会社 Separation method and separation apparatus
JP2011181725A (en) * 2010-03-02 2011-09-15 Panasonic Corp Anisotropic thermoelectric material, radiation detector using the same, and power generation device
JP2011243824A (en) * 2010-05-20 2011-12-01 Panasonic Corp Anisotropic thermoelectric material, and radiation detector and power generation device using the same
JP5958835B2 (en) * 2011-04-11 2016-08-02 住友電気工業株式会社 Cutting tool and manufacturing method thereof
JP2014177068A (en) * 2013-03-15 2014-09-25 Sumitomo Electric Ind Ltd Method and device for cleavage of single crystal
KR101631858B1 (en) * 2014-06-24 2016-06-20 한국전기연구원 Thermoelectric telluride materials formed complex-crystalline structure by interstitial doping
KR102437466B1 (en) * 2014-12-26 2022-08-30 에이지씨 가부시키가이샤 Method for creating separation start portion for layered bodies, device for creating separation start portion, and electronic device manufacturing method
JP6365992B2 (en) * 2016-03-25 2018-08-01 パナソニックIpマネジメント株式会社 Group III nitride crystal manufacturing method and RAMO4 substrate
JP2018177365A (en) * 2017-04-17 2018-11-15 重六 出嶋 Peeling tongue

Also Published As

Publication number Publication date
JP2020178058A (en) 2020-10-29

Similar Documents

Publication Publication Date Title
EP1775119A3 (en) Pressure-sensitive adhesive label for hard disk drive, and hard disk drive using the pressure-sensitive adhesive label for hard disk drive
JP4662357B2 (en) Optical film sheet cutting method and optical film sheet cutting apparatus
TW200920809A (en) Double-faced pressure-sensitive adhesive sheet
WO2016104122A1 (en) Method for creating separation start portion for layered bodies, device for creating separation start portion, and electronic device manufacturing method
JP6661204B1 (en) Layered material cleavage method
CN107968132B (en) Method for testing bonding strength of aluminum back surface field and EVA adhesive film in photovoltaic module
JP6454587B2 (en) Method for producing graphite sheet laminate, method for producing individualized product of graphite sheet laminate, method for producing individualized product sealed adhesive sheet of graphite sheet laminate, and method of producing individual product of graphite sheet laminated product sealed adhesive sheet Method
JP2012016815A (en) Abrading tool and method for manufacturing the same
JP6939945B2 (en) Transfer method and transfer device for heat conductive sheet
JP4517865B2 (en) Method for producing carbon nanotube electrode
CN206477031U (en) The cvd diamond diaphragm of mutual embedding structure
TWI358143B (en) Touch control display device and rework method the
TWI320012B (en) Diamond wheel and scribe apparatus
JP2018041973A (en) Metal plate for circuit board, metal plate molding for circuit board, circuit board, power module, and method for manufacturing power module
JP3147455B2 (en) Semiconductor wafer cutting method
JP5356791B2 (en) Manufacturing method for laminated products
JP5857202B2 (en) Heat conduction sheet
WO2019082724A1 (en) Method for segmenting substrate having metal film
JP7367354B2 (en) Thermal conductive sheet and its manufacturing method
JP2020122986A (en) Transfer method and transfer device of heat conduction sheet
TW201120950A (en) Method for dicing a wafer
KR20200058485A (en) Method of dividing a substrate with a metal film
JP5272117B2 (en) Band saw
WO2024024626A1 (en) Graphite sheet packaging, production method for graphite sheet packaging, and production method for electronic component
JP2019021818A (en) Compound semiconductor substrate and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190419

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190911

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20191002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200204

R150 Certificate of patent or registration of utility model

Ref document number: 6661204

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250