JP2020178058A - Splitting method of layered material - Google Patents

Splitting method of layered material Download PDF

Info

Publication number
JP2020178058A
JP2020178058A JP2019079849A JP2019079849A JP2020178058A JP 2020178058 A JP2020178058 A JP 2020178058A JP 2019079849 A JP2019079849 A JP 2019079849A JP 2019079849 A JP2019079849 A JP 2019079849A JP 2020178058 A JP2020178058 A JP 2020178058A
Authority
JP
Japan
Prior art keywords
substance
layered
cleavage
sheet
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019079849A
Other languages
Japanese (ja)
Other versions
JP6661204B1 (en
Inventor
新太郎 生稲
Shintaro Ikuina
新太郎 生稲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hisol Inc
Original Assignee
Hisol Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hisol Inc filed Critical Hisol Inc
Priority to JP2019079849A priority Critical patent/JP6661204B1/en
Application granted granted Critical
Publication of JP6661204B1 publication Critical patent/JP6661204B1/en
Publication of JP2020178058A publication Critical patent/JP2020178058A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To perform cleavage on a desired laminated surface.SOLUTION: A cleavage method for cleaving a thermoelectric semiconductor compound (for example, a bismuth tellurium compound or an antimony tellurium compound) 10 in which a large number of sheet-like substances 11 are laminated includes an insertion step of inserting a blade 22 parallel to a laminated surface of any of the thermoelectric semiconductor compounds 10 at an insertion speed lower than the operation speed of an operation unit, and a cleavage step of cleaving the thermoelectric semiconductor compound 10 on the laminated surface. The blade 22 is preferably a single-edged blade having a trapezoidal rake face.SELECTED DRAWING: Figure 1

Description

本発明は、層状物質劈開方法に関する。 The present invention relates to a method for cleavage of layered substances.

シート状物質(例えば、グラフェン)が多数積層された層状物質(例えば、グラファイト、黒鉛)から単層のシート状物質を剥離する方法が知られている。例えば、特許文献1には、グラファイトの表層面に粘着テープを貼り付け、その後、粘着テープを剥離する作業を実行することで、グラフェンシートを形成する、ことが開示されている。 A method of peeling a single-layer sheet-like substance from a layered substance (for example, graphite or graphite) in which a large number of sheet-like substances (for example, graphene) are laminated is known. For example, Patent Document 1 discloses that a graphene sheet is formed by attaching an adhesive tape to the surface layer surface of graphite and then performing an operation of peeling off the adhesive tape.

特開2013−187415号公報(要約)JP 2013-187415 (Summary)

ところで、熱電変換素子には、例えば、ビスマス・テルル系(Bi−Te系)やアンチモン・テルル系(Sb−Te系)の結晶が使用される。これらの結晶は、グラファイトと同様に、シート状物質が積層された積層構造をしており、面状に劈開することができる。このようなシート状物質の特性評価を行う場合、特許文献1に記載の技術を適用して、粘着テープで剥離することが考えられる。 By the way, for the thermoelectric conversion element, for example, bismuth-tellurium (Bi-Te) or antimony-tellurium (Sb-Te) crystals are used. Similar to graphite, these crystals have a laminated structure in which sheet-like substances are laminated, and can be cleaved in a planar shape. When evaluating the characteristics of such a sheet-like substance, it is conceivable to apply the technique described in Patent Document 1 and peel it off with an adhesive tape.

しかしながら、粘着テープを用いて層状物質を劈開すると、シート状物質と隣接するシート層物質との結合強度が小さい層で劈開してしまう。そのため、必ずしも所望の積層面で劈開できるとは限らない。 However, when the layered substance is cleaved using the adhesive tape, the sheet-like substance and the adjacent sheet layer material are cleaved in a layer having a small bond strength. Therefore, it is not always possible to cleave at a desired laminated surface.

本発明は、このような事情に鑑みてなされたものであり、所望の積層面で劈開することができる層状物質劈開方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a method for cleaving a layered substance that can be cleaved on a desired laminated surface.

前記目的を達成するために、本発明は、シート状物質が多数積層された熱電半導体化合物(例えば、ビスマス・テルル系化合物又はアンチモン・テルル系化合物)を劈開する層状物質劈開方法であって、前記熱電半導体化合物の何れかの積層面に刃(例えば、片刃)を挿入する挿入ステップと、前記熱電半導体化合物が前記積層面で劈開される劈開ステップとを備えることを特徴とする。 In order to achieve the above object, the present invention is a method for opening a layered substance for opening a thermoelectric semiconductor compound (for example, a bismuth-tellurium compound or an antimony-tellurium compound) in which a large number of sheet-like substances are laminated. It is characterized by comprising an insertion step of inserting a blade (for example, a single-edged blade) into any laminated surface of the thermoelectric semiconductor compound, and a opening step of opening the thermoelectric semiconductor compound on the laminated surface.

本発明によれば、所望の積層面で劈開することができる。 According to the present invention, cleavage can be performed at a desired laminated surface.

本発明の第1実施形態として、層状物質をシート状に劈開する劈開方法を説明する説明図である。As a first embodiment of the present invention, it is explanatory drawing explaining the cleavage method which cleavages a layered substance into a sheet shape. 層状物質の一例であるBiTeの結晶構造を示す図である。It is a figure which shows the crystal structure of Bi 2 Te 3 which is an example of a layered substance. 層状物質の劈開に使用する刃の構造図である。It is a structural drawing of a blade used for cleavage of a layered substance. 劈開前の層状物質を示す写真である。It is a photograph which shows the layered substance before cleavage. 層状物質を劈開した劈開面を示す写真である。It is a photograph which shows the cleavage surface which opened the layered substance. シート状物質を細分化する細分化方法を説明する説明図である。It is explanatory drawing explaining the subdivision method for subdividing a sheet-like substance. シート状物質を細分化した細片を示す写真である。It is a photograph which shows the fragment which subdivided the sheet-like substance. 本発明の比較例である劈開方法を説明する説明図である。It is explanatory drawing explaining the cleavage method which is a comparative example of this invention. 粘着テープを用いて層状物質を劈開した劈開面を示す写真である。It is a photograph which shows the cleavage surface which opened the layered substance by using the adhesive tape. 本発明の第2実施形態で使用されるダイボンダの構成図である。It is a block diagram of the die bonder used in the 2nd Embodiment of this invention.

以下、図面を参照して、本発明の実施の形態(以下、「本実施形態」と称する)につき詳細に説明する。なお、各図は、本実施形態を十分に理解できる程度に、概略的に示してあるに過ぎない。また、各図において、共通する構成要素や同様な構成要素については、同一の符号を付し、それらの重複する説明を省略する。 Hereinafter, embodiments of the present invention (hereinafter, referred to as “the present embodiment”) will be described in detail with reference to the drawings. In addition, each figure is only shown schematicly to the extent that the present embodiment can be fully understood. Further, in each figure, common components and similar components are designated by the same reference numerals, and duplicate description thereof will be omitted.

(第1実施形態)
図1は、本発明の第1実施形態として、層状物質をシート状に劈開する劈開方法を説明する説明図である。
まず、作業者は、特性評価サンプルとしての層状物質10を両面テープ45で載置台40に固定する(SP1)。このとき、両面テープ45でなく、ゲルや真空吸着等で層状物質10を載置台40に固定しても構わない。層状物質10は、シート状物質11が多数積層して構成された熱電半導体化合物であり、例えば、ビスマス・テルル(Bi−Te)系化合物やアンチモン・テルル(Sb−Te)系化合物の結晶である。
(First Embodiment)
FIG. 1 is an explanatory diagram illustrating a cleavage method for cleaving a layered substance in a sheet shape as a first embodiment of the present invention.
First, the operator fixes the layered substance 10 as the characteristic evaluation sample to the mounting table 40 with the double-sided tape 45 (SP1). At this time, instead of the double-sided tape 45, the layered substance 10 may be fixed to the mounting table 40 by gel, vacuum adsorption, or the like. The layered substance 10 is a thermoelectric semiconductor compound composed of a large number of sheet-like substances 11 laminated, and is, for example, a crystal of a bismuth-tellurium (Bi-Te) -based compound or an antimony-tellurium (Sb-Te) -based compound. ..

例えば、図2に示すBiTe系化合物は、六方晶の層状構造を有する層状化合物であり、c軸方向に、2層のBi(黒丸)と、3層のTe(白丸)とが積層したものである。ここで、中間のTeをTe(2)と表記し、両側のTeをTe(1)と表記している。隣接するTe(1)層間は、弱いファン・デル・ワールス力で結合しており、c軸に垂直な面(ab面:積層面)で容易に劈開する。なお、Te(1)−Bi間は、共有結合で強く結合しており、Bi−Te(2)間は、(共有結合+イオン結合)で強く結合している。また、BiTe系化合物は、熱電特性も異方性を示し、ファン・デル・ワールス結合を横切らないab面方向で電気伝導率が向上し、高い熱電性能を奏する。 For example, the Bi 2 Te 3 system compound shown in FIG. 2 is a layered compound having a hexagonal layered structure, and two layers of Bi (black circles) and three layers of Te (white circles) are laminated in the c-axis direction. It was done. Here, the middle Te is referred to as Te (2), and the Te on both sides is referred to as Te (1). The adjacent Te (1) layers are connected by a weak van der Waals force, and are easily cleaved on a plane perpendicular to the c-axis (ab plane: laminated plane). The Te (1) -Bi is strongly bonded by a covalent bond, and the Bi-Te (2) is strongly bonded by a (covalent bond + ionic bond). In addition, the Bi 2 Te 3 system compound also exhibits anisotropy in thermoelectric characteristics, and the electric conductivity is improved in the ab plane direction that does not cross the van der Waals bond, and high thermoelectric performance is exhibited.

図1の説明に戻り、作業者は、XYZθステージ30を用い、超硬カッター20の刃を層状物質10の壁面まで移動させる(SP2)。さらに、作業者は、超硬カッター20の片刃部22を層状物質10の任意のシート状物質11の積層面に略平行に挿入する(SP3)。これにより、シート状物質11が劈開(剥離)される。なお、層状物質12は、層状物質10からシート状物質11が剥離された残存物質を意味する。また、図1では、片刃部22を最上層に挿入し、シート状物質11と層状物質12とに劈開しているが、片刃部22を他の積層面(所望の積層面)に挿入すれば、層状物質と層状物質とに劈開される。さらに作業者は、劈開したシート状物質11及び層状物質12の何れか一方又は双方を用いて、熱電特性や電気抵抗等の特性評価を行う。 Returning to the description of FIG. 1, the operator uses the XYZθ stage 30 to move the blade of the cemented carbide cutter 20 to the wall surface of the layered substance 10 (SP2). Further, the operator inserts the single-edged portion 22 of the cemented carbide cutter 20 substantially parallel to the laminated surface of any sheet-like substance 11 of the layered substance 10 (SP3). As a result, the sheet-like substance 11 is cleaved (peeled). The layered substance 12 means a residual substance from which the sheet-like substance 11 is peeled off from the layered substance 10. Further, in FIG. 1, the single-edged portion 22 is inserted into the uppermost layer and cleaved into the sheet-like substance 11 and the layered substance 12, but if the single-edged portion 22 is inserted into another laminated surface (desired laminated surface), , Cleavage between layered material and layered material. Further, the operator evaluates characteristics such as thermoelectric characteristics and electrical resistance using either one or both of the cleaved sheet-like substance 11 and the layered substance 12.

図3は、層状物質の劈開に使用する刃の構造図である。図3(a)は、平面図であり、図3(b)は、正面図であり、図3(c)は、側面図である。
超硬カッター20は、軸部21と片刃部22とを有し、軸部21と片刃部22とが接着(接合)されている。軸部21は、直径φ(例えば、φ=1.58mm)、長さL(例えば、L=16mm)の軸体であり、XYZθステージ30に固定される。
FIG. 3 is a structural diagram of a blade used for cleavage of a layered substance. 3 (a) is a plan view, FIG. 3 (b) is a front view, and FIG. 3 (c) is a side view.
The cemented carbide cutter 20 has a shaft portion 21 and a single-edged portion 22, and the shaft portion 21 and the single-edged portion 22 are bonded (joined) to each other. The shaft portion 21 is a shaft body having a diameter of φ (for example, φ = 1.58 mm) and a length of L (for example, L = 16 mm), and is fixed to the XYZθ stage 30.

片刃部22は、例えば、平面視で直角二等辺三角形状の超硬スチールで形成されており、頂点の近傍に軸部21が接合される。片刃部22の平面形状である二等辺三角形の底角θ4がθ4=45°であり、頂角は90°である。片刃部22の厚みTは、例えば、T=0.5mmであり、幅D(例えば、D=7.234mm)の片刃が底辺の領域に形成されている。片刃部22のすくい面22aと逃げ面22bとは、刃角θ1(例えば、θ1=20°)、逃げ角θ2(例えば、θ2=5°)、すくい角θ3(例えば、θ3=155°)で形成されている。 The single-edged portion 22 is, for example, formed of cemented carbide having a right-angled isosceles triangle shape in a plan view, and the shaft portion 21 is joined in the vicinity of the apex. The base angle θ4 of the isosceles triangle, which is the planar shape of the single-edged portion 22, is θ4 = 45 °, and the apex angle is 90 °. The thickness T of the single-edged portion 22 is, for example, T = 0.5 mm, and a single-edged blade having a width D (for example, D = 7.234 mm) is formed in the bottom region. The rake face 22a and the flank surface 22b of the single-edged portion 22 have a blade angle θ1 (for example, θ1 = 20 °), a flank angle θ2 (for example, θ2 = 5 °), and a rake angle θ3 (for example, θ3 = 155 °). It is formed.

すくい面22aは、台形形状であり(図3(b))、底辺の両端にはシャープエッジ22cが形成されている。このシャープエッジ22cは、例えば、サンプルとしての層状物質10が小さいときに使用される。シャープエッジ22cを使うことによって、作業者が容易に片刃部22を積層面に挿入することができる。なお、片刃部22は、平面視直角二等辺三角形でなくても、平面視二等辺三角形でもよく、非対称な三角形状でもよい。また、超硬カッター20は、片刃に限らず両刃であっても構わない。 The rake face 22a has a trapezoidal shape (FIG. 3B), and sharp edges 22c are formed at both ends of the base. The sharp edge 22c is used, for example, when the layered substance 10 as a sample is small. By using the sharp edge 22c, the operator can easily insert the single-edged portion 22 into the laminated surface. The single-edged portion 22 does not have to be an isosceles right triangle in a plan view, but may be an isosceles triangle in a plan view, or may have an asymmetric triangular shape. Further, the cemented carbide cutter 20 is not limited to a single-edged cutter 20 and may be a double-edged cutter.

図4は、劈開前の層状物質を示す写真であり、図5は、層状物質を劈開した劈開面を示す写真である。図4に示す層状物質10はBiTe系化合物の結晶であり、図5で示すシート状物質11の劈開面は、金属光沢を放っている。 FIG. 4 is a photograph showing a cleaved material before cleavage, and FIG. 5 is a photograph showing a cleaved surface in which the layered material is cleaved. The layered substance 10 shown in FIG. 4 is a crystal of a Bi 2 Te 3 system compound, and the cleaved surface of the sheet-like substance 11 shown in FIG. 5 has a metallic luster.

(第2実施形態)
前記第1実施形態では、層状物質10を劈開してシート状物質11を作成した。本第2実施形態では、劈開したシート状物質11をさらに微細形状に細分化する。
(Second Embodiment)
In the first embodiment, the layered substance 10 is cleaved to prepare the sheet-like substance 11. In the second embodiment, the cleaved sheet-like substance 11 is further subdivided into fine shapes.

図6は、シート状物質を細分化する細分化方法を説明する説明図である。
作業者は、シート状物質11の上面の端部を超硬カッター20の逃げ面22bで押圧する(SP1)。逃げ面22bは、逃げ角θ2を有しているので、逃げ面22bの先端部がシート状物質11を線状に押圧する。これにより、シート状物質11が押圧された線状領域(例えば、端部)で割れる。このとき、作業者は、シャープエッジ22c(図3(b))の部分でシート状物質11を押圧しても構わない。そして、作業者は、超硬カッター20を移動させつつ、シート状物質11の上面を逃げ面22bで押圧する(SP2)。これにより、シート状物質11がSP1と異なる他の部位で割れ、微細形状の多数の細片11bに細分化される。
FIG. 6 is an explanatory diagram illustrating a subdivision method for subdividing the sheet-like substance.
The operator presses the edge of the upper surface of the sheet-like substance 11 with the flank 22b of the cemented carbide cutter 20 (SP1). Since the flank surface 22b has a flank angle θ2, the tip end portion of the flank surface 22b linearly presses the sheet-like substance 11. As a result, the sheet-like substance 11 is split at the pressed linear region (for example, the end portion). At this time, the operator may press the sheet-like substance 11 at the portion of the sharp edge 22c (FIG. 3B). Then, the operator presses the upper surface of the sheet-like substance 11 with the flank 22b while moving the carbide cutter 20 (SP2). As a result, the sheet-like substance 11 is cracked at a site different from SP1 and is subdivided into a large number of finely shaped pieces 11b.

図7は、シート状物質を細分化した細片を示す写真である。
シート状物質11が大きさ0.1mm程度の複数の細片11bに細分化されている。また、それぞれの細片11bの表面は、金属光沢を放っている。なお、サイズ比較のために、φ25μmの金線15が載置されている。
FIG. 7 is a photograph showing subdivided pieces of a sheet-like substance.
The sheet-like substance 11 is subdivided into a plurality of small pieces 11b having a size of about 0.1 mm. The surface of each of the strips 11b has a metallic luster. A gold wire 15 having a diameter of 25 μm is placed for size comparison.

(比較例)
前記実施形態の層状物質劈開方法では、片刃部22を積層面に平行に挿入したが、層状物質10の両面に粘着テープを貼付して、両側から引き離すことにより剥離することもできる。
(Comparison example)
In the layered substance cleavage method of the above embodiment, the single-edged portion 22 is inserted parallel to the laminated surface, but it can also be peeled off by attaching adhesive tapes to both sides of the layered substance 10 and pulling them apart from both sides.

図8は、本発明の比較例である劈開方法を説明する説明図である。
まず、作業者は、層状物質10の両面に粘着テープ46を貼付する(SP21)。SP21の後、作業者は、2枚の粘着テープ46を互いに反対方向に引き離す(SP22)。これにより、層状物質10の何れかの積層面で剥離する。具体的には、隣接するシート状物質11同士の密着力(ファンデルワールス力)が小さい積層面で剥離する。そのため、何れの積層面で剥離されるか予測困難である。
FIG. 8 is an explanatory diagram illustrating a cleavage method which is a comparative example of the present invention.
First, the operator attaches the adhesive tape 46 to both sides of the layered substance 10 (SP21). After SP21, the operator pulls the two adhesive tapes 46 apart from each other in opposite directions (SP22). As a result, the layered substance 10 is peeled off at any of the laminated surfaces. Specifically, the adjacent sheet-like substances 11 are peeled off on a laminated surface having a small adhesive force (Van der Waals force). Therefore, it is difficult to predict which laminated surface will be peeled off.

しかしながら、前記第1実施形態のように、超硬カッター20を用いた層状物質劈開方法であれば、片刃部22を所望の積層面に挿入することができる。つまり、所望の積層面の劈開面11aを露出することができる。 However, in the layered material cleavage method using the cemented carbide cutter 20 as in the first embodiment, the single-edged portion 22 can be inserted into a desired laminated surface. That is, the cleavage surface 11a of the desired laminated surface can be exposed.

図9は、粘着テープを用いて層状物質を劈開した劈開面を示す写真である。
劈開面11aには、細かい傷が発生している。この傷は、2枚の粘着テープ46の引き離しを手作業で行った際、劈開面同士が擦り合わせられて生じたと考えられる。この傷は、特性評価の評価結果が変わる原因となり、好ましいものではない。
FIG. 9 is a photograph showing a cleaved surface in which a layered substance is cleaved using an adhesive tape.
Fine scratches are generated on the cleavage surface 11a. It is probable that this scratch was caused by the cleaved surfaces being rubbed against each other when the two adhesive tapes 46 were manually separated from each other. This scratch causes a change in the evaluation result of the characteristic evaluation, which is not preferable.

一方、前記第1実施形態の層状物質劈開方法によれば、超硬カッター20を用いて、金属光沢を放つ劈開面11aが露出するので、安定な評価結果を得ることができる。 On the other hand, according to the layered material cleavage method of the first embodiment, the cleavage surface 11a that gives off metallic luster is exposed by using the cemented carbide cutter 20, so that a stable evaluation result can be obtained.

(第2実施形態)
前記実施形態の層状物質劈開方法は、XYZθステージ30が超硬カッター20を移動させたが、XYZθステージ30の代わりに3軸マニュピレータを用いることもできる。
(Second Embodiment)
In the layered material cleavage method of the above embodiment, the XYZθ stage 30 moves the carbide cutter 20, but a triaxial manipulator can be used instead of the XYZθ stage 30.

図10は、本発明の第2実施形態で使用されるダイボンダの外観図であり、図10(a)は、実体顕微鏡を除いた平面図であり、図10(b)は、実体顕微鏡を2点鎖線で示した側面図である。
ダイボンダ100は、実体顕微鏡50と、ステージ52と、ワークホルダ53と、3軸マニュピレータ60とを備える。3軸マニュピレータ60は、ヘッド部61と操作部62とを備える。ヘッド部61には、超硬カッター20が取り付けられ、ワークホルダ53には、層状物質10が固定される。3軸マニュピレータ60は、操作部62をXYZ方向に動かすことにより、ヘッド部61をXYZ方向に1/N(例えば、N=8)の変位量で移動させるものである(米国特許第5871136号明細書、米国特許第5931372号明細書参照)。回転ノブ66は、超硬カッター20を1対1の回転量で回転させるノブである。
10A and 10B are external views of a die bonder used in the second embodiment of the present invention, FIG. 10A is a plan view excluding a stereomicroscope, and FIG. 10B is a stereomicroscope of 2. It is a side view shown by the dotted line.
The die bonder 100 includes a stereomicroscope 50, a stage 52, a work holder 53, and a 3-axis manipulator 60. The 3-axis manipulator 60 includes a head portion 61 and an operation portion 62. A cemented carbide cutter 20 is attached to the head portion 61, and a layered substance 10 is fixed to the work holder 53. The 3-axis manipulator 60 moves the operation unit 62 in the XYZ direction to move the head unit 61 in the XYZ direction with a displacement amount of 1 / N (for example, N = 8) (US Pat. No. 5,871,136). See US Pat. No. 5,931,372). The rotary knob 66 is a knob that rotates the carbide cutter 20 at a rotation amount of 1: 1.

この第2実施形態の層状物質劈開方法によれば、ヘッド部61に取り付けられている超硬カッター20が操作部62の1/Nの変位量で移動させられる。このため、作業者は、実体顕微鏡50で確認しながら、層状物質10の積層面への片刃部22の挿入速度を、操作部62の操作速度よりも低減させることができる。 According to the layered material cleavage method of the second embodiment, the cemented carbide cutter 20 attached to the head portion 61 is moved by a displacement amount of 1 / N of the operation portion 62. Therefore, the operator can reduce the insertion speed of the single-edged portion 22 into the laminated surface of the layered substance 10 to be lower than the operating speed of the operating portion 62 while checking with the stereomicroscope 50.

10,12 層状物質
11 シート状物質
11a 劈開面
20 超硬カッター
22 片刃部
22a すくい面
30 XYZθステージ
45 両面テープ
46 粘着テープ
60 3軸マニュピレータ
62 操作部
100 ダイボンダ
10, 12 Layered material 11 Sheet-like material 11a Cleavage surface 20 Carbide cutter 22 Single-edged part 22a Scooping surface 30 XYZθ stage 45 Double-sided tape 46 Adhesive tape 60 3-axis manipulator 62 Operation part 100 Die bonder

前記目的を達成するために、本発明は、シート状物質が多数積層された熱電半導体化合物(例えば、ビスマス・テルル系化合物又はアンチモン・テルル系化合物)を劈開する層状物質劈開方法であって、前記熱電半導体化合物の何れかの積層面に、すくい面が台形形状の片刃を挿入する挿入ステップと、前記熱電半導体化合物が前記積層面で劈開される劈開ステップとを備えることを特徴とする。 In order to achieve the above object, the present invention is a method for opening a layered substance for opening a thermoelectric semiconductor compound (for example, a bismuth-tellurium compound or an antimony tellurium-based compound) in which a large number of sheet-like substances are laminated. It is characterized by comprising an insertion step of inserting a single-edged blade having a trapezoidal rake face into any of the laminated surfaces of the thermoelectric semiconductor compound, and a opening step of opening the thermoelectric semiconductor compound on the laminated surface.

Claims (4)

シート状物質が多数積層された熱電半導体化合物を劈開する層状物質劈開方法であって、
前記熱電半導体化合物の何れかの積層面に刃を挿入する挿入ステップと、
前記熱電半導体化合物が前記積層面で劈開される劈開ステップと
を備えることを特徴とする層状物質劈開方法。
It is a method for cleaving a layered material that cleaves a thermoelectric semiconductor compound in which a large number of sheet-like materials are laminated.
An insertion step of inserting a blade into the laminated surface of any of the thermoelectric semiconductor compounds,
A method for cleaving a layered substance, which comprises a cleavage step in which the thermoelectric semiconductor compound is cleaved on the laminated surface.
請求項1に記載の層状物質劈開方法であって、
前記熱電半導体化合物は、ビスマス・テルル系化合物又はアンチモン・テルル系化合物である
ことを特徴とする層状物質劈開方法。
The layered substance cleavage method according to claim 1.
A method for cleaving a layered substance, wherein the thermoelectric semiconductor compound is a bismuth-tellurium-based compound or an antimony-tellurium-based compound.
請求項1又は請求項2に記載の層状物質劈開方法であって、
前記刃は、すくい面が台形形状の片刃である
ことを特徴とする層状物質劈開方法。
The layered substance cleavage method according to claim 1 or 2.
The blade is a layered material cleavage method characterized in that the rake face is a trapezoidal single-edged blade.
請求項1乃至請求項3の何れか一項に記載の層状物質劈開方法であって、
前記挿入ステップは、操作部の操作速度よりも低減させた挿入速度で前記刃を挿入する
ことを特徴とする層状物質劈開方法。
The layered substance cleavage method according to any one of claims 1 to 3.
The insertion step is a method for cleaving a layered substance, which comprises inserting the blade at an insertion speed lower than the operation speed of the operation unit.
JP2019079849A 2019-04-19 2019-04-19 Layered material cleavage method Active JP6661204B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019079849A JP6661204B1 (en) 2019-04-19 2019-04-19 Layered material cleavage method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019079849A JP6661204B1 (en) 2019-04-19 2019-04-19 Layered material cleavage method

Publications (2)

Publication Number Publication Date
JP6661204B1 JP6661204B1 (en) 2020-03-11
JP2020178058A true JP2020178058A (en) 2020-10-29

Family

ID=69998064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019079849A Active JP6661204B1 (en) 2019-04-19 2019-04-19 Layered material cleavage method

Country Status (1)

Country Link
JP (1) JP6661204B1 (en)

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53160359U (en) * 1977-05-23 1978-12-15
JPS5874600A (en) * 1981-10-28 1983-05-06 Nec Corp Cleaving method for single crystal substrate
JPS5931111A (en) * 1982-08-17 1984-02-20 松下電器産業株式会社 Cleaving device for single crystalline board
JPS60137889A (en) * 1983-12-21 1985-07-22 Tateho Kagaku Kogyo Kk Manufacture of thin plate of high-purity magnesia single crystal
JPH10203722A (en) * 1997-01-23 1998-08-04 Casio Comput Co Ltd Peeling device
JP2000106460A (en) * 1998-07-27 2000-04-11 Komatsu Ltd Thermoelectric semiconductor material and manufacture thereof
JP2000507398A (en) * 1997-01-09 2000-06-13 松下電工株式会社 Ingot plate made of thermoelectric material
JP2002050820A (en) * 2000-08-03 2002-02-15 Victor Co Of Japan Ltd Method and device for cleaving semiconductor device
JP2002151443A (en) * 2000-11-08 2002-05-24 Victor Co Of Japan Ltd Device for cleaving semiconductor element
JP2002214038A (en) * 2001-01-17 2002-07-31 Matsushita Electric Ind Co Ltd Production method for pyroelectric infrared ray detector element
JP2003318454A (en) * 2002-04-24 2003-11-07 Kyocera Corp Thermoelectric conversion element and thermoelectric module
JP2003347605A (en) * 2002-05-29 2003-12-05 Kyocera Corp Thermoelectric module
JP2008502153A (en) * 2004-06-03 2008-01-24 オウェンス テクノロジー インコーポレイテッド Method and apparatus for cleaving brittle materials
JP2010205977A (en) * 2009-03-04 2010-09-16 Konica Minolta Holdings Inc Thermoelectric conversion element
JP2011146457A (en) * 2010-01-13 2011-07-28 Tokyo Ohka Kogyo Co Ltd Separating method and separating device
JP2011181725A (en) * 2010-03-02 2011-09-15 Panasonic Corp Anisotropic thermoelectric material, radiation detector using the same, and power generation device
JP2011243824A (en) * 2010-05-20 2011-12-01 Panasonic Corp Anisotropic thermoelectric material, and radiation detector and power generation device using the same
WO2012141171A1 (en) * 2011-04-11 2012-10-18 住友電気工業株式会社 Cutting tool and process for producing same
JP2014177068A (en) * 2013-03-15 2014-09-25 Sumitomo Electric Ind Ltd Method and device for cleavage of single crystal
JP2016009857A (en) * 2014-06-24 2016-01-18 コリア エレクトロテクノロジー リサーチ インスティテュートKorea Electrotechnology Research Institute Te-BASED THERMOELECTRIC MATERIAL HAVING COMPLEX CRYSTAL STRUCTURE FORMED BY ADDITION OF INTERSTITIAL DOPANT
WO2016104122A1 (en) * 2014-12-26 2016-06-30 旭硝子株式会社 Method for creating separation start portion for layered bodies, device for creating separation start portion, and electronic device manufacturing method
JP2018145091A (en) * 2016-03-25 2018-09-20 パナソニックIpマネジメント株式会社 Method for manufacturing group iii nitride crystal, and ramo4 substrate
JP2018177365A (en) * 2017-04-17 2018-11-15 重六 出嶋 Peeling tongue

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53160359U (en) * 1977-05-23 1978-12-15
JPS5874600A (en) * 1981-10-28 1983-05-06 Nec Corp Cleaving method for single crystal substrate
JPS5931111A (en) * 1982-08-17 1984-02-20 松下電器産業株式会社 Cleaving device for single crystalline board
JPS60137889A (en) * 1983-12-21 1985-07-22 Tateho Kagaku Kogyo Kk Manufacture of thin plate of high-purity magnesia single crystal
JP2000507398A (en) * 1997-01-09 2000-06-13 松下電工株式会社 Ingot plate made of thermoelectric material
JPH10203722A (en) * 1997-01-23 1998-08-04 Casio Comput Co Ltd Peeling device
JP2000106460A (en) * 1998-07-27 2000-04-11 Komatsu Ltd Thermoelectric semiconductor material and manufacture thereof
JP2002050820A (en) * 2000-08-03 2002-02-15 Victor Co Of Japan Ltd Method and device for cleaving semiconductor device
JP2002151443A (en) * 2000-11-08 2002-05-24 Victor Co Of Japan Ltd Device for cleaving semiconductor element
JP2002214038A (en) * 2001-01-17 2002-07-31 Matsushita Electric Ind Co Ltd Production method for pyroelectric infrared ray detector element
JP2003318454A (en) * 2002-04-24 2003-11-07 Kyocera Corp Thermoelectric conversion element and thermoelectric module
JP2003347605A (en) * 2002-05-29 2003-12-05 Kyocera Corp Thermoelectric module
JP2008502153A (en) * 2004-06-03 2008-01-24 オウェンス テクノロジー インコーポレイテッド Method and apparatus for cleaving brittle materials
JP2010205977A (en) * 2009-03-04 2010-09-16 Konica Minolta Holdings Inc Thermoelectric conversion element
JP2011146457A (en) * 2010-01-13 2011-07-28 Tokyo Ohka Kogyo Co Ltd Separating method and separating device
JP2011181725A (en) * 2010-03-02 2011-09-15 Panasonic Corp Anisotropic thermoelectric material, radiation detector using the same, and power generation device
JP2011243824A (en) * 2010-05-20 2011-12-01 Panasonic Corp Anisotropic thermoelectric material, and radiation detector and power generation device using the same
WO2012141171A1 (en) * 2011-04-11 2012-10-18 住友電気工業株式会社 Cutting tool and process for producing same
JP2014177068A (en) * 2013-03-15 2014-09-25 Sumitomo Electric Ind Ltd Method and device for cleavage of single crystal
JP2016009857A (en) * 2014-06-24 2016-01-18 コリア エレクトロテクノロジー リサーチ インスティテュートKorea Electrotechnology Research Institute Te-BASED THERMOELECTRIC MATERIAL HAVING COMPLEX CRYSTAL STRUCTURE FORMED BY ADDITION OF INTERSTITIAL DOPANT
WO2016104122A1 (en) * 2014-12-26 2016-06-30 旭硝子株式会社 Method for creating separation start portion for layered bodies, device for creating separation start portion, and electronic device manufacturing method
JP2018145091A (en) * 2016-03-25 2018-09-20 パナソニックIpマネジメント株式会社 Method for manufacturing group iii nitride crystal, and ramo4 substrate
JP2018177365A (en) * 2017-04-17 2018-11-15 重六 出嶋 Peeling tongue

Also Published As

Publication number Publication date
JP6661204B1 (en) 2020-03-11

Similar Documents

Publication Publication Date Title
JP4662357B2 (en) Optical film sheet cutting method and optical film sheet cutting apparatus
TW201206853A (en) Cutter wheel for scribing fragile material substrate and method of manufacturing the same
JP4585329B2 (en) Thin slice preparation method and thin slice specimen
EP1775119A3 (en) Pressure-sensitive adhesive label for hard disk drive, and hard disk drive using the pressure-sensitive adhesive label for hard disk drive
TW200920809A (en) Double-faced pressure-sensitive adhesive sheet
JPWO2016104122A1 (en) Method for creating peeling start part of laminate, peeling start part creating apparatus, and method for manufacturing electronic device
JP2020178058A (en) Splitting method of layered material
JP5406248B2 (en) Grinding tool and manufacturing method thereof
CN107968132B (en) Method for testing bonding strength of aluminum back surface field and EVA adhesive film in photovoltaic module
CN109233684A (en) Electroconductive binder
JP6939945B2 (en) Transfer method and transfer device for heat conductive sheet
JP5624010B2 (en) Peeling tool
US3818592A (en) Knife for peeling off stickers and the like
JP6243199B2 (en) Manufacturing method of ceramic substrate
TWI358143B (en) Touch control display device and rework method the
CN112740365B (en) Breaking method of substrate with metal film
TWI320012B (en) Diamond wheel and scribe apparatus
JP7252663B2 (en) Method for dividing a substrate with a metal film
JP6891999B2 (en) Transfer method and transfer device for heat conductive sheet
Park et al. Investigation of the interfacial adhesion of the transparent conductive oxide films to large-area flexible polymer substrates using laser-induced thermo-mechanical stresses
JP2007171419A (en) Tool for branching optical fiber tape
WO2019082736A1 (en) Method for segmenting substrate having metal film
Rao et al. Scratching lithography, manipulation, and soldering of 2D materials using microneedle probes
JP6747210B2 (en) Transfer method and transfer device for heat conductive sheet
WO2023153061A1 (en) Adhesive structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190419

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190911

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20191002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200204

R150 Certificate of patent or registration of utility model

Ref document number: 6661204

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250