JP6522345B2 - 冷凍装置及び密閉型電動圧縮機 - Google Patents

冷凍装置及び密閉型電動圧縮機 Download PDF

Info

Publication number
JP6522345B2
JP6522345B2 JP2015003783A JP2015003783A JP6522345B2 JP 6522345 B2 JP6522345 B2 JP 6522345B2 JP 2015003783 A JP2015003783 A JP 2015003783A JP 2015003783 A JP2015003783 A JP 2015003783A JP 6522345 B2 JP6522345 B2 JP 6522345B2
Authority
JP
Japan
Prior art keywords
compressor
oil
refrigerant
refrigeration
scroll member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015003783A
Other languages
English (en)
Other versions
JP2016130589A (ja
Inventor
亮 太田
亮 太田
赤田 広幸
広幸 赤田
佐藤 英治
英治 佐藤
中村 聡
聡 中村
植田 英之
英之 植田
野中 正之
正之 野中
井関 崇
崇 井関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Johnson Controls Air Conditioning Inc
Original Assignee
Hitachi Johnson Controls Air Conditioning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Johnson Controls Air Conditioning Inc filed Critical Hitachi Johnson Controls Air Conditioning Inc
Priority to JP2015003783A priority Critical patent/JP6522345B2/ja
Priority to PCT/JP2015/081868 priority patent/WO2016113993A1/ja
Publication of JP2016130589A publication Critical patent/JP2016130589A/ja
Application granted granted Critical
Publication of JP6522345B2 publication Critical patent/JP6522345B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/20Lubricating compositions characterised by the base-material being a macromolecular compound containing oxygen
    • C10M107/30Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M107/32Condensation polymers of aldehydes or ketones; Polyesters; Polyethers
    • C10M107/34Polyoxyalkylenes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Lubricants (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

本発明は、ヒートポンプサイクルを用いた冷凍装置及び密閉型電動圧縮機に関する。
冷凍空調装置に使用される冷媒のR410A[HFC(Hydrofluorocarbons)32/HFC125(50/50重量%)]やR404A[HFC125/HFC143a/HFC134a(44/52/4重量%)]は、GWP(Global Warming Potential)がR410A=1924、R404A=3940と高いため、GWPが低い代替冷媒を用いた冷凍空調装置の開発が急務である。
この代替冷媒としては、熱物性、低GWP、低毒性、低可燃性などの理由から、ジフルオロメタン(HFC32)が候補とされている。その他の冷媒としては、2,3,3,3−テトラフルオロプロペン(HFO1234yf(Hydrofluoroolefin)(GWP=0)、1,3,3,3−テトラフルオロプロペン(HFO1234ze)(GWP=1)もしくはHFOとHFC32、HFC125、HFC134aなどとの混合冷媒やプロパン、プロピレンなどのハイドロカーボン、及びフルオロエタン(HFC161)、ジフルオロエタン(HFC152a)などの低GWPのハイドロフルオロカーボンが挙げられている。これらの冷媒候補の中で、可燃性、冷暖房能力、非共沸冷媒の温度勾配による機器効率低下、取り扱い易さ、機器構成の変更(開発)などの観点から、ジフルオロメタン(HFC32)が選ばれ、いくつかの空調装置が製品化されている。
冷凍空調装置用の冷凍機油は、密閉型電動圧縮機に使用され、その摺動部の潤滑、密封、冷却等の役割を果たすものである。冷凍空調用冷凍機油で最も重要な特性は、冷媒との相溶性であり、室外機に配置される圧縮機内で液冷媒と冷凍機油の二層分離が発生すると、各摺動部に分離した液冷媒が供給されてしまい、潤滑不良を起こす懸念がある。さらに、圧縮機運転中に機械的な作用により冷凍機油がミスト状となってサイクル側に吐出されるが、相溶性が劣ると、サイクルの低温部で冷凍機油が滞留してしまい、圧縮機への油戻り量が減少する。特に、パッケージエアコンや冷凍機では、サイクルを構成する配管が長いため、冷媒との相溶性に優れる冷凍機油を用いる必要がある。冷媒及び油の二層分離特性は、油濃度に対する二層分離温度曲線で評価できる。低温側の二層分離特性は、上に凸の曲線となり、曲線の上側が相溶、下側で二層分離状態を表している。この曲線の極大値を低温側二層分離温度と呼び、この温度が低いほど相溶性が良いことを示す。ジフルオロメタンを冷媒に用いたパッケージエアコンや冷凍機では、この低温側臨界溶解温度が−30℃以下である必要がある。
ジフルオロメタンと適合する冷凍空調用冷凍機油を用いた冷凍空調装置としては、特許文献1に記載されたジフルオロメタンに対してポリビニルエーテル油を用いた冷凍装置がある。しかし、ポリビニルエーテル油は、ジフルオロメタンとの低温側臨界溶解温度が−30℃以下にならず、相溶性が不十分である。また、特許文献2と特許文献3には、ジフルオロメタンとポリオールエステル油を用いた組成物が開示されているが、トリクレジルホスフェートなどの化学的に安定な極圧添加剤が有効に作用しないために圧縮機摺動部の摩耗抑制が難しい。さらに、圧縮機の高効率化を目的とした転がり軸受を有する圧縮機においては、ポリオールエステル油の圧力粘度係数が小さいために転がり軸受の疲労寿命が低下してしまう。また、スクロール式圧縮機の軽量化を目的としたスクロールラップのアルミニウム合金化では、ラップ間がトライボケミカル反応によって大幅に摩耗する問題があった。
特許3956589号公報 特開2010−235960号公報 特開2002−129178号公報
パッケージエアコンや冷凍機では、サイクルを構成する配管が長く、動作環境が低温になるために、現状のジフルオロメタンと冷凍機油との組合せにおいて二層分離を起こしてしまい、サイクルの低温部で油が滞留して、圧縮機への油戻り量が減少してしまう。また、圧縮機内でもジフルオロメタン液と冷凍機油の二層分離が発生し、密度が低い油リッチ相が上層に、密度が高い液冷媒リッチ相が下層になるために、圧縮機の下部に存在する給油口から潤滑性の劣る液冷媒リッチ相が各圧縮機摺動部に供給されてしまい、潤滑不良を起こす懸念がある。さらに、圧縮機回転軸に転がり軸受を持つ構造において、圧力粘度係数の低い冷凍機油では転がり疲労寿命を低下させてしまう問題を生じる。
本発明の目的は、ジフルオロメタンを使用した冷凍空調装置及び密閉型電動圧縮機において、圧縮機摺動部材の摩耗を抑制し、転がり軸受の疲労寿命を向上させることにある。
上記目的を達成するために、例えば特許請求の範囲に記載の構成を採用する。
本発明によれば、ジフルオロメタンを使用した冷凍空調装置及び密閉型電動圧縮機において、圧縮機摺動部材の摩耗を抑制し、転がり軸受の疲労寿命を向上させることができる。
空調装置の構成を示す概略図である。 冷凍機の構成を示す概略図である。 冷凍空調装置のスクロール式密閉型圧縮機を示す断面図である。
以下、本発明の一実施形態に係る冷凍空調装置及び密閉型電動圧縮機について説明する。
前記した冷凍空調装置に用いる密閉型電動圧縮機は、摺動部を有する冷媒圧縮部を備え、ジフルオロメタンと、冷凍機油とを封入したものである。圧縮機としては、スクロール式圧縮機の他、ロータリー式圧縮機、ツインロータリー式圧縮機、2段圧縮ロータリー式圧縮機、及びローラとベーンが一体化されたスイング式圧縮機などがあげられる。実施例の冷媒は地球温暖化係数(GWP)が677のジフルオロメタンであり、前記冷凍機油は圧力粘度係数が、10GPa-1以上である下記化学式(1)で表わされる末端変性ポリアルキレングリコール(式中、R1およびR3は、炭素数1から4のアルキル基、または、炭素数2〜5のアシル基であり、どちらか一方にアシル基を含み、R2は、炭素数2から4のアルキレン基を示す)であり、ジフルオロメタンとの低温側臨界溶解温度が−30℃以下である冷凍機油を封入した。
〔化1〕 R1−(O−R2)n−OR3 ・・・・・・・・・・・(1)
実施例の空調装置、冷凍機に用いる冷凍機油の末端変性ポリアルキレングリコールは、粘度指数が高いために、使用する粘度グレードが圧縮機の種類により異なるが、スクロール式圧縮機では、40℃における粘度が32〜68mm2/sの範囲が好ましい。また、ロータリー式圧縮機では、40℃における粘度が15〜56mm2/sの範囲が好ましい。
前記した冷凍機油に潤滑性向上剤、酸化防止剤、酸捕捉剤、消泡剤、金属不活性剤等を添加しても全く問題はない。潤滑性向上剤としては、極圧添加剤が有効であり、熱化学的に安定な第三級ホスフェート類(トリクレジルホスフェートなど)を基油に対して2.0重量%以下配合することが好ましい。酸化防止剤としては、フェノール系であるDBPC(2,6−ジ−t−ブチル−p−クレゾール)が好ましい。酸捕捉剤としては、一般に、エポキシ環を有する化合物である脂肪族のエポキシ系化合物やカルボジイミド系化合物が使用される。
図1は、本実施例で用いた空調装置の概略を示したものである。空調装置は、室外機1と室内機2とで構成されている。
室外機1には、圧縮機3、四方弁4、室外熱交換器5、膨張手段6(膨張部)及びアキュムレータ8が内蔵されている。圧縮機3は、モータが内蔵され摺動部を有する冷媒圧縮部を備えたものである。また、室内機2には、室内熱交換器7が内蔵されている。
室内を冷房する場合、圧縮機3にて断熱的に圧縮された高温高圧の冷媒ガスは、吐出パイプ及び四方弁4を通って室外熱交換器5(凝縮手段として使用される)で冷却され、高圧の液冷媒となる。この冷媒は、膨張手段6(例えば、温度式膨張弁など)で膨張し、僅かにガスを含む低温低圧液となって室内熱交換器7(蒸発手段として使用される)に至り、室内の空気から熱を得て低温ガスの状態で再び四方弁4を通ってからアキュレータ8に入る。室内熱交換器で蒸発できなかった低温低圧の液冷媒はアキュムレータ8において分離され、低温低圧ガスが圧縮機3に至る。室内を暖房する場合は、四方弁4によって冷媒の流れが逆方向に変えられ、逆作用となる。
図2は、本実施例で用いた冷凍機の概略を示したものである。冷凍機は、室外機9とショーケースなどのクーラーユニット10とで構成されている。
室外機9には、圧縮機11、凝縮器12、過冷却器13、膨張手段14,17(膨張部)及びアキュムレータ16が内蔵されている。圧縮機11は、モータが内蔵され摺動部を有する冷媒圧縮部を備えたものである。また、クーラーユニット10には、蒸発器15が内蔵されている。
圧縮機11で断熱的に圧縮された高温高圧の冷媒ガスは、吐出パイプを通って凝縮器12で冷却され、高圧の液冷媒となって過冷却器13にて過冷却されてから膨張手段14(例えば、温度式膨張弁など)で膨張し、僅かにガスを含む低温低圧液となってクーラーユニット10内に送られる。次いで、蒸発器15で空気から熱を得て低温ガスの状態でアキュレータ16を通り、圧縮機11に戻る。冷凍機用圧縮機は冷媒圧縮比が10〜20程度と高く、冷媒ガスが高温になりやすい。このため凝縮器12を出た液冷媒を分岐させ、膨張手段17(例えば、キャピラリーチューブなど)によってガスを含む低温低圧液を得て主系統にある高圧の液冷媒を過冷却器13でさらに冷却した後に、圧縮機11に戻して吐出温度を低くさせている。
圧縮機3,11としては、スクロール式密閉型圧縮機を用いた。図3は、スクロール式密閉型圧縮機の概略構造を示したものである。
圧縮機3,11は、端板に垂直に設けられた渦巻状ラップ18を有する固定スクロール部材19と、この固定スクロール部材19と実質的に同一形状のラップ20を有する旋回スクロール部材21と、旋回スクロール部材21を支持するフレーム22と、旋回スクロール部材21を旋回運動させるクランクシャフト23と、電動モータ24と、これらを内蔵する圧力容器25とを含む。渦巻状ラップ18とラップ20とは、互いに向い合わせにして噛み合わせ、圧縮機構部を形成してある。旋回スクロール部材21は、クランクシャフト23によって旋回運動させると、固定スクロール部材19と旋回スクロール部材21との間に形成される圧縮室26のうち、最も外側に位置している圧縮室26が旋回運動に伴って容積を次第に縮小しながら、固定スクロール部材19及び旋回スクロール部材21の中心部に向かって移動していく。圧縮室26が固定スクロール部材19及び旋回スクロール部材21の中心部近傍に達すると、圧縮室26が吐出口27と連通し、圧力容器25の内部に吐出された圧縮ガスが吐出パイプ28から圧縮機3,11の外部に吐出される。
圧縮機3,11においては、一定速あるいは図示していないインバータによって制御された電圧に応じた回転速度でクランクシャフト23が回転し、圧縮動作を行う。また、電動モータ24の下方には、油溜め部29が設けられており、油溜め部29の油は、圧力差によってクランクシャフト23に設けられた油孔30を通って、旋回スクロール部材21とクランクシャフト23との摺動部、主軸受31や副軸受32の転がり軸受等の潤滑に供給される。
以下、本発明の実施例と比較例について説明する。
〔実施例1,2〕
実施例1,2の冷凍機油はそれぞれ以下のとおりである。
(A)ポリアルキレングリコール油(PAG)
(両末端がエタノイル基のポリプロピレングリコール油)
(B)ポリアルキレングリコール油(PAG)
(両末端がエタノイル基とメチルオキシ基のポリプロピレングリコール油)
(比較例1〜7)
(C)ポリアルキレングリコール油(PAG)
(両末端がヒドロキシル基のポリプロピレングリコール油)
(D)ポリアルキレングリコール油(PAG)
(両末端がメチルオキシ基のポリプロピレングリコール油)
(E)ポリアルキレングリコール油(PAG)
(両末端がメチルオキシ基とヒドロキシル基のポリプロピレングリコール油)
(F)ポリアルキレングリコール油(PAG)
(両末端がメチルオキシ基のポリエチレングリコールとポリプロピレングリコール共重合油)
(G)ポリビニルエーテル油(PVE)
(アルコキシビニルの重合体であり、アルコキシ基がエチルオキシ基のエーテル油)
(H)ヒンダードタイプポリオールエステル油(H−POE)
(ペンタエリスリトール/ジペンタエリスリトール系の2−メチルブタン酸/2−エチルヘキサン酸の混合脂肪酸エステル油)
(I)ヒンダードタイプポリオールエステル油(H−POE)
(ジペンタエリスリトール系のペンタン酸/2−メチルブタン酸の混合脂肪酸エステル油)
(低温側臨界溶解温度)
冷凍空調用圧縮機では冷媒と冷凍機油とが封入される。冷媒と冷凍機油との相溶性は、前述したように冷凍サイクルから圧縮機への油戻り(圧縮機内部の油量を確保)あるいは潤滑性等圧縮機の信頼性やさらには熱交換効率を保証する面で重要な特性の一つである。
ジフルオロメタンと冷凍機油との相溶性評価はJIS K 2211に準じて測定した。耐圧ガラス容器に任意の油濃度において冷媒を封入し、温度を変化させた状態での内容物の観察を行った。内容物が白濁していれば二層分離、透明であれば溶解と判定した。この二層に分離する温度の油濃度依存性は一般に極大値を有する曲線となる。この極大値を低温側臨界溶解温度とした。
(粘度圧力係数)
落体式高圧粘度計を用いて20℃〜160℃、1〜130MPaにおける高圧粘度を測定し、以下の文献に従い60℃における粘度圧力係数を算出した。
参考文献:畑ら,トライボロジスト,55(9),635(2010).
(転がり軸受疲労寿命)
転がり軸受の疲労寿命は、IP305/79(The Institute of Petroleum)におけるユニスチール試験により評価した。回転速度1500/min,荷重4800N,軸受No.51110,油量150ml,油温120℃において11件試験を実施し、ワイブル分布により転がり軸受の疲労寿命を平均寿命時間として算出した。
各冷凍機油の低温側臨界溶解温度、粘度圧力係数、転がり軸受の疲労平均寿命結果を表1に示す。実施例1,2は、粘度圧力係数が13GPa-1以上で転がり軸受疲労平均寿命が150時間を超えることがわかった。冷凍空調装置において冷凍サイクルから圧縮機への油戻りあるいは冷媒高濃度液の供給による潤滑性の低下防止、さらに冷凍サイクルの熱交換効率低下防止のために必要な低温側臨界溶解温度を−30℃以下にしなくてはならない。以上のような総合的にみて冷凍空調装置並びに圧縮機信頼性を満たすには実施例1,2の冷凍機油が必要である。これに対して、比較例1〜7では、いずれかの特性が劣る結果となっており、ジフルオロメタンを用いた密閉型圧縮機用の冷凍機油としては、不十分であることがわかった。
〔実施例3〕
本実施例は、前記したスクロール式密閉型圧縮機を搭載したパッケージエアコン14.0kW機種を用いて、高速高負荷条件における3000時間耐久試験を実施したものである。圧縮機の回転速度は、6000min-1で運転を行った。モータの鉄心とコイルとの絶縁には、250μmの耐熱PETフィルム(B種130℃)を用い、コイルの主絶縁には、ポリエステルイミド−アミドイミドのダブルコートを施した二重被覆銅線を用いた。冷媒には、ジフルオロメタンを用い、サイクルに4000g封止した。冷凍機油には、実施例1で用いた40℃における動粘度が46mm2/sのポリアルキレングリコール油を予め圧縮機内に1000ml封入した。この冷凍機油には、添加剤としてエポキシ系酸捕捉剤を0.5重量%、酸捕捉剤としてDBPC(2,6−ジ−t−ブチル−p−クレゾール)を0.25重量%、極圧添加剤としてトリクレジルホスフェートを1.0重量%配合した。この実施形態におけるパッケージエアコンを3000時間運転後において、搭載したスクロール式密閉型圧縮機を解体し、摩耗の状態や転がり軸受のフレーキング発生状態について調べた。
実機を用いた耐久試験の結果は次のようであった。スクロール式密閉型圧縮機の主軸受、副軸受の転がり軸受の転動体や内輪外輪の軌道面にフレーキングが見られず、旋回と固定スクロールの歯先やオルダムリングなどの摺動部の摩耗が非常に少ないことがわかった。また、ジフルオロメタンとの低温相溶性が優れているために、解体後の圧縮機内部には十分な油量が残されており、ジフルオロメタンとの低温相溶性が優れていたためと推定する。また、冷凍機油の劣化判断として、全酸価を滴定法、添加剤残存量をガスクロマトグラフィーにおいて測定した。試験後の全酸価は、0.01mgKOH/gであり、新油と同じ値を示した。酸捕捉剤の残存量が50%以上で、酸化防止剤と極圧添加剤に関しては約90%残存しており、問題がないことを確認した。
(比較例8)
また、比較として実施例3と同条件において、冷凍機油のみ比較例6で用いたポリオールエステル油を用いて試験を実施した。この冷凍機油の添加剤には、エポキシ系酸捕捉剤を0.5重量%、酸捕捉剤としてDBPC(2,6−ジ−t−ブチル−p−クレゾール)を0.25重量%、極圧添加剤としてトリクレジルホスフェートを1.0重量%配合した。
比較例8では、主軸受と副軸受の転がり軸受の内輪軌道面にフレーキング痕が見られ、さらにその他の摺動部の摩耗が増加していた。また、試験後の全酸価も0.08mgKOH/gと増加しており、酸捕捉剤の残存量が約20%まで減少した。
〔実施例4〕
本実施例は、固定スクロール部材と旋回スクロール部材、並びにフレームに高強度で耐摩耗性に優れた10〜12%のシリコンを含有しアルミニウムが主成分のアルミニウム−シリコン共晶系合金を用いたスクロール式密閉型圧縮機において、500時間における実施例3と同様な試験を実施したものである。このアルミニウムシリコン合金部材には、表面処理を施していない。
この試験の結果、本実施例では、表面処理を施していないにもかかわらず、アルミニウムシリコン合金部材において、トライボケミカル反応に起因する大きな摩耗は進行していなかった。また、冷凍機油の全酸価も0.01mgKOH/gと増加がなかった。
(比較例9)
また、実施例4のスクロール式密閉型圧縮機を用いて、比較例8と同じ冷凍機油を封入して実施例4と同様の試験を行った。
比較例9では、アルミニウムシリコン部材同士の摩擦により、トライボケミカル反応が促進され、摩耗が増加して、72時間で試験を中断した。冷凍機油の全酸価も0.53mgKOH/gと大幅に増加して劣化が進んでいた。
以上の本実施例の冷凍機油であれば、環境負荷が小さいジフルオロメタンを用いた場合に、圧縮機摺動部材の摩耗を抑制し、転がり軸受の疲労寿命を向上させることがわかった。また、更にスクロールやフレーム等の摺動部材にアルミニウム合金を用いた場合に、部材同士の摩擦によってもトライボケミカル反応が生じにくく、部材の摩耗を抑制することができることがわかった。スクロールにおいては、固定スクロール部材と旋回スクロール部材の少なくとも一方がアルミニウム合金であれば、双方の摩耗を抑制することができる。空調装置のみではなく、図2に示す冷凍機においても同様の効果が得られた。
1:室外機
2:室内機
3:圧縮機
4:四方弁
5:室外熱交換器
6:膨張手段
7:室内熱交換器
8:アキュムレータ
9:室外機
10:クーラーユニット
11:圧縮機
12:凝縮器
13:過冷却器
14:膨張手段
15:蒸発器
16:アキュムレータ
17:膨張手段
18:渦巻状ラップ
19:固定スクロール部材
20:ラップ
21:旋回スクロール部材
22:フレーム
23:クランクシャフト
24:電動モータ
25:圧力容器
26:圧縮室
27:吐出口
28:吐出パイプ
29:油溜め部29
30:油孔
31:主軸受
32:副軸受

Claims (4)

  1. ジフルオロメタン冷媒を吸入圧縮し、摺動部を有し、冷凍機油が封入された密閉型電動圧縮機と、前記圧縮機から吐出された冷媒を放熱する熱交換器と、前記熱交換器から流出する冷媒を減圧する減圧器と、前記減圧器にて減圧された冷媒を吸熱させる熱交換器を介し循環する冷凍サイクルを備えた冷凍装置において、前記冷凍機油の粘度圧力係数が13.2GPa-1以上13.5GPa-1以下である下記化学式(1)で表わされる末端変性ポリアルキレングリコール(式中、R1およびR3は、炭素数1から4のアルキル基、または、炭素数2〜5のアシル基であり、どちらか一方にアシル基を含み、R2は、炭素数2から4のアルキレン基を示す)であり、前記冷媒と前記冷凍機油との低温側臨界溶解温度が−30℃以下であることを特徴とする冷凍装置。
    〔化1〕 R1−(O−R2)n−OR3 ・・・・・・・・・・・(1)
  2. 請求項1において、前記圧縮機が、渦巻状ラップを有する固定スクロール部材と、前記固定スクロール部材と同一形状のラップを有する旋回スクロール部材を有するスクロール式圧縮機であり、前記固定スクロール部材又は前記旋回スクロール部材の少なくとも一方がアルミニウム合金からなることを特徴とする冷凍装置。
  3. 摺動部を有する冷媒圧縮部を備え、冷媒であるジフルオロメタンと、冷凍機油とを封入した密閉型電動圧縮機において、前記冷凍機油の粘度圧力係数が13.2GPa-1以上13.5GPa-1以下である下記化学式(1)で表わされる末端変性ポリアルキレングリコール(式中、R1およびR3は、炭素数1から4のアルキル基、または、炭素数2〜5のアシル基であり、どちらか一方にアシル基を含み、R2は、炭素数2から4のアルキレン基を示す)であり、前記冷媒と前記冷凍機油との低温側臨界溶解温度が−30℃以下であることを特徴とする密閉型電動圧縮機。
    〔化1〕 R1−(O−R2)n−OR3 ・・・・・・・・・・・(1)
  4. 請求項3において、渦巻状ラップを有する固定スクロール部材と、前記固定スクロール部材と同一形状のラップを有する旋回スクロール部材を有するスクロール式圧縮機であり、前記固定スクロール部材又は前記旋回スクロール部材の少なくとも一方がアルミニウム合金からなることを特徴とする冷凍空調用密閉型電動圧縮機。
JP2015003783A 2015-01-13 2015-01-13 冷凍装置及び密閉型電動圧縮機 Active JP6522345B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015003783A JP6522345B2 (ja) 2015-01-13 2015-01-13 冷凍装置及び密閉型電動圧縮機
PCT/JP2015/081868 WO2016113993A1 (ja) 2015-01-13 2015-11-12 冷凍装置及び密閉型電動圧縮機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015003783A JP6522345B2 (ja) 2015-01-13 2015-01-13 冷凍装置及び密閉型電動圧縮機

Publications (2)

Publication Number Publication Date
JP2016130589A JP2016130589A (ja) 2016-07-21
JP6522345B2 true JP6522345B2 (ja) 2019-05-29

Family

ID=56405550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015003783A Active JP6522345B2 (ja) 2015-01-13 2015-01-13 冷凍装置及び密閉型電動圧縮機

Country Status (2)

Country Link
JP (1) JP6522345B2 (ja)
WO (1) WO2016113993A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020049844A1 (ja) * 2018-09-06 2020-03-12 日立ジョンソンコントロールズ空調株式会社 圧縮機、及び、これを備える冷凍サイクル装置
JP2024052371A (ja) * 2022-09-30 2024-04-11 ダイキン工業株式会社 圧縮機および冷凍サイクル装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08240351A (ja) * 1996-02-20 1996-09-17 Hitachi Ltd 冷凍装置
JP2002130125A (ja) * 2000-10-18 2002-05-09 Mitsubishi Electric Corp 圧縮機及び冷凍サイクル装置
JP4589196B2 (ja) * 2005-08-12 2010-12-01 サンデン株式会社 スクロール型流体機械、及び該流体機械を用いた冷凍サイクル
JP2013014673A (ja) * 2011-07-01 2013-01-24 Idemitsu Kosan Co Ltd 圧縮型冷凍機用潤滑油組成物
KR101900255B1 (ko) * 2012-03-02 2018-09-20 제이엑스티지 에네루기 가부시키가이샤 냉동기용 작동 유체 조성물, 냉동기유 및 이의 제조 방법
JP2014037928A (ja) * 2012-08-17 2014-02-27 Toshiba Carrier Corp 冷凍サイクル装置
JP5681829B1 (ja) * 2014-07-25 2015-03-11 Jx日鉱日石エネルギー株式会社 冷凍機油、冷凍機用作動流体組成物

Also Published As

Publication number Publication date
WO2016113993A1 (ja) 2016-07-21
JP2016130589A (ja) 2016-07-21

Similar Documents

Publication Publication Date Title
JP6545337B1 (ja) 冷凍サイクル装置
US20200208882A1 (en) Refrigeration cycle apparatus
CN105907376B (zh) 冷冻空调用压缩机及冷冻空调装置
US20120024007A1 (en) Compressor for refrigeration and air-conditioning and refrigerating and air-conditioning apparatus
CN109072895B (zh) 电动压缩机及冷冻空调装置
JP6450896B1 (ja) 冷媒組成物及びこれを用いた冷凍サイクル装置
JP5872387B2 (ja) 圧縮機及び空調装置
JP2022089538A (ja) 冷凍サイクル装置
JP6522345B2 (ja) 冷凍装置及び密閉型電動圧縮機
JP2015014395A (ja) 空気調和機
WO2015093183A1 (ja) 空調装置
JP2003336916A (ja) 冷凍サイクル及びヒートポンプ式給湯機
JP2000129275A (ja) 冷凍・空調機用作動媒体組成物及び該組成物を用いた冷凍・空調装置
WO2020050022A1 (ja) 電動圧縮機及びこれを用いた冷凍空調装置
JP7053938B1 (ja) 冷凍サイクル装置
JP2002194369A (ja) 空調用作動媒体組成物及び該組成物を用いた空調機
JP2015140994A (ja) 空気調和機及び冷凍機油
JP2016023902A (ja) 空気調和機
JP2000044938A (ja) 空気調和機用作動媒体組成物及び該組成物を用いた空気調和機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171012

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180313

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180703

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190220

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190424

R150 Certificate of patent or registration of utility model

Ref document number: 6522345

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150