WO2020050022A1 - 電動圧縮機及びこれを用いた冷凍空調装置 - Google Patents

電動圧縮機及びこれを用いた冷凍空調装置 Download PDF

Info

Publication number
WO2020050022A1
WO2020050022A1 PCT/JP2019/032568 JP2019032568W WO2020050022A1 WO 2020050022 A1 WO2020050022 A1 WO 2020050022A1 JP 2019032568 W JP2019032568 W JP 2019032568W WO 2020050022 A1 WO2020050022 A1 WO 2020050022A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
oil
refrigerating machine
electric compressor
machine oil
Prior art date
Application number
PCT/JP2019/032568
Other languages
English (en)
French (fr)
Inventor
植田 英之
内藤 宏治
亮 太田
Original Assignee
日立ジョンソンコントロールズ空調株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ジョンソンコントロールズ空調株式会社 filed Critical 日立ジョンソンコントロールズ空調株式会社
Publication of WO2020050022A1 publication Critical patent/WO2020050022A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/16Ethers
    • C10M129/18Epoxides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/66Epoxidised acids or esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/22Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms containing a carbon-to-nitrogen double bond, e.g. guanidines, hydrazones, semicarbazones
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/32Esters
    • C10M105/38Esters of polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/20Lubricating compositions characterised by the base-material being a macromolecular compound containing oxygen
    • C10M107/22Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M107/24Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an alcohol, aldehyde, ketonic, ether, ketal or acetal radical

Definitions

  • the present invention relates to an electric compressor and an air conditioner and a refrigeration / air-conditioning apparatus such as a refrigeration / freezing showcase using the same.
  • a refrigerant used for a refrigerator, an air conditioner, a refrigerator, and the like for example, R134a, R410A, R407C, and the like are used. Although these refrigerants have little effect on the ozone layer, they have a large global warming potential (GWP).
  • GWP global warming potential
  • trifluoroiodomethane (CF 3 I) has been proposed as an alternative refrigerant.
  • the GWP of trifluoroiodomethane (CF 3 I) is 5 or less, which is smaller than that of G41020 of R410A.
  • Trifluoroiodomethane (CF 3 I) is filled in the closed container of the electric compressor.
  • Trifluoroiodomethane (CF 3 I) used as a refrigerant has a global warming potential of one-fourth or less of R410A, but has poor stability and is decomposed by moisture. The products generated by the decomposition may deteriorate the refrigerating machine oil sealed in the compressor, and may cause abrasion of sliding portions of the compressor.
  • An object of the present invention is to solve the above problems and to provide an electric compressor in which refrigeration oil is suppressed in a refrigerant using trifluoroiodomethane (CF 3 I) as a refrigerant and a refrigeration / air-conditioning apparatus using the electric compressor. is there.
  • CF 3 I trifluoroiodomethane
  • a feature of the present invention to achieve the above object is that a sealed container, a compression mechanism portion that is housed in the closed container and compresses a refrigerant, and an electric motor that drives the compression mechanism portion via a shaft.
  • An electric compressor comprising: a bearing for supporting the shaft; and a refrigerating machine oil stored at a bottom of the closed container, wherein the refrigerant is trifluoroiodomethane (CF 3 I) alone or the trifluoroiodine methane.
  • a mixed refrigerant containing iodomethane (CF 3 I) and another refrigerant wherein the refrigerating machine oil contains an acid scavenger, and the refrigerating machine oil has a saturated moisture content of the refrigerating machine oil containing the acid scavenger. The amount is higher than the saturated water amount of the refrigerant.
  • the outdoor unit includes an outdoor unit and an indoor unit
  • the outdoor unit includes a refrigeration system in which an electric compressor, a four-way valve, an expansion unit, and an outdoor heat exchanger are connected by piping.
  • the electric compressor includes a closed container, a compression mechanism unit housed in the closed container, which compresses a refrigerant, an electric motor that drives the compression mechanism unit via a shaft, and a shaft supporting the shaft.
  • the refrigerant is trifluoroiodomethane (CF3I) alone or the trifluoroiodomethane (CF3I) and another refrigerant
  • An acid scavenger is compounded in the refrigerating machine oil, and the refrigerating machine oil has a saturated moisture content of the refrigerating machine oil containing the acid scavenger, which is higher than a saturated moisture content of the refrigerant. Expensive It lies in using.
  • FIG. 1 is an explanatory diagram illustrating a configuration of an air conditioner (refrigeration / air-conditioning apparatus) according to an embodiment of the present invention.
  • FIG. 1 is a configuration explanatory diagram of a refrigeration / freezing showcase (refrigeration air conditioner) according to an embodiment of the present invention. It is a longitudinal section of an electric compressor concerning an example of the present invention.
  • the electric compressor of this embodiment is characterized in that trifluoroiodomethane (CF 3 I) alone or a mixed refrigerant containing trifluoroiodomethane (CF 3 I) and another refrigerant is used as the refrigerant.
  • trifluoroiodomethane (CF 3 I) is mixed with one or two or more refrigerants in a group of hydrogen fluoride-based refrigerants.
  • a polyol ester oil or a polyvinyl ether oil is used as the refrigerating machine oil.
  • FIG. 1 is an explanatory diagram of a configuration of an air conditioner 50A as a refrigeration air conditioner.
  • the air conditioner 50A includes an outdoor unit 1 and an indoor unit 2.
  • the outdoor unit 1 includes an electric compressor 3, a four-way valve 4, expansion means 6 (expansion section), an outdoor heat exchanger 5, and an accumulator 8 connected by predetermined pipes.
  • the electric compressor 3 includes a refrigerant compression mechanism 33 (see FIG. 3) having a sliding portion driven by the electric motor 24 (see FIG. 3), as described in detail later.
  • the indoor unit 2 includes the indoor heat exchanger 7 and the once-through fan 7a.
  • the air conditioner 50A performs a cooling operation in which the indoor heat exchanger 7 is used as an evaporator and the outdoor heat exchanger 5 is used as a condenser by switching the four-way valve 4, and the indoor heat exchanger 7 is used as a condenser and outdoor heat exchange. It is a heat pump type that performs a heating operation using the heater 5 as an evaporator.
  • the high-temperature and high-pressure refrigerant compressed by the electric compressor 3 flows into the outdoor heat exchanger 5 through the four-way valve 4, and is generated by the axial fan 5a.
  • the heat is exchanged with the air flow to release heat and condense.
  • the refrigerant undergoes isenthalpy expansion by the expansion means 6 and flows into the indoor heat exchanger 7 as a gas-liquid two-phase flow in which a gas refrigerant and a liquid refrigerant are mixed at a low temperature and a low pressure.
  • the air flow generated by the once-through fan 7a exchanges heat with the liquid refrigerant flowing through the indoor heat exchanger 7.
  • the liquid refrigerant in the indoor heat exchanger 7 is vaporized into a gas refrigerant by an endothermic effect from air. That is, when the liquid refrigerant evaporates, the indoor heat exchanger 7 cools the surrounding air, so that the air conditioner 50A exhibits a cooling function.
  • the refrigerant in a low-temperature gas state that has exited the indoor heat exchanger 7 passes through the four-way valve 4 and enters the accumulator 8.
  • the low-temperature and low-pressure liquid refrigerant that could not be evaporated in the indoor heat exchanger 7 is separated in the accumulator 8, and the low-temperature and low-pressure gas refrigerant returns to the electric compressor 3.
  • the refrigerant is compressed again to a high temperature and a high pressure by the electric compressor 3, and circulates through the four-way valve 4, the outdoor heat exchanger 5, the expansion means 6, and the indoor heat exchanger 7. That is, a refrigerating cycle is configured by repeating this circulation.
  • FIG. 2 is a configuration explanatory view of a refrigerated / frozen showcase 50B according to the embodiment of the present invention. As shown in FIG. 2, the refrigerated / refrigerated showcase 50B includes an outdoor unit 9 and a cooler unit 10.
  • the outdoor unit 9 is configured by connecting the electric compressor 3, the condenser 12, the subcooler 13, the expansion means 14, 17 (expansion part), and the accumulator 16 by predetermined pipes.
  • the electric compressor 3 includes a refrigerant compression mechanism 33 (see FIG. 3) having a sliding portion driven by the electric motor 24 (see FIG. 3), as described in detail later.
  • the cooler unit 10 includes an evaporator 15 and a once-through fan 15a.
  • the high-temperature and high-pressure refrigerant gas adiabatically compressed by the electric compressor 3 is sent out to the condenser 12 through the discharge pipe 28 (see FIG. 3), and is sent to the axial fan 12a.
  • the heat is exchanged with the generated air flow to release heat and condense.
  • the refrigerant that has been condensed in the condenser 12 to become a high-pressure liquid is sent to the supercooler 13 and is supercooled.
  • the supercooled refrigerant sent from the supercooler 13 is expanded by expansion means 14 (for example, a temperature-type expansion valve) and is sent to the evaporator 15 of the cooler unit 10 as a low-temperature low-pressure liquid containing a slight amount of gas. It is.
  • the refrigerant in the evaporator 15 is vaporized into a gas refrigerant by an endothermic effect from air. That is, when the liquid refrigerant evaporates, the evaporator 15 cools the surrounding air, so that the refrigeration / refrigeration showcase 50B exhibits a refrigeration / refrigeration function.
  • the refrigerant that has absorbed heat from the air in the evaporator 15 enters the accumulator 16 in the state of a low-temperature gas.
  • the low-temperature and low-pressure liquid refrigerant that cannot be evaporated by the evaporator 15 is separated in the accumulator 16, and the low-temperature and low-pressure gas refrigerant returns to the electric compressor 3. Thereafter, the refrigerant is compressed again to a high temperature and a high pressure by the electric compressor 3 and circulates through the condenser 12, the subcooler 13, the expansion means 14, and the evaporator 15. That is, a refrigerating cycle is configured by repeating this circulation.
  • the electric compressor 3 used in the refrigeration / freezing showcase 50B of the present embodiment has a high refrigerant compression ratio of about 10 to 20, and the refrigerant gas is likely to become high in temperature.
  • a pipe extending from the condenser 12 to the supercooler 13 is branched, and an expansion means 17 (for example, a capillary tube or the like) is arranged in one of the branched pipes.
  • the high-pressure liquid refrigerant in the main system is further cooled by the supercooler 13 by obtaining the low-temperature low-pressure liquid containing the refrigerant gas by the expansion means 17.
  • the refrigerant cooled by the supercooler 13 is returned to the electric compressor 3, thereby lowering the temperature of the sucked refrigerant and lowering the discharge temperature.
  • FIG. 3 is a longitudinal sectional view of the electric compressor 3 of the present embodiment.
  • the electric compressor 3 includes a hermetic container 25, a compression mechanism 33, and an electric motor 24 as main components.
  • the compression mechanism 33 and the electric motor 24 are housed in the closed space of the closed container 25. Further, a refrigerator oil 29 (hereinafter, the reference numeral of the refrigerator oil is omitted) is stored in a bottom portion of the closed container 25 in detail, which will be described later.
  • the compression mechanism 33 compresses a refrigerant gas, which will be described in detail later, and discharges the compressed gas into the closed container 25, and is disposed at an upper portion in the closed container 25.
  • the compression mechanism unit 33 includes the fixed scroll member 19, the orbiting scroll member 21, the frame 22, and the Oldham ring 38 as main components.
  • the fixed scroll member 19 has the spiral wrap 18 on the end plate and is bolted on the frame 22.
  • the orbiting scroll member 21 has a spiral wrap 20 on the end plate that meshes with the spiral wrap 18 of the fixed scroll member 19.
  • a compression chamber 26 is formed by the spiral wraps 18 and 20 meshing with each other.
  • the orbiting scroll member 21 and the fixed scroll member 19 in this embodiment are formed of an aluminum alloy.
  • a suction port 35 communicating with a suction pipe 37 is provided at a peripheral portion of the fixed scroll member 19, and a discharge port 27 is provided at a center portion.
  • the discharge port 27 communicates with a space above the compression mechanism 33 in the closed container 25.
  • a boss into which the orbiting bearing is incorporated is provided on the side of the orbiting scroll member 21 opposite to the fixed scroll member 19.
  • An eccentric pin portion 39 for eccentrically driving the orbiting scroll member 21 is fitted into the orbit bearing.
  • the Oldham ring 38 constitutes a rotation restricting mechanism of the orbiting scroll member 21.
  • the Oldham ring 38 is provided between the orbiting scroll member 21 and the frame 22 to prevent the orbiting scroll member 21 from revolving and perform a circular orbital motion.
  • the frame 22 in the present embodiment is fixed to the closed container 25 by welding.
  • the frame 22 supports the fixed scroll member 19, the Oldham ring 38, and the orbiting scroll member 21.
  • a cylindrical portion projecting downward is provided at the center of the frame 22, a cylindrical portion projecting downward is provided.
  • a main bearing 31 that supports the crankshaft 23 (shaft) is provided in the cylindrical portion.
  • a plurality of discharge gas passages (not shown) communicating between the upper space of the fixed scroll member 19 and the lower space of the frame 22 are formed in the outer peripheral portions of the fixed scroll member 19 and the frame 22.
  • the electric motor 24 includes a rotor 24a, a stator 24b, a crankshaft 23, and a balance weight 24c as main components, and drives the compression mechanism 33.
  • the driving force of the electric motor is transmitted to the compression mechanism 33 via the crankshaft 23 (shaft).
  • the stator 24b includes, as main components, a coil having a plurality of conductors for generating a rotating magnetic field by flowing a current, and an iron core for efficiently transmitting the rotating magnetic field.
  • a large number of notches are formed on the outer circumference of the stator 24b over the entire circumference, and a discharge gas passage is formed between the notch and the sealed container 25.
  • the crankshaft 23 is fitted into a central hole of the rotor 24a and is integrated with the rotor 24a.
  • One side (upper side in the illustrated example) of the crankshaft 23 protrudes from the rotor 24a and is engaged with the compression mechanism 33, and an eccentric force is applied by the compression operation of the compression mechanism 33.
  • both sides of the crankshaft 23 protrude from both sides of the rotor 24a, and the crankshaft 23 is supported by two main bearings 31 and 32 on both sides of the rotor 24a to rotate stably. be able to.
  • the main bearing 31 and the sub-bearing 32 in this embodiment are formed of rolling bearings.
  • the configurations of the main bearing 31 and the sub bearing 32 will be described later.
  • crankshaft 23 extends to the refrigerator oil sump at the bottom of the closed vessel 25. Due to the pressure difference, the refrigerating machine oil passes through an oil hole 30 provided in the crankshaft 23, to the sliding portion between the orbiting scroll member 21 and the crankshaft 23, to the main bearing 31, the sub-bearing 32 and the like, which are rolling bearings. Supplied.
  • the electric motor 24 is energized and the rotor 24a rotates.
  • the rotor 24a rotates at a constant speed or at a rotation speed according to a voltage controlled by an inverter (not shown).
  • the crankshaft 23 rotates in synchronization with the rotation of the rotor 24a, the orbiting scroll member 21 is eccentrically driven as described above.
  • the compression chamber 26 formed between the fixed scroll member 19 and the orbiting scroll member 21 reduces the volume while moving from the outer peripheral side to the center. The refrigerant gas sucked through the suction pipe 37 and the suction port 35 is compressed in the compression chamber 26.
  • the compressed refrigerant gas is discharged from the discharge port 27 at the center of the fixed scroll member 19 to an upper space (discharge pressure space) in the closed vessel 25, and then discharged out of the closed vessel 25 through the discharge pipe 28.
  • refrigerant a mixed refrigerant containing trifluoroiodomethane and another refrigerant may be used.
  • Other refrigerants include CO2, hydrocarbons, ethers, fluoroethers, fluoroalkenes, HFC, HFO, HClFO, HClFO, HBrFO, and the like. “HFC” indicates hydrofluorocarbon.
  • HFO is a hydrofluoroolefin composed of a carbon atom, a fluorine atom, and a hydrogen atom, and has at least one carbon-carbon double bond.
  • HClFO consists of carbon, chlorine, fluorine and hydrogen atoms and has at least one carbon-carbon double bond.
  • HBrFO consists of carbon, bromine, fluorine and hydrogen atoms and has at least one carbon-carbon double bond.
  • HFC difluoromethane
  • HFC125 pentafluoroethane
  • HFC134 1,1,2,2-tetrafluoroethane
  • HFC134a 1,1,1,2-tetrafluoroethane
  • HFC143a trifluoroethane
  • difluoroethane HFC152a
  • 1,1,1,2,3,3,3-heptafluoropropane HFC227ea
  • 1,1,1,3,3,3-hexafluoropropane HFC236fa
  • 1,1,3,3-pentafluoropropane HFC245fa
  • HFC365mfc 1,1,1,3,3-pentafluorobutane
  • fluoroalkene examples include fluoroethene, fluoropropene, fluorobutene, chlorofluoroethene, chlorofluoropropene, and chlorofluorobutene.
  • fluoropropene examples include 3,3,3-trifluoropropene (HFO1243zf), 1,3,3,3-tetrafluoropropene (HFO1234ze), 2,3,3,3-tetrafluoropropene (HFO1234yf), and HFO1225. Is exemplified.
  • fluorobutene examples include C4H4F4, C4H3F5 (HFO1345), and C4H2F6 (HFO1336).
  • C2F3Cl is exemplified as chlorofluoroethene.
  • chlorofluoropropene examples include 2-chloro-3,3,3-trifluoro-1-propene (HCFO1233xf) and 1-chloro-3,3,3-trifluoro-1-propene (HCFO1233zd). .
  • Refrigerants trifluoroiodomethane, difluoromethane (HFC32), pentafluoroethane (HFC125), and hexafluoropropene as refrigerants to adjust Global Warming Potential (GWP), vapor pressure, and flame retardant parameters It is preferable to use one or more of (FO1216).
  • the refrigerant includes HFO1234yf, HFO1234ze, 1,1,1,2-tetrafluoroethane (HFC134a), HFO1123, etc. It is preferable to adjust the degree of the temperature gradient to be performed according to the mixed concentration.
  • the blending amount of trifluoroiodomethane in the mixed refrigerant is 10% or more and 100% or less, preferably 20% or more and 80% or less, more preferably 30% or more and 50% or less on a mass basis.
  • GWP uses the values of the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) (100 years).
  • the GWP of the refrigerant not described in AR4 may use the value of the IPCC Fifth Evaluation Report (AR5), may use the value described in another known document, or may use a known value. A value calculated or measured using the method may be used.
  • the GWP of trifluoroiodomethane is 0.4
  • the GWP of HFC32 is 675
  • the GWP of HFC125 is 3,500.
  • GWP of the refrigerant is 750 or less, preferably 500 or less, more preferably 150 or less, further preferably 100 or less, and particularly preferably 75 or less.
  • the vapor pressure of the refrigerant at 25 ° C is preferably in the range of 1.4 MPa to 1.8 MPa.
  • the flame retardancy parameter of the refrigerant represented by the formula (1) is preferably 0.46 or less.
  • Fmix ⁇ iFixi ... (1) Note that Fmix represents the flame retardancy parameter of the mixed refrigerant, Fi represents the flame retardancy parameter of each refrigerant component, and xi represents the mole fraction of each refrigerant component.
  • a polyol ester oil or a polyvinyl ether oil having a kinematic viscosity at 40 ° C. of 30 to 100 mm 2 / s is preferable.
  • the kinematic viscosity is measured based on standards such as ISO (International Organization for Standardization), ASTM (American Society for Testing for Materials and Materials, American Society for Testing and Materials) D445 and D7042.
  • the low-temperature critical melting temperature of the refrigerant and the refrigerating machine oil is preferably + 10 ° C. or lower.
  • Examples of the refrigerating machine oil having the above characteristics include polyol ester oils represented by chemical formulas (1) and (2) and polyvinyl ether oils represented by chemical formula (3).
  • R1 to R10 represent an alkyl group having 4 to 9 carbon atoms, which may be the same or different.
  • OR11 is a methyloxy group, an ethyloxy group, a propyloxy group or a butyloxy group, and n is 5 to 15.
  • Refrigerator oil contains additives such as acid scavengers, antioxidants, extreme pressure agents, oil agents, metal deactivators, ultraviolet absorbers and defoamers.
  • the acid scavenger reacts with acidic compounds (for example, fatty acids) and water present in the refrigerating machine oil to trap them.
  • the antioxidant prevents freezer oil from being oxidized by reacting with free radicals and peroxides to convert it into a stable substance, and suppresses the formation of varnish and sludge resulting from the oxidation of the freezer oil.
  • the extreme pressure agent prevents seizure in an extreme pressure lubrication state and scuffing (scratch appearing on a sliding surface).
  • the oil agent forms an oil film on the friction surface under a low load, and reduces friction and wear.
  • the metal deactivator renders the metal surface inert so that it does not act as a catalyst in the oxidation of the oil.
  • UV absorbers absorb ultraviolet light in sunlight and fluorescent light, convert ultraviolet light into heat energy or emit longer light waves without destroying them, thereby protecting the substance added with the ultraviolet absorber and protecting it from ultraviolet light. Avoid damage.
  • the defoamer suppresses the foaming of the lubricating oil and destroys the generated foam.
  • trifluoroiodomethane (CF 3 I) alone or a mixed refrigerant containing trifluoroiodomethane (CF 3 I) and another refrigerant is used as the refrigerant.
  • trifluoroiodomethane (CF 3 I) is decomposed (hydrolyzed) by moisture, and the product generated by the decomposition degrades the refrigerating machine oil, and the sliding portion of the compressor Wear and the like may occur. Wear of the sliding parts shortens the life of the compressor. The means for solving this will be described below.
  • trifluoroiodomethane CF 3 I
  • an acid scavenger incorporated in a refrigerator oil
  • trifluoroiodomethane (CF 3 I) It is characterized by using a refrigerating machine oil having a saturated water content higher than the saturated water content.
  • a polyol ester oil or a polyvinyl ether oil compatible with trifluoroiodomethane (CF 3 I) is used as the refrigerator oil.
  • the value varies depending on the structure, viscosity grade and the like of the base oil.
  • the saturated water content in an environment at a temperature of 30 ° C. and a relative humidity of 85% is about 1800 ppm for polyol ester oil and about 8000 ppm for polyvinyl ether oil.
  • the saturated water content of trifluoroiodomethane (CF 3 I) is lower than 1800 ppm.
  • the polyol ester oil and the polyvinyl ether oil have high hygroscopicity with respect to trifluoroiodomethane (CF 3 I). Since an acid scavenger is blended in the polyol ester oil and the polyvinyl ether oil, moisture absorbed by the polyol ester oil and the polyvinyl ether oil can be efficiently trapped. In this embodiment, since the water is captured by the acid capturing agent, hydrolysis of trifluoroiodomethane (CF 3 I) can be suppressed, and as a result, deterioration of refrigerator oils such as polyol ester oil and polyvinyl ether oil can be suppressed. be able to.
  • CF 3 I trifluoroiodomethane
  • a method of adding an acid scavenger having an action of trapping an acid generated in the refrigerating machine oil is used.
  • the acid scavenger plays a role in reacting with acidic compounds (for example, fatty acids and the like) present in the refrigerator oil to trap them and reduce the influence of these compounds. Further, the acid scavenger reacts with water in addition to the acid, and an action of scavenging this can be expected.
  • the acid scavenger used in this example has a relative dielectric constant of 9 or less. Since the relative permittivity of R410A is about 9, the relative permittivity of the acid scavenger used in this embodiment is set to 9 or less which does not exceed the relative permittivity of R410A.
  • an alkyl glycidyl ester represented by the chemical formula (4), bis (3,4-epoxychlorohexyl) methyl carboxylate represented by the chemical formula (5), a fatiglycidyl ether represented by the chemical formula (6) as the acid scavenger, Bis (2,6-isopropylphenyl) carbodiimide represented by the chemical formula (7) is used.
  • the alkyl glycidyl ester represented by the chemical formula (4) has high reactivity with water and reacts at a low temperature, so that it reacts quickly with the water in the refrigeration cycle and can suppress hydrolysis of the refrigeration oil. That is, it is quick-acting and can reduce the initial moisture in the refrigeration cycle.
  • the alkyl glycidyl ester is fast-acting, the residual amount is rapidly reduced, and there is a possibility that the refrigerating machine oil may deteriorate after a long-term operation.
  • Bis (2,6-isopropylphenyl) carbodiimide represented by chemical formula (7) has high reactivity with water and reacts at low temperature, so it reacts quickly with water in the refrigeration cycle and suppresses hydrolysis of refrigerator oil. You can do it. That is, it is quick-acting and can reduce the initial moisture in the refrigeration cycle.
  • bis (2,6-isopropylphenyl) carbodiimide has a rapid effect, so that the remaining amount thereof is rapidly reduced, and there is a possibility that the refrigerating machine oil may deteriorate after a long-term operation.
  • a polyol ester oil and a polyvinyl ether oil which are refrigerator oils, alkyl glycidyl ester, bis (3,4-epoxychlorohexyl) methyl carboxylate, fatiglycidyl ether, bis (2,6 -Isopropylphenyl) carbodiimide.
  • a plurality of acid scavengers may be mixed.
  • alkyl glycidyl ester, bis (3,4-epoxychlorohexyl) methyl carboxylate, faty glycidyl ether, and bis (2,6-isopropylphenyl) carbodiimide have a fast-acting effect in capturing water. It has properties such as delayed action. Taking advantage of this property, it is preferable to use a mixture of a fast-acting acid scavenger and a slow-acting acid scavenger.
  • an alkyl glycidyl ester is mixed with bis (3,4-epoxychlorohexyl) methyl carboxylate.
  • Alkyl glycidyl esters which are fast-acting can reduce the initial moisture content during the refrigeration cycle, but the amount of the residual water drops quickly, and there is a possibility that the refrigeration oil will deteriorate after long-term operation.
  • a slow-acting bis (3,4-epoxychlorohexyl) methyl carboxylate is used.
  • Bis (3,4-epoxychlorohexyl) methyl carboxylate reacts slowly with water in the refrigeration cycle and can reduce the water in the refrigeration cycle over a long period of time.
  • an acid scavenger having such properties as fast-acting and slow-acting properties, the disadvantages can be compensated for and the water content in the refrigeration cycle can be reduced over a long period from the beginning.
  • a fast-acting acid scavenger and a slow-acting acid scavenger As a combination of a fast-acting acid scavenger and a slow-acting acid scavenger, a mixture of a fast-acting bis (2,6-isopropylphenyl) carbodiimide and a slow-acting fatiglycidyl ether may be used. . ⁇ Viscosity of refrigerating machine oil> In this embodiment, when using a polyvinyl ether oil or a polyol ester oil as the refrigerator oil, use a polyvinyl ether oil of VG10 to VG460 or a polyol ester oil as the viscosity grade.
  • the mass percent concentration of the acid scavenger to be added to the polyvinyl ether oil or the polyol ester oil is 10% or less of the value of the viscosity grade of the polyvinyl ether oil or the polyol ester oil.
  • the concentration of the acid scavenger is set to 10% or less of the value of the viscosity grade of the polyvinyl ether oil or the polyol ester oil, thereby lowering the viscosity grade of the selected polyvinyl ether oil or the polyol ester oil. Or increase can be suppressed.
  • an antioxidant an extreme pressure agent, an oil agent, a metal deactivator, an ultraviolet absorber, an antifoaming agent and an acid scavenger are blended with a polyvinyl ether oil or a polyol ester oil.
  • the total of the mass percent concentrations to be blended is 10% or less of the value of the viscosity grade of the polyvinyl ether oil or polyol ester oil.
  • the total concentration of at least one of the antioxidant, extreme pressure agent, oil agent, metal deactivator, ultraviolet absorber, antifoaming agent and acid scavenger is polyvinyl ether oil, or By setting the viscosity grade of the polyol ester oil to 10% or less, a decrease or an increase in the viscosity grade of the selected polyvinyl ether oil or polyol ester oil can be suppressed.
  • an electric compressor that uses trifluoroiodomethane (CF 3 I) as a refrigerant and suppresses deterioration of refrigeration oil and a refrigeration / air-conditioning apparatus using the same are provided. be able to.
  • CF 3 I trifluoroiodomethane

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Lubricants (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

本発明の目的は、冷媒としてトリフルオロヨードメタン(CFI)を用いたものにおいて冷凍機油の劣化を抑制することにある。本発明の電動圧縮機3は、冷媒を圧縮する圧縮機構部33と、圧縮機構部33をクランクシャフト23を介して駆動する電動モータ24と、クランクシャフト23を軸支する主軸受31,副軸受32とを備えている。密閉容器25の底部には冷凍機油29が貯留されている。冷媒はトリフルオロヨードメタン(CFI)単体、もしくはトリフルオロヨードメタン(CFI)と他の冷媒を含む混合冷媒とする。冷凍機油29には酸捕捉剤が配合されている。冷凍機油29は、酸捕捉剤を配合した冷凍機油29の飽和水分量が、冷媒の飽和水分量よりも高いものを用いた。

Description

電動圧縮機及びこれを用いた冷凍空調装置
 本発明は、電動圧縮機及びこれを用いた空気調和機、冷蔵・冷凍ショーケースなどの冷凍空調装置に関する。
 冷凍機、空気調和機、冷蔵庫などに用いられる冷媒としては、例えば、R134a、R410A、R407Cなどが使用されている。これらの冷媒は、オゾン層への影響が少ないものの地球温暖化係数(GWP)が大きい。これに対する代替冷媒として、例えばトリフルオロヨードメタン(CFI)が提案されている。トリフルオロヨードメタン(CFI)のGWPは5以下であり、R410AのGWP2090と比較して小さい。このような技術として、例えば特許文献1がある。
特開2009-235111号公報
 トリフルオロヨードメタン(CFI)は電動圧縮機の密閉容器内に充填される。冷媒として用いられるトリフルオロヨードメタン(CFI)は、R410Aと比較し、地球温暖化係数が四百分の一以下であるものの、安定性が悪く、水分により分解する。分解により発生した生成物は、圧縮機内に封入された冷凍機油を劣化させ、圧縮機の摺動部の摩耗等を引き起こす恐れがあった。
 本発明の目的は上記課題を解決し、冷媒としてトリフルオロヨードメタン(CFI)を用いたものにおいて冷凍機油の劣化を抑制した電動圧縮機及びこれを用いた冷凍空調装置を提供することにある。
 前記目的を達成するために本発明の特徴とするところは、密閉容器と、前記密閉容器に収容され、冷媒を圧縮する圧縮機構部と、前記圧縮機構部をシャフトを介して駆動する電動モータと、前記シャフトを軸支する軸受と、前記密閉容器の底部の貯留された冷凍機油とを備えた電動圧縮機であって、前記冷媒はトリフルオロヨードメタン(CFI)単体、もしくは前記トリフルオロヨードメタン(CFI)と他の冷媒を含む混合冷媒であり、前記冷凍機油には酸捕捉剤が配合されており、前記冷凍機油は、前記酸捕捉剤を配合した前記冷凍機油の飽和水分量が、前記冷媒の飽和水分量よりも高いものを用いたことにある。
 また本発明の特徴とするところは、室外機と、室内機とを備え、前記室外機は、電動圧縮機と、四方弁と、膨張手段と、室外熱交換器とが配管で接続された冷凍空調装置において、前記電動圧縮機は、密閉容器と、前記密閉容器に収容され、冷媒を圧縮する圧縮機構部と、前記圧縮機構部をシャフトを介して駆動する電動モータと、前記シャフトを軸支する軸受と、前記密閉容器の底部の貯留された冷凍機油とを備えた圧縮機であって、前記冷媒はトリフルオロヨードメタン(CF3I)単体、もしくは前記トリフルオロヨードメタン(CF3I)と他の冷媒を含む混合冷媒であり、前記冷凍機油には酸捕捉剤が配合されており、前記冷凍機油は、前記酸捕捉剤を配合した前記冷凍機油の飽和水分量が、前記冷媒の飽和水分量よりも高いものを用いたことにある。
 本発明によれば、冷媒としてトリフルオロヨードメタン(CFI)を用いたものにおいて冷凍機油の劣化を抑制した電動圧縮機及びこれを用いた冷凍空調装置を提供することができる。
本発明の実施例に係る空気調和機(冷凍空調装置)の構成説明図である。 本発明の実施例に係る冷蔵・冷凍ショーケース(冷凍空調装置)の構成説明図である。 本発明の実施例に係る電動圧縮機の縦断面図である。
 以下、本発明に係る実施例について図面に基づいて説明する。本発明は以下の実施例に限定されることなく、本発明の技術的な概念の中で種々の変形例や応用例もその範囲に含むものである。
 本実施例の電動圧縮機は、冷媒としてトリフルオロヨードメタン(CFI)単体、もしくはトリフルオロヨードメタン(CFI)と他の冷媒を含む混合冷媒を用いることを特徴としている。他の冷媒としては、例えば弗化炭素水素系冷媒群のうちの一種または2種以上の冷媒にトリフルオロヨードメタン(CFI)を混合する。冷凍機油としては、ポリオールエステル油、ポリビニルエーテル油を使用する。
 以下では、空気調和機を例にとって冷凍空調装置の全体構成について説明した後に、電動圧縮機並びにこれに使用する前記の冷媒及び冷凍機油について詳細に説明する。
<空気調和機>
 図1は、冷凍空調装置としての空気調和機50Aの構成説明図である。図1に示すように、空気調和機50Aは、室外機1と、室内機2とを備えている。室外機1は、電動圧縮機3、四方弁4、膨張手段6(膨張部)、室外熱交換器5、及びアキュムレータ8が所定の配管で接続されて構成されている。
 電動圧縮機3は、後に詳しく説明するように電動モータ24(図3参照)によって駆動する摺動部を有する冷媒の圧縮機構部33(図3参照)を備えている。
 室内機2は、室内熱交換器7及び貫流ファン7aを備えている。
 なお、本実施形態で使用される冷媒、及びこの電動圧縮機3に貯留される冷凍機油については、後記する電動圧縮機3とともに詳しく説明する。   
 この空気調和機50Aは、四方弁4を切替えることで室内熱交換器7を蒸発器、室外熱交換器5を凝縮器として使用する冷房運転と、室内熱交換器7を凝縮器、室外熱交換器5を蒸発器として使用する暖房運転とを行うヒートポンプ式のものである。
 例えば、冷房運転時の空気調和機50Aにおいては、電動圧縮機3で圧縮された高温高圧の冷媒は、四方弁4を通過して室外熱交換器5に流入し、軸流ファン5aで生じた空気流との熱交換により放熱して凝縮する。その後、冷媒は、膨張手段6により等エンタルピ膨張し、低温低圧でガス冷媒と液冷媒とが混在した気液二相流となって室内熱交換器7へ流入する。
 貫流ファン7aによって生じた空気流は、室内熱交換器7を通流する液冷媒と熱交換を行う。室内熱交換器7での液冷媒は、空気からの吸熱作用によりガス冷媒に気化する。つまり、液冷媒が気化する際に室内熱交換器7が周囲の空気を冷却することで空気調和機50Aは、冷房機能を発揮する。
 次いで、室内熱交換器7を出た低温ガスの状態の冷媒は、四方弁4を通ってからアキュムレータ8に入る。室内熱交換器7で蒸発できなかった低温低圧の液冷媒はアキュムレータ8において分離され、低温低圧ガスの冷媒が電動圧縮機3に戻る。その後、この冷媒は、電動圧縮機3で再び高温高圧に圧縮されるとともに、四方弁4、室外熱交換器5、膨張手段6及び室内熱交換器7を循環する。つまり、この循環が繰り返されることで冷凍サイクルが構成される。
 また、暖房運転時の空気調和機50Aにおいては、四方弁4の切り替えによって、前記の冷房運転時とは逆方向に冷媒の流れが変えられる。これにより電動圧縮機3で圧縮された高温高圧の冷媒は、四方弁4を通過して室内熱交換器7に流入する。高温高圧の冷媒は、貫流ファン7aで生じた空気流との熱交換により放熱して凝縮する。つまり室内熱交換器7が周囲の空気を加熱することで空気調和機50Aは、暖房機能を発揮する。
<冷蔵・冷凍ショーケース>
 図2は、本発明の実施形態に係る冷蔵・冷凍ショーケース50Bの構成説明図である。図2に示すように、冷蔵・冷凍ショーケース50Bは、室外機9と、クーラーユニット10とを備えている。
 室外機9は、電動圧縮機3、凝縮器12、過冷却器13、膨張手段14,17(膨張部)、及びアキュムレータ16が所定の配管で接続されて構成されている。
 電動圧縮機3は、後に詳しく説明するように電動モータ24(図3参照)によって駆動する摺動部を有する冷媒の圧縮機構部33(図3参照)を備えている。
 クーラーユニット10は、蒸発器15及び貫流ファン15aを備えている。
 この冷蔵・冷凍ショーケース50Bでは、電動圧縮機3で断熱的に圧縮された高温高圧の冷媒ガスが、吐出パイプ28(図3参照)を通って凝縮器12に送り出され、軸流ファン12aで生じた空気流との熱交換により放熱して凝縮する。凝縮器12で凝縮して高圧液となった冷媒は、過冷却器13に送り出されて過冷却される。過冷却器13から送り出される過冷却の冷媒は、膨張手段14(例えば、温度式膨張弁など)にて膨張し、僅かにガスを含む低温低圧液となってクーラーユニット10の蒸発器15に送り出される。
 クーラーユニット10の貫流ファン15aによって生じた空気流は、蒸発器15を通流する低温低圧液となった冷媒と熱交換を行う。蒸発器15での冷媒は、空気からの吸熱作用によりガス冷媒に気化する。つまり、液冷媒が気化する際に蒸発器15が周囲の空気を冷却することで、冷蔵・冷凍ショーケース50Bは、冷蔵・冷凍機能を発揮する。
 蒸発器15にて空気から吸熱した冷媒は、低温ガスの状態でアキュムレータ16に入る。蒸発器15で蒸発できなかった低温低圧の液冷媒はアキュムレータ16において分離され、低温低圧ガスの冷媒が電動圧縮機3に戻る。その後、この冷媒は、電動圧縮機3で再び高温高圧に圧縮されるとともに、凝縮器12、過冷却器13、膨張手段14、及び蒸発器15を循環する。つまり、この循環が繰り返されることで冷凍サイクルが構成される。
 ちなみに、本実施形態の冷蔵・冷凍ショーケース50Bに使用される電動圧縮機3は、冷媒圧縮比が10~20程度と高く、冷媒ガスが高温になりやすい。このため冷蔵・冷凍ショーケース50Bにおいては、凝縮器12から過冷却器13に向かう配管を分岐させ、その分岐させた一方の配管に膨張手段17(例えば、キャピラリーチューブなど)を配置している。
 そして、本実施形態の冷蔵・冷凍ショーケース50Bにおいては、膨張手段17によって冷媒ガスを含む低温低圧液を得ることで主系統にある高圧の液冷媒を過冷却器13でさらに冷却している。冷蔵・冷凍ショーケース50Bでは、過冷却器13で冷却した冷媒を電動圧縮機3に戻すことによって、吸入した冷媒の温度を下げて、吐出温度を低くさせている。
 <電動圧縮機>
 本発明の冷凍空調装置として説明した前記空気調和機50A(図1参照)及び前記冷蔵・冷凍ショーケース50B(図2参照)に使用される電動圧縮機3についてさらに詳しく説明する。本実施例では、電動圧縮機3としてスクロール式圧縮機を用いた例で説明する。
 図3は、本実施例の電動圧縮機3の縦断面図である。図3に示すように、電動圧縮機3は、密閉容器25と、圧縮機構部33と、電動モータ24とを主要構成要素として備えている。
 密閉容器25の密閉空間内には、圧縮機構部33と電動モータ24とが収納されている。また、密閉容器25の底部には、後に詳しく説明する冷凍機油29(以下、冷凍機油の符号は省略する)が貯留されている。
 圧縮機構部33は、後に詳しく説明する冷媒ガスを圧縮して密閉容器25内に吐出するものであり、密閉容器25内の上部に配置されている。
 圧縮機構部33は、固定スクロール部材19と、旋回スクロール部材21と、フレーム22と、オルダムリング38とを主要構成要素として備えている。
 固定スクロール部材19は、端板上に渦巻状ラップ18を有しており、フレーム22上にボルト止めされている。旋回スクロール部材21は、固定スクロール部材19の渦巻状ラップ18と噛み合わされる渦巻状ラップ20を端板上に有している。これらの渦巻状ラップ18,20が相互に噛み合うことで圧縮室26が形成される。
 なお、本実施例での旋回スクロール部材21及び固定スクロール部材19は、アルミニウム合金で形成されている。
 固定スクロール部材19の周縁部には吸込パイプ37に連通する吸込口35が設けられ、中央部には吐出口27が設けられている。この吐出口27は、密閉容器25内の圧縮機構部33の上方空間に連通している。
 旋回スクロール部材21の反固定スクロール部材19側には、旋回軸受が組み込まれるボス部が設けられている。この旋回軸受には、旋回スクロール部材21を偏心駆動させる偏心ピン部39が嵌め込まれている。
 オルダムリング38は、旋回スクロール部材21の自転規制機構を構成している。オルダムリング38は、旋回スクロール部材21とフレーム22との間に設置され、公転する旋回スクロール部材21の自転を防止して円軌道運動を行わせる。
 本実施例でのフレーム22は、密閉容器25に溶接で固定されている。このフレーム22は、固定スクロール部材19、オルダムリング38及び旋回スクロール部材21を支持している。フレーム22の中央には、下方に突出する筒部が設けられている。この筒部内には、クランクシャフト23(シャフト)を軸支する主軸受31が設けられている。
 固定スクロール部材19及びフレーム22の外周部には、固定スクロール部材19の上方空間とフレーム22の下方空間とを連通する複数の吐出ガス通路(図示省略)が形成されている。
 電動モータ24は、回転子24aと、固定子24bと、クランクシャフト23と、バランスウェイト24cとを主要構成要素として備え、圧縮機構部33を駆動する。電動モータの駆動力はクランクシャフト23(シャフト)を介して圧縮機構部33に伝達される。
 固定子24bは、電流を流して回転磁界を発生させる複数の導体を有するコイルと、回転磁界を効率よく伝達するための鉄芯とを主要構成要素として備えている。
 固定子24bの外周には、全周にわたって多数の切欠きが形成され、この切欠きと密閉容器25との間に吐出ガス通路が形成されている。
 クランクシャフト23は、回転子24aの中央穴に嵌合されて回転子24aと一体化されている。クランクシャフト23の一側(図示例では上側)は、回転子24aより突出して圧縮機構部33に係合され、圧縮機構部33の圧縮動作により偏心力が加えられる。本実施例では、クランクシャフト23は、その両側が回転子24aの両側より突出され、回転子24aの両側で2つの軸受である主軸受31及び副軸受32により軸支され、安定的に回転することができる。
 なお、本実施例での主軸受31及び副軸受32は、転がり軸受で構成されている。主軸受31及び副軸受32の構成については、後述する。
 クランクシャフト23の下端は密閉容器25の底部の冷凍機油溜に延びている。冷凍機油は、圧力差によってクランクシャフト23に設けられた油孔30を通って、旋回スクロール部材21とクランクシャフト23との摺動部、転がり軸受からなる前記の主軸受31、副軸受32などに供給される。
 以上のような電動圧縮機3においては、電動モータ24に通電されて回転子24aが回転する。回転子24aは、一定速で、又は図示しないインバータによって制御された電圧に応じた回転速度で回転する。回転子24aの回転に同期してクランクシャフト23が回転することによって、旋回スクロール部材21は前記のように偏心駆動される。固定スクロール部材19と旋回スクロール部材21との間に形成される圧縮室26は、外周側から中央部に移動しながら容積を縮小させる。前記の吸込パイプ37及び吸込口35を介して吸い込まれた冷媒ガスは、圧縮室26で圧縮される。圧縮された冷媒ガスは、固定スクロール部材19の中央部の吐出口27から密閉容器25内の上部空間(吐出圧空間)に吐出された後、吐出パイプ28を介して密閉容器25外に排出される。
<冷媒及び冷凍機油>
 冷媒として、トリフルオロヨードメタンと他の冷媒とを含む混合冷媒を用いてもよい。他の冷媒としては、CO2、炭化水素、エーテル、フルオロエーテル、フルオロアルケン、HFC、HFO、HClFO、 HClFO、およびHBrFOなどが例示される。なお、「HFC」は、ハイドロフルオロカーボンを示す。「HFO」は、炭素原子、フッ素原子、および水素原子からなるハイドロフルオロオレフィンであり、少なくとも1つの炭素-炭素二重結合を有する。「HClFO」は、炭素、塩素、フッ素、および水素原子からなり、少なくとも1つの炭素-炭素二重結合を有する。「HBrFO」は、炭素、臭素、フッ素、および水素原子からなり、少なくとも1つの炭素-炭素二重結合を有する。
 HFCとしては、ジフルオロメタン(HFC32)、ペンタフルオロエタン(HFC125)、1,1,2,2-テトラフルオロエタン(HFC134)、1,1,1,2-テトラフルオロエタン(HFC134a)、トリフルオロエタン(HFC143a)、ジフルオロエタン(HFC152a)、1,1,1,2,3,3,3-ヘプタフルオロプロパン(HFC227ea)、1,1,1,3,3,3-ヘキサフルオロプロパン(HFC236fa)、1,1,1,3,3-ペンタフルオロプロパン(HFC245fa)、および1,1,1,3,3-ペンタフルオロブタン(HFC365mfc)が例示される。
 フルオロアルケンとしては、フルオロエテン、フルオロプロペン、フルオロブテン、クロロフルオロエテン、クロロフルオロプロペン、およびクロロフルオロブテンが例示される。フルオロプロペンとしては、3,3,3-トリフルオロプロペン(HFO1243zf)、 1,3,3,3-テトラフルオロプロペン(HFO1234ze)、2,3,3,3-テトラフルオロプロペン(HFO1234yf)、およびHFO1225が例示される。フルオロブテンとしては、C4H4F4、C4H3F5(HFO1345)、およびC4H2F6(HFO1336)が例示される。クロロフルオロエテンとしては、C2F3Cl(CTFE)が例示される。クロロフルオロプロペンとしては、2-クロロ-3,3,3-トリフルオロ-1-プロペン(HCFO1233xf)、および1-クロロ-3,3,3-トリフルオロ-1-プロペン(HCFO1233zd)が例示される。
 地球温暖化係数(Global Warming Potential:GWP)、蒸気圧、および難燃化パラメータを調整するため、冷媒として、トリフルオロヨードメタン、ジフルオロメタン(HFC32)、ペンタフルオロエタン(HFC125)、およびヘキサフルオロプロペン(FO1216)の1種以上を用いることが好ましい。また、機器の能力に合う蒸気圧を得るために、冷媒にHFO1234yf、HFO1234ze、1,1,1,2-テトラフルオロエタン(HFC134a)、HFO1123などを含め、能力に関係する蒸気圧や効率に影響する温度勾配度合いを混合濃度により調整することが好ましい。
 混合冷媒中のトリフルオロヨードメタンの配合量は、質量ベースで、10%以上100%以下、好ましくは20%以上80%以下、より好ましくは30%以上50%以下である。
 GWPは、気候変動に関する政府間パネル(IPCC)第4次評価報告書(AR4)の値(100年値)が用いられる。また、AR4に記載されていない冷媒のGWPは、IPCC第5次評価報告書(AR5)の値を用いてもよいし、他の公知文献に記載された値を用いてもよいし、公知の方法を用いて算出または測定した値を用いてもよい。AR4によると、トリフルオロヨードメタンのGWPは0.4であり、HFC32のGWPは675であり、HFC125のGWPは3,500である。
 冷媒のGWPは、750以下であり、好ましくは500以下であり、より好ましくは150以下であり、更に好ましくは100以下であり、特に好ましくは75以下である。
 冷媒の25℃の蒸気圧は、好ましくは1.4MPaから1.8MPaの範囲である。また数式(1)で示される冷媒の難燃化パラメーターは、好ましくは0.46以下である。
 Fmix=Σi Fi xi・・・・(1)
 なお、Fmixは混合冷媒の難燃化パラメーター、Fiは各冷媒成分の難燃化パラメーター、xiは各冷媒成分のモル分率を示す。
 冷凍機油としては、40℃における動粘度が30~100mm2/sのポリオールエステル油又はポリビニルエーテル油が好ましい。動粘度は、ISO(International Organization for Standardization,国際標準化機構)3104、ASTM(American Society for Testing and Materials,米国材料試験協会)D445、D7042等の規格に基づいて測定される。冷媒と冷凍機油との低温側臨界溶解温度は、+10℃以下であることが好ましい。
 上記特性を有する冷凍機油としては、化学式(1)、(2)で表わされるポリオールエステル油、化学式(3)で表されるポリビニルエーテル油が例示される。式(1)、(2)中、R1~R10は、炭素数4~9のアルキル基を表し、それぞれ同一であっても異なってもよい。また、式(3)中、OR11は、メチルオキシ基、エチルオキシ基、プロピルオキシ基又はブチルオキシ基であり、nは、5~15である。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
 冷凍機油には、酸捕捉剤、酸化防止剤、極圧剤、油性剤、金属不活性剤、紫外線吸収剤、消泡剤といった添加剤が配合されている。
 酸捕捉剤は、冷凍機油中に存在する酸性化合物(例えば、脂肪酸など)や水分と反応してこれらを捕捉する。酸化防止剤は、遊離基、過酸化物と反応して安定な物質に変えることにより、冷凍機油の酸化を防止し、冷凍機油の酸化に起因するワニス,スラッジの生成を抑制する。極圧剤は、極圧潤滑状態における焼付きや、スカッフィング(摺動面に現れる引っかき傷)を防止する。油性剤は、低荷重下における摩擦面に油膜を形成し、摩擦および摩耗を減少させる。金属不活性化剤は、金属表面が、油の酸化において触媒として作用しないようにその表面を不活性にする。紫外線吸収剤は太陽光や蛍光中の紫外線を吸収し、紫外線光を熱エネルギーに変換し又は破壊せずにより長い光波を放出することにより、紫外線吸収剤を添加した物質を保護して紫外線からの損傷を回避する。消泡剤は、潤滑油の泡立ちを抑制し、生成した泡を破壊する。
 さて、上述したように本実施例では冷媒として、トリフルオロヨードメタン(CFI)単体、もしくはトリフルオロヨードメタン(CFI)と他の冷媒を含む混合冷媒を用いているので、この冷媒を密閉型電動圧縮機に使用した場合、トリフルオロヨードメタン(CFI)が水分により分解(加水分解)し、分解によって発生する生成物が冷凍機油を劣化させ、圧縮機の摺動部の摩耗等を引き起こす恐れがあった。摺動部の摩耗は圧縮機の寿命を短くする。これを解決する手段について以下説明する。本実施例は、冷凍機油に配合した酸捕捉剤を利用してトリフルオロヨードメタン(CFI)が加水分解するのを抑制するものであり、加えてトリフルオロヨードメタン(CFI)の飽和水分量よりも高い飽和水分量を有する冷凍機油を用いることを特徴としている。
 その一例として本実施例では、冷凍機油として、トリフルオロヨードメタン(CFI)と相溶性があるポリオールエステル油又はポリビニルエーテル油を用いている。基油の構造、粘度グレード等によって値が変化するが、温度30℃、相対湿度85%の環境における飽和水分量は、ポリオールエステル油が1800ppm程度、ポリビニルエーテル油が8000ppm程度である。トリフルオロヨードメタン(CFI)の飽和水分量は、1800ppmよりも低い。すなわち、ポリオールエステル油及びポリビニルエーテル油は、トリフルオロヨードメタン(CFI)に対して吸湿性が高い。ポリオールエステル油及びポリビニルエーテル油には、酸捕捉剤が配合されているので、ポリオールエステル油及びポリビニルエーテル油で吸湿した水分を効率的に捕捉できる。本実施例では、酸捕捉剤で水分が捕捉されるので、トリフルオロヨードメタン(CFI)の加水分解を抑制でき、その結果、ポリオールエステル油及びポリビニルエーテル油といった冷凍機油の劣化を抑制することができる。
<酸捕捉剤>
 次に酸捕捉剤について説明する。ポリオールエステル油及びポリビニルエーテル油は、熱の影響等による分解によって、酸が生成する恐れがあり、生成した酸は金属表面の腐食を引き起こし、又、生成した酸を触媒として冷凍機油の劣化が進行する恐れがある。
 冷凍機油の劣化を抑制する手段としては、冷凍機油中に生成した酸を捕捉する作用のある酸捕捉剤を添加する方法が用いられている。酸捕捉剤は、冷凍機油中に存在する酸性化合物(例えば、脂肪酸など)と反応してこれらを捕捉し、これらによる影響を軽減する役割を果たす。又、酸捕捉剤は酸のほかに水分とも反応し、これを捕捉する作用も期待できる。
 本実施例で用いる酸捕捉剤の比誘電率は9以下のものを用いる。R410Aの比誘電率は約9であるので、本実施例で用いる酸捕捉剤の比誘電率はR410Aの比誘電率を超えない9以下とする。
酸捕捉剤として本実施例では、化学式(4)に示すアルキルグリシジルエステル、化学式(5)に示すビス(3,4-エポキシクロへキシル)メチルカルボキシレート、化学式(6)に示すファティグリシジルエーテル、化学式(7)に示すビス(2,6-イソプロピルフェニル)カルボジイミドを用いている。
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
 化学式(4)に示すアルキルグリシジルエステルは、水分との反応性が高く、また低温で反応するため、冷凍サイクル中の水分と素早く反応し、冷凍機油の加水分解を抑制することが出来る。すなわち、速効性であり、冷凍サイクル中の初期水分を低下させることが出来る。しかし、アルキルグリシジルエステルは速効性のため、残存量の低下が早く、長期運転後に冷凍機油の劣化が発生する可能性がある。
 化学式(5)に示すビス(3,4-エポキシクロへキシル)メチルカルボキシレートは、水分との反応性が低く、重合しやすい。また、冷凍サイクル中の水分とゆっくりと反応し、冷凍機油の加水分解を抑制することが出来る。すなわち、遅効性であり、冷凍サイクル中の水分を長期に亘って低下させることが出来る。しかし、ビス(3,4-エポキシクロへキシル)メチルカルボキシレートは遅効性のため、冷凍サイクル中の初期水分を低下させ難く、初期運転において冷凍機油の劣化が発生する可能性がある。
 化学式(6)に示すファティグリシジルエーテルは、水分との反応性が低く、冷凍サイクル中の水分とゆっくりと反応し、冷凍機油の加水分解を抑制することが出来る。すなわち、遅効性であり、冷凍サイクル中の水分を長期に亘って低下させることが出来る。しかし、ファティグリシジルエーテルは遅効性のため、冷凍サイクル中の初期水分を低下させ難く、初期運転において冷凍機油の劣化が発生する可能性がある。
 化学式(7)に示すビス(2,6-イソプロピルフェニル)カルボジイミドは、水分との反応性が高く、また低温で反応するため、冷凍サイクル中の水分と素早く反応し、冷凍機油の加水分解を抑制することが出来る。すなわち、速効性であり、冷凍サイクル中の初期水分を低下させることが出来る。しかし、ビス(2,6-イソプロピルフェニル)カルボジイミドは速効性のため、残存量の低下が早く、長期運転後に冷凍機油の劣化が発生する可能性がある。
 本実施例では、冷凍機油であるポリオールエステル油及びポリビニルエーテル油に、酸捕捉剤としてアルキルグリシジルエステル、ビス(3,4-エポキシクロへキシル)メチルカルボキシレート、ファティグリシジルエーテル、ビス(2,6-イソプロピルフェニル)カルボジイミドの何れかを配合している。
 また、複数の酸捕捉剤を混合させるようにしても良い。上述したように、アルキルグリシジルエステル、ビス(3,4-エポキシクロへキシル)メチルカルボキシレート、ファティグリシジルエーテル、ビス(2,6-イソプロピルフェニル)カルボジイミドには、水分を補足するにあたり、速効性と遅効性といった特性がある。
この特性を生かし、速効性の酸捕捉剤と遅効性の酸捕捉剤は混合させて利用すると好ましい。例えばアルキルグリシジルエステルとビス(3,4-エポキシクロへキシル)メチルカルボキシレートとを混合させる。速効性であるアルキルグリシジルエステルは、冷凍サイクル中の初期水分を低下させることが出来るが、残存量の低下が早く、長期運転後に冷凍機油の劣化が発生する可能性がある。これを補うものとして、遅効性であるビス(3,4-エポキシクロへキシル)メチルカルボキシレートを用いる。ビス(3,4-エポキシクロへキシル)メチルカルボキシレートは、冷凍サイクル中の水分とゆっくりと反応し、冷凍サイクル中の水分を長期に亘って低下させることが出来る。このように速効性と遅効性といった特性の酸捕捉剤を用いることにより、それぞれの欠点を補い、初期から長期に亘って冷凍サイクル中の水分を低下させることが出来る。また、速効性の酸捕捉剤と遅効性の酸捕捉剤の組み合わせとして、速効性のビス(2,6-イソプロピルフェニル)カルボジイミドと遅効性のファティグリシジルエーテルとを混合させて用いるようにしても良い。
<冷凍機油の粘度>
 本実施例において、冷凍機油としてポリビニルエーテル油、又はポリオールエステル油を使用する場合は、粘度グレードとしてVG10~VG460のポリビニルエーテル油、又はポリオールエステル油を使用する。また、このポリビニルエーテル油、又はポリオールエステル油に配合する酸捕捉剤の質量パーセント濃度はポリビニルエーテル油、又はポリオールエステル油の粘度グレードの値の10%以下とする。本実施例では、酸捕捉剤の配合する濃度をポリビニルエーテル油、又はポリオールエステル油の粘度グレードの値の10%以下とすることにより、選択するポリビニルエーテル油、又はポリオールエステル油の粘度グレードの低下、又は増加を抑制することができる。
 また、同様に、ポリビニルエーテル油、又はポリオールエステル油に酸化防止剤、極圧剤、油性剤、金属不活性剤、紫外線吸収剤、消泡剤の中の少なくとも一種類と酸捕捉剤を配合する場合は、配合する質量パーセント濃度の合計をポリビニルエーテル油、又はポリオールエステル油の粘度グレードの値の10%以下とする。本実施例では、酸化防止剤、極圧剤、油性剤、金属不活性剤、紫外線吸収剤、消泡剤の中の少なくとも一種類と酸捕捉剤の配合する濃度の合計をポリビニルエーテル油、又はポリオールエステル油の粘度グレードの値の10%以下とすることにより、選択するポリビニルエーテル油、又はポリオールエステル油の粘度グレードの低下、又は増加を抑制することができる。
 以上説明したように、本実施例によれば、冷媒としてトリフルオロヨードメタン(CFI)を用いたものにおいて冷凍機油の劣化を抑制した電動圧縮機及びこれを用いた冷凍空調装置を提供することができる。
 なお、本発明は、上述した実施例に限定するものではなく、様々な変形例が含まれる。上述した実施例は本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定するものではない。
 1…室外機、2…室内機、3…電動圧縮機、4…四方弁、5…室外熱交換器、6…膨張手段、7…室内熱交換器、19…固定スクロール部材、21…旋回スクロール部材、22…フレーム、23…クランクシャフト、24…電動モータ、25…密閉容器、29…冷凍機油、31…主軸受、32…副軸受、33…圧縮機構部、50A…空気調和機、50B…冷蔵・冷凍ショーケース

Claims (7)

  1.  密閉容器と、前記密閉容器に収容され、冷媒を圧縮する圧縮機構部と、前記圧縮機構部をシャフトを介して駆動する電動モータと、前記シャフトを軸支する軸受と、前記密閉容器の底部の貯留された冷凍機油とを備えた電動圧縮機であって、
     前記冷媒はトリフルオロヨードメタン(CFI)単体、もしくは前記トリフルオロヨードメタン(CFI)と他の冷媒を含む混合冷媒であり、
     前記冷凍機油には酸捕捉剤が配合されており、
     前記冷凍機油は、前記酸捕捉剤を配合した前記冷凍機油の飽和水分量が、前記冷媒の飽和水分量よりも高いものを用いたことを特徴とする電動圧縮機。
  2.  請求項1において、
     前記酸捕捉剤は比誘電率が9以下のものとしたことを特徴とする電動圧縮機。
  3.  請求項1において、
     前記酸捕捉剤は、アルキルグリシジルエステル、ビス(3,4-エポキシクロへキシル)メチルカルボキシレート、ファティグリシジルエーテル、ビス(2,6-イソプロピルフェニル)カルボジイミドの何れかであることを特徴とする電動圧縮機。
  4.  請求項1において、
     前記酸捕捉剤は、アルキルグリシジルエステルとビス(3,4-エポキシクロへキシル)メチルカルボキシレートとの混合であることを特徴とする電動圧縮機。
  5.  請求項1乃至4の何れか1項において、
     前記冷凍機油は、粘度グレードがVG10~VG460のポリビニルエーテル油、又はポリオールエステル油であり、かつ前記酸捕捉剤を配合する質量パーセント濃度を前記ポリビニルエーテル油、又は前記ポリオールエステル油の前記粘度グレードの値の10%以下としたことを特徴とする電動圧縮機。
  6.  請求項1乃至4の何れか1項において、
     前記冷凍機油は、粘度グレードがVG10~VG460のポリビニルエーテル油、又はポリオールエステル油であり、かつ酸化防止剤、極圧剤、油性剤、金属不活性剤、紫外線吸収剤、消泡剤の中の少なくとも一種類と前記酸捕捉剤を配合し、配合する質量パーセント濃度の合計を前記ポリビニルエーテル油、又は前記ポリオールエステル油の前記粘度グレードの値の10%以下としたことを特徴とする電動圧縮機。
  7.  室外機と、室内機とを備え、前記室外機は、電動圧縮機と、四方弁と、膨張手段と、室外熱交換器とが配管で接続された冷凍空調装置において、
     前記電動圧縮機は、
     密閉容器と、前記密閉容器に収容され、冷媒を圧縮する圧縮機構部と、前記圧縮機構部をシャフトを介して駆動する電動モータと、前記シャフトを軸支する軸受と、前記密閉容器の底部の貯留された冷凍機油とを備えた圧縮機であって、
     前記冷媒はトリフルオロヨードメタン(CFI)単体、もしくは前記トリフルオロヨードメタン(CFI)と他の冷媒を含む混合冷媒であり、
     前記冷凍機油には酸捕捉剤が配合されており、
     前記冷凍機油は、前記酸捕捉剤を配合した前記冷凍機油の飽和水分量が、前記冷媒の飽和水分量よりも高いものを用いたことを特徴とする冷凍空調装置。
PCT/JP2019/032568 2018-09-06 2019-08-21 電動圧縮機及びこれを用いた冷凍空調装置 WO2020050022A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-167196 2018-09-06
JP2018167196A JP2021191808A (ja) 2018-09-06 2018-09-06 電動圧縮機及びこれを用いた冷凍空調装置

Publications (1)

Publication Number Publication Date
WO2020050022A1 true WO2020050022A1 (ja) 2020-03-12

Family

ID=69722569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032568 WO2020050022A1 (ja) 2018-09-06 2019-08-21 電動圧縮機及びこれを用いた冷凍空調装置

Country Status (2)

Country Link
JP (1) JP2021191808A (ja)
WO (1) WO2020050022A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024106516A1 (ja) * 2022-11-18 2024-05-23 Eneos株式会社 作動流体組成物及び冷凍機

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008208262A (ja) * 2007-02-27 2008-09-11 Nippon Oil Corp 冷凍機油組成物および冷凍機用作動流体組成物
JP2011043276A (ja) * 2009-08-20 2011-03-03 Daikin Industries Ltd 冷凍装置
JP2018071512A (ja) * 2016-11-04 2018-05-10 日立ジョンソンコントロールズ空調株式会社 電動圧縮機及び冷凍空調装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008208262A (ja) * 2007-02-27 2008-09-11 Nippon Oil Corp 冷凍機油組成物および冷凍機用作動流体組成物
JP2011043276A (ja) * 2009-08-20 2011-03-03 Daikin Industries Ltd 冷凍装置
JP2018071512A (ja) * 2016-11-04 2018-05-10 日立ジョンソンコントロールズ空調株式会社 電動圧縮機及び冷凍空調装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024106516A1 (ja) * 2022-11-18 2024-05-23 Eneos株式会社 作動流体組成物及び冷凍機

Also Published As

Publication number Publication date
JP2021191808A (ja) 2021-12-16

Similar Documents

Publication Publication Date Title
JP6545337B1 (ja) 冷凍サイクル装置
JP6545338B1 (ja) 冷凍サイクル装置
CN109072900B (zh) 压缩机和热循环***
WO2019124399A1 (ja) 圧縮機
JP5339788B2 (ja) 圧縮機および冷凍サイクル装置
KR102164106B1 (ko) 전동 압축기 및 냉동 공조 장치
US10570323B2 (en) Refrigerant composition and refrigeration cycle apparatus including refrigerant composition
JP2018177969A (ja) 冷凍サイクル装置
WO2020050020A1 (ja) 電動圧縮機及びこれを用いた冷凍空調装置
JP2018179404A (ja) 冷凍サイクル装置
WO2015093183A1 (ja) 空調装置
WO2020050022A1 (ja) 電動圧縮機及びこれを用いた冷凍空調装置
JP6522345B2 (ja) 冷凍装置及び密閉型電動圧縮機
JP6899360B2 (ja) 冷凍サイクル装置
JP2002194375A (ja) 冷凍・空調用作動媒体組成物及び該組成物を用いた冷凍・空調装置
JP7053938B1 (ja) 冷凍サイクル装置
JP6821075B1 (ja) 冷凍サイクル装置
JP2002194369A (ja) 空調用作動媒体組成物及び該組成物を用いた空調機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19857053

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19857053

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP