JP6463548B2 - 軸流送風機および室外機 - Google Patents

軸流送風機および室外機 Download PDF

Info

Publication number
JP6463548B2
JP6463548B2 JP2018503984A JP2018503984A JP6463548B2 JP 6463548 B2 JP6463548 B2 JP 6463548B2 JP 2018503984 A JP2018503984 A JP 2018503984A JP 2018503984 A JP2018503984 A JP 2018503984A JP 6463548 B2 JP6463548 B2 JP 6463548B2
Authority
JP
Japan
Prior art keywords
point
edge
outer peripheral
axial
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018503984A
Other languages
English (en)
Other versions
JPWO2017154246A1 (ja
Inventor
直彦 本間
直彦 本間
敬英 田所
敬英 田所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2017154246A1 publication Critical patent/JPWO2017154246A1/ja
Application granted granted Critical
Publication of JP6463548B2 publication Critical patent/JP6463548B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/384Blades characterised by form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/663Sound attenuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/38Fan details of outdoor units, e.g. bell-mouth shaped inlets or fan mountings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/303Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the leading edge of a rotor blade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/304Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the trailing edge of a rotor blade

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Other Air-Conditioning Systems (AREA)

Description

この発明は、たとえば空気調和装置、換気機器などに用いられる軸流送風機および室外機に関するものである。特に、羽根車における翼の形状に関するものである。
従来から、軸流送風機は、ヒートポンプ式の空気調和装置などの室外ユニット、有圧換気扇などに組み込まれて使用されている。たとえば、軸流送風機は、円筒状のボスと、ボスの外周面に設けられた複数枚の翼とを有する羽根車を備える。そして、ボスを、たとえば反時計回りに回転させて、翼を旋回させ、空気などの流体を前方から後方に向けて送り出す。
空気調和機などの室外ユニット、機器に組み込まれて使用される有圧換気扇などは、設置環境、運転条件などによって通風抵抗が異なる。また、熱交換器への砂、埃などの付着、装置の高密度実装化により、搭載される軸流送風機には高静圧への対応が要求される。そして、高静圧化をはかるために、羽根車の駆動回転数を多くする必要がある。しかしながら、軸流送風機の翼を高速で旋回させると、翼の外周縁(翼端)、前縁、後縁の端部などにおいて発生する渦が問題となる。
たとえば、翼で発生した渦は、ブレード間での有効流路幅を狭め、かつ、流れに対する抵抗となって、流れに乱れを発生させる。このため、軸流送風機は、空力損失が増大し、騒音が増大する。また、渦は、負圧面上(吸込み側)に多く発生し、渦の中心部は非常に低圧である。このため、渦の影響により負圧面上では負圧域が多くなり、羽根車の回転方向とは逆向きのトルクが増大する。したがって、翼への負荷が高くなることで、羽根車を回転させるのに必要なトルク(必要な電力)が増大し、効率が低下する、という問題があった。
このような観点から、効率を向上させ、かつ、流体騒音を低減させる軸流送風機として、次のようなものが提案されている。たとえば、回転方向に沿う断面形状が、翼の負圧面側に膨出する膨出部と、正圧面側に膨出する膨出部とを交互に3箇所以上有する。そして、負圧面側の膨出部と正圧面側の膨出部とを等分する線を中立線として、中立線からの距離が、前縁部から後縁部に向かうにつれて大きくなるようにした軸流送風機がある(たとえば、特許文献1参照)。また、後縁部が羽根車の回転方向後方に突出した後縁凸部を有し、後縁凸部の頂点の半径は、外周縁(翼端)の半径と内周縁(ボス)の半径との中間半径よりも大きくなるようにした軸流送風機がある(たとえば、特許文献2参照)。
特開2010−150945号公報 国際公開第2014/102970号
上述した特許文献1および特許文献2には、次のような課題がある。たとえば、従来の軸流送風機でみられるような、前縁部、外周縁部に生じる渦に関して、特許文献1および特許文献2の軸流送風機では、特に対策をしておらず、渦の発生を許容する形状をしている。前縁で発生する渦は、騒音源となるとともに、前縁部が負圧になることで、羽根車の回転方向後方へのトルクが増大し、効率が低下する。また、外周縁における負圧面側(吸込み側)と圧力面側(吹出し側)との圧力差により発生する翼端渦は、下流側に移流するにしたがって積層され、次第に成長し、増大する。このため、翼間の有効流路幅が減少する。また、翼端渦が流体の流れを妨げることで、流れの抵抗は増大する。これにより、流体に乱れが発生して、騒音増加および効率低下の要因となっていた。
この発明は、かかる問題を解決するためになされたものであり、低騒音かつ高効率な軸流送風機および室外機を提供することを目的とする。
この発明に係る軸流送風機は、回転軸を中心に回転するボスと、ボスの外周部に固定され、内周縁、外周縁、前縁および後縁により囲繞される複数枚の翼とを有する羽根車を備える軸流送風機であって、翼の前縁は、回転軸方向から見たときに、ボスとの固定部分である点Cから外周縁との交点となる点Bまでの間にある点Aまでは、外周側になるほど、羽根車の回転方向の前側に前進し、点Aから点Bまでの間は、回転中心からの半径方向に沿った形状であり、翼の後縁は、回転軸方向から見たときに、ボスとの固定部分である点Eから外周縁との交点となる点B’までの間にある点Dまでは、外周側になるほど、羽根車の回転方向の前側に前進し、点Dと点B’との間で、点Dよりも外周側にある点A’までは、外周側になるほど、羽根車の回転方向の後側に後退し、点A’から点B’までの間は、羽根車の回転方向の前側に前進し、点Dおよび点A’において屈曲した形状であり、回転中心と前縁上の点Aとの距離と回転中心と後縁上の点A’との距離とが所定の範囲の関係にあり、点Aと点A’とを羽根車の回転方向に沿って結んだ部分において、点A’側ほど、吸込み側に突出が大きい凸となる形状であり、後縁上の点Dを含む羽根車の回転方向に沿った部分において、点D側ほど、吹出し側に突出が大きい凸となる形状であって、前縁側よりも後縁側における回転軸方向における凹凸差が大きくなる形状で構成されるものである。
この発明の軸流送風機によれば、静圧上昇を確保しつつ、回転方向への揚力を大きくして、駆動力を増大させることができる。そのため、必要な電力を低減することができ、効率を向上させることができる。また、騒音の発生源となる翼端渦によるブロッケージ領域(抵抗になる領域)を狭くして、空気の流れを円滑にすることができるので、有効流路幅を従来の軸流送風機よりも多く確保することができる。したがって、騒音を低減することができる。
この発明の実施の形態1に係る軸流送風機の羽根車1を吸込み側から正面に見た図である。 この発明の実施の形態1に係る軸流送風機における翼3の形状を特徴づける、前縁33、外周縁32、後縁34上における基準となる点の位置を示す図である。 この発明の実施の形態1に係る軸流送風機の羽根車1を側面側から見た図である。 この発明の実施の形態1に係る軸流送風機における線分B−Cおよび線分E−B’を示す図である。 この発明の実施の形態1に係る軸流送風機における線分O−Bと線分A−Bとの関係を示す図である。 この発明の実施の形態1に係る軸流送風機における回転中心Oからの距離の関係を示す図である。 この発明の実施の形態1に係る軸流送風機の翼3の回転軸方向高さに関して、その分布を等高線で示した図である。 同一半径の円筒断面A−A’における翼3の断面、その周りの流れ場および前縁33などにおいて発生する渦の関係を示す図(その1)である。 同一半径の円筒断面A−A’における翼3の断面、その周りの流れ場および前縁33などにおいて発生する渦の関係を示す図(その2)である。 ブレードの負圧面上の翼端部に発生する翼端渦12を示す図(その1)である。 ブレードの負圧面上の翼端部に発生する翼端渦12を示す図(その2)である。 この発明の実施の形態1に係る軸流送風機において、翼3を吹出し側から見たときの、翼3の表面近傍を流れる空気の相対流れの様子(流線)を示した模式図である。 この発明の実施の形態1に係る軸流送風機において、r/rtipと効率との関係を示す図である。 この発明の実施の形態2に係る軸流送風機の羽根車1を吸込み側から正面に見た図である。 この発明の実施の形態2に係る軸流送風機における翼3の形状を特徴づける、前縁33、外周縁32、後縁34上における基準となる点の位置およびその位置における翼3の形状の曲率半径を示す図である。 この発明の実施の形態3に係る室外機を吹出し口側から見たときの斜視図である。 この発明の実施の形態3に係る室外機の構成を上面側から説明する図である。 この発明の実施の形態3に係る室外機のファングリル52aを外した状態の模式図である。 この発明の実施の形態3に係る室外機の内部の構成を示す図である。
以下、この発明を実施するための形態について、図面を参照して説明する。ここで、符号について、図1〜図19において、同一の符号を付したものは、同一またはこれに相当するものであり、このことは、明細書の全文において共通することである。また、各図において複数枚有する翼に関する符号は、代表の1枚にのみ付すものとする。また、発明を実施するための形態および各図では、一例として翼の枚数が3枚である場合を図示しているが、翼の枚数が3枚以外であっても、この発明は成立し、効果は得られる。
実施の形態1.
図1は、この発明の実施の形態1に係る軸流送風機の羽根車1を吸込み側から正面(回転軸方向)に見た図である。図1に示すように、この発明の実施の形態1に係る軸流送風機の羽根車1は、回転軸を中心(軸心まわり)に回転するボス5を有している。また、ボス5の外周部には4枚の翼3が配設されている。翼3は、内周縁31、外周縁(翼端)32、前縁33および後縁34に囲繞されている。
図2は、この発明の実施の形態1に係る軸流送風機における翼3の形状を特徴づける、前縁33、外周縁32、後縁34上における基準となる点の位置を示している。ここで、点Aは翼3の前縁33上に位置する。また、点Bは翼3の外周縁32と前縁33とが交わる部分に位置する。点C’は外周縁32の中央部に位置する。点B’、点A’、点Dおよび点Eは翼3の後縁34上に位置する。
図2に示すように、各翼3を回転中心Oから見た前縁33は、内周縁31と前縁33とが交わる部分に位置する点Cから、外周縁32と前縁33とが交わる部分に位置する点Bまでの間に位置する点Aまでの間は、外周側になるほど、回転方向の前側に前進する(回転方向側に向かって角度が大きくなる)形状となっている。また、点Aから点Bまでの間は、回転中心Oから半径方向に沿った形状である。一方、各翼3を回転中心Oから見た後縁34は、内周縁31と後縁34とが交わる部分に位置する点Eから、外周縁32と後縁34とが交わる部分に位置する点B’までの間に位置する点Dまでの間は、外周側になるほど、回転方向の前側に前進する形状となっている。また、点Dから、点Dよりも外周側に位置する点A’までは、外周側になるほど、回転方向の後側に後退する(回転方向の反対側に向かって角度が大きくなる)形状となっている。そして、点A’から点B’までは回転方向の前側に前進して、点Dおよび点Aで屈曲した形状である。
図3は、この発明の実施の形態1に係る軸流送風機の羽根車1を側面側から見た図である。図3では、一枚の翼3を表している。図3は、回転軸に垂直な、O−C’断面およびO−B’断面での翼3の形状を示している。
図4は、この発明の実施の形態1に係る軸流送風機における線分B−Cおよび線分E−B’を示す図である。線分B−Cは、外周縁32と前縁33とが交わる点Bと、内周縁31(ボス5)と前縁33とが交わる点Cとを結ぶ線となる。また、線分E−B’は、外周縁32と後縁34とが交わる点B’と、内周縁31と後縁34とが交わる点Eとを結ぶ線となる。図4では、一枚の翼3を表している。図4では、線分B−Cに対して、前縁33上の点Dと点Aとは、回転方向に対して前進する。また、線分E−B’に対して、後縁34上の点D’とA’とは、回転方向に対して後退する。このような翼3の形状により、翼3の回転と逆方向に働くトルクを軽減することができるため、翼3の負荷を低減し、より一層の効率を向上させることができる。
図5は、この発明の実施の形態1に係る軸流送風機における線分O−Bと線分A−Bとの関係を示す図である。線分O−Bは、回転中心Oと、外周縁32と前縁とが交わる点Bとを結ぶ線となる。図5は、線分O−Bと、前縁33の点Aと点Bとを結ぶ線分A−Bとが平行であることを示している。図5では、一枚の翼3を表している。
図6は、この発明の実施の形態1に係る軸流送風機における回転中心Oからの距離の関係を示す図である。図6では、回転中心Oから前縁33上の点Aまでの距離を半径rとする。また、回転中心Oから後縁34上の点A’までの距離を半径rA’とする。さらに、回転中心Oから前縁33上の点B(翼端)までの距離をチップ半径rtipとする。そして、回転中心Oからボス5の外周面までの距離をボス半径rhubとする。ここで、半径rと半径rA’との距離とは、同じと判断できる範囲の関係を有している。たとえば、半径rA’が、半径rの0.9〜1.1倍の範囲内にある関係を有するようにするとよい。
図7は、この発明の実施の形態1に係る軸流送風機の翼3の回転軸方向高さに関して、その分布を等高線で示した図である。等高線のコンターカラーに関して、黒色が吹出し側に対応し、白色が吸込み側に対応する。
図7に示すように、翼3は、前縁33の点Aから後縁34の点A’まで、回転方向に沿った部分で吸込み側に凸、後縁34の点Dを含む回転方向に沿った部分で吹出し側に凸となった形状である。回転軸を含む翼3の断面において、吸込み側に凸となっている頂点の部分は極大点となる。また、吹出し側に凸となっている頂点の部分は極小点となる。翼3の形状に合わせて、前縁33の点Aから後縁34の点A’を結ぶ曲線は、概ね線Xのようになる。線Xの部分においては、前縁33の点Aから後縁34の点A’になるほど、吸込み側への突出が大きくなる。
また、回転中心Oから後縁34の点Dまでの距離を半径とする円周上の線を線Yとする。線Y上では後縁34の点Dに近づくほど吹出し側への突出が大きくなり、前縁33に比べて、後縁34での軸方向の凹凸差が大きくなる。これは、図7において、回転中心Oと点C’とを結ぶO−C’線と交差している回転軸方向高さの等高線は約4本であるのに対して、回転中心Oと点B’とを結ぶO−B’線と交差している回転軸方向高さの等高線は10本以上であることからもわかる。したがって、前縁33側よりも後縁34側の方が、回転軸方向における極大点の位置と極小点の位置との凹凸の差(回転軸方向における高さ)が大きい形状となる。このため、羽根車1の半径方向外向き流れを誘起し、相対速度の減速による静圧上昇だけでなく、遠心作用による静圧上昇が可能になる。また、翼3の負荷を軽減させることができる。したがって、静圧上昇と必要トルク軽減により、効率を向上させることができる。
また、後縁34の点Dについて、径方向における位置は、回転中心Oから点Dまでの距離を半径O−Dとする。また、回転中心Oから外周縁32の点B’までの距離を半径O−B’とする。このとき、半径O−Dは、半径O−B’の概ね半分の距離となるように、翼3が構成される。
また、点Dは、回転中心Oからの距離が点A’とボス5の外周面に位置する点Eとの中間付近にある。たとえば、回転中心Oから点Eまでの距離を半径OEとする。半径rA’が半径OEの2倍より大きい場合、半径O−Dは、(OE+rA’)/2の0.9〜1.1倍などとするとよい。
図8および図9は、同一半径の円筒断面A−A’における翼3の断面、その周りの流れ場および前縁33などにおいて発生する渦の関係を示す図である。図8が従来の軸流送風機における翼3の断面、流れ場および渦の関係を示している。また、図9が従来の軸流送風機における翼3の断面、流れ場および渦の関係を示している。ここで、図8および図9における+(プラス)の記号は、大気圧に対して大きい圧力である正圧になっていることを示している。一方、図8および図9における−(マイナス)の記号は、大気圧に対して小さい圧力である負圧になっていることを示している。
たとえば、図8に示すように、従来の軸流送風機では翼素に流入した空気(流体)の相対流れは、前縁33の吸込み側(負圧面側)で剥離して渦10を発生していた。しかしながら、本実施の形態の軸流送風機においては、翼3を、前述した構成の形状とすることで、翼素に流入した空気の相対流れは、前縁33の吹出し側(圧力面側)に、渦による剥離域11が発生する。このため、従来の軸流送風機では、前縁33の吸込み側の近傍は、図8のマイナス記号で示したように負圧域になる。一方、本実施の形態の軸流送風機では、前縁33の吸込み側の近傍が、図9のプラス記号で示したように正圧となる。
このため、従来の軸流送風機では、吸込み側(負圧面側)の負圧域により大きい揚力が発生するのに対して、実施の形態1の軸流送風機では、吸込み側の負圧域を低減することで、揚力を減らし、回転方向と逆方向へのトルクを軽減することができる。さらに、前縁33の吹出し側(圧力面側)の近傍に、渦領域を積極的に発生させたことにより、回転方向への揚力を大きくすることができ、駆動力を増大させることができる。このため、電力を低減することができ、効率を向上させる軸流送風機を得ることができる。
図10および図11は、ブレードの負圧面上の翼端部に発生する翼端渦12を示す図である。図10は、従来の軸流送風機を表す。また、図11は、本実施の形態の軸流送風機を表す。図10に示すように、従来の軸流送風機では、負圧面と圧力面の圧力差により、前縁33の近傍から翼端渦12が発生する。一方、図11に示すように、実施の形態1の軸流送風機においては、前縁33の近傍において、圧力面は負圧に、負圧面は正圧になっている。このため、従来の軸流送風機で発生していた、圧力面から負圧面へと回り込んでくる翼端渦12の発生を後縁34側に極力遅らせることができる。この作用によって、実施の形態1の軸流送風機では、翼端渦12によるブロッケージ領域(抵抗になる領域)が狭くなり、スムーズに空気が流れることによって、有効流路幅を従来の軸流送風機よりも多く確保することができる。したがって、騒音を低減することができる。
このとき、前縁33の吹出し側(圧力面側)の近傍において、一部分は、流れを積極的に剥離させているため、翼3に流れが沿わなくなる。このため、流れに対して有効に仕事をすることができず、静圧上昇を十分に確保できない可能性がある。
実施の形態1の軸流送風機では次のようにしてこの問題を解消している。たとえば、図2に示しているように、翼3を回転軸方向から見た後縁34の点Eから点B’までの間において、点Eから点Dまでの間は、外周方向に向かうにつれて回転方向の前側に前進させる形状としている。また、点Dよりも外周側にある点A’までは外周になるにつれて回転方向の後側に後退させる形状としている。このため、翼弦長を増大することができ、必要な静圧上昇を確保することができる。
また、たとえば、前述した図7に示すように、翼3は、前縁33の点Aから後縁34の点A’まで回転方向に沿った部分で吸込み側に凸、後縁34の点Dを含む回転方向に沿った部分で吹出し側に凸となった形状である。線X部分においては、前縁33の点Aから後縁34の点A’になるほど吸込み側への突出が大きくなる。また、後縁34の点Dを含む円周上となる線Y上では、後縁34の点Dに近づくほど吹出し側への突出が大きくなり、前縁33に比べて後縁34での回転軸方向の凹凸差が大きくなるようなS字状をなす。
図12は、この発明の実施の形態1に係る軸流送風機において、翼3を吹出し側から見たときの、翼3の表面近傍を流れる空気の相対流れの様子(流線)を示した模式図である。図12に示すように、前縁33から流入してきた空気は、後縁34の点A’の近傍に向かって流れこむ。このとき、圧力面では、内周側から流入して外周側へ流出するような半径方向外向きの流れ13が誘起されることにより、相対速度の減速による静圧上昇だけでなく、遠心作用による静圧上昇がなされるため、十分に静圧上昇を確保することができる。また、同時に、前縁33の点Aから後縁34の点A’になるほど吸込み側への突出が大きくなり、後縁34の点Dを含む円周上では後縁34の点Dに近づくほど吹出し側への突出が大きくなり、前縁に比べて後縁での軸方向の凹凸差が大きくなる形状としていることで、後縁34部分において、周方向の流速成分を減らし、静圧エネルギーに変換されない旋回動圧を低減することができる。このため、静圧上昇を増大させることができ、効率の向上および騒音の低減をはかることができる。
次に、さらに効率向上および騒音低減を実現するための軸流送風機の構成について説明する。ここでは、ボス半径とrhubとチップ半径rtipとに基づいて、次式(1)で表される中間半径rを定義する。中間半径rは、半径方向における翼3の中間点の、回転中心Oからの距離を表す。
=rhub+(rtip−rhub)/2 …(1)
そして、たとえば、翼3において、前述した半径rと半径rA’とについて、中間半径rよりも大きくなるようにする。したがって、半径r>中間半径r、かつ、半径rA’>中間半径rを満たす。さらに、半径rおよび半径rA’と、チップ半径rtipとの関係について、0.84<r/rtip<0.90、かつ、0.84<rA’/rtip<0.90を満たすようにする。以上のような条件を満たすように、本実施の形態の軸流送風機は、点Aと点A’とが位置する翼3の形状とする。
図13は、この発明の実施の形態1に係る軸流送風機において、r/rtipと効率との関係を示す図である。ここでは、0.84<r/rtip<0.90、かつ、0.84<rA’/rtip<0.90としたときに、効率が向上する理由について説明する。ここで、半径rと半径rA’とが同じ(r=rA’)場合に効率向上の効果が最大となる。
軸流送風機にはたらくトルクは、モーメントアームである半径と、翼3の各部位における圧力差の面積分との積で評価することができる。このため、トルクを低減させるためには、モーメントアームが大きくなる翼端側において、圧力面と負圧面との圧力差を低減することが効果的である。
そこで、翼3について、点Aと点A’とが、半径r>中間半径r、かつ、半径rA’>中間半径rを満たすだけでなく、0.84<r/rtip<0.90、かつ、0.84<rA’/rtip<0.90も満たす位置にある形状とすることで、前縁33部分の圧力面側の方に渦領域を発生させ、負圧面側に渦は発生させないようにする。このため、回転方向と逆方向へのトルクを十分に軽減し、なおかつ、圧力面側の渦領域を効果的に発生させたことにより、この領域で揚力が働くことで、回転方向への駆動力を増大させることができる。
また、効率をさらに向上させることができるため、羽根車1の回転数を低減させることができる。したがって、低騒音化もはかることができる。また、点A(点A’)の位置を適切な位置にし、点Aから点Bまでの間は、回転中心からの半径方向に沿った形状とすることで、従来の軸流送風機において、翼端において発生していた翼端渦の発生を十分に遅らせることができる。このため、負圧面の負圧域は従来の軸流送風機よりも狭くなり、翼端渦によるブロッケージ領域が狭くなる。したがって、従来の軸流送風機よりもスムーズに空気が流れることができる有効流路幅を多く確保することができる。これによりさらに騒音を低減することができる。
実施の形態2.
前述した実施の形態1においては、羽根車1の翼3における形状を工夫して、効率向上および騒音低減をはかるようにした。実施の形態2においては、より一層、効率向上および騒音低減を実現することができる、翼3の形状について説明する。ここで、実施の形態2に係る軸流送風機の羽根車1は、以下に説明する部分を除いては、前述した実施の形態1と同様の構成であるものとする。
図14は、この発明の実施の形態2に係る軸流送風機の羽根車1を吸込み側から正面に見た図である。また、図15は、この発明の実施の形態2に係る軸流送風機における翼3の形状を特徴づける、前縁33、外周縁32、後縁34上における基準となる点の位置およびその位置における翼3の形状の曲率半径を示す図である。
内周縁31と前縁33とが交わる部分に位置する点Cから、外周縁32と前縁33とが交わる部分に位置する点Bまでの間に位置する前縁33上に点Aがある。また、内周縁31と後縁34とが交わる部分に位置する点Eから、外周縁32と後縁34とが交わる部分に位置する点B’までの間に位置する後縁34上に点Dがある。また、後縁34上において、点Dよりも外周側に位置する点A’がある。そして、実施の形態2の翼3では、回転軸方向から見たときの、点A、点Dおよび点A’における翼3の形状が、角を有さずにRを有し、ラウンドが施された曲線形状であるものとする。ここで、図15に示すように、点A、点Dおよび点A’における曲率半径は、それぞれR、RおよびRA’である。
たとえば、前縁33および後縁34は、気流の向き、速度などが急激に変化する。気流が急激に変化すると、流れは乱れて空気抵抗となり効率が低下する。また、流れの乱れに伴って渦が発生し、騒音が発生することが知られている。図14および図15に示す、実施の形態2のような翼3の形状にすることで、前縁33と後縁34における急激な気流の速度変化を抑えることができる。このため、より一層の効率向上および騒音低減が可能となる。
ここで、さらに効率向上および騒音低減の効果をはかるためには、点Aから点Bまでの距離をABとすると、点Aにおける曲率半径Rは、距離ABの1/2程度とするとよい。また、点A’から点B’までの距離をA’B’とすると、点A’における曲率半径RA’は、距離A’B’の1/2以下とするとよい。さらに、点Dから点A’までの距離をDA’とすると、点Dにおける曲率半径Rは、距離DA’の2/3程度とするとよい。
実施の形態3.
上述した実施の形態1および実施の形態2では、軸流送風機の高効率化および低騒音化に関する内容について説明した。実施の形態1および実施の形態2において説明した軸流送風機を用いることで、高効率な運転を実現することができる。ここで、軸流送風機を、圧縮機、熱交換器などを有する空気調和装置の室外機、給湯装置の室外機などに搭載すれば、低騒音かつ高効率で、熱交換器を通過する風量を多くすることができる。そこで、実施の形態3では、上記の実施の形態1の軸流送風機を搭載する空気調和装置の室外機について説明する。
図16は、この発明の実施の形態3に係る室外機を吹出し口側から見たときの斜視図である。また、図17は、この発明の実施の形態3に係る室外機の構成を上面側から説明する図である。さらに、図18は、この発明の実施の形態3に係る室外機のファングリル52aを外した状態の模式図である。そして、図19は、この発明の実施の形態3に係る室外機の内部の構成を示す図である。
図16〜図19に示すように、室外機本体50は左右一対の側面50aおよび50c、前面50b、背面50d、上面50e並びに底面50fを有する筐体として構成される。側面50aおよび背面50dは、外側から空気を吸い込むための開口部を有している。また、前面50bにおいては、前面パネル51に、外部に空気を吹き出すための開口部分としての吹出し口52が形成されている。さらに、吹出し口52は、ファングリル52aで覆われている。ファングリル52aは、物体などと軸流送風機との接触を防止し、安全をはかるものである。室外機本体50内には、軸流送風機53が設置されている。軸流送風機53は、背面50d側にあるファンモータ54と、回転軸55を介して接続されており、このファンモータ54によって回転駆動される。室外機本体50の内部は、仕切板56によって、軸流送風機53が収容され、設置されている送風室57と、圧縮機58が設置されている機械室59とにわけられている。送風室57における側面50a側と背面50d側とには、L字型に延びるような熱交換器60が設けられている。
送風室57に設置された軸流送風機53の径方向外側には、ベルマウス61が配置されている。ベルマウス61は、翼の外周端よりも外側に位置し、軸流送風機53の回転方向に沿って環状をなしている。またベルマウス61の一方側の側面には仕切板56が位置し、他方側の側面には、熱交換器60の一部が位置する。ベルマウス61の前端は、吹出し口52の外周を囲むように室外機の前面パネル51と接続される。このベルマウス61によって、ベルマウス61の吸込み側と吹出し側の流路が、吹出し口52近傍の風路として構成される。軸流送風機53の吸込み側に設けられている熱交換器60は、板状の面が平行になるように並設された複数のフィンと、その並設方向に各フィンを貫通する伝熱管とを備えている。伝熱管内には、冷媒回路を循環する冷媒が流れる。また、熱交換器60は、配管を介して圧縮機58と接続される。また機械室59には、基板箱62が配置されており、この基板箱62に設けられた制御基板63によって室外機内に搭載された機器が制御されている。このように、実施の形態3の室外機によれば、装置全体としても騒音を低減し、効率のよい室外機を得ることができる。
1 羽根車、3 翼、5 ボス、10 渦、11 剥離域、12 翼端渦、31 内周縁、32 外周縁、33 前縁、34 後縁、50 室外機本体、50a 側面、50b 前面、50d 背面、50e 上面、50f 底面、51 前面パネル、52 吹出し口、52a ファングリル、53 軸流送風機、54 ファンモータ、55 回転軸、56 仕切板、57 送風室、58 圧縮機、59 機械室、60 熱交換器、61 ベルマウス、62 基板箱、63 制御基板。

Claims (9)

  1. 回転軸を中心に回転するボスと、前記ボスの外周部に固定され、内周縁、外周縁、前縁および後縁により囲繞される複数枚の翼とを有する羽根車を備える軸流送風機であって、
    前記翼の前記前縁は、前記回転軸方向から見たときに、前記ボスとの固定部分である点Cから前記外周縁との交点となる点Bまでの間にある点Aまでは、外周側になるほど、前記羽根車の回転方向の前側に前進し、前記点Aから前記点Bまでの間は、回転中心からの半径方向に沿った形状であり、
    前記翼の後縁は、前記回転軸方向から見たときに、前記ボスとの固定部分である点Eから前記外周縁との交点となる点B’までの間にある点Dまでは、外周側になるほど、前記羽根車の前記回転方向の前側に前進し、前記点Dと前記点B’との間で、前記点Dよりも外周側にある点A’までは、外周側になるほど、前記羽根車の前記回転方向の後側に後退し、前記点A’から前記点B’までの間は、前記羽根車の前記回転方向の前側に前進し、前記点Dおよび前記点A’において屈曲した形状であり、
    前記回転中心と前記前縁上の前記点Aとの距離と、前記回転中心と前記後縁上の前記点A’との距離とが所定の範囲の関係にあり、
    前記点Aと前記点A’とを前記羽根車の前記回転方向に沿って結んだ部分において、前記点A’側ほど、吸込み側に突出が大きい凸となる形状であり、前記後縁上の前記点Dを含む前記羽根車の前記回転方向に沿った部分において、前記点D側ほど、吹出し側に突出が大きい凸となる形状であって、前記前縁側よりも前記後縁側における前記回転軸方向における凹凸差が大きくなる形状で構成される軸流送風機。
  2. 回転軸を中心に回転するボスと、前記ボスの外周部に固定され、内周縁、外周縁、前縁および後縁により囲繞される複数枚の翼とを有する羽根車を備える軸流送風機であって、
    前記回転軸を含む前記翼の断面は、前記回転軸方向における吸込み側の頂点である極大点と吹出し側の頂点である極小点とを有する形状であり、
    前記翼の前記前縁側よりも前記後縁側の方が、前記回転軸方向における前記極大点の位置と前記極小点の位置との凹凸差が大きくなる形状で構成される軸流送風機。
  3. 前記翼の前記前縁は、前記回転軸方向から見たときに、前記ボスとの固定部分である点Cから前記外周縁との交点となる点Bまでの間にある点Aまでは、外周側になるほど、前記羽根車の前記回転方向の前側に前進する形状である請求項2に記載の軸流送風機。
  4. 前記後縁上の極小点は、前記回転軸方向から見たときに、前記翼の前記後縁と前記ボスとの固定部分である点Eと前記外周縁との交点となる点B’とを繋いでできる線分E−B’よりも前記羽根車の前記回転方向の前側に前進し、前記後縁上の極大点は、前記線分E−B’よりも前記羽根車の前記回転方向の後側に後退する請求項2または請求項3に記載の軸流送風機。
  5. 前記翼の前記前縁は、前記回転軸方向から見たときに、前記前縁上の点Aから前記前縁と前記外周縁との交点となる点Bまでの間は、回転中心からの半径方向に沿った形状である請求項2〜請求項4のいずれか一項に記載の軸流送風機。
  6. 前記翼の前記前縁は、前記回転軸方向から見たときに、前記ボスとの固定部分である点Cから前記外周縁との交点となる点Bまでの間にある点Aを有し、
    前記翼の前記後縁は、前記回転軸方向から見たときに、前記ボスとの固定部分である点Eから前記外周縁との交点となる点B’までの間にある点Dおよび該点Dよりも外周側にある点A’を有し、
    前記前縁上の前記点Aおよび前記後縁上の前記点A’は、
    前記回転中心と前記前縁上の前記点Aとの距離rおよび前記回転中心と前記後縁上の前記点A’との距離rA’と、前記回転中心と前記点Bとの距離rtipおよび前記回転中心と前記点Cとの距離rhubとが、r>rhub+(rtip−rhub)/2およびrA’>rhub+(rtip−rhub)/2を満たし、かつ、0.84<r/rtip<0.90および0.84<rA’/rtip<0.90を満たす位置にある請求項1〜請求項5のいずれか一項に記載の軸流送風機。
  7. 前記翼の前記前縁は、前記回転軸方向から見たときに、前記ボスとの固定部分である点Cから前記外周縁との交点となる点Bまでの間にある点Aを有し、
    前記翼の前記後縁は、前記回転軸方向から見たときに、前記ボスとの固定部分である点Eから前記外周縁との交点となる点B’までの間にある点Dおよび該点Dよりも外周側にある点A’を有し、
    前記翼は、前記回転軸方向から見たときに、前記前縁上の前記点A並びに前記後縁上の前記点Dおよび前記点A’における曲率半径が、それぞれR、RおよびRA’である曲線形状を有する請求項1〜請求項6のいずれか一項に記載の軸流送風機。
  8. 前記翼の前記前縁は、前記回転軸方向から見たときに、前記ボスとの固定部分である点Cから前記外周縁との交点となる点Bまでの間にある点Aを有し、
    前記翼の前記後縁は、前記回転軸方向から見たときに、前記ボスとの固定部分である点Eから前記外周縁との交点となる点B’までの間にある点Dおよび該点Dよりも外周側にある点A’を有し、
    前記回転中心と前記前縁上の前記点Aとの距離が、前記回転中心と前記後縁上の前記点A’との距離の0.9倍以上1.1倍以下となる範囲の関係にある請求項1〜請求項7のいずれか一項に記載の軸流送風機。
  9. 請求項1〜請求項8のいずれか一項に記載の軸流送風機と、
    前記軸流送風機を駆動させる駆動源と、
    熱交換器と、
    前記軸流送風機、前記駆動源および前記熱交換器を収容するケーシングと
    を備える室外機。
JP2018503984A 2016-03-07 2016-09-27 軸流送風機および室外機 Active JP6463548B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016043055 2016-03-07
JP2016043055 2016-03-07
PCT/JP2016/078372 WO2017154246A1 (ja) 2016-03-07 2016-09-27 軸流送風機および室外機

Publications (2)

Publication Number Publication Date
JPWO2017154246A1 JPWO2017154246A1 (ja) 2018-06-14
JP6463548B2 true JP6463548B2 (ja) 2019-02-06

Family

ID=59790228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018503984A Active JP6463548B2 (ja) 2016-03-07 2016-09-27 軸流送風機および室外機

Country Status (5)

Country Link
US (1) US11149742B2 (ja)
JP (1) JP6463548B2 (ja)
CN (1) CN108700086B (ja)
DE (1) DE112016006555B4 (ja)
WO (1) WO2017154246A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD865139S1 (en) * 2016-01-29 2019-10-29 Mitsubishi Electric Corporation Outdoor unit for water heater
USD858737S1 (en) * 2017-03-16 2019-09-03 Mitsubishi Electric Corporation Propeller fan
AU2017427464B2 (en) * 2017-08-09 2021-07-22 Mitsubishi Electric Corporation Propeller fan, air-sending device, and refrigeration cycle apparatus
USD911512S1 (en) * 2018-01-31 2021-02-23 Carrier Corporation Axial flow fan
CN113167290B (zh) * 2018-12-26 2024-02-06 三菱电机株式会社 叶轮、送风机以及空调机
CN111271319A (zh) * 2019-01-07 2020-06-12 奥克斯空调股份有限公司 一种轴流风叶及空调器
JP7062139B2 (ja) * 2019-05-21 2022-05-02 三菱電機株式会社 軸流ファン、送風装置、及び、冷凍サイクル装置
JP7241667B2 (ja) * 2019-12-02 2023-03-17 株式会社コロナ プロペラファン
CN113494748B (zh) * 2020-03-20 2023-03-17 广东美的环境电器制造有限公司 加湿装置
KR102401163B1 (ko) * 2020-12-03 2022-05-24 엘지전자 주식회사 공기 조화기의 실외기에 구비되는 축류팬
US11821436B2 (en) * 2021-05-28 2023-11-21 Thermo King Llc High efficiency axial fan
US11754088B2 (en) * 2021-12-03 2023-09-12 Hamilton Sundstrand Corporation Fan impeller with thin blades
CN117010284B (zh) * 2023-10-07 2024-01-05 云南电投绿能科技有限公司 基于风电场噪声的机位排布方法、装置、设备及存储介质

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1895252A (en) * 1931-01-23 1933-01-24 Emmanuel G Kontos Propeller
JPS5010215Y1 (ja) * 1969-12-08 1975-03-31
FR2603953B1 (fr) * 1986-09-12 1991-02-22 Peugeot Aciers Et Outillage Pale profilee d'helice et son application aux motoventilateurs
JP3483447B2 (ja) * 1998-01-08 2004-01-06 松下電器産業株式会社 送風装置
US6065937A (en) * 1998-02-03 2000-05-23 Siemens Canada Limited High efficiency, axial flow fan for use in an automotive cooling system
US6712584B2 (en) * 2000-04-21 2004-03-30 Revcor, Inc. Fan blade
US6814545B2 (en) * 2000-04-21 2004-11-09 Revcor, Inc. Fan blade
US6447251B1 (en) 2000-04-21 2002-09-10 Revcor, Inc. Fan blade
JP3978083B2 (ja) 2001-06-12 2007-09-19 漢拏空調株式会社 軸流ファン
JP4501575B2 (ja) * 2004-07-26 2010-07-14 三菱電機株式会社 軸流送風機
JP4400686B2 (ja) * 2008-01-07 2010-01-20 ダイキン工業株式会社 プロペラファン
JP5366532B2 (ja) 2008-12-24 2013-12-11 東芝キヤリア株式会社 軸流ファンおよび空気調和機の室外機
JP2011179331A (ja) * 2010-02-26 2011-09-15 Panasonic Corp 送風機とその送風機を用いた空気調和機
JP2013083158A (ja) * 2011-10-06 2013-05-09 Panasonic Corp 軸流ファンまたは斜流ファン
JP5631353B2 (ja) * 2012-04-10 2014-11-26 シャープ株式会社 プロペラファン、流体送り装置および成形用金型
WO2014102970A1 (ja) 2012-12-27 2014-07-03 三菱電機株式会社 プロペラファン、送風装置、室外機
JP6277415B2 (ja) * 2014-03-25 2018-02-14 パナソニックIpマネジメント株式会社 扇風機用のプロペラファン
WO2016021555A1 (ja) * 2014-08-07 2016-02-11 三菱電機株式会社 軸流ファン、及び、その軸流ファンを有する空気調和機

Also Published As

Publication number Publication date
WO2017154246A1 (ja) 2017-09-14
JPWO2017154246A1 (ja) 2018-06-14
US11149742B2 (en) 2021-10-19
DE112016006555T5 (de) 2018-11-15
DE112016006555B4 (de) 2023-10-12
CN108700086A (zh) 2018-10-23
CN108700086B (zh) 2020-04-17
US20190048890A1 (en) 2019-02-14

Similar Documents

Publication Publication Date Title
JP6463548B2 (ja) 軸流送風機および室外機
JP5263198B2 (ja) 羽根車と送風機及びそれを用いた空気調和機
WO2014061094A1 (ja) ターボファンおよび空気調和機
JP2010133254A (ja) 遠心送風機及びこれを備えた空気調和機
JP5933759B2 (ja) プロペラファン、送風装置、室外機
JP2007205268A (ja) 遠心ファン
CN110506164B (zh) 螺旋桨式风扇及空调装置用室外机
CN110914553B (zh) 叶轮、送风机及空调装置
JP4937331B2 (ja) 送風機及びヒートポンプ装置
JP5984162B2 (ja) プロペラファン、送風装置、および室外機
JP6336135B2 (ja) プロペラファン、送風機および冷凍サイクル装置の室外機
JP6692456B2 (ja) プロペラファン及び空気調和装置の室外機
WO2022191034A1 (ja) プロペラファンおよび冷凍装置
JP7103465B1 (ja) 送風機および室内機
WO2017068724A1 (ja) 空気調和装置の室外ユニット
US20210324874A1 (en) Impeller, fan, and air-conditioning apparatus
JP2017067056A5 (ja)
JP2017067056A (ja) ターボファンおよびそれを用いた空気調和機
JP2013083158A (ja) 軸流ファンまたは斜流ファン
JPH02157539A (ja) 空気調和装置
JPWO2015004751A1 (ja) 多翼送風機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181228

R150 Certificate of patent or registration of utility model

Ref document number: 6463548

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250