JP6444033B2 - Soft magnetic composite material and method for producing such material - Google Patents

Soft magnetic composite material and method for producing such material Download PDF

Info

Publication number
JP6444033B2
JP6444033B2 JP2014003323A JP2014003323A JP6444033B2 JP 6444033 B2 JP6444033 B2 JP 6444033B2 JP 2014003323 A JP2014003323 A JP 2014003323A JP 2014003323 A JP2014003323 A JP 2014003323A JP 6444033 B2 JP6444033 B2 JP 6444033B2
Authority
JP
Japan
Prior art keywords
metal particles
soft magnetic
insulating layer
electrically insulating
method step
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014003323A
Other languages
Japanese (ja)
Other versions
JP2014135491A (en
Inventor
ケーネ マルティン
ケーネ マルティン
ブルクハウス イェンス
ブルクハウス イェンス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of JP2014135491A publication Critical patent/JP2014135491A/en
Application granted granted Critical
Publication of JP6444033B2 publication Critical patent/JP6444033B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、軟磁性の複合材料に関する。本発明は、更に、改善された機械的特性を有するかかる軟磁性の複合材料の製造方法に関する。   The present invention relates to a soft magnetic composite material. The invention further relates to a method for producing such a soft magnetic composite material having improved mechanical properties.

軟磁性の複合材料は、多くの用途で使用される。現在のガソリンエンジンおよびディーゼルエンジンは、例えば、ますます高性能の電磁式噴射弁を、例えば燃費削減および有害物質低減への要求を満たすために必要としている。高速で切り替わる電磁式噴射弁は、その際しばしば軟磁性の材料から製造される。軟磁性の複合材料(WMV)は、その際、リン酸塩層または酸化マグネシウム層で取り囲まれている高純度の鉄粉から製造される。前記材料の圧密化の後に、空気中で酸化が起こり粒界で酸化物が形成され、こうして鉄粒子の結合が起こる。   Soft magnetic composite materials are used in many applications. Current gasoline and diesel engines, for example, require increasingly high performance electromagnetic injectors, for example, to meet the demands for fuel economy and hazardous substances. Electromagnetic injectors that switch at high speed are often manufactured from soft magnetic materials. The soft magnetic composite material (WMV) is then produced from high-purity iron powder surrounded by a phosphate layer or a magnesium oxide layer. After consolidation of the material, oxidation occurs in the air and oxides are formed at the grain boundaries, thus binding of iron particles.

特許文献1から、軟磁性の粉末複合材料とその製造方法が知られている。かかる軟磁性の粉末複合材料は、純鉄粉末、リン酸塩処理された鉄粉または鉄合金粉末とソフト・フェライト粉末とからなる。この複合材料の製造のためには、上述の粉末成分同士が混合され、圧縮され、脱脂され、そして熱処理される。   From Patent Document 1, a soft magnetic powder composite material and a method for producing the same are known. Such a soft magnetic powder composite material is composed of pure iron powder, phosphate-treated iron powder or iron alloy powder, and soft ferrite powder. For the production of this composite material, the above-mentioned powder components are mixed together, compressed, degreased and heat-treated.

特許文献1から、同様に、軟磁性の粉末複合材料とその製造方法が知られている。かかる軟磁性の粉末複合材料は、高抵抗の表面層が設けられている金属粉末を含む。かかる複合材料は、その際、粉末に表面被覆を設けた後に圧密化される。   Similarly, from Patent Document 1, a soft magnetic powder composite material and a method for producing the same are known. Such a soft magnetic powder composite material includes a metal powder provided with a high-resistance surface layer. Such composite materials are then consolidated after a surface coating is provided on the powder.

DE 102 25 154 A1DE 102 25 154 A1

本発明の課題は、先行技術における欠点を克服することである。   The object of the present invention is to overcome the drawbacks in the prior art.

本発明の対象は、金属粒子と、該金属粒子の表面上に少なくとも部分的に配置された電気的絶縁層とから形成された軟磁性の材料であって、前記電気的絶縁層がリン窒化物層として形成されており、かつ前記金属粒子が前記電気的絶縁層によって互いに結合されている前記軟磁性の材料である。   An object of the present invention is a soft magnetic material formed of metal particles and an electrically insulating layer at least partially disposed on the surface of the metal particles, wherein the electrically insulating layer is phosphor nitride The soft magnetic material is formed as a layer and the metal particles are bonded together by the electrically insulating layer.

前記の軟磁性の材料は、本発明の趣旨においては、特に、磁場において良好な磁化を示す材料であってよい。特に、軟磁性の材料は、強磁性の特性を有し、かつその場合に該材料の磁化が、例えば通電コイルにおける電流によってまたは永久磁石の存在によって得ることができる材料であってよい。   The soft magnetic material may be a material exhibiting good magnetization particularly in a magnetic field within the meaning of the present invention. In particular, a soft magnetic material may be a material that has ferromagnetic properties and in which case the magnetization of the material can be obtained, for example, by current in an energizing coil or by the presence of a permanent magnet.

電気的絶縁層とは、本発明の趣旨においては、特に、3μΩm以上の範囲である比抵抗を有する材料から形成されている層を表しうる。   In the meaning of the present invention, the electrically insulating layer can particularly represent a layer formed of a material having a specific resistance in the range of 3 μΩm or more.

前記の軟磁性の材料は、良好な磁化と同時に強度が非常に高いという利点を提供する。それによって、特に広い使用分野を可能にする。更に、かかる材料は、容易にかつ廉価に製造することができる。   Such soft magnetic materials offer the advantage of very high strength as well as good magnetization. Thereby, a particularly wide field of use is possible. Furthermore, such materials can be easily and inexpensively manufactured.

詳細には、前記の軟磁性の材料は、金属粒子から形成されている。前記の金属粒子は、本発明の趣旨においては、前記粒子が軟磁性の材料用の成分として使用できる限りは、その種類において基本的に制限されない。その際、粒子という概念とは、自由に動ける個々の物体として(例えば粉末の意味)存在せずに、互いに結合もしくは互いに接して固定されていてよい、従って緻密な物体を形成しうる固形体をも含んでいる。その際、金属という概念とは、本発明の趣旨においては、更に同様に、2種もしくはそれより多くの金属ならびに金属間化合物からなる合金をも含んでいる。   Specifically, the soft magnetic material is formed of metal particles. The metal particles are basically not limited in the type of the metal particles as long as the particles can be used as a component for a soft magnetic material. In this context, the concept of particles refers to solid bodies that do not exist as individual objects that can move freely (for example, meaning powder) but may be bonded to each other or fixed in contact with each other, thus forming a dense object. Also included. In this case, the concept of metal includes, in the spirit of the present invention, an alloy composed of two or more metals and intermetallic compounds.

更に、前記の軟磁性の材料は、金属粒子の表面上に少なくとも部分的に配置された電気的絶縁層を有する。その際、前記の電気的絶縁層は、例えば完全に、金属粒子の表面上に存在してよく、そのため前記層は前記粒子を完全に取り囲んでいてよい。その代わりに、前記の電気的絶縁層は、金属粒子の表面上に部分的にのみ存在するため、前記層が金属粒子の領域を覆うことが想定されうるが、金属粒子のその他の領域または金属粒子全体が、露出されているため、電気的絶縁層によって直接的に覆われていないものが想定されうる。従って、電気的絶縁層は、同様に局所的に区切られて存在してよい。前記の軟磁性の材料の場合は、前記粒子は、更に、電気的絶縁層によって互いに結合されているかまたは電気的絶縁層によって互いに接して固定されている。   Further, the soft magnetic material has an electrically insulating layer disposed at least partially on the surface of the metal particles. In this case, the electrically insulating layer may be completely present on the surface of the metal particles, for example, so that the layer may completely surround the particles. Instead, since the electrical insulating layer is only partially present on the surface of the metal particles, it can be envisaged that the layer covers areas of the metal particles, but other areas of the metal particles or metal Since the entire particle is exposed, it can be assumed that it is not directly covered by the electrically insulating layer. Accordingly, the electrically insulating layer may be present locally as well. In the case of the soft magnetic material, the particles are further coupled to each other by an electrically insulating layer or fixed in contact with each other by an electrically insulating layer.

上述のことから、軟磁性の材料は、金属もしくは金属化合物から形成されているのみならず、更に少なくとも1種の更なる材料であって、金属粒子上に電気的絶縁層として形成されている材料を有することが明らかである。従って、前記の軟磁性の材料は、複合材料としてもしくはコンポジット材料として呼称することができる。しかしながら、その際、本発明は、金属粒子および電気的絶縁材料もしくは電気的絶縁層のみからなる材料に制限されず、本発明の対象から逸脱せねば、他の材料、例えば金属、他の電気的絶縁材料またはその他の化合物などの材料が前記の材料によって包含されうる。   From the above, the soft magnetic material is not only formed from a metal or a metal compound, but is also at least one additional material that is formed as an electrically insulating layer on the metal particles. It is clear that Therefore, the soft magnetic material can be referred to as a composite material or a composite material. However, in this case, the present invention is not limited to a material consisting only of metal particles and an electrically insulating material or an electrically insulating layer, and other materials such as metals, other electrically insulating materials can be used without departing from the object of the present invention. Materials such as insulating materials or other compounds can be encompassed by the materials.

前記の軟磁性の材料の場合には、更に、前記の電気的絶縁層は、リン窒化物層として形成されている。リン窒化物層とは、本発明の趣旨においては、その際、少なくとも部分的にまたは特に完全に、1種のリン窒化物からまたは複数種のリン窒化物から形成されている層を表すことができる(例えばPN(CAS 17739-47-8)、P35(CAS 61361-50-0)および/またはN53(CAS 12136-91-3))。 In the case of the soft magnetic material, the electrical insulating layer is further formed as a phosphorus nitride layer. In the meaning of the present invention, the term “phosphorus nitride layer” means a layer formed at least partly or in particular completely from one phosphor nitride or from several phosphor nitrides. (Eg PN (CAS 17739-47-8), P 3 N 5 (CAS 61361-50-0) and / or N 5 P 3 (CAS 12136-91-3)).

特に、電気的絶縁層がリン窒化物層として形成されていることによって、前記の軟磁性の材料の多くの利点もしくは特に好ましい特性を達成できる。   In particular, many advantages or particularly favorable characteristics of the soft magnetic material can be achieved by forming the electrically insulating layer as a phosphorus nitride layer.

詳細には、特に、リン窒化物層が、非常に良好な電気的絶縁性を示す。それによって、例えば、そのことは多くの工業的用途で必要となるかまたは少なくとも好ましいことがあるが、渦電流損は大きく低減されうる。それによって、上記の軟磁性の材料は、まさに渦電流損が最小化されるべきような用途に際して特に好ましく使用できる。   In particular, in particular, the phosphor nitride layer exhibits very good electrical insulation. Thereby, for example, it may be necessary or at least preferred in many industrial applications, but eddy current losses can be greatly reduced. Thereby, the soft magnetic material described above can be used particularly preferably in applications where eddy current losses are to be minimized.

更に、電気的絶縁層のためにリン窒化物を使用することによって、良好な電気的絶縁も、取り囲まれた金属粒子の特に安定な結合も達成できる。従って、多くの用途に適した非常に安定な材料を得ることができる。その際、高温使用も、高圧下での使用も上記の材料によって問題なく可能である。従って、電気的絶縁層中でリン窒化物を使用することによって、先行技術から公知の、多くの使用分野についての、金属粒子の粒界に存在する例えば酸化物などの材料に基づく低い強度もしくは安定性に対する欠点を克服することができる。   Furthermore, by using phosphorus nitride for the electrically insulating layer, both good electrical insulation and a particularly stable bond of the enclosed metal particles can be achieved. Therefore, a very stable material suitable for many applications can be obtained. At that time, use at high temperature and use under high pressure are possible with the above materials without any problems. Thus, by using phosphorous nitride in the electrical insulation layer, low strength or stability based on materials known from the prior art, such as oxides, present at the grain boundaries of metal particles for many fields of use. The disadvantage to sex can be overcome.

更に、上述の軟磁性の材料は、該材料が特に良好な耐蝕性を有しうるという利点を提供する。従って、過酷な条件下での使用も酸化雰囲気下での使用も問題なく可能であるため、使用分野は更に拡大される。上述の軟磁性の材料の好ましいが、制限するものではない使用分野は、その際、ガソリンエンジンもしくはディーゼルエンジン用の電磁弁の製造に見受けられる。   Furthermore, the soft magnetic material described above offers the advantage that the material can have a particularly good corrosion resistance. Accordingly, the field of use can be further expanded because it can be used under severe conditions and in an oxidizing atmosphere without any problem. A preferred but not restrictive field of use of the soft magnetic materials mentioned is then found in the production of solenoid valves for gasoline or diesel engines.

従って、本発明によれば、まとめると、耐蝕性および安定性もしくは機械的特性の点で、従来技術から公知の軟磁性の材料に対して利点を有し、かつその際更に、特に金属粒子を少なくとも部分的に包囲する追加の非常に良好な電気的絶縁層に基づき、特に広い工業的利用分野を可能にしうる軟磁性の材料をもたらすことができる。   Thus, according to the present invention, in summary, in terms of corrosion resistance and stability or mechanical properties, it has advantages over soft magnetic materials known from the prior art, and in particular, in particular metal particles Based on an additional very good electrically insulating layer that at least partly surrounds, a soft magnetic material can be provided which can enable a particularly wide industrial field of application.

一実施形態の範囲においては、前記の金属粒子は、少なくとも部分的に鉄を有してよい。例えば、純鉄粒子を使用でき、または鉄製で追加的に他の金属を有する基体を使用できる。例えば、鉄基合金であって、鉄の他に、例えば47質量%以上の割合で、他の元素を、例えばケイ素(Si)、アルミニウム(Al)、クロム(Cr)、ニッケル(Ni)、コバルト(Co)、モリブデン(Mo)、銅(Cu)、マンガン(Mn)、バナジウム(V)、リン(P)および/または炭素(C)を含有してよい合金を使用してよい。特に、かかる金属粒子、特に鉄粒子を使用して、特に好ましい軟磁性の特性を生成することができる。従って、特に、前記の実施形態においては、特に高性能の用途の広い軟磁性の材料が可能となりうる。更に、電気的絶縁層の成分としてのリン窒化物は、特に上述の金属粒子に特に良好に付着しうるので、より特に安定な軟磁性の材料を実現できることを見出すことができる。   In one embodiment, the metal particles may at least partially comprise iron. For example, pure iron particles can be used, or a substrate made of iron and additionally having other metals can be used. For example, it is an iron-based alloy, and in addition to iron, for example, other elements such as silicon (Si), aluminum (Al), chromium (Cr), nickel (Ni), cobalt in a proportion of 47% by mass or more Alloys that may contain (Co), molybdenum (Mo), copper (Cu), manganese (Mn), vanadium (V), phosphorus (P) and / or carbon (C) may be used. In particular, such metal particles, in particular iron particles, can be used to produce particularly favorable soft magnetic properties. Therefore, in particular, in the above-described embodiment, a soft magnetic material having a wide range of applications and particularly high performance may be possible. Furthermore, since phosphorus nitride as a component of the electrically insulating layer can adhere particularly well to the above-described metal particles, it can be found that a more particularly stable soft magnetic material can be realized.

更なる一実施形態の範囲においては、前記の金属粒子、特に鉄粒子は、1μm以上から500μm以下までの範囲の粒度を有してよい。この実施形態においては、特に安定な組織が得られるので、該軟磁性の材料は、特にこの実施形態においては、特に過酷な条件下で、例えば過酷な温度、圧力または腐蝕性の雰囲気下で使用できる。それによって、多岐にわたる使用分野が前記軟磁性の材料で可能である。   In a further embodiment, the metal particles, in particular iron particles, may have a particle size ranging from 1 μm to 500 μm. In this embodiment, a particularly stable structure is obtained, so that the soft magnetic material is used particularly in this embodiment under particularly harsh conditions, for example under harsh temperature, pressure or corrosive atmospheres. it can. Thereby, a wide variety of fields of use are possible with the soft magnetic material.

更なる一実施形態の範囲においては、リン窒化物層は、金属粒子の粒界に存在してよい。この実施形態においては、特に安定かつ耐蝕性の組織が得られるので、該軟磁性の材料は、特にこの実施形態においては、特に過酷な条件下で、例えば過酷な温度、圧力または腐蝕性の雰囲気下で使用できる。更に、ここで、特に良好な絶縁作用を生じうるので、例えば渦電流損は、特にこの実施形態においては、特に効果的に低減することができる。それによって、多岐にわたる使用分野が前記軟磁性の材料で可能である。   In a further embodiment, the phosphorous nitride layer may be present at the grain boundaries of the metal particles. In this embodiment, a particularly stable and corrosion-resistant structure is obtained, so that the soft magnetic material is used in particular in this embodiment, particularly under harsh conditions, such as harsh temperature, pressure or corrosive atmospheres. Can be used below. Furthermore, a particularly good insulating action can be produced here, for example eddy current losses can be reduced particularly effectively, especially in this embodiment. Thereby, a wide variety of fields of use are possible with the soft magnetic material.

本発明による材料の更なる技術的特徴および利点に関しては、これとともに明示的に、本発明による方法に対する解説が参照される。   With regard to further technical features and advantages of the material according to the invention, reference is also made explicitly to the explanation for the method according to the invention.

本発明の対象は、更に、上記の構成の軟磁性の材料の製造方法において:
a)金属粒子を有する金属粉末を準備する方法工程と、
b)リン窒化物またはリン窒化物前駆体を、前記金属粒子の表面の少なくとも一部上に施与する方法工程と、
c)任意に、方法工程b)で生成した生成物を乾燥させる方法工程と、
d)任意に、プレス助剤を加える方法工程と、
e)方法工程b)もしくはc)もしくはd)で生成した生成物を高められた圧力下で圧縮する方法工程と、
f)方法工程b)もしくはc)もしくはd)もしくはe)で得られた生成物を高められた温度で処理する方法工程と、
を有する前記製造方法である。
The subject of the present invention is also a method for producing a soft magnetic material having the above-described structure:
a) a method step of preparing a metal powder having metal particles;
b) applying a phosphor nitride or phosphor nitride precursor on at least a portion of the surface of the metal particles;
c) optionally a method step of drying the product produced in method step b);
d) optionally a method step of adding a pressing aid;
e) a process step of compressing the product produced in process step b) or c) or d) under increased pressure;
f) a method step of treating the product obtained in method step b) or c) or d) or e) at an elevated temperature;
It is the said manufacturing method which has these.

前記の方法は、インサイチューで、つまり本質的に一回の連続的な製造方法において、金属粒子と、該金属粒子上に施与された電気的絶縁層としての電気的絶縁性のリン窒化物層とを有する軟磁性の材料が生成しうる点で優れている。その際に、良好な電気的絶縁は、生成した材料の特に高い安定性とともに実現できる。   Said method is in-situ, i.e. essentially in a single continuous production process, with metal particles and an electrically insulating phosphorous nitride as an electrically insulating layer applied on said metal particles. It is excellent in that a soft magnetic material having a layer can be produced. In so doing, good electrical insulation can be achieved with a particularly high stability of the material produced.

このために、方法工程a)において、金属粒子を有する金属粉末の準備が行われる。前記の金属粒子は、特に鉄粒子であってよく、その際、前記粒子は、1μm以上から500μm以下までの範囲の平均粒度を有してよい。高純度の鉄粉のための一例は、Hoeganaes AB社の商品名ABC 100.30を有する市販の鉄粉である。しかしながら、基本的には、金属製のおよび金属合金製の他の粉末および粉末混合物も可能である。   For this purpose, in process step a), a metal powder having metal particles is prepared. The metal particles may in particular be iron particles, in which case the particles may have an average particle size ranging from 1 μm to 500 μm. An example for a high purity iron powder is a commercial iron powder having the trade name ABC 100.30 from Hoeganaes AB. In principle, however, other powders and powder mixtures made of metals and metal alloys are also possible.

電気的絶縁層を金属粒子上に施与するために、方法工程b)においては、例えば三リン五窒化物(P35)またはリン一窒化物(PN)などのリン窒化物またはリン窒化物前駆体を、前記金属粒子の表面の少なくとも一部の上に施与することが行われる。従って、例えば、直接的にリン窒化物が施与されるか、またはリン窒化物前駆体が施与されてよい。リン窒化物前駆体とは、その際、本発明の趣旨においては、特に、後続の方法工程でリン窒化物を得ることができる物質または物質混合物を表すことができる。例えば、前駆体としては、廉価な有機のリン−窒素化合物を用いることができるか、または窒素化合物およびリン化合物からなる混合物を用いることができ、それによってリン源および窒素源を金属粒子の表面上にもたらすことができる。前記化合物は、その際、特に、金属粒子の完全な一回の包囲と該金属粒子の橋かけが可能となりうるように選択できる。 In order to apply the electrically insulating layer on the metal particles, in process step b), a phosphorous nitride or phosphorous nitride, such as, for example, triphosphorus pentanitride (P 3 N 5 ) or phosphorous mononitride (PN) The material precursor is applied on at least a part of the surface of the metal particles. Thus, for example, phosphorous nitride may be applied directly or a phosphorous nitride precursor may be applied. In this context, the phosphorus nitride precursor can in particular represent a substance or a mixture of substances from which the phosphorus nitride can be obtained in a subsequent process step. For example, as the precursor, an inexpensive organic phosphorus-nitrogen compound can be used, or a mixture of a nitrogen compound and a phosphorus compound can be used, whereby the phosphorus source and the nitrogen source are placed on the surface of the metal particle. Can bring in. The compound can then be selected in particular so that a complete envelopment of the metal particles and crosslinking of the metal particles can be made possible.

従ってリン源の他にも窒素源が特に直接的に金属粒子の粒界に位置することによって、酸化グラジエントもしくは窒化グラジエントが想定されず、それにより特に均質な生成物もしくは特に均質な特性を有する軟磁性の材料を作製できる。   Therefore, in addition to the phosphorus source, the nitrogen source is located directly at the grain boundaries of the metal particles, so that no oxidation gradient or nitridation gradient is envisaged, so that a soft product having a particularly homogeneous product or a particularly homogeneous characteristic is assumed. Magnetic material can be produced.

特に、リン窒化物もしくはリン窒化物前駆体に、金属粒子上への施与に際して、例えば溶剤が想定される場合については、後続の方法工程c)において、方法工程b)で生成された生成物の乾燥が行われる。   In particular, in the case where a solvent is envisaged, for example when a solvent is envisaged upon application onto the metal particles to the phosphor nitride or phosphor nitride precursor, the product produced in method step b) in the subsequent method step c). Is dried.

更なる方法工程d)において、方法工程b)で生成した、任意に乾燥された生成物には、任意にプレス助剤を加えることができる。プレス助剤は、その際、特に、プレス過程に良い影響を及ぼしうる物質であってよい。特に、プレス助剤は、例えば改善された流動特性の調整によって、非常に均質な形状の形成と組織応力(Gefuegespannung)の低下のもとに形状付与を改善できる。プレス助剤としては、例えばステアリン酸亜鉛もしくは脂肪酸アミド、例えばAcrawax CまたはMicrowax Cなどの脂肪酸アミドを使用できる。脱脂に加えて前記プレス助剤の除去は、特に、圧密化の後で、かつ例えば後に説明されるような最後の熱処理の前に、通常は、300℃以上から450℃以下までの温度範囲で行うことができる。   In a further process step d), a pressing aid can optionally be added to the optionally dried product produced in process step b). The pressing aid can then be a substance that can in particular have a positive influence on the pressing process. In particular, the pressing aid can improve the shape formation under the formation of a very homogeneous shape and the reduction of the tissue stress (Gefuegespannung), for example by adjusting the improved flow properties. As pressing aids, for example, zinc stearate or fatty acid amides, for example fatty acid amides such as Acrawax C or Microwax C can be used. In addition to degreasing, the removal of the pressing aid is usually carried out in the temperature range from above 300 ° C. to below 450 ° C., especially after consolidation and before the final heat treatment as explained later, for example. It can be carried out.

更に、更なる方法工程e)においては、方法工程b)もしくはc)もしくはd)で生成された生成物の圧縮もしくは圧密化は、高められた圧力下で行われ、更に、方法工程e)においては、方法工程b)もしくはc)もしくはd)もしくはe)で得られた生成物の処理は、高められた温度で行われる。それによって、前記複合材料は、緻密化もしくはプレスされ、その最終形状とすることができる。その際、上述の緻密化および熱処理は、特に、粒界における共有結合型のリン窒化物の形成をもたらし、ここで所望の磁性特性を保持して、よりかなり高い強度をもたらす。言い換えると、ここでは、電気的絶縁層を、粒界でもしくは粒子表面上で生じさせることが行われる。更に、例えば、前記のリン窒化物前駆体はリン窒化物へと反応しうる。その際、方法工程e)は、方法工程c)の後でまたはそれと同時に進行してよい。その際、熱処理は、例えば400℃以上で、および/またはほぼ900℃以下までの温度範囲で行うことができる。上記のように、プレス助剤の除去は、緻密化の前に、つまり圧力および上述の温度を加える前に行うことができる。この場合に、二段階の加熱を行うことができる。しかしながら、温度段階とそのために使用される保持すべき温度の厳密な定義された隔離が常に可能なわけではなく、その温度段階は、互いに移行状態にあるため一つの温度処理だけが行われうることも当業者には明白である。   Furthermore, in a further process step e), the compression or consolidation of the product produced in process step b) or c) or d) takes place under increased pressure, and in process step e). The treatment of the product obtained in process step b) or c) or d) or e) takes place at an elevated temperature. Thereby, the composite material can be densified or pressed to its final shape. In doing so, the above-mentioned densification and heat treatment leads in particular to the formation of covalently bonded phosphonitrides at the grain boundaries, where it retains the desired magnetic properties and results in a much higher strength. In other words, here, an electrical insulating layer is produced at the grain boundary or on the grain surface. Further, for example, the phosphorus nitride precursor can react to phosphorus nitride. In doing so, method step e) may proceed after or simultaneously with method step c). In this case, the heat treatment can be performed at a temperature range of, for example, 400 ° C. or higher and / or approximately 900 ° C. or lower. As mentioned above, the removal of the pressing aid can be carried out before densification, i.e. before applying pressure and the above-mentioned temperature. In this case, two-stage heating can be performed. However, a strictly defined isolation between the temperature stage and the temperature to be used for it is not always possible, and the temperature stages are in transition with each other so that only one temperature treatment can be performed. Will also be apparent to those skilled in the art.

一実施形態の範囲においては、前記方法工程e)およびf)の少なくとも1つは、不活性ガス雰囲気下で行うことができる。この実施形態においては、まだ保護層が設けられていない金属粒子が腐食もしくは酸化されることを抑えることができる。従って、軟磁性の材料は、所望の特性を有し、かつ金属粒子の少なくとも部分的な酸化によって所望の特性に悪影響が起こらないということが保証できる。不活性ガス雰囲気とは、その場合、特に、使用される材料、特に金属粒子が安定である雰囲気を表しうる。例えば、不活性ガス雰囲気とは、真空雰囲気または窒素雰囲気またはアルゴン雰囲気または前記雰囲気の混合物、例えばアルゴンおよび窒素からなる混合物または減圧アルゴン雰囲気を表しうる。   In one embodiment, at least one of the process steps e) and f) can be performed under an inert gas atmosphere. In this embodiment, it can suppress that the metal particle in which the protective layer is not provided yet is corroded or oxidized. Therefore, it can be ensured that the soft magnetic material has the desired properties and that the desired properties are not adversely affected by at least partial oxidation of the metal particles. The inert gas atmosphere can in this case represent an atmosphere in which the materials used, in particular the metal particles, are stable. For example, the inert gas atmosphere may represent a vacuum atmosphere, a nitrogen atmosphere, an argon atmosphere, or a mixture of the above atmospheres, such as a mixture of argon and nitrogen or a reduced pressure argon atmosphere.

更なる一実施形態の範囲においては、前記の方法工程e)およびf)の少なくとも1つは、アンモニアガスおよび水素ガスを有する雰囲気下で実施することができる。特にこの実施形態においては、窒化物の形成が優勢となり、酸素の侵入は回避できる。それにより、特に効果的な軟磁性の特性に加えて、特に好ましくは際だった電気的絶縁層を有する特に定義された生成物を得ることができる。その際、例えば、0.1以上で20以下の窒化ポテンシャル(Nitrierkennzahl)を調整できる。その際、前記の窒化ポテンシャルとは、水素とアンモニアの分圧の比率である。   In a further embodiment, at least one of the process steps e) and f) can be performed under an atmosphere having ammonia gas and hydrogen gas. In particular, in this embodiment, the formation of nitride is dominant, and oxygen intrusion can be avoided. Thereby, in addition to the particularly effective soft magnetic properties, it is possible to obtain a particularly defined product with a particularly preferably distinct electrical insulating layer. At this time, for example, a nitriding potential (Nitrierkennzahl) of 0.1 to 20 can be adjusted. In this case, the nitriding potential is the ratio of the partial pressure of hydrogen and ammonia.

更なる一実施形態の範囲においては、リン窒化物前駆体としては、炭素不含の化合物を使用できる。特に、有機前駆体中で炭素を省くことによって、特に際立った軟磁性特性を有する軟磁性の材料を作製することができる。言い換えると、炭素を予定するかまたは炭素が存在することによって磁性特性の悪化が生じることを抑えることができる。   In a further embodiment, a carbon-free compound can be used as the phosphorus nitride precursor. In particular, by omitting carbon in the organic precursor, a soft magnetic material having particularly outstanding soft magnetic properties can be produced. In other words, it is possible to suppress the deterioration of the magnetic properties due to the appointment of carbon or the presence of carbon.

この実施形態の範囲においては、リン窒化物前駆体としてリンニトリルアミドを使用することができる。その際、特に、リンニトリルアミド、例えば[PN(NH22n(n=3、4)(CAS: 6954-20-7もしくは13597-92-7)は、前駆体として本方法において良好に使用できる。それというのも、最低限のコンディショニングを通じて、例えば溶剤中への溶解のように使用でき、その際、金属粒子を特に良好に包囲できるからである。例として使用できる前駆体は、式(I)および(II)

Figure 0006444033
で示されるようなリンニトリルアミドであり、その際、式(I)は、H1293(CAS 13597-92-7)を示し、かつ式(II)は、H16124(CAS 6954-20-7)を示す。 Within the scope of this embodiment, phosphorus nitrile amide can be used as the phosphorus nitride precursor. In particular, phosphorus nitrile amides such as [PN (NH 2 ) 2 ] n (n = 3, 4) (CAS: 6954-20-7 or 13597-92-7) are particularly good as precursors in this method. Can be used for This is because it can be used with minimal conditioning, for example, dissolution in a solvent, in which the metal particles can be surrounded particularly well. Precursors that can be used as examples are of formula (I) and (II)
Figure 0006444033
Wherein the formula (I) represents H 12 N 9 P 3 (CAS 13597-92-7) and the formula (II) represents H 16 N 12 P 4 (CAS 6954-20-7).

更に、かかる物質は、例えばテキスタイルの耐火性および耐洗浄性の向上のために知られており、従って化学的に懸念がないものと分類されている。従って、本方法は、更に特に環境に優しい。例えば、溶解された状態では、その際に、リンおよび窒素は、金属粒子にわたって問題なく均質に分布しうる。そのことは、特に完全な定義された効果的な絶縁層もしくは保護層を可能にすることができる。   In addition, such materials are known, for example, for improving the fire and wash resistance of textiles and are therefore classified as chemically unattractive. The method is therefore more particularly environmentally friendly. For example, in the dissolved state, phosphorus and nitrogen can then be uniformly distributed without problems over the metal particles. That can in particular enable a fully defined and effective insulating or protective layer.

更なる一実施形態の範囲においては、リン窒化物前駆体は、易揮発性溶剤、例えば特にアセトン中の溶液として、金属粒子の表面の少なくとも一部上に施与することができる。特にこの実施形態においては、該方法は、特に容易にかつ定義されて実施できる。それというのも、均質な混合物を実現でき、更に溶剤は問題なくかつ残留物なく除去できるからである。易揮発性の溶剤とは、この場合、本発明の趣旨においては、特に、140℃以下の範囲、特に70℃以下の範囲の沸点を有する溶剤を表しうる。   In a further embodiment, the phosphorous nitride precursor can be applied on at least a part of the surface of the metal particles as a solution in a volatile solvent, such as in particular acetone. Particularly in this embodiment, the method can be carried out particularly easily and as defined. This is because a homogeneous mixture can be realized and the solvent can be removed without problems and without residue. In this case, the easily volatile solvent may represent a solvent having a boiling point in the range of 140 ° C. or less, particularly in the range of 70 ° C. or less, in the spirit of the present invention.

本発明による方法の更なる技術的特徴および利点に関しては、これとともに明示的に、本発明による材料に対する解説が参照される。   With respect to further technical features and advantages of the method according to the invention, reference is made explicitly to this to the description of the material according to the invention.

本発明による対象の更なる利点および好ましい実施形態を、実施例によって具体的に示し、以下の記載において説明する。その際、実施例は、記載している特性のみを有するものと考慮すべきであり、本発明をいかように限定することを意図するものではない。   Further advantages and preferred embodiments of the subject according to the invention are specifically illustrated by way of example and explained in the following description. In so doing, the examples should be considered as having only the characteristics described, and are not intended to limit the invention in any way.

例1
Hoeganaes社の商品名ABC 100.30を有する市販の鉄粉に、アセトン中のリンニトリルアミドH1293(CAS 13597-92-7)の溶液を加える。H1293とアセトンとの混合比は、容量に対して1:4である。鉄粉と該溶液との間の混合比は、容量に対して9:1である。引き続き、該生成物を、例えばオーブン中で75℃の温度において溶剤が完全に除去されるまで乾燥させる。引き続き該生成物を型に移す。その際、その表面にはプレス助剤(例えば脂肪酸)が加えられてよい。800MPaの圧力および50℃以下の温度で緻密化される。更なる段階で、リンニトリルアミドを熱分解によって分解する。その際、アルゴン/窒素−雰囲気において、400℃〜900℃の範囲の温度でリンニトリルアミドは分解される。その際、水素とアンモニアが離脱し、それらは複合材料から拡散放出される。熱分解後に、鉄粒子と粒界にリン窒化物を有する軟磁性の複合材料が得られる。
Example 1 :
To a commercial iron powder having the trade name ABC 100.30 from Hoeganaes is added a solution of phosphonitrile amide H 12 N 9 N 3 (CAS 13597-92-7) in acetone. The mixing ratio of H 12 N 9 P 3 and acetone is 1: 4 with respect to the volume. The mixing ratio between the iron powder and the solution is 9: 1 with respect to the volume. Subsequently, the product is dried, for example in an oven at a temperature of 75 ° C., until the solvent is completely removed. The product is subsequently transferred to a mold. At that time, a pressing aid (for example, fatty acid) may be added to the surface. Densification is performed at a pressure of 800 MPa and a temperature of 50 ° C. or lower. In a further step, the phosphonitrile amide is decomposed by pyrolysis. In this case, phosphonitrile amide is decomposed at a temperature in the range of 400 ° C. to 900 ° C. in an argon / nitrogen atmosphere. At that time, hydrogen and ammonia are released and diffused and released from the composite material. After pyrolysis, a soft magnetic composite material having iron particles and phosphorus nitride at the grain boundaries is obtained.

例2
Hoeganaes社の商品名ABC 100.30を有する市販の鉄粉に、リンニトリルアミドH16124(CAS 6954-20-7)を容量比15:1で加える。H16124(CAS 6954-20-7)の平均粒度は、100μm未満である。引き続き、該生成物をボールミル中で24時間にわたり粉砕する。それにより、前記鉄粉の表面上に堆積する非常に微細なリンニトリルアミド粒子が生ずる。引き続き、該生成物を型に移し、800MPaの圧力および150℃の温度で緻密化する。更なる段階で、リンニトリルアミドを熱分解によって分解する。その際、アルゴン/窒素−雰囲気において、400℃以上から900℃以下までの範囲の温度でリンニトリルアミドは分解される。その際、水素とアンモニアが離脱し、それらは複合材料から拡散放出される。熱分解後に、鉄粒子と粒界にリン窒化物を有する軟磁性の複合材料が得られる。
Example 2 :
Phosphoronitrile amide H 16 N 12 P 4 (CAS 6954-20-7) is added at a volume ratio of 15: 1 to a commercial iron powder having the trade name ABC 100.30 from Hoeganaes. The average particle size of H 16 N 12 P 4 (CAS 6954-20-7) is less than 100 μm. Subsequently, the product is ground in a ball mill for 24 hours. This produces very fine phosphonitrile amide particles that deposit on the surface of the iron powder. Subsequently, the product is transferred to a mold and densified at a pressure of 800 MPa and a temperature of 150 ° C. In a further step, the phosphonitrile amide is decomposed by pyrolysis. In this case, phosphonitrile amide is decomposed at a temperature ranging from 400 ° C. to 900 ° C. in an argon / nitrogen atmosphere. At that time, hydrogen and ammonia are released and diffused and released from the composite material. After pyrolysis, a soft magnetic composite material having iron particles and phosphorus nitride at the grain boundaries is obtained.

例3
Hoeganaes社の商品名ABC 100.30を有する市販の鉄粉に、三リン五窒化物(P35)を容量比25:1で加える。P35の平均粒度は、10μm未満である。引き続き、該生成物をボールミル中で24時間にわたり粉砕する。それにより、前記鉄粉の表面上に堆積する非常に微細なP35粒子が生ずる。引き続き、該生成物を型に移し、800MPaの圧力および750℃の温度で緻密化する。緻密化後に、鉄粒子を有し粒界にリン窒化物を有する軟磁性の複合材料が得られる。
Example 3 :
Triphosphorus pentanitride (P 3 N 5 ) is added in a volume ratio of 25: 1 to a commercial iron powder having the trade name ABC 100.30 from Hoeganaes. The average particle size of P 3 N 5 is less than 10 μm. Subsequently, the product is ground in a ball mill for 24 hours. Thereby, very fine P 3 N 5 particles are deposited on the surface of the iron powder. Subsequently, the product is transferred to a mold and densified at a pressure of 800 MPa and a temperature of 750 ° C. After densification, a soft magnetic composite material having iron particles and phosphorus nitride at the grain boundaries is obtained.

例4
Hoeganaes社の商品名ABC 100.30を有する市販の鉄粉に、アセトン中の三リン五窒化物(P35)の溶液を加える。P35とアセトンとの混合比は、容量に対して1:4である。鉄粉と該溶液との間の混合比は、容量に対して9:1である。引き続き、該生成物を、例えばオーブン中で75℃の温度において溶剤が完全に除去されるまで乾燥させる。引き続き該生成物を型に移す。その際、その表面にはプレス助剤(例えば脂肪酸)が加えられてよい。800MPaの圧力および750℃以下の温度で緻密化される。緻密化後に、鉄粒子を有し粒界にリン窒化物を有する軟磁性の複合材料が得られる。
Example 4 :
A solution of triphosphorus pentanitride (P 3 N 5 ) in acetone is added to commercial iron powder having the trade name ABC 100.30 from Hoeganaes. The mixing ratio of P 3 N 5 and acetone is 1: 4 with respect to the volume. The mixing ratio between the iron powder and the solution is 9: 1 with respect to the volume. Subsequently, the product is dried, for example in an oven at a temperature of 75 ° C., until the solvent is completely removed. The product is subsequently transferred to a mold. At that time, a pressing aid (for example, fatty acid) may be added to the surface. Densification is performed at a pressure of 800 MPa and a temperature of 750 ° C. or lower. After densification, a soft magnetic composite material having iron particles and phosphorus nitride at the grain boundaries is obtained.

例5
Hoeganaes社の商品名ABC 100.30を有する市販の鉄粉に、リン一窒化物(PN)を容量比25:1で加える。PNの平均粒度は、10μm未満である。引き続き、該生成物をボールミル中で24時間にわたり粉砕する。それにより、前記鉄粉の表面上に堆積する非常に微細なPN粒子が生ずる。引き続き、該生成物を型に移し、800MPaの圧力および550℃の温度で緻密化する。緻密化後に、鉄粒子を有し粒界にリン窒化物を有する軟磁性の複合材料が得られる。
Example 5 :
Phosphorus mononitride (PN) is added in a volume ratio of 25: 1 to a commercial iron powder having the trade name ABC 100.30 from Hoeganaes. The average particle size of PN is less than 10 μm. Subsequently, the product is ground in a ball mill for 24 hours. Thereby, very fine PN particles are deposited on the surface of the iron powder. Subsequently, the product is transferred to a mold and densified at a pressure of 800 MPa and a temperature of 550 ° C. After densification, a soft magnetic composite material having iron particles and phosphorus nitride at the grain boundaries is obtained.

[本発明の態様]
1. 金属粒子と、該金属粒子の表面上に少なくとも部分的に配置された電気的絶縁層とから形成された軟磁性の材料であって、前記電気的絶縁層がリン窒化物層として形成されており、かつ前記金属粒子が前記電気的絶縁層によって互いに結合されている前記軟磁性の材料。
2. 1に記載の材料であって、前記金属粒子が、少なくとも部分的に鉄を有する前記材料。
3. 1または2に記載の材料であって、前記金属粒子が、1μm以上から500μm以下までの範囲の粒度を有する前記材料。
4. 1から3までのいずれかに記載の材料であって、リン窒化物層が、金属粒子の粒界に存在する前記材料。
5. 1から4までのいずれかに記載の軟磁性の材料の製造方法において:
a)金属粒子を有する金属粉末を準備する方法工程と、
b)リン窒化物またはリン窒化物前駆体を、前記金属粒子の表面の少なくとも一部上に施与する方法工程と、
c)任意に、方法工程b)で生成した生成物を乾燥させる方法工程と、
d)任意に、プレス助剤を加える方法工程と、
e)方法工程b)もしくはc)もしくはd)で生成した生成物を高められた圧力下で圧縮する方法工程と、
f)方法工程b)もしくはc)もしくはd)もしくはe)で得られた生成物を高められた温度で処理する方法工程と、
を有する前記製造方法。
6. 5に記載の方法において、前記方法工程e)およびf)の少なくとも1つを、不活性ガス雰囲気下で行う前記方法。
7. 5に記載の方法において、前記の方法工程e)およびf)の少なくとも1つを、アンモニアガスおよび水素ガスを有する雰囲気下で実施する前記方法。
8. 5から7までのいずれかに記載の方法において、リン窒化物として、三リン五窒化物(P35)またはリン一窒化物(PN)が使用される前記方法。
9. 5から8までのいずれかに記載の方法において、リン窒化物前駆体として、炭素不含の化合物が使用される前記方法。
10. 9に記載の方法において、リン窒化物前駆体として、リンニトリルアミドが使用される前記方法。
11. 5から10までのいずれかに記載の方法において、リン窒化物前駆体を、易揮発性溶剤、例えば特にアセトン中の溶液として、金属粒子の表面の少なくとも一部上に施与する前記方法。
[Aspect of the Invention]
1. A soft magnetic material formed of metal particles and an electrically insulating layer disposed at least partially on the surface of the metal particles, wherein the electrically insulating layer is formed as a phosphorus nitride layer. The soft magnetic material in which the metal particles are bonded to each other by the electrically insulating layer.
2. 2. The material according to 1, wherein the metal particles at least partially comprise iron.
3. 3. The material according to 1 or 2, wherein the metal particles have a particle size ranging from 1 μm to 500 μm.
4). 4. The material according to any one of 1 to 3, wherein the phosphorus nitride layer is present at a grain boundary of the metal particles.
5). In the method for producing a soft magnetic material according to any one of 1 to 4:
a) a method step of preparing a metal powder having metal particles;
b) applying a phosphor nitride or phosphor nitride precursor on at least a portion of the surface of the metal particles;
c) optionally a method step of drying the product produced in method step b);
d) optionally a method step of adding a pressing aid;
e) a process step of compressing the product produced in process step b) or c) or d) under increased pressure;
f) a method step of treating the product obtained in method step b) or c) or d) or e) at an elevated temperature;
The said manufacturing method which has these.
6). 6. The method according to 5, wherein at least one of the method steps e) and f) is performed in an inert gas atmosphere.
7). 6. The method according to 5, wherein at least one of the method steps e) and f) is carried out in an atmosphere having ammonia gas and hydrogen gas.
8). 8. The method according to any one of 5 to 7, wherein triphosphorus pentanitride (P 3 N 5 ) or phosphorous mononitride (PN) is used as the phosphorus nitride.
9. 9. The method according to any one of 5 to 8, wherein a carbon-free compound is used as the phosphorus nitride precursor.
10. 10. The method of claim 9, wherein phosphonitrile amide is used as the phosphorus nitride precursor.
11. 11. The method according to any one of 5 to 10, wherein the phosphorus nitride precursor is applied on at least a part of the surface of the metal particles as a solution in a volatile solvent, such as in particular acetone.

Claims (5)

金属粒子と、該金属粒子の表面上に少なくとも部分的に配置された電気的絶縁層とから形成された軟磁性の材料であって、前記電気的絶縁層がリン窒化物層として形成されており、かつ前記金属粒子が前記電気的絶縁層によって互いに結合されている前記軟磁性の材料の製造方法において:
a)金属粒子を有する金属粉末を準備する方法工程と、
b)リン窒化物前駆体としてリンニトリルアミドを、前記金属粒子の表面の少なくとも一部上に施与する方法工程と、
c)任意に、方法工程b)で生成した生成物を乾燥させる方法工程と、
d)任意に、方法工程b)またはc)で生成した生成物にプレス助剤を加える方法工程と、
e)方法工程b)もしくはc)もしくはd)で生成した生成物を高められた圧力下で圧縮する方法工程と、
f)方法工程b)もしくはc)もしくはd)もしくはe)で得られた生成物を高められた温度で処理する方法工程と、
を有する前記製造方法。
A soft magnetic material formed of metal particles and an electrically insulating layer disposed at least partially on the surface of the metal particles, wherein the electrically insulating layer is formed as a phosphorus nitride layer. And in the method for producing the soft magnetic material , wherein the metal particles are bonded to each other by the electrically insulating layer :
a) a method step of preparing a metal powder having metal particles;
b) applying a phosphonitrile amide as a phosphonitride precursor on at least a part of the surface of the metal particles;
c) optionally a method step of drying the product produced in method step b);
d) optionally a method step of adding a pressing aid to the product produced in method step b) or c) ;
e) a process step of compressing the product produced in process step b) or c) or d) under increased pressure;
f) a method step of treating the product obtained in method step b) or c) or d) or e) at an elevated temperature;
The said manufacturing method which has these.
請求項に記載の方法において、前記方法工程e)およびf)の少なくとも1つを、不活性ガス雰囲気下で行う前記方法。 2. The method according to claim 1 , wherein at least one of the method steps e) and f) is performed in an inert gas atmosphere. 請求項に記載の方法において、前記の方法工程e)およびf)の少なくとも1つを、アンモニアガスおよび水素ガスを有する雰囲気下で実施する前記方法。 The method according to claim 1 , wherein at least one of the method steps e) and f) is carried out in an atmosphere having ammonia gas and hydrogen gas. 請求項1から3までのいずれか1項に記載の方法において、リン窒化物前駆体を、易揮発性溶剤中の溶液として、金属粒子の表面の少なくとも一部上に施与する前記方法。 The method according to any one of claims 1 to 3, the phosphorus nitride precursor, as a solution in volatile solvent agent, said method of applying on at least a portion of the surface of the metal particles. 前記易揮発性溶剤がアセトンである、請求項4に記載の方法 The method of claim 4, wherein the readily volatile solvent is acetone .
JP2014003323A 2013-01-10 2014-01-10 Soft magnetic composite material and method for producing such material Active JP6444033B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013200229.7A DE102013200229B4 (en) 2013-01-10 2013-01-10 Process for producing a soft magnetic composite material
DE102013200229.7 2013-01-10

Publications (2)

Publication Number Publication Date
JP2014135491A JP2014135491A (en) 2014-07-24
JP6444033B2 true JP6444033B2 (en) 2018-12-26

Family

ID=51019238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014003323A Active JP6444033B2 (en) 2013-01-10 2014-01-10 Soft magnetic composite material and method for producing such material

Country Status (3)

Country Link
JP (1) JP6444033B2 (en)
CN (1) CN103928207B (en)
DE (1) DE102013200229B4 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61204944A (en) * 1985-03-08 1986-09-11 Nippon Telegr & Teleph Corp <Ntt> Insulating film forming method
CN85103742A (en) * 1985-05-16 1986-11-19 斯托弗化学公司 Adopt the Thin Film Transistor (TFT) of nitrogen group element polymer semiconductor
JPH033330A (en) * 1989-05-31 1991-01-09 Toshiba Corp Formation of insulating film onto semiconductor crystal substrate
JP4187266B2 (en) * 1996-02-23 2008-11-26 ホガナス アクチボラゲット Phosphate-coated iron powder and method for producing the same
DE10225154B4 (en) 2002-06-06 2012-06-06 Robert Bosch Gmbh Soft magnetic powder composite, process for its preparation and its use
JP2005171350A (en) 2003-12-12 2005-06-30 Toyota Central Res & Dev Lab Inc Insulating film, magnetic core powder, dust magnetic core, and method of manufacturing them
SE0303580D0 (en) * 2003-12-29 2003-12-29 Hoeganaes Ab Composition for producing soft magnetic composites by powder metallurgy
PL1899994T3 (en) * 2005-06-15 2018-01-31 Hoeganaes Ab Soft magnetic composite materials
US7824641B2 (en) 2007-05-25 2010-11-02 Lehigh University Periodic mesoporous phosphorus-nitrogen compounds
KR101737422B1 (en) * 2009-09-18 2017-05-18 회가내스 아베 (피유비엘) Ferromagnetic powder composition and method for its production
JP5513922B2 (en) * 2010-02-16 2014-06-04 株式会社神戸製鋼所 Iron-based soft magnetic powder for dust core, method for producing iron-based soft magnetic powder for dust core, and dust core
JP2012238841A (en) * 2011-04-27 2012-12-06 Taiyo Yuden Co Ltd Magnetic material and coil component

Also Published As

Publication number Publication date
DE102013200229A1 (en) 2014-07-10
CN103928207A (en) 2014-07-16
CN103928207B (en) 2018-02-23
DE102013200229B4 (en) 2024-06-06
JP2014135491A (en) 2014-07-24

Similar Documents

Publication Publication Date Title
JP5482097B2 (en) Soft magnetic material, dust core and method for manufacturing the same
KR20090102687A (en) Iron-based soft magnetic powder for dust core, production method thereof, and dust core
JP4851470B2 (en) Powder magnetic core and manufacturing method thereof
JP5189691B1 (en) Iron-based soft magnetic powder for dust core, method for producing the same, and dust core
JP2007012994A (en) Method for manufacturing insulating soft magnetic metal powder molding
WO2014157517A1 (en) Powder magnetic core for reactor
JP2011233827A (en) Dust core and manufacturing method therefor
JP2018041777A (en) Metal bond magnet and method for manufacturing the same
JP2005536036A (en) Soft magnetic powder composite material, production method thereof and use thereof
JP2009130286A (en) Method of manufacturing high-strength, high-specific-resistance composite soft magnetic material, and electromagnetic circuit component
JP2005133168A (en) Method for manufacturing compound soft magnetic material having excellent magnetic characteristic, high strength and low core loss
JP2003142310A (en) Dust core having high electrical resistance and manufacturing method therefor
CN104347221B (en) Soft magnetic metal powder composite material and method for manufacturing it
JP2009164317A (en) Method for manufacturing soft magnetism composite consolidated core
JP5513922B2 (en) Iron-based soft magnetic powder for dust core, method for producing iron-based soft magnetic powder for dust core, and dust core
JP6444033B2 (en) Soft magnetic composite material and method for producing such material
JP5716478B2 (en) Soft magnetic material
JP4371935B2 (en) Method for producing a soft magnetic sintered member
JP2010016290A (en) Ferrous metal magnetic particle, soft magnetic material, powder magnetic core and manufacturing method of them
US20050019558A1 (en) Coated ferromagnetic particles, method of manufacturing and composite magnetic articles derived therefrom
JP2009290128A (en) Method for manufacturing powder magnetic core
JP2010185126A (en) Composite soft magnetic material and method for producing the same
Chuang et al. Effects of phosphorus addition on the magnetic properties of sintered Fe-50 wt.% Ni alloys
CN113871128B (en) Soft magnetic alloy composite material and preparation method thereof
JP2014120492A (en) High heat resistant bond magnet, process of manufacturing the same, and motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171106

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180501

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181127

R150 Certificate of patent or registration of utility model

Ref document number: 6444033

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250