JP2018041777A - Metal bond magnet and method for manufacturing the same - Google Patents

Metal bond magnet and method for manufacturing the same Download PDF

Info

Publication number
JP2018041777A
JP2018041777A JP2016173362A JP2016173362A JP2018041777A JP 2018041777 A JP2018041777 A JP 2018041777A JP 2016173362 A JP2016173362 A JP 2016173362A JP 2016173362 A JP2016173362 A JP 2016173362A JP 2018041777 A JP2018041777 A JP 2018041777A
Authority
JP
Japan
Prior art keywords
magnet
alloy
metal bond
powder
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016173362A
Other languages
Japanese (ja)
Inventor
幸生 高田
Yukio Takada
幸生 高田
宏文 伊藤
Hirofumi Ito
宏文 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2016173362A priority Critical patent/JP2018041777A/en
Publication of JP2018041777A publication Critical patent/JP2018041777A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a novel metal bond magnet which is superior in heat resistance (high-temperature shape retention) and magnetic property.SOLUTION: A metal bond magnet of the present invention comprises: magnet particles made of a rare earth magnet alloy; and a binder for binding the magnet particles to one another. The binder comprises Sn and Cu. The metal bond magnet is 80% or more in relative density, and has an excellent magnetic property. The rare earth magnet alloy may be any of a Sm-Fe-N based alloy, a Nd-Fe-B based alloy and a Nd-Fe-N based alloy. The metal bond magnet of the invention can be obtained by heating the magnet particles made of a rare earth magnet alloy, raw material powder in which Sn and Cu sources are mixed, or a compact thereof at e.g. 250-450°C. The heating can be performed by e.g. a pulse energized sintering method (SPS). It is preferred that the Cu source is supplied as a plating layer coating the surface of each magnet particle.SELECTED DRAWING: Figure 3A

Description

本発明は、希土類磁石粒子を金属で結合させたメタルボンド磁石およびその製造方法に関する。   The present invention relates to a metal bonded magnet obtained by bonding rare earth magnet particles with a metal and a method for manufacturing the same.

非常に高い磁気特性を発揮する希土類磁石は、電磁機器や電動機の高出力化や小型化等に有効であるため、電気機器や自動車等の様々な分野で多用されている。希土類磁石は、大別して焼結磁石(熱間加工(ホットプレス)磁石を含む)とボンド磁石に大別される。焼結磁石は、高温加熱されるために使用できる希土類磁石合金の種類が限られる。また焼結磁石は、焼結時に液相を生じて寸法が大きく変化するため、研削等の後加工を要し、形状自由度が小さい。一方、ボンド磁石は、基本的に成形型に応じた形状で得られ、寸法精度が高く、後加工も不要である。また、圧縮成形の他に射出成形によっても得られるため、形状自由度も大きい。このため、最近では希土類系ボンド磁石の利用が拡大しつつある。   Rare earth magnets that exhibit very high magnetic properties are effective in increasing the output and miniaturization of electromagnetic devices and motors, and are therefore widely used in various fields such as electrical devices and automobiles. Rare earth magnets are roughly classified into sintered magnets (including hot-worked (hot pressed) magnets) and bonded magnets. Sintered magnets are limited in the types of rare earth magnet alloys that can be used because they are heated at high temperatures. Moreover, since a sintered magnet produces a liquid phase at the time of sintering and its dimensions change greatly, post-processing such as grinding is required, and the degree of freedom in shape is small. On the other hand, the bonded magnet is basically obtained in a shape corresponding to the mold, has high dimensional accuracy, and does not require post-processing. Moreover, since it can be obtained by injection molding in addition to compression molding, the degree of freedom in shape is also large. For this reason, the use of rare earth-based bonded magnets is increasing recently.

もっとも、従来の樹脂(特に熱硬化性樹脂)バインダーを用いたボンド磁石は、その耐熱性(形状保持性)がバインダー樹脂に依存しており、耐熱温度は高々200℃程度であった。そこで、バインダーとして樹脂ではなく金属を用いた希土類系メタルボンド磁石が提案されており、関連する記載が下記の特許文献にある。   However, bond magnets using conventional resin (especially thermosetting resin) binders depend on the binder resin for heat resistance (shape retention), and the heat resistance temperature is about 200 ° C. at most. Therefore, a rare earth metal bond magnet using a metal instead of a resin as a binder has been proposed, and related descriptions are in the following patent documents.

特開2009−76631号公報JP 2009-76631 A 特開2013−161829号公報JP 2013-161829 A

特許文献1には、希土類系磁石粉末、金属結合相および添加剤からなる混合物の圧縮成形体にマイクロ波を照射して金属結合相を焼結させた希土類系メタルボンド磁石に関する記載がある。しかし、特許文献1には、金属結合相として低融点金属が好ましい旨が記載されているものの、それに関する具体的な記載は全くない。   Patent Document 1 describes a rare earth metal bond magnet in which a compression molded body of a mixture composed of a rare earth magnet powder, a metal binder phase and an additive is irradiated with microwaves to sinter the metal binder phase. However, Patent Document 1 describes that a low melting point metal is preferable as the metal binder phase, but there is no specific description about it.

特許文献2には、SmFe17粒子間に、弾塑性比が50%以下の非磁性金属粒子(Cu粒子またはAl粒子)を介在させた希土類磁石成形体に関する記載がある。しかし、その希土類磁石成形体は、コールドスプレー法を用いた堆積物からなり、その非磁性金属粒子はバインダーではない。つまり特許文献2の希土類磁石成形体は、本明細書でいうようなメタルボンド磁石ではない。 Patent Document 2 describes a rare earth magnet molded body in which nonmagnetic metal particles (Cu particles or Al particles) having an elastic-plastic ratio of 50% or less are interposed between Sm 2 Fe 17 N 3 particles. However, the rare earth magnet compact is composed of a deposit using a cold spray method, and the nonmagnetic metal particles are not a binder. That is, the rare earth magnet molded body of Patent Document 2 is not a metal bond magnet as used in this specification.

本発明はこのような事情に鑑みて為されたものであり、従来とは異なる新たなメタルボンド磁石(希土類磁石)と、その製造方法を提供することを目的とする。   This invention is made | formed in view of such a situation, and it aims at providing the new metal bond magnet (rare earth magnet) different from the former, and its manufacturing method.

本発明者はこの課題を解決すべく鋭意研究した結果、希土類磁石粒子のバインダーとしてSn−Cu合金相を用いることにより、高密度で磁気特性に優れたメタルボンド磁石が得られることを新たに見出した。この成果を発展させることにより、以降に述べる本発明を完成するに至った。   As a result of intensive studies to solve this problem, the present inventors have newly found that a metal bond magnet having high density and excellent magnetic properties can be obtained by using a Sn—Cu alloy phase as a binder of rare earth magnet particles. It was. By developing this result, the present invention described below has been completed.

《メタルボンド磁石》
本発明のメタルボンド磁石は、希土類磁石合金からなる磁石粒子と、該磁石粒子同士を結合するバインダーとからなり、該バインダーは、スズ(Sn)と銅(Cu)からなることを特徴とする。
《Metal bond magnet》
The metal bond magnet of the present invention is composed of magnet particles made of a rare earth magnet alloy and a binder for bonding the magnet particles, and the binder is made of tin (Sn) and copper (Cu).

本発明のメタルボンド磁石は、磁石粒子を結合するバインダー(粒界相)が金属であるSn−Cu合金からなるため、従来の樹脂系ボンド磁石よりも高温域で使用可能である。また本発明のメタルボンド磁石は、非常に高い温度(例えば1000℃以上)で加熱することが必要となる液相焼結磁石ではないため、例えば、Nd−Fe−B系希土類磁石粉末等に限らず、Sm−Fe−N系希土類磁石粉末、Nd−Fe−N系希土類磁石粉末等をも原料粉末として用いることができる。さらに、バインダーであるSn−Cu合金は基本的に非磁性金属であるため、結合される磁石粒子(主相)間には自ずと非磁性相が形成されることになる。このため本発明のメタルボンド磁石は、隣接する磁石粒子同士が磁気的に孤立化された状態(相互作用が抑制された状態)となり、高保磁力を発現し易い。   The metal bond magnet of the present invention can be used in a higher temperature range than conventional resin bond magnets because it is made of a Sn—Cu alloy whose binder (grain boundary phase) for binding magnet particles is a metal. Moreover, since the metal bonded magnet of the present invention is not a liquid phase sintered magnet that needs to be heated at a very high temperature (for example, 1000 ° C. or higher), it is limited to, for example, Nd—Fe—B rare earth magnet powder and the like. In addition, Sm—Fe—N rare earth magnet powder, Nd—Fe—N rare earth magnet powder and the like can also be used as the raw material powder. Furthermore, since the Sn—Cu alloy as a binder is basically a nonmagnetic metal, a nonmagnetic phase is naturally formed between the magnet particles (main phase) to be bonded. For this reason, the metal bond magnet of the present invention is in a state where adjacent magnet particles are magnetically isolated (a state in which the interaction is suppressed), and easily exhibits a high coercive force.

加えて本発明のメタルボンド磁石は、高密度となり易く、高い磁気特性(特に残留磁束密度)も発揮し得る。この理由は、磁石粒子(特に、主成分であるFe等の遷移金属元素)に対するSn−Cu合金の濡れ性が高いためと考えられる。   In addition, the metal bond magnet of the present invention tends to be high in density and can also exhibit high magnetic properties (particularly residual magnetic flux density). The reason for this is considered to be because the wettability of the Sn—Cu alloy with respect to magnet particles (particularly, transition metal elements such as Fe which is the main component) is high.

ちなみに、Cu単体またはSn単体では、磁石粒子との濡れ性が非常に悪く、高密度化は図れなかった。またSn単体では、Snが磁石粒子(特にFe等の遷移金属元素)と反応して、その割合(主相分率)が低下した。従って、Cu単体またはSn単体からなるバインダーに用いても、磁気特性に優れるメタルボンド磁石は得られなかった。   Incidentally, Cu alone or Sn alone was very poor in wettability with magnet particles and could not be densified. In addition, with Sn alone, Sn reacted with magnet particles (especially transition metal elements such as Fe), and the ratio (main phase fraction) decreased. Therefore, even when used as a binder made of Cu alone or Sn alone, a metal bond magnet having excellent magnetic properties could not be obtained.

《メタルボンド磁石の製造方法》
本発明は、メタルボンド磁石としてのみならず、その製造方法としても把握できる。すなわち本発明は、希土類磁石合金からなる磁石粒子、Sn源およびCu源が混在した原料粉末または該原料粉末からなる成形体を加熱する加熱工程を備え、上述したメタルボンド磁石が得られることを特徴とするメタルボンド磁石の製造方法でもよい。
<Production method of metal bond magnet>
The present invention can be grasped not only as a metal bonded magnet but also as a manufacturing method thereof. That is, the present invention includes a heating step of heating a magnet particle made of a rare earth magnet alloy, a raw material powder in which a Sn source and a Cu source are mixed, or a molded body made of the raw material powder, and the metal bond magnet described above is obtained. The manufacturing method of a metal bond magnet may be used.

《メタルボンド磁石用粉末》
本発明は、上述したメタルボンド磁石の製造方法に適した被覆磁石粉末または複層被覆磁石粉末としても把握できる。すなわち本発明は、希土類磁石合金からなる磁石粒子の表面がCuで被覆された被覆粒子からなり、メタルボンド磁石の製造に用いられる被覆磁石粉末としても把握できる。この被覆磁石粉末は、その被覆粒子のCu表面がさらにSnで被覆された複層被覆粒子からなる複層被覆磁石粉末でもよい。さらに本発明は、その磁石粒子の表面がSn−Cu合金で被覆された合金被覆粒子からなる合金被覆磁石粉末でもよい。なお、磁石粒子の表面にあるCuまたはSnは、上述したCu源またはSn源の少なくとも一部を構成する。
<Powder for metal bond magnet>
The present invention can also be grasped as a coated magnet powder or a multilayer coated magnet powder suitable for the above-described method for producing a metal bonded magnet. That is, the present invention can be grasped as coated magnet powder used in the manufacture of metal bonded magnets, which is composed of coated particles in which the surface of magnet particles made of a rare earth magnet alloy is coated with Cu. This coated magnet powder may be a multilayer coated magnet powder comprising multilayer coated particles in which the Cu surface of the coated particles is further coated with Sn. Furthermore, the present invention may be an alloy-coated magnet powder composed of alloy-coated particles whose surfaces are coated with a Sn—Cu alloy. Note that Cu or Sn on the surface of the magnet particles constitutes at least a part of the above-described Cu source or Sn source.

《その他》
特に断らない限り本明細書でいう「x〜y」は下限値xおよび上限値yを含む。本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を新たな下限値または上限値として「a〜b」のような範囲を新設し得る。
<Others>
Unless otherwise specified, “x to y” in this specification includes a lower limit value x and an upper limit value y. A range such as “a to b” can be newly established with any numerical value included in various numerical values or numerical ranges described in the present specification as a new lower limit value or upper limit value.

被覆磁石粉末の粒子表面を観察したSEM像およびEPMA像である。It is the SEM image and EPMA image which observed the particle | grain surface of the covering magnet powder. Sn−Cu合金をバインダーとしたメタルボンド磁石の断面を観察したEPMA像である。It is the EPMA image which observed the cross section of the metal bond magnet which used Sn-Cu alloy as the binder. Snをバインダーとしたメタルボンド磁石に係るXRDパターンである。It is an XRD pattern which concerns on the metal bond magnet which used Sn as the binder. その断面を観察したEPMA像である。It is the EPMA image which observed the cross section. Sn量と相対密度の関係を示す分散図である。It is a dispersion | distribution figure which shows the relationship between Sn amount and a relative density. Cuを含まない試料に係るSPSの加熱温度と相対密度の関係を示す分散図である。It is a dispersion | distribution figure which shows the relationship between the heating temperature of SPS which concerns on the sample which does not contain Cu, and a relative density. Sn量と保磁力の関係を示す棒グラフである。It is a bar graph which shows the relationship between Sn amount and coercive force.

上述した本発明の構成要素に、本明細書中から任意に選択した一つまたは二つ以上の構成要素を付加し得る。本明細書で説明する内容は、メタルボンド磁石のみならず、その製造方法にも適宜該当し、また方法的な構成要素であっても物に関する構成要素ともなり得る。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。   One or two or more components arbitrarily selected from the present specification may be added to the above-described components of the present invention. The contents described in the present specification are applicable not only to the metal bonded magnet but also to the manufacturing method thereof as appropriate, and can be a structural component or a structural component. Which embodiment is the best depends on the target, required performance, and the like.

《磁石合金》
磁石粒子を構成する希土類磁石合金(単に「磁石合金」という。)は、希土類元素(R)と遷移金属元素(TM)を含む二元系または三元系以上の合金である。Rは、スカンジウム(Sc)、イットリウム(Y)、ランタノイド(La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbまたはLu)であるが、主にNdまたはSmである。遷移金属元素(TM)は、種々あるが、主に8族元素(Fe、CoまたはNi)であり、特にFeである。なお、本明細書でいう磁石合金には、いわゆる金属間化合物が含まれる。
《Magnet alloy》
The rare earth magnet alloy (simply referred to as “magnet alloy”) constituting the magnet particles is a binary or ternary or higher alloy containing a rare earth element (R) and a transition metal element (TM). R is scandium (Sc), yttrium (Y), lanthanoid (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb or Lu), but mainly Nd. Or Sm. Although there are various transition metal elements (TM), they are mainly Group 8 elements (Fe, Co or Ni), and particularly Fe. In addition, what is called an intermetallic compound is contained in the magnet alloy as used in this specification.

二元系磁石合金には、例えば、SmCo、SmCo17等を主に含むSm−Co系合金、PrCo等を主に含むPr−Co系合金がある。三元系磁石合金は、R、TMに加えて、ホウ素(B)または窒素(N)等を含む合金であり、例えば、NdFe14B等のR−TM−B系合金、SmFe17やNdFe12Nx等のR−TM−N系合金がある。なお、磁石合金は種々の改質元素(Ga、Nb、Al、Co等)や不可避不純物を含み得る。また磁石合金の全体組成は、NdFe14B、SmFe17等の構造式から導出される理論組成に対して多少変動していてもよい。 Examples of the binary magnet alloy include an Sm—Co alloy mainly containing SmCo 5 , Sm 2 Co 17 and the like, and a Pr—Co alloy mainly containing PrCo 5 and the like. The ternary magnet alloy is an alloy containing boron (B) or nitrogen (N) in addition to R and TM. For example, an R-TM-B alloy such as Nd 2 Fe 14 B, Sm 2 Fe there are R-TM-N based alloy such 17 N 3 and NdFe 12 Nx. The magnet alloy may contain various modifying elements (Ga, Nb, Al, Co, etc.) and inevitable impurities. Further, the overall composition of the magnet alloy may vary somewhat with respect to the theoretical composition derived from the structural formulas such as Nd 2 Fe 14 B, Sm 2 Fe 17 N 3 and the like.

《磁石粒子(粉末)》
磁石粒子は、磁石合金の鋳塊を水素粉砕したり、磁石合金の急冷凝固片(箔)を粉砕等して得られる。磁石粒子は、等方性でも異方性でも良い。磁石粒子の平均粒径は、0.5〜50μmさらには1〜25μmであると好ましい。磁石粒子は単磁区サイズに近いほど好ましいが、過小になると酸化により磁気特性が劣化し易い。また磁石粒子は過大であると保磁力が低下し得る。なお、本明細書でいう磁石粒子の平均粒径は、粒度分布測定結果から得られたd50値(d50:メジアン径)により特定される。
《Magnetic particles (powder)》
The magnet particles can be obtained by hydrogen pulverizing an ingot of a magnet alloy or pulverizing a rapidly solidified piece (foil) of the magnet alloy. The magnet particles may be isotropic or anisotropic. The average particle size of the magnet particles is preferably 0.5 to 50 μm, more preferably 1 to 25 μm. The magnet particles are preferably closer to a single magnetic domain size, but if they are too small, the magnetic properties are likely to be deteriorated by oxidation. Further, if the magnet particles are excessive, the coercive force can be lowered. In addition, the average particle diameter of a magnet particle as used in this specification is specified by d50 value (d50: median diameter) obtained from the particle size distribution measurement result.

《バインダー》
バインダーはSnとCuからなり、磁石粒子間に存在して粒界相(層)を形成する。SnとCuの割合を調整することにより、製造時の加熱温度、粒界相の融点ひいてはメタルボンド磁石の耐熱性(高温下における保形性)を制御し得る。
"binder"
The binder is made of Sn and Cu and exists between the magnet particles to form a grain boundary phase (layer). By adjusting the ratio of Sn and Cu, the heating temperature during production, the melting point of the grain boundary phase, and thus the heat resistance (shape retention at high temperatures) of the metal bond magnet can be controlled.

バインダーは、例えば、Snに対するCuの質量比(Cu/Sn)が0.1〜2さらには0.3〜1.5であると好ましい。Cu/Snが過小では、Snが過多となって主相分率の低下による磁気特性の低下を招いたり、バインダーの融点が過小となってメタルボンド磁石の耐熱性の低下を招き得る。Cu/Snが過大では、Cuの過多によりバインダーの融点が過大となり、低い加熱温度で高密度なメタルボンド磁石を製造することが困難となる。   For example, the binder preferably has a mass ratio of Cu to Sn (Cu / Sn) of 0.1 to 2, and more preferably 0.3 to 1.5. If Cu / Sn is too small, Sn may be excessive and the magnetic properties may be lowered due to a decrease in the main phase fraction, or the melting point of the binder may be too small and the heat resistance of the metal bonded magnet may be lowered. When Cu / Sn is excessively large, the melting point of the binder becomes excessive due to excessive Cu, and it becomes difficult to produce a high-density metal bond magnet at a low heating temperature.

メタルボンド磁石全体を100質量%(以下、単に「%」で示す。)として、Snは5〜40%、10〜30%さらには15〜25%であると好ましい。同様に、Cuは3〜30%、8〜25%、10〜20%さらには13〜16%であると好ましい。   It is preferable that Sn is 5 to 40%, 10 to 30%, and further 15 to 25%, assuming that the entire metal bond magnet is 100% by mass (hereinafter simply indicated as “%”). Similarly, Cu is preferably 3 to 30%, 8 to 25%, 10 to 20%, and further 13 to 16%.

《製造方法》
本発明のメタルボンド磁石は、例えば、希土類磁石合金からなる磁石粒子、Sn源およびCu源が混在した原料粉末を加圧してなる成形体を得る成形工程と、その成形体を加熱して磁石粒子間に存在するSn−Cu合金を液相化(溶融)させる加熱工程と、その成形体を冷却して磁石粒子間に固化(凝固)したSn−Cu合金からなる粒界相を形成する冷却工程とを経て得られる。
"Production method"
The metal bond magnet of the present invention includes, for example, a molding step of pressing a raw material powder mixed with a rare earth magnet alloy, a Sn source and a Cu source, and a magnet particle by heating the compact. A heating step for liquidizing (melting) the Sn—Cu alloy existing between them, and a cooling step for cooling the molded body to form a grain boundary phase made of the Sn—Cu alloy solidified (solidified) between the magnet particles. And get through.

原料粉末の形態は種々考えられる。例えば、原料粉末は、磁石粉末(磁石粒子の集合体)とSn源粉末とCu源粉末との混合粉末でも、磁石粉末とSn−Cu合金粉末との混合粉末でも良い。また、原料粉末は、Cuで被覆された磁石粒子からなる被覆磁石粉末とSn源粉末との混合粉末でもよい。さらに、原料粉末は、CuおよびSnで順次被覆された磁石粒子からなる複層被覆磁石粉末自体でも良いし、Sn−Cu合金で被覆された磁石粒子からなる合金被覆磁石粉末自体でもよい。なお、原料粉末は、バインダー相の組成や割合を調整するために、それら被覆磁石粉末の少なくとも一種に加えて、Cu源粉末やSn源粉末をさらに含有するものでもよい。   Various forms of the raw material powder are conceivable. For example, the raw material powder may be a mixed powder of magnet powder (aggregate of magnet particles), Sn source powder and Cu source powder, or a mixed powder of magnet powder and Sn—Cu alloy powder. Further, the raw material powder may be a mixed powder of a coated magnet powder composed of magnet particles coated with Cu and an Sn source powder. Furthermore, the raw material powder may be a multilayer coated magnet powder itself composed of magnet particles sequentially coated with Cu and Sn, or may be an alloy coated magnet powder itself composed of magnet particles coated with a Sn—Cu alloy. In addition, in order to adjust the composition and ratio of the binder phase, the raw material powder may further contain a Cu source powder or a Sn source powder in addition to at least one of these coated magnet powders.

加熱工程は、加熱炉内に載置した成形体を加熱する場合の他、例えば、放電プラズマ焼結法(SPS:Spark Plasma Sintering)等のパルス通電焼結法により、成形体または原料粉末自体を加圧しつつ加熱してもよい。SPS等を用いれば、磁石粒子の表面近傍またはその粒界部分が、加圧されつつ急速加熱されるため、磁石粒子の粒成長を生じることなく、短時間で緻密なメタルボンド磁石を効率的に得ることができる。なお、その際の加圧力は、例えば、30〜100MPaさらには40〜80MPaとするとよい。また、加熱温度は、CuとSnの組成(配合)にも依るが、250〜450℃さらには300〜400℃とするとよい。この加熱温度は、成形体を炉内加熱する場合も同様である。   In addition to heating the molded body placed in the heating furnace, the heating process is performed by, for example, applying a pulsed current sintering method such as spark plasma sintering (SPS) to the molded body or the raw material powder itself. You may heat, pressurizing. If SPS or the like is used, the vicinity of the surface of the magnet particle or its grain boundary portion is rapidly heated while being pressurized, so that a dense metal bond magnet can be efficiently produced in a short time without causing the grain growth of the magnet particle. Can be obtained. In addition, the pressurizing force in that case is good to set it as 30-100 Mpa, further 40-80 Mpa, for example. Moreover, although heating temperature is based also on a composition (formulation | combination) of Cu and Sn, it is good to set it as 250-450 degreeC further 300-400 degreeC. This heating temperature is the same when the molded body is heated in the furnace.

加熱工程は、磁石粒子の酸化を抑止できる雰囲気でなされると好ましい。例えば、真空雰囲気や不活性ガス雰囲気(窒素ガス雰囲気を含む。)である。なお、SPS等は、通常、真空雰囲気でなされる。   The heating step is preferably performed in an atmosphere that can prevent oxidation of the magnet particles. For example, a vacuum atmosphere or an inert gas atmosphere (including a nitrogen gas atmosphere). Note that SPS and the like are usually performed in a vacuum atmosphere.

磁石粉末が異方性磁石粉末である場合、配向磁場を印加しつつ、原料粉末の成形工程または上述した加熱工程が行われると、高磁気特性のメタルボンド磁石が得られて好ましい。また、冷却工程は、徐冷でも急冷でもよく、加熱工程と同様に、酸化抑止雰囲気でなされると好ましい。   When the magnet powder is an anisotropic magnet powder, it is preferable to obtain a metal-bonded magnet having high magnetic properties when the raw material powder forming step or the heating step described above is performed while applying an orientation magnetic field. The cooling step may be slow cooling or rapid cooling, and is preferably performed in an oxidation-inhibiting atmosphere as in the heating step.

《メタルボンド磁石》
本発明のメタルボンド磁石は、磁石粒子が濡れ性に富む非磁性なSn−Cu合金によって囲繞されて結合しているため、高密度で磁気特性(残留磁束密度、保磁力)に優れる。ちなみに、そのメタルボンド磁石の相対密度は80%以上、85%以上さらには90%以上となり得る。なお、本明細書でいう相対密度は、メタルボンド磁石の真密度(ρ)に対する嵩密度(ρ)の割合(100×ρ/ρ)である。嵩密度は測定した質量と寸法とに基づいて求まる。真密度は磁石粒子とSn−Cu合金の添加割合と各々の密度から算出して求まる。
《Metal bond magnet》
The metal bonded magnet of the present invention is surrounded by a nonmagnetic Sn—Cu alloy with high wettability and bonded, and thus has high density and excellent magnetic properties (residual magnetic flux density and coercive force). Incidentally, the relative density of the metal bond magnet can be 80% or more, 85% or more, and 90% or more. In addition, the relative density as used in this specification is a ratio (100 × ρ / ρ 0 ) of the bulk density (ρ) to the true density (ρ 0 ) of the metal bond magnet. The bulk density is determined based on the measured mass and dimensions. The true density is calculated from the addition ratio of the magnet particles and the Sn—Cu alloy and the respective densities.

本発明に係る磁石粒子は、様々な希土類磁石合金からなり得るが、Nd−Fe−B系希土類磁石合金に匹敵する磁気特性を発揮し得ると共に、保磁力向上のためにDy等の稀少な重希土類元素を必ずしも要しないSm−Fe−N系希土類磁石合金やNd−Fe−N系希土類磁石合金からなると好ましい。   The magnet particles according to the present invention can be made of various rare earth magnet alloys, but can exhibit magnetic properties comparable to Nd—Fe—B rare earth magnet alloys, and rare heavy metals such as Dy to improve coercivity. It is preferably made of an Sm—Fe—N rare earth magnet alloy or an Nd—Fe—N rare earth magnet alloy that does not necessarily require a rare earth element.

本発明のメタルボンド磁石は、磁気特性のみならず形状自由度や耐熱性にも優れるため、自動車分野、電子・電気分野等の各種製品(電動機、電磁機器等)に利用され得る。また本発明に係るSn−Cu合金は、相対的に融点の低い金属であり、ロー材としてもなり得る。このSn−Cu合金を介することにより、本発明のメタルボンド磁石は、他部材(例えば鉄(合金)等からなる金属部材)と強固に接合することもできる。   Since the metal bond magnet of the present invention is excellent not only in magnetic properties but also in freedom of shape and heat resistance, it can be used in various products (motors, electromagnetic devices, etc.) in the automotive field, electronic / electric field, and the like. In addition, the Sn—Cu alloy according to the present invention is a metal having a relatively low melting point, and can be a brazing material. By interposing this Sn—Cu alloy, the metal bond magnet of the present invention can be firmly joined to another member (for example, a metal member made of iron (alloy) or the like).

バインダーが異なる複数種のメタルボンド磁石を製造して、その金属組織の観察、特性(相対密度、保磁力等)の測定を行った。このような具体例を挙げつつ、以下に本発明をさらに詳しく説明する。   A plurality of types of metal bond magnets having different binders were manufactured, and the metal structure was observed and the characteristics (relative density, coercive force, etc.) were measured. The present invention will be described in more detail below with specific examples.

《試料の製造》
(1)原料粉末
希土類磁石粉末として、市販されているSm−Fe−N系の磁石粉末(日亜化学工業株式会社製SmFeN磁粉)を用意した。これは、主にSmFe17からなる等方性磁石粉末であり、平均粒径3μmであった。平均粒径は既述した方法により求めた。
<Production of sample>
(1) Raw material powder As a rare earth magnet powder, a commercially available Sm-Fe-N magnet powder (SmFeN magnetic powder manufactured by Nichia Corporation) was prepared. This is an isotropic magnet powder mainly composed of Sm 2 Fe 17 N 3 and has an average particle diameter of 3 μm. The average particle size was determined by the method described above.

また、その磁石粉末の各粒子表面に、化学的手法によりCuめっきを施した被覆磁石粉末も用意した。この際、Cuの被覆厚さを調整することにより、後述する混合粉末(100質量%)中のCu量が10%または20%となるようにした。   Moreover, the coated magnet powder which prepared Cu plating on the surface of each particle | grain of the magnet powder by the chemical method was also prepared. At this time, by adjusting the coating thickness of Cu, the amount of Cu in the mixed powder (100% by mass) described later was set to 10% or 20%.

また、市販されているSn粉末(日亜化学工業株式会社製SmFeN磁粉)も用意した。この粒径は50〜100μmであった。この粒径は粒度分布測定から算出されるd50値により求めた。   A commercially available Sn powder (SmFeN magnetic powder manufactured by Nichia Corporation) was also prepared. The particle size was 50-100 μm. This particle size was determined from the d50 value calculated from the particle size distribution measurement.

(2)加熱工程
被覆磁石粉末とSn粉末を不活性ガス(Ar)雰囲気(N雰囲気でもよい)中で乳鉢および乳棒により均一に混合した。Sn粉末は、混合粉末全体(100質量%)に対して、0%、10%、20%または30%とした。得られた混合粉末を、放電プラズマ焼結装置により焼結(SPS)させた。このときの条件は、雰囲気:真空、加熱温度:300℃、加圧力:50MPa、保持時間:5分間とした。
(2) Heating step The coated magnet powder and the Sn powder were uniformly mixed with a mortar and pestle in an inert gas (Ar) atmosphere (or an N 2 atmosphere). Sn powder was made into 0%, 10%, 20%, or 30% with respect to the whole mixed powder (100 mass%). The obtained mixed powder was sintered (SPS) by a discharge plasma sintering apparatus. The conditions at this time were as follows: atmosphere: vacuum, heating temperature: 300 ° C., pressure: 50 MPa, holding time: 5 minutes.

Cu被覆していない磁石粉末(ベース磁石粉末)とSn粉末とを用いて、同様にSPSにより加熱した。このときのSn粉末は、混合粉末全体(100質量%)に対して、0%、20%または30%とした。SPSは、雰囲気:真空、加熱温度:300〜500℃、加圧力:50MPa、保持時間:5分間として行った。   Using magnet powder not coated with Cu (base magnet powder) and Sn powder, heating was similarly performed by SPS. The Sn powder at this time was 0%, 20%, or 30% with respect to the entire mixed powder (100% by mass). SPS was performed under the conditions of atmosphere: vacuum, heating temperature: 300 to 500 ° C., pressure: 50 MPa, holding time: 5 minutes.

いずれの試料も、特に断らない限り10×10×6〜7mmのブロック状とした。但し、一部の試料は、厚みを1/10(0.6〜0.7mm)とした。   All samples were in the form of 10 × 10 × 6 to 7 mm blocks unless otherwise specified. However, a part of the samples had a thickness of 1/10 (0.6 to 0.7 mm).

《観察》
(1)被覆磁石粉末(Cu:15%)を走査型電子顕微鏡(SEM)で観察した外観写真と、その粉末断面を電子線マイクロアナライザー(EPMA)で分析した各元素の分布像および反射電子像(BSE像)を図1Aに示した。
<< Observation >>
(1) Appearance photograph of coated magnet powder (Cu: 15%) observed with a scanning electron microscope (SEM), distribution image and backscattered electron image of each element obtained by analyzing the powder cross section with an electron beam microanalyzer (EPMA) (BSE image) is shown in FIG. 1A.

また、被覆磁石粉末(Cu:15%)とSn粉末(20%)の混合粉末をSPSした試料の断面に係るSEM像を図1Bに示した。なお、本実施例では、CuとSnの質量割合を、混合粉末全体(メタルボンド磁石全体)に対する割合に換算して示している(図1Aの場合も含む)。   Moreover, the SEM image which concerns on the cross section of the sample which carried out SPS of the mixed powder of covered magnet powder (Cu: 15%) and Sn powder (20%) was shown to FIG. 1B. In this example, the mass ratio of Cu and Sn is shown in terms of the ratio to the entire mixed powder (the entire metal bond magnet) (including the case of FIG. 1A).

(2)ベース磁石粉末とSn粉末(20%)の混合粉末をSPSした試料の断面(特に粒界相部分)をX線回折(XRD)により分析して得られたパターンを図2Aに示した。また、その断面に係るSEM像およびEPMA像を図2Bに示した。 (2) FIG. 2A shows a pattern obtained by analyzing the cross section (particularly the grain boundary phase portion) of a sample obtained by SPS mixing powder of base magnet powder and Sn powder (20%) by X-ray diffraction (XRD). . Moreover, the SEM image and EPMA image which concern on the cross section were shown to FIG. 2B.

《測定》
Cu量とSn量を種々変化させた各試料(メタルボンド磁石)に係る相対密度を図3Aに示した。また、ベース磁石粉末を用いてSPSの温度を変化させた各試料に係る相対密度を図3Bに示した。相対密度は既述した方法により求めた。
<Measurement>
FIG. 3A shows the relative density of each sample (metal bonded magnet) in which the amount of Cu and the amount of Sn are variously changed. Moreover, the relative density which concerns on each sample which changed the temperature of SPS using base magnet powder was shown to FIG. 3B. The relative density was determined by the method described above.

Sn量を種々変化させた各試料に係る保磁力を図4に示した。保磁力はパルス励磁型磁気特性測定装置(東英工業株式会社製)で測定した。   FIG. 4 shows the coercivity of each sample with various amounts of Sn varied. The coercive force was measured with a pulse excitation type magnetic property measuring apparatus (manufactured by Toei Kogyo Co., Ltd.).

《評価》
(1)図1Aから明らかなように、被覆磁石粉末はSm−Fe−N系磁石粒子の表面が、ほぼ均一的な厚さのCuにより包囲された状態となっていることわかった。
<Evaluation>
(1) As is clear from FIG. 1A, it was found that the surface of the Sm—Fe—N magnet particles in the coated magnet powder was surrounded by Cu having a substantially uniform thickness.

図1Bから明らかなように、Sm−Fe−N系の磁石粒子間(粒界)にはSn−Cu合金からなるバインダーが、殆ど隙間無く充填されており、これにより各磁石粒子は保持(結合)されていることがわかった。さらに、そのSn−Cu合金相にはFe等が実質的に含まれておらず、磁石粒子の表面における分解(Fe等の溶出や反応等)も観られなかった。従って、Sn−Cu合金からなる粒界相は、磁石粒子の割合(主相分率)の低下を招かず、その非磁性が維持されることもわかった。   As is apparent from FIG. 1B, a binder made of Sn—Cu alloy is filled between the Sm—Fe—N-based magnet particles (grain boundaries) with almost no gap, so that each magnet particle is held (bonded). ) Furthermore, the Sn—Cu alloy phase did not substantially contain Fe or the like, and no decomposition (elution or reaction of Fe or the like) on the surface of the magnet particles was observed. Therefore, it was also found that the grain boundary phase made of the Sn—Cu alloy does not cause a decrease in the ratio of the magnetic particles (main phase fraction) and maintains its non-magnetic property.

一方、図2Aおよび図2B(両者を併せて単に「図2」という。)から明らかなように、バインダー中にCuを含まない場合、磁石粒子中のFeとバインダー中のSnが反応してできたSn−Fe系化合物が粒界中に生じることがわかった。この粒界相は、具体的にいうと、Feを約30at%含むSnリッチ相であった。この場合、主相分率の低下に加えて、粒界相が強磁性となるため、ボンド磁石の磁気特性も低下し得る。   On the other hand, as is clear from FIGS. 2A and 2B (both are simply referred to as “FIG. 2”), when Cu is not contained in the binder, Fe in the magnet particles reacts with Sn in the binder. It was found that Sn-Fe compounds were generated in the grain boundaries. More specifically, the grain boundary phase was a Sn-rich phase containing about 30 at% Fe. In this case, since the grain boundary phase becomes ferromagnetic in addition to the decrease in the main phase fraction, the magnetic properties of the bond magnet can also be decreased.

(2)図3Aから明らかなように、SPSの加熱温度:300℃とした場合、バインダー中にCuが存在すると、Sn量の増加に応じて相対密度も増加することがわかった。この傾向は、Cu量の減少や試料の形状変化に依る影響が少ないこともわかった。逆に、バインダーがCuまたはSnの一方からなる場合、相対密度は高々65%に留まることもわかった。この傾向は、SPSの加熱温度を変化させても同じであることも図3Bからわかる。 (2) As is clear from FIG. 3A, when the heating temperature of SPS is 300 ° C., it is found that when Cu is present in the binder, the relative density increases as the amount of Sn increases. It has also been found that this tendency is less affected by a decrease in the amount of Cu and a change in the shape of the sample. Conversely, it has also been found that when the binder consists of one of Cu or Sn, the relative density remains at most 65%. It can be seen from FIG. 3B that this tendency is the same even if the heating temperature of the SPS is changed.

さらに、図4から明らかなように、バインダーがSn−Cu合金からなる試料(メタルボンド磁石)は、SPS前の試料(被覆磁石粉末)に対して、保磁力がほぼ1.5倍にまで向上することもわかった。これは、CuとSnを含むバインダーがSPSによって液相化して、非磁性な粒界相(Sn−Cu合金相)が形成されたためと考えられる。   Furthermore, as is clear from FIG. 4, the coercive force of the sample (metal bonded magnet) whose binder is made of an Sn—Cu alloy is approximately 1.5 times that of the sample before SPS (coated magnet powder). I also understood that This is presumably because the binder containing Cu and Sn was converted into a liquid phase by SPS to form a nonmagnetic grain boundary phase (Sn—Cu alloy phase).

Claims (8)

希土類磁石合金からなる磁石粒子と、
該磁石粒子同士を結合するバインダーとからなり、
該バインダーは、スズ(Sn)と銅(Cu)からなることを特徴とするメタルボンド磁石。
Magnet particles made of a rare earth magnet alloy;
A binder that binds the magnet particles together,
The binder is made of tin (Sn) and copper (Cu), a metal bond magnet.
前記バインダーは、Snに対するCuの質量比(Cu/Sn)が0.1〜2である請求項1に記載のメタルボンド磁石。   The metal-bonded magnet according to claim 1, wherein the binder has a Cu mass ratio (Cu / Sn) of 0.1 to 2. 相対密度が80%以上である請求項1または2に記載のメタルボンド磁石。   The metal bond magnet according to claim 1 or 2, wherein the relative density is 80% or more. 前記希土類磁石合金は、サマリウム(Sm)と鉄(Fe)と窒素(N)からなる請求項1〜3のいずれかに記載のメタルボンド磁石。   The metal-bonded magnet according to claim 1, wherein the rare earth magnet alloy is made of samarium (Sm), iron (Fe), and nitrogen (N). 希土類磁石合金からなる磁石粒子、Sn源およびCu源が混在した原料粉末または該原料粉末からなる成形体を加熱する加熱工程を備え、
請求項1〜4のいずれかに記載のメタルボンド磁石が得られることを特徴とするメタルボンド磁石の製造方法。
A heating step of heating magnet particles made of rare earth magnet alloy, raw material powder in which Sn source and Cu source are mixed, or a molded body made of the raw material powder,
A method for producing a metal bonded magnet, wherein the metal bonded magnet according to claim 1 is obtained.
前記磁石粒子は、前記Cu源の少なくとも一部によって被覆されている請求項5に記載のメタルボンド磁石の製造方法。   The method for producing a metal bond magnet according to claim 5, wherein the magnet particles are covered with at least a part of the Cu source. 前記加熱工程の加熱温度は、250〜450℃である請求項5または6に記載のメタルボンド磁石の製造方法。   The method for producing a metal bond magnet according to claim 5 or 6, wherein a heating temperature in the heating step is 250 to 450 ° C. 前記加熱工程は、パルス通電焼結法によりなされる請求項5〜7のいずれかに記載のメタルボンド磁石の製造方法。   The said heating process is a manufacturing method of the metal bond magnet in any one of Claims 5-7 made by the pulse electric current sintering method.
JP2016173362A 2016-09-06 2016-09-06 Metal bond magnet and method for manufacturing the same Pending JP2018041777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016173362A JP2018041777A (en) 2016-09-06 2016-09-06 Metal bond magnet and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016173362A JP2018041777A (en) 2016-09-06 2016-09-06 Metal bond magnet and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2018041777A true JP2018041777A (en) 2018-03-15

Family

ID=61623884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016173362A Pending JP2018041777A (en) 2016-09-06 2016-09-06 Metal bond magnet and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2018041777A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109273183A (en) * 2018-10-19 2019-01-25 广东省稀有金属研究所 A kind of corrosion-resistant monocrystalline magnetic powder and the preparation method and application thereof
CN109848403A (en) * 2018-11-24 2019-06-07 天津大学 A kind of modified Nano Zero-valent Iron and preparation method thereof and the application for handling industrial seepage pit bed mud heavy metal
CN110942880A (en) * 2018-09-21 2020-03-31 丰田自动车株式会社 Rare earth magnet and method for producing same
JP2020102586A (en) * 2018-12-25 2020-07-02 日立化成株式会社 Rare earth magnet manufacturing method and rare earth magnet
CN111996403A (en) * 2020-08-21 2020-11-27 中国电子科技集团公司第三十八研究所 Preparation method of lead-free indium tin-based solder alloy and prepared solder alloy
CN112259314A (en) * 2020-09-25 2021-01-22 南京理工大学 R (Fe, M)12Rare earth permanent magnetic material and preparation method thereof
CN112750616A (en) * 2020-12-24 2021-05-04 宁波不二磁电科技有限公司 Preparation method of pressed bonded neodymium iron boron magnet
JP2021136347A (en) * 2020-02-27 2021-09-13 トヨタ自動車株式会社 Manufacturing method of rare earth magnet
CN113421760A (en) * 2021-06-11 2021-09-21 太原科技大学 Preparation method of samarium-cobalt magnet with low sintering temperature and high knee point magnetic field

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60214505A (en) * 1984-04-11 1985-10-26 Seiko Epson Corp Manufacture of metallic bonding type magnet
JP2003193208A (en) * 2001-12-28 2003-07-09 Toshiba Corp Magnet material and production method therefor
JP2005106091A (en) * 2003-09-29 2005-04-21 Ntn Corp Magnetic encoder and wheel bearing having this encoder
JP2008130802A (en) * 2006-11-21 2008-06-05 Hitachi Metals Ltd Iron-based rare earth permanent magnet, and its manufacturing method
JP2015142119A (en) * 2014-01-30 2015-08-03 住友電気工業株式会社 Method for manufacturing rare earth magnet
JP2016082175A (en) * 2014-10-21 2016-05-16 日産自動車株式会社 Samarium-iron-nitrogen based magnet mold and method for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60214505A (en) * 1984-04-11 1985-10-26 Seiko Epson Corp Manufacture of metallic bonding type magnet
JP2003193208A (en) * 2001-12-28 2003-07-09 Toshiba Corp Magnet material and production method therefor
JP2005106091A (en) * 2003-09-29 2005-04-21 Ntn Corp Magnetic encoder and wheel bearing having this encoder
JP2008130802A (en) * 2006-11-21 2008-06-05 Hitachi Metals Ltd Iron-based rare earth permanent magnet, and its manufacturing method
JP2015142119A (en) * 2014-01-30 2015-08-03 住友電気工業株式会社 Method for manufacturing rare earth magnet
JP2016082175A (en) * 2014-10-21 2016-05-16 日産自動車株式会社 Samarium-iron-nitrogen based magnet mold and method for manufacturing the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110942880A (en) * 2018-09-21 2020-03-31 丰田自动车株式会社 Rare earth magnet and method for producing same
CN110942880B (en) * 2018-09-21 2022-04-08 丰田自动车株式会社 Rare earth magnet and method for producing same
CN109273183A (en) * 2018-10-19 2019-01-25 广东省稀有金属研究所 A kind of corrosion-resistant monocrystalline magnetic powder and the preparation method and application thereof
CN109273183B (en) * 2018-10-19 2020-06-16 广东省稀有金属研究所 Corrosion-resistant monocrystalline magnetic powder and preparation method and application thereof
CN109848403A (en) * 2018-11-24 2019-06-07 天津大学 A kind of modified Nano Zero-valent Iron and preparation method thereof and the application for handling industrial seepage pit bed mud heavy metal
JP2020102586A (en) * 2018-12-25 2020-07-02 日立化成株式会社 Rare earth magnet manufacturing method and rare earth magnet
JP2021136347A (en) * 2020-02-27 2021-09-13 トヨタ自動車株式会社 Manufacturing method of rare earth magnet
JP7338510B2 (en) 2020-02-27 2023-09-05 トヨタ自動車株式会社 Method for manufacturing rare earth magnet
CN111996403B (en) * 2020-08-21 2021-07-09 中国电子科技集团公司第三十八研究所 Preparation method of lead-free indium tin-based solder alloy and prepared solder alloy
CN111996403A (en) * 2020-08-21 2020-11-27 中国电子科技集团公司第三十八研究所 Preparation method of lead-free indium tin-based solder alloy and prepared solder alloy
CN112259314A (en) * 2020-09-25 2021-01-22 南京理工大学 R (Fe, M)12Rare earth permanent magnetic material and preparation method thereof
CN112259314B (en) * 2020-09-25 2024-02-13 南京理工大学 R (Fe, M) 12 Rare earth permanent magnet material and preparation method thereof
CN112750616A (en) * 2020-12-24 2021-05-04 宁波不二磁电科技有限公司 Preparation method of pressed bonded neodymium iron boron magnet
CN113421760A (en) * 2021-06-11 2021-09-21 太原科技大学 Preparation method of samarium-cobalt magnet with low sintering temperature and high knee point magnetic field
CN113421760B (en) * 2021-06-11 2023-01-17 太原科技大学 Preparation method of samarium-cobalt magnet with low sintering temperature and high knee point magnetic field

Similar Documents

Publication Publication Date Title
JP2018041777A (en) Metal bond magnet and method for manufacturing the same
US5858124A (en) Rare earth magnet of high electrical resistance and production method thereof
JP4830024B2 (en) Composite magnetic material for magnet and manufacturing method thereof
JP5328161B2 (en) Manufacturing method of NdFeB sintered magnet and NdFeB sintered magnet
KR101378089B1 (en) R-t-b sintered magnet
JP6488976B2 (en) R-T-B sintered magnet
WO2015129861A1 (en) R-t-b sintered magnet and manufacturing method therefor
JP6330907B2 (en) Method for producing rare earth magnet compact
JP6409867B2 (en) Rare earth permanent magnet
JP6094612B2 (en) Method for producing RTB-based sintered magnet
JP6447380B2 (en) SmFeN-based metal bond magnet compact with high specific resistance
CN110942881B (en) Rare earth magnet and method for producing same
JP5643355B2 (en) Manufacturing method of NdFeB sintered magnet
JP2009224413A (en) MANUFACTURING METHOD OF NdFeB SINTERED MAGNET
JP2008255436A (en) Permanent magnet, and method for producing the same
JP7315888B2 (en) RTB permanent magnet and manufacturing method thereof
JP2019075493A (en) Magnet junction body
CN108630367B (en) R-T-B rare earth magnet
WO2017164312A1 (en) Rare-earth permanent magnet
US20160322136A1 (en) METAL-BONDED RE-Fe-B MAGNETS
CN111724955A (en) R-T-B permanent magnet
KR101837279B1 (en) Method of controlling a growth of grains in a Rare Earth Permanent Magnet
JP2016149397A (en) R-t-b-based sintered magnet
JP6513623B2 (en) Method of manufacturing isotropic bulk magnet
JP2022008212A (en) R-t-b based permanent magnet and motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200818

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210309