JP2003142310A - Dust core having high electrical resistance and manufacturing method therefor - Google Patents

Dust core having high electrical resistance and manufacturing method therefor

Info

Publication number
JP2003142310A
JP2003142310A JP2001338279A JP2001338279A JP2003142310A JP 2003142310 A JP2003142310 A JP 2003142310A JP 2001338279 A JP2001338279 A JP 2001338279A JP 2001338279 A JP2001338279 A JP 2001338279A JP 2003142310 A JP2003142310 A JP 2003142310A
Authority
JP
Japan
Prior art keywords
powder
soft magnetic
core
magnetic metal
dust core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001338279A
Other languages
Japanese (ja)
Inventor
Takanobu Saitou
貴伸 斉藤
Satoshi Takemoto
聡 武本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2001338279A priority Critical patent/JP2003142310A/en
Publication of JP2003142310A publication Critical patent/JP2003142310A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated

Abstract

PROBLEM TO BE SOLVED: To provide a dust core, which is made of soft magnetic metallic powder and in which strains are fully eliminated from the inside of the metallic powder through high-temperature annealing and the deterioration of permeability does not become an issue, even in a high frequency region due to significantly increased electrical resistance of the core. SOLUTION: On the surface of the soft magnetic metallic powder, having average Si content of at least 0.5 wt.% in its portion from the surface to a depth of 0.2 μm, an insulating coating film is formed by treating the surface of the powder with a phosphoric acid, boric acid, Na, K, Ca, Mg, Al, Si, Mn, or Zn phosphate or borate solution, or silicone resin. The dust core is obtained by molding the powder into the shape of the core by compression molding and performing stress relief annealing on the molded product.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高い電気抵抗を有
する圧粉磁心と、その製造方法に関し、圧粉磁心を製造
するための中間製品をも包含する。本発明の圧粉磁心
は、とくに高周波領域で使用したとき、コアロスが少な
い磁心として有用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dust core having high electric resistance and a method for producing the dust core, and also includes an intermediate product for producing the dust core. INDUSTRIAL APPLICABILITY The dust core of the present invention is useful as a core having a small core loss, especially when used in a high frequency range.

【0002】[0002]

【従来の技術】軟磁性金属の粉末、たとえばFe−3%
Siで代表されるケイ素鋼の粉末を、多くの場合リング
状に圧粉成形し、そこへコイルを巻いたチョークやトラ
ンスが、広い技術分野で使用されている。たとえば、D
C−DCコンバータやノイズフィルター、あるいはイン
ジェクターなどである。圧粉磁心とするのは、磁心内部
の電気抵抗を高くするためであって、渦電流による電力
のロスと回路部品の発熱を低く抑えることが望ましく、
それには、粉末相互の間が十分に絶縁されていることが
必要である。
2. Description of the Related Art Soft magnetic metal powders such as Fe-3%
In many cases, a choke or a transformer in which powder of silicon steel typified by Si is compacted into a ring shape and a coil is wound around the powder is used in a wide technical field. For example, D
It is a C-DC converter, a noise filter, an injector, or the like. The powder magnetic core is used to increase the electric resistance inside the magnetic core, and it is desirable to suppress power loss due to eddy currents and heat generation of circuit components to be low.
It requires that there be sufficient insulation between the powders.

【0003】この圧粉磁心を製造するには、軟磁性金属
を適宜の方法、たとえば溶湯の水噴霧により粉末化した
ものを、バインダーとともに金型に充填し、圧力を加え
て成形する圧縮成形を行なう。バインダーとしては、エ
ポキシ樹脂、イミド樹脂、フェノール樹脂、あるいはシ
リコーン樹脂が用いられる。
In order to manufacture this dust core, a soft magnetic metal is compressed by an appropriate method, for example, a powder obtained by spraying a molten metal with water is filled in a mold together with a binder and pressure is applied. To do. An epoxy resin, an imide resin, a phenol resin, or a silicone resin is used as the binder.

【0004】ところが、高い粉末充填密度を実現するた
めに高い圧力(10トン/cm以上)を加えるので、軟
磁性金属の粉末には歪みが残っていて、この歪みが磁気
特性を低くしている。具体的には、保磁力が増大し、コ
アロスの増大と透磁率の低下が起こる。そこで、成形品
に対し歪み取り焼鈍を行なってから、磁心として使用す
るのが常である。
However, since a high pressure (10 tons / cm 2 or more) is applied in order to achieve a high powder packing density, distortion remains in the soft magnetic metal powder, and this distortion lowers the magnetic characteristics. There is. Specifically, coercive force increases, core loss increases and magnetic permeability decreases. Therefore, the molded product is usually used as a magnetic core after strain relief annealing.

【0005】焼鈍は、ケイ素鋼を例にとれば、500℃
以上、なるべくは600℃以上の温度で実施したいが、
上記のバインダーとして有機系の合成樹脂を使用した場
合、あまり高温では樹脂が分解してバインダーとして役
立たなくなるので、高々400℃までの焼鈍温度しか採
用できない。そのため、焼鈍に長い時間をかけたとして
も、成形品中の軟磁性金属粉末に加わった歪みは完全に
は除去されないまま、つまり、その軟磁性金属本来の性
能を十分に発揮させることができないまま、磁心として
使用しなければならない。
Annealing is performed at 500 ° C. in the case of silicon steel.
As mentioned above, it is desirable to carry out at a temperature of 600 ° C or higher,
When an organic synthetic resin is used as the binder, the resin decomposes at too high a temperature and does not serve as a binder, so only an annealing temperature up to 400 ° C. can be adopted. Therefore, even if it takes a long time to anneal, the strain applied to the soft magnetic metal powder in the molded product is not completely removed, that is, the original performance of the soft magnetic metal cannot be sufficiently exhibited. , Must be used as a magnetic core.

【0006】一方、電気抵抗を高くする意味は、圧粉磁
心を使用する周波数が高くなるにつれて大きくなる。圧
粉磁心の抵抗が高ければ、周波数が高くなっても透磁率
はほぼ一定に保たれるが、抵抗が低ければ、高い周波数
領域で透磁率が急激に低下してしまう。
On the other hand, the meaning of increasing the electric resistance increases as the frequency at which the dust core is used increases. If the resistance of the dust core is high, the magnetic permeability can be kept substantially constant even if the frequency is increased, but if the resistance is low, the magnetic permeability is drastically reduced in the high frequency region.

【0007】電気抵抗を高める一つの手段として、軟磁
性金属の粉末にリン酸塩処理を施してリン酸塩の絶縁性
被膜を形成することが考案され、実施されている。この
技術は、リン酸のマグネシウム、カルシウム、亜鉛など
の金属塩を水溶液または水分散液として用意し、場合に
よりこれにホウ酸を添加したものを、粉末の表面に適用
してリン酸塩被膜を形成するものである。絶縁性は高ま
るが、リン酸塩それ自体は粉末のバインダーとしての機
能は低いので、必要により上記のような合成樹脂バイン
ダーを添加する。
As one means for increasing the electric resistance, it has been devised and practiced to subject the soft magnetic metal powder to a phosphate treatment to form a phosphate insulating coating. This technology prepares a metal salt of phosphoric acid such as magnesium, calcium, or zinc as an aqueous solution or an aqueous dispersion, and optionally adds boric acid to the surface of the powder to form a phosphate coating. To form. Although the insulating property is enhanced, the phosphate itself has a low function as a powder binder, so the above-mentioned synthetic resin binder is added if necessary.

【0008】リン酸塩処理した軟磁性金属粉末からの成
形品に施すことのできる焼鈍温度の限界は、有機系バイ
ンダーを使用すれば、それによって決定されてしまう。
使用しなければ、有機物の分解の問題はないが、焼鈍を
500℃以上で行なうと、電気抵抗が著しく低下するこ
とが経験された。被膜は無機物であって分解の問題はな
いが、高温では結晶化してしまい、その結果、電気抵抗
が低くなるということがわかった。結局、500℃を超
える焼鈍はできないのが現状である。
If an organic binder is used, the limit of the annealing temperature which can be applied to the molded article made of the phosphate-treated soft magnetic metal powder is determined by it.
If it is not used, there is no problem of decomposition of organic substances, but it was experienced that when the annealing was performed at 500 ° C or higher, the electric resistance was remarkably reduced. It was found that the film is an inorganic substance and has no problem of decomposition, but it is crystallized at high temperature, resulting in low electric resistance. After all, it is the current situation that annealing exceeding 500 ° C cannot be performed.

【0009】発明者らは、リン酸またはその塩の溶液に
よる絶縁処理をより効果的に行なう技術を探求する過程
で、絶縁処理の効果が軟磁性金属の合金組成によって異
なることに着目した。研究の結果、軟磁性金属の粉末の
表面付近に、ある程度以上の濃度でSiが存在すると、
リン酸またはその塩の溶液を用いた処理の効果が高いこ
とを知った。さらに、この効果が、ホウ酸またはその塩
の溶液を用いて絶縁処理を行なったときにも、またシリ
コーン樹脂を用いて絶縁処理を行なったときにも、同様
に得られることを見出した。
In the process of searching for a technique for more effectively performing insulation treatment with a solution of phosphoric acid or a salt thereof, the inventors have noted that the effect of insulation treatment differs depending on the alloy composition of the soft magnetic metal. As a result of the research, if Si is present near the surface of the soft magnetic metal powder at a certain concentration or more,
It was found that the treatment with the solution of phosphoric acid or its salt was highly effective. Furthermore, it has been found that this effect can be similarly obtained when the insulating treatment is performed using a solution of boric acid or a salt thereof and when the insulating treatment is performed using a silicone resin.

【0010】[0010]

【発明が解決しようとする課題】本発明の目的は、上記
の発明者らの新しい知見を活用し、圧粉磁心において、
高い温度での焼鈍によって軟磁性金属の粉末内部の歪み
が十分に解消しており、かつ、電気抵抗が顕著に改善さ
れ、従って高い周波数領域においても透磁率の低下がほ
とんど生じないか、または僅かであるものを提供するこ
と、また、そのような圧粉磁心の製造方法を提供するこ
とにある。上記のような圧粉磁心を製造するために使用
する中間製品を提供することもまた、本発明の目的に含
まれる。
SUMMARY OF THE INVENTION An object of the present invention is to make use of the above new findings of the inventors, and
Strain inside the soft magnetic metal powder is sufficiently eliminated by annealing at a high temperature, and the electric resistance is remarkably improved, so that the magnetic permeability hardly decreases even in the high frequency region, or slightly. And to provide a method for manufacturing such a dust core. It is also included in the object of the present invention to provide an intermediate product used for producing the dust core as described above.

【0011】[0011]

【課題を解決するための手段】本発明の高い電気抵抗を
有する圧粉磁心は、粉末の表面から深さ0.2μmまで
の部分の平均Si含有量が少なくとも0.5重量%であ
る軟磁性金属の粉末の表面に、リン酸、ホウ酸、または
リン酸もしくはホウ酸のNa,K,Ca,Mg,Al,
Si,MnもしくはZnの塩の被膜を形成したものを、
圧縮成形により磁心形状に成形し、歪み取り焼鈍を施し
てなる圧粉磁心である。
The powder magnetic core having a high electric resistance according to the present invention is a soft magnetic material having an average Si content of at least 0.5% by weight from the surface of the powder to a depth of 0.2 μm. On the surface of metal powder, phosphoric acid, boric acid, or phosphoric acid or boric acid such as Na, K, Ca, Mg, Al,
The one with a coating film of a salt of Si, Mn or Zn is
The powder magnetic core is formed by compression molding into a magnetic core shape and subjected to strain relief annealing.

【0012】この高い電気抵抗を有する圧粉磁心を製造
する本発明の方法は、Siを含有する軟磁性金属の噴霧
により、粉末の表面から深さ0.2μmまでの部分の平
均Si含有量が少なくとも0.5重量%である粉末を製
造し、この粉末を、リン酸、ホウ酸、またはリン酸もし
くはホウ酸のNa,K,Ca,Mg,Al,Si,Mn
もしくはZnの塩の溶液で処理して粉末表面に絶縁被膜
を形成したのち、圧縮成形して磁心形状に成形し、成形
品を500〜1000℃の温度で焼鈍することからな
る。
According to the method of the present invention for producing the powder magnetic core having high electric resistance, the average Si content in the portion from the surface of the powder to the depth of 0.2 μm is increased by spraying the soft magnetic metal containing Si. A powder of at least 0.5% by weight is produced, which powder is treated with phosphoric acid, boric acid or phosphoric acid or boric acid Na, K, Ca, Mg, Al, Si, Mn.
Alternatively, it is formed by treating with a Zn salt solution to form an insulating coating on the powder surface, followed by compression molding to form a magnetic core, and annealing the molded product at a temperature of 500 to 1000 ° C.

【0013】上記の高い電気抵抗を有する圧粉磁心を製
造するための本発明の中間製品は、粉末の表面から深さ
0.2μmまでの部分の平均Si含有量が少なくとも
0.5重量%である軟磁性金属の粉末に対し、上記した
処理を施してなるものである。
The intermediate product of the present invention for producing the above-mentioned dust core having a high electric resistance has an average Si content of at least 0.5% by weight in a portion from the surface of the powder to a depth of 0.2 μm. The soft magnetic metal powder is subjected to the above-mentioned treatment.

【0014】[0014]

【発明の実施形態】本発明においては、ある程度の量の
Siを含有する限り、任意の軟磁性金属の粉末を圧粉磁
心の材料とすることができるが、代表的なものは、下記
の合金の、とくに水噴霧粉である。 ・Si:1〜11重量%を含有するFe−Si合金、 ・Si:1〜11重量%およびAl:7重量%以下を含
有するFe−Si−Al合金 ・Si:0.1〜5重量%およびCo:10〜60重量
%を含有するFe−Si−Co合金。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, powder of any soft magnetic metal can be used as the material of the dust core as long as it contains a certain amount of Si. , Especially water spray powder. -Si: Fe-Si alloy containing 1 to 11 wt% -Si: Fe-Si-Al alloy containing 1 to 11 wt% and Al: 7 wt% or less-Si: 0.1 to 5 wt% And Co: Fe-Si-Co alloy containing 10 to 60% by weight.

【0015】後記する実施例にみるとおり、リン酸、ホ
ウ酸、それらの塩、またはシリコーン樹脂による絶縁処
理は、軟磁性金属の粉末の表面から深さ0.2μmまで
の部分の平均Si含有量が少なくとも0.5重量%であ
れば、効果が高い。このSi含有量の条件は、軟磁性金
属が全体として0.5重量%以上のSiを含有していれ
ば当然に満たされるが、0.5重量%に達しないSi含
有量であっても、それに近い値である場合は、表面近く
においてSi濃度が高まることがしばしば認められる
(その理由は明らかでない)ので、絶縁処理の効果が高
く得られることが期待できる。この現象は、軟磁性金属
にあまり多量のSiを添加したくない場合に有益であ
る。
As will be seen in the examples described below, the insulating treatment with phosphoric acid, boric acid, salts thereof, or silicone resin was performed so that the average Si content in the portion from the surface of the soft magnetic metal powder to a depth of 0.2 μm was measured. Is at least 0.5% by weight, the effect is high. The condition of the Si content is naturally satisfied if the soft magnetic metal contains 0.5% by weight or more of Si as a whole, but even if the Si content does not reach 0.5% by weight, When the value is close to that, it is often recognized that the Si concentration increases near the surface (the reason is not clear), and therefore, it can be expected that the effect of the insulating treatment is high. This phenomenon is useful when one does not want to add too much Si to the soft magnetic metal.

【0016】[0016]

【実施例】[実施例1〜3および比較例1]表1に示す
Si含有量のFe−Si合金の溶湯を水噴霧して、−1
00メッシュの粉末を用意した。それぞれの粉末の、表
面から深さ0.2μmまでの部分の平均Si量を測定し
て、表1に掲げた。この平均Si量は、粉末の表面から
深さ方向へのSi濃度分布をオージェ分光分析法により
測定し、平均して得た値である。各粉末を、表1に示す
処理液で処理し、乾燥後、常温で15トン/cmの圧力
を加え、試験片を製造した。アルゴンガス雰囲気下、7
00℃に2時間保持する熱処理によりひずみを除いた。
Examples [Examples 1 to 3 and Comparative Example 1] The molten Fe-Si alloy having the Si content shown in Table 1 was sprayed with water to give -1.
A powder of 00 mesh was prepared. The average amount of Si in the portion from the surface to the depth of 0.2 μm of each powder was measured and listed in Table 1. The average Si amount is a value obtained by measuring and averaging the Si concentration distribution from the surface of the powder in the depth direction by Auger spectroscopy. Each powder was treated with the treatment liquid shown in Table 1, dried, and then subjected to a pressure of 15 ton / cm 2 at room temperature to produce a test piece. 7 in an argon gas atmosphere
The strain was removed by a heat treatment of holding at 00 ° C for 2 hours.

【0017】これら試験片を用いて、下記の試験を行な
った。結果を、表1に併せて示す。 [電気抵抗率] 試験片:縦5mm×横5mm×長さ30mm 直流四端子法または直流二端子法 [コアロス] 試験片:外径28mm×内径20mm×高さ5mm コアロス試験機、周波数20KHz、磁束密度0.1T
The following tests were carried out using these test pieces. The results are also shown in Table 1. [Electrical resistivity] Test piece: 5 mm length x 5 mm width x 30 mm length DC four-terminal method or DC two-terminal method [core loss] Test piece: Outer diameter 28 mm x inner diameter 20 mm x height 5 mm Core loss tester, frequency 20 KHz, magnetic flux Density 0.1T

【0018】 表 1 合金成分 表面0.2 絶縁処理剤 電気抵抗率 コアロス (重量%) μmのSi (濃度) ρ(μΩcm) (kW/m 実施例1 Si:0.5 0.80 リン酸0.2% 2.5×10 8.5×10 実施例2 Si:3.1 4.50 リン酸(80)+ 4.5×10 7.9×10 ホウ酸(20) 0.2% 実施例3 Si:6.6 9.30 リン酸Zn0.5% 6.5×10 3.3×102 比較例1 Si:0.05 0.20 リン酸0.2% 2.5×10 4.9×104 Table 1 Alloy components Surface 0.2 Insulation treatment agent Electrical resistivity Core loss (% by weight) μm Si (concentration) ρ (μΩcm) (kW / m 3 ) Example 1 Si: 0.5 0.80 Phosphoric acid 0.2% 2.5 × 10 3 8.5 × 10 3 Example 2 Si: 3.1 4.50 Phosphoric acid (80) + 4.5 × 10 3 7.9 × 10 3 Boric acid (20) 0.2% Example 3 Si: 6.6 9.30 Zn phosphate 0.5% 6.5 × 10 5 3.3 × 10 2 Comparative Example 1 Si: 0.05 0.20 Phosphoric acid 0.2% 2.5 × 10 3 4.9 × 10 4

【0019】[実施例4]軟磁性合金としてFe−Si
−Al合金を使用し、絶縁処理剤を変えて、実施例1と
同様の操作で圧粉磁心を製造した。その結果を、表2に
示す。 表 2 合金成分 表面0.2 絶縁処理剤 電気抵抗率 コアロス (重量%) μmのSi (濃度) ρ(μΩcm) (kW/m 実施例4 Si:9.6, 15.90 リン酸Al 0.5% 7.5×10 2.0×10 Al:5.4
[Example 4] Fe-Si as a soft magnetic alloy
A powder magnetic core was manufactured in the same manner as in Example 1, except that the Al treatment was used and the insulating treatment agent was changed. The results are shown in Table 2. Table 2 Alloy components Surface 0.2 Insulation treatment agent Electrical resistivity Core loss (wt%) μm Si (concentration) ρ (μΩcm) (kW / m 3 ) Example 4 Si: 9.6, 15.90 Al phosphate 0.5% 7.5 × 10 5 2.0 × 10 2 Al: 5.4

【0020】[実施例5および比較例2]軟磁性合金と
してFe−Ni−Mo−Si合金を使用し、絶縁処理剤
を変えて実施例1と同様の操作で、圧粉磁心を製造し
た。その結果を、比較例とともに表3に示す。 表 3 合金成分 表面0.2 絶縁処理剤 電気抵抗率 コアロス (重量%) μmのSi (濃度) ρ(μΩcm) (kW/m 実施例5 Ni:80,Mo:2, 2.60 リン酸Mn0.5% 3.3×104 1.9×10 Si:1 比較例2 Ni:80,Mo:2, 0.20 リン酸Mn0.5% 5.4×103 3.1×103 Si:0.1
[Example 5 and Comparative Example 2] A Fe-Ni-Mo-Si alloy was used as the soft magnetic alloy, and the insulating treatment agent was changed to carry out the same operation as in Example 1 to produce a dust core. The results are shown in Table 3 together with the comparative example. Table 3 Alloy composition Surface 0.2 Insulation treatment agent Electrical resistivity Core loss (wt%) μm Si (concentration) ρ (μΩcm) (kW / m 3 ) Example 5 Ni: 80, Mo: 2, 2.60 Mn0 phosphate .5% 3.3 × 10 4 1.9 × 10 2 Si: 1 Comparative Example 2 Ni: 80, Mo: 2, 0.20 Mn phosphate 0.5% 5.4 × 10 3 3.1 × 10 3 Si: 0.1

【0021】[実施例6および比較例3]軟磁性合金と
してFe−Co(−Si)合金を使用し、実施例1と同
様の操作で、圧粉磁心を製造した。その結果を、比較例
とともに表4に示す。絶縁処理剤として、シリコーン樹
脂液「SR2400」(東レ・ダウコーニング社製)を
使用した。 表 4 合金成分 表面0.2 絶縁処理剤 電気抵抗率 コアロス (重量%) μmのSi (濃度) ρ(μΩcm) (kW/m 実施例6 Co:49, Si:2 5.60 シリコーン1.0% 1.6×104 8.6×10 比較例3 Co:49 0 シリコーン1.0% 2.5×102 8.5×104
[Example 6 and Comparative Example 3] A Fe-Co (-Si) alloy was used as the soft magnetic alloy, and a dust core was manufactured in the same manner as in Example 1. The results are shown in Table 4 together with the comparative example. Silicone resin liquid "SR2400" (manufactured by Toray Dow Corning) was used as an insulation treatment agent. Table 4 Alloy components Surface 0.2 Insulation treatment agent Electrical resistivity Core loss (wt%) μm Si (concentration) ρ (μΩcm) (kW / m 3 ) Example 6 Co: 49, Si: 2 5.60 Silicone 1.0% 1.6 × 10 4 8.6 × 10 2 Comparative Example 3 Co: 49 0 Silicone 1.0% 2.5 × 10 2 8.5 × 10 4

【0022】[実施例7および比較例4]軟磁性合金と
してFe−Co−V(−Si)合金を使用し、実施例1
と同様の操作で、圧粉磁心を製造した。その結果を、比
較例とともに表5に示す。 表 5 合金成分 表面0.2 絶縁処理剤 電気抵抗率 コアロス (重量%) μmのSi (濃度) ρ(μΩcm) (kW/m 実施例7 Co:25,V:1, 1.60 リン酸0.2% 5.6×104 5.5×103 Si:0.5 比較例4 Co:25,V:1 0 リン酸0.2% 8.0×101 6.9×105
[Example 7 and Comparative Example 4] An Fe-Co-V (-Si) alloy was used as the soft magnetic alloy, and Example 1 was used.
A powder magnetic core was manufactured by the same operation as. The results are shown in Table 5 together with the comparative examples. Table 5 Alloy components Surface 0.2 Insulation treatment agent Electrical resistivity Core loss (wt%) μm Si (concentration) ρ (μΩcm) (kW / m 3 ) Example 7 Co: 25, V: 1, 1.60 Phosphoric acid 0.2 % 5.6 × 10 4 5.5 × 10 3 Si: 0.5 Comparative Example 4 Co: 25, V: 1 0 Phosphoric acid 0.2% 8.0 × 10 1 6.9 × 10 5

【0023】[実施例8および比較例5]軟磁性合金と
してFe−Co−Ti(−Si)合金を使用し、絶縁処
理剤を変えて、実施例1と同様の操作で圧粉磁心を製造
した。その結果を、比較例とともに表6に示す。 表 6 合金成分 表面0.2 絶縁処理剤 電気抵抗率 コアロス (重量%) μmのSi (濃度) ρ(μΩcm) (kW/m 実施例8 Co:35,Ti:0.5, 2.90 リン酸Mg0.5% 8.6×103 4.6×103 Si:1 比較例5 Co:35,Ti:0.5 0 リン酸Mg0.5% 1.3×102 5.3×104
[Example 8 and Comparative Example 5] A powder magnetic core was manufactured in the same manner as in Example 1, except that an Fe-Co-Ti (-Si) alloy was used as the soft magnetic alloy and the insulating treatment agent was changed. did. The results are shown in Table 6 together with the comparative examples. Table 6 Alloy component Surface 0.2 Insulation treatment agent Electrical resistivity Core loss (wt%) μm Si (concentration) ρ (μΩcm) (kW / m 3 ) Example 8 Co: 35, Ti: 0.5, 2.90 MgO phosphate .5% 8.6 × 10 3 4.6 × 10 3 Si: 1 Comparative Example 5 Co: 35, Ti: 0.5 0 Mg phosphate 0.5% 1.3 × 10 2 5.3 × 10 4

【0024】[実施例9,10および比較例6]軟磁性
合金としてFe−Cr−Si合金を使用し、絶縁処理剤
を変えて、実施例1と同様の操作で圧粉磁心を製造し
た。その結果を、比較例とともに表7に示す。 表 7 合金成分 表面0.2 絶縁処理剤 電気抵抗率 コアロス (重量%) μmのSi (濃度) ρ(μΩcm) (kW/m 実施例9 Cr:13,Si:1.0 1.90 ホウ酸1.0% 3.8×103 4.3×103 実施例10 Cr:13,Si:1.0 1.90 ホウ酸Na1.0% 2.9×103 3.9×103 比較例6 Cr:13,Si:0.05 0.15 ホウ酸1.0% 2.5×102 6.1×104
[Examples 9 and 10 and Comparative Example 6] A Fe-Cr-Si alloy was used as the soft magnetic alloy, the insulating treatment agent was changed, and the powder magnetic core was manufactured in the same manner as in Example 1. The results are shown in Table 7 together with the comparative examples. Table 7 Alloy components Surface 0.2 Insulation treatment agent Electrical resistivity Core loss (% by weight) μm Si (concentration) ρ (μΩcm) (kW / m 3 ) Example 9 Cr: 13, Si: 1.0 1.90 Boric acid 1.0% 3.8 × 10 3 4.3 × 10 3 Example 10 Cr: 13, Si: 1.0 1.90 Na borate 1.0% 2.9 × 10 3 3.9 × 10 3 Comparative Example 6 Cr: 13, Si: 0.05 0.15 Boric acid 1.0% 2.5 × 10 2 6.1 x 10 4

【0025】[0025]

【発明の効果】本発明の圧粉磁心は、軟磁性金属の粉末
の表面において、絶縁処理剤として適用したリン酸、ホ
ウ酸、それらの塩、またはシリコーン樹脂が、0.5重
量%以上の濃度で存在するSiとの作用により、強固な
絶縁被膜を形成し、その絶縁効果が高い温度で焼鈍して
も低下せず、したがって絶縁性能が低下しないため、個
の粉末から製造した圧分磁心は、高い電気抵抗を保持し
ている。焼鈍は500℃以上、たとえば700℃とい
う、十分な効果が得られる温度で行なうことができるか
ら、焼鈍温度に制約があって残留歪みを除去しきれない
という、従来の圧分磁心の問題が解消した。
Industrial Applicability The dust core of the present invention contains 0.5% by weight or more of phosphoric acid, boric acid, a salt thereof, or a silicone resin applied as an insulating treatment agent on the surface of a soft magnetic metal powder. A strong insulating film is formed by the action of Si existing in a concentration, and its insulating effect does not decrease even when annealed at a high temperature, and therefore the insulating performance does not decrease. Holds a high electrical resistance. Since the annealing can be performed at a temperature of 500 ° C. or higher, for example 700 ° C., at which a sufficient effect can be obtained, the problem of the conventional pressure-dividing magnetic core that the residual strain cannot be removed due to the limitation of the annealing temperature is solved. did.

【0026】焼鈍が十分に行なわれる結果、圧粉磁心の
保磁力は低く抑えられ、かつ高周波領域においても透磁
率の低下が生じない。それゆえ本発明の圧粉磁心は、種
々の電気・電子機器類がより高い周波数領域で使用され
る傾向に対して、よく対応できる。
As a result of sufficient annealing, the coercive force of the dust core is kept low, and the permeability does not decrease even in the high frequency range. Therefore, the dust core of the present invention can well cope with the tendency of various electric and electronic devices to be used in a higher frequency region.

【0027】本発明の中間製品である、表面処理した軟
磁性金属の粉末は、通常の圧縮成形により磁心形状に成
形し、適宜の温度で焼鈍することにより、高性能な圧粉
磁心を製造することができる材料である。
The surface-treated soft magnetic metal powder, which is an intermediate product of the present invention, is molded into a magnetic core shape by ordinary compression molding and annealed at an appropriate temperature to produce a high-performance dust core. It is a material that can.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 38/00 C22C 38/00 303T 38/06 38/06 38/10 38/10 38/18 38/18 H01F 27/255 H01F 41/02 D 41/02 27/24 D ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C22C 38/00 C22C 38/00 303T 38/06 38/06 38/10 38/10 38/18 38/18 H01F 27/255 H01F 41/02 D 41/02 27/24 D

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 粉末の表面から深さ0.2μmまでの部
分の平均Si含有量が少なくとも0.5重量%である軟
磁性金属の粉末を、リン酸、ホウ酸、またはリン酸もし
くはホウ酸のNa,K,Ca,Mg,Al,Si,Mn
もしくはZnの塩の溶液で絶縁処理したものを、圧縮成
形により磁心形状に成形し、歪み取り焼鈍を施してなる
高い電気抵抗を有する圧粉磁心。
1. A soft magnetic metal powder having an average Si content of at least 0.5% by weight from the surface of the powder to a depth of 0.2 μm is treated with phosphoric acid, boric acid, or phosphoric acid or boric acid. Na, K, Ca, Mg, Al, Si, Mn
Alternatively, a powder magnetic core having a high electric resistance obtained by compression-molding a product obtained by performing insulation treatment with a Zn salt solution and performing strain relief annealing.
【請求項2】 粉末の表面から深さ0.2μmまでの部
分の平均Si含有量が少なくとも0.5重量%である軟
磁性金属の粉末の表面を、シリコーン樹脂で絶縁処理し
たものを、圧縮成形により磁心形状に成形し、歪み取り
焼鈍を施してなる高い電気抵抗を有する圧粉磁心。
2. A soft magnetic metal powder having an average Si content of at least 0.5% by weight from the surface of the powder to a depth of 0.2 μm, the surface of which is insulated with a silicone resin is compressed. A dust core having a high electric resistance, which is formed by molding into a magnetic core shape and subjected to strain relief annealing.
【請求項3】 軟磁性金属の粉末が、Si:1〜11重
量%を含有するFe−Si合金、またはSi:1〜11
重量%およびAl:7重量%以下を含有するFe−Si
−Al合金の粉末である請求項1または2の圧粉磁心。
3. A soft magnetic metal powder is a Fe—Si alloy containing Si: 1 to 11 wt%, or Si: 1 to 11.
Fe-Si containing 1 wt% and Al: 7 wt% or less
The powder magnetic core according to claim 1 or 2, which is a powder of an Al alloy.
【請求項4】 軟磁性金属の粉末が、Si:0.1〜5
重量%およびCo:10〜60重量%を含有するFe−
Si−Co合金の粉末である請求項1または2の圧粉磁
心。
4. The soft magnetic metal powder contains Si: 0.1 to 5
Fe-containing wt% and Co: 10-60 wt%
The powder magnetic core according to claim 1 or 2, which is a powder of a Si-Co alloy.
【請求項5】 Siを含有する軟磁性金属の水噴霧によ
り、粉末の表面から深さ0.2μmまでの部分の平均S
i含有量が少なくとも0.5重量%である粉末を製造
し、この粉末を、リン酸、ホウ酸、またはリン酸もしく
はホウ酸のNa,K,Ca,Mg,Al,Si,Mnも
しくはZnの塩の溶液で処理するか、またはシリコーン
樹脂で処理して粉末表面に絶縁被膜を形成したのち、圧
縮成形して磁心形状に成形し、成形品を500〜100
0℃の温度で焼鈍することからなる高い電気抵抗を有す
る圧粉磁心の製造方法。
5. An average S of a portion from the surface of the powder to a depth of 0.2 μm by water spraying a soft magnetic metal containing Si.
A powder having an i content of at least 0.5% by weight is produced, and the powder is mixed with phosphoric acid, boric acid, or phosphoric acid or boric acid such as Na, K, Ca, Mg, Al, Si, Mn, or Zn. After treatment with a salt solution or with a silicone resin to form an insulating coating on the surface of the powder, compression molding is performed to form a magnetic core, and the molded product is made to have a thickness of 500 to 100.
A method for producing a dust core having a high electric resistance, which comprises annealing at a temperature of 0 ° C.
【請求項6】 粉末の表面から深さ0.2μmまでの部
分の平均Si含有量が少なくとも0.5重量%である軟
磁性金属の粉末に対し、請求項5に記載した処理を施し
てなる、高い電気抵抗を有する圧粉磁心を製造するため
の中間製品。
6. A soft magnetic metal powder having an average Si content of at least 0.5% by weight from the surface of the powder to a depth of 0.2 μm is subjected to the treatment described in claim 5. , An intermediate product for producing a dust core having high electric resistance.
JP2001338279A 2001-11-02 2001-11-02 Dust core having high electrical resistance and manufacturing method therefor Pending JP2003142310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001338279A JP2003142310A (en) 2001-11-02 2001-11-02 Dust core having high electrical resistance and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001338279A JP2003142310A (en) 2001-11-02 2001-11-02 Dust core having high electrical resistance and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2003142310A true JP2003142310A (en) 2003-05-16

Family

ID=19152799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001338279A Pending JP2003142310A (en) 2001-11-02 2001-11-02 Dust core having high electrical resistance and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2003142310A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005043560A1 (en) * 2003-10-31 2005-05-12 Mitsubishi Materials Pmg Corporation Method for producing composite soft magnetic material exhibiting excellent magnetic characteristics, high strength and low iron loss
JP2005303007A (en) * 2004-04-12 2005-10-27 Sumitomo Electric Ind Ltd Soft magnetic material, dust core, and method of manufacturing soft magnetic material
WO2006006545A1 (en) * 2004-07-09 2006-01-19 Toyota Jidosha Kabushiki Kaisha Dust core and its manufacturing method
WO2006028100A1 (en) * 2004-09-06 2006-03-16 Mitsubishi Materials Pmg Corporation METHOD FOR PRODUCING SOFT MAGNETIC METAL POWDER COATED WITH Mg-CONTAINING OXIDIZED FILM AND METHOD FOR PRODUCING COMPOSITE SOFT MAGNETIC MATERIAL USING SAID POWDER
JP2006128663A (en) * 2004-09-30 2006-05-18 Sumitomo Electric Ind Ltd Soft magnetic material, dust core and method of producing soft magnetic material
JP2006202956A (en) * 2005-01-20 2006-08-03 Sumitomo Electric Ind Ltd Soft magnetic material and powder magnetic core
JP2006241583A (en) * 2004-09-06 2006-09-14 Mitsubishi Materials Pmg Corp METHOD FOR PRODUCING SOFT MAGNETIC METAL POWDER COATED WITH Mg-CONTAINING OXIDE FILM, AND METHOD FOR PRODUCING COMPOSITE SOFT MAGNETIC MATERIAL FROM THE POWDER
JP2007013069A (en) * 2005-05-31 2007-01-18 Mitsubishi Materials Pmg Corp METHOD FOR PRODUCING SOFT MAGNETIC POWDER COATED WITH OXIDE CONTAINING Mg AND Si
JP2007035826A (en) * 2005-07-26 2007-02-08 Nec Tokin Corp Composite magnetic material, and dust core and magnetic element using the same
JP2007509497A (en) * 2003-10-24 2007-04-12 チャン・スン・コーポレーション Unit block for core production using soft magnetic metal powder, and method for producing core having high current DC superposition characteristics using the unit block
JP2007231331A (en) * 2006-02-28 2007-09-13 Jfe Steel Kk Metallic powder for powder magnetic core, and method for manufacturing powder magnetic core
JP2007231330A (en) * 2006-02-28 2007-09-13 Jfe Steel Kk Methods for manufacturing metal powder for dust core and the dust core
JP2008297606A (en) * 2007-05-31 2008-12-11 Jfe Steel Kk Method for manufacturing metal powder for dust core and dust core
EP2060344A1 (en) * 2006-09-11 2009-05-20 Kabushiki Kaisha Kobe Seiko Sho Powder magnetic core and iron-base powder for powder magnetic core
JP2009117442A (en) * 2007-11-02 2009-05-28 Jfe Steel Corp Compound reactor
EP2248617A2 (en) 2005-01-25 2010-11-10 Diamet Corporation Iron powder coated with Mg-containing oxide film
US8323725B2 (en) 2004-09-30 2012-12-04 Sumitomo Electric Industries, Ltd. Soft magnetic material, powder magnetic core and method of manufacturing soft magnetic material
US8445105B2 (en) 2006-09-11 2013-05-21 Kobe Steel, Ltd. Iron-based soft magnetic powder for dust core, method for production thereof, and dust core
JP2015135920A (en) * 2014-01-17 2015-07-27 株式会社タムラ製作所 Low-noise reactor, dust core, and method for producing the dust core
WO2018035595A1 (en) * 2016-08-25 2018-03-01 Whirlpool S.A. Ferromagnetic particle surface coating layers for obtaining soft magnetic composites (smcs)
US10109406B2 (en) 2013-04-19 2018-10-23 Jfe Steel Corporation Iron powder for dust core and insulation-coated iron powder for dust core

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007509497A (en) * 2003-10-24 2007-04-12 チャン・スン・コーポレーション Unit block for core production using soft magnetic metal powder, and method for producing core having high current DC superposition characteristics using the unit block
WO2005043560A1 (en) * 2003-10-31 2005-05-12 Mitsubishi Materials Pmg Corporation Method for producing composite soft magnetic material exhibiting excellent magnetic characteristics, high strength and low iron loss
JP2005303007A (en) * 2004-04-12 2005-10-27 Sumitomo Electric Ind Ltd Soft magnetic material, dust core, and method of manufacturing soft magnetic material
JP4586399B2 (en) * 2004-04-12 2010-11-24 住友電気工業株式会社 Soft magnetic material, dust core, and method for producing soft magnetic material
WO2006006545A1 (en) * 2004-07-09 2006-01-19 Toyota Jidosha Kabushiki Kaisha Dust core and its manufacturing method
WO2006028100A1 (en) * 2004-09-06 2006-03-16 Mitsubishi Materials Pmg Corporation METHOD FOR PRODUCING SOFT MAGNETIC METAL POWDER COATED WITH Mg-CONTAINING OXIDIZED FILM AND METHOD FOR PRODUCING COMPOSITE SOFT MAGNETIC MATERIAL USING SAID POWDER
JP2006241583A (en) * 2004-09-06 2006-09-14 Mitsubishi Materials Pmg Corp METHOD FOR PRODUCING SOFT MAGNETIC METAL POWDER COATED WITH Mg-CONTAINING OXIDE FILM, AND METHOD FOR PRODUCING COMPOSITE SOFT MAGNETIC MATERIAL FROM THE POWDER
US8409371B2 (en) 2004-09-06 2013-04-02 Diamet Corporation Method for producing soft magnetic metal powder coated with Mg-containing oxide film
US8323725B2 (en) 2004-09-30 2012-12-04 Sumitomo Electric Industries, Ltd. Soft magnetic material, powder magnetic core and method of manufacturing soft magnetic material
JP2006128663A (en) * 2004-09-30 2006-05-18 Sumitomo Electric Ind Ltd Soft magnetic material, dust core and method of producing soft magnetic material
JP4646768B2 (en) * 2004-09-30 2011-03-09 住友電気工業株式会社 Soft magnetic material, dust core, and method for producing soft magnetic material
JP2006202956A (en) * 2005-01-20 2006-08-03 Sumitomo Electric Ind Ltd Soft magnetic material and powder magnetic core
JP4613622B2 (en) * 2005-01-20 2011-01-19 住友電気工業株式会社 Soft magnetic material and dust core
US7544417B2 (en) 2005-01-20 2009-06-09 Sumitomo Electric Industries, Ltd. Soft magnetic material and dust core comprising insulating coating and heat-resistant composite coating
EP2502689A2 (en) 2005-01-25 2012-09-26 Diamet Corporation Iron powder coated with Mg-containing oxide film
US9269481B2 (en) 2005-01-25 2016-02-23 Diamet Corporation Iron powder coated with Mg-containing oxide film
EP2248617A2 (en) 2005-01-25 2010-11-10 Diamet Corporation Iron powder coated with Mg-containing oxide film
US8481178B2 (en) 2005-01-25 2013-07-09 Diamet Corporation Iron powder coated with Mg-containing oxide film
JP2007013069A (en) * 2005-05-31 2007-01-18 Mitsubishi Materials Pmg Corp METHOD FOR PRODUCING SOFT MAGNETIC POWDER COATED WITH OXIDE CONTAINING Mg AND Si
JP2007035826A (en) * 2005-07-26 2007-02-08 Nec Tokin Corp Composite magnetic material, and dust core and magnetic element using the same
JP2007231331A (en) * 2006-02-28 2007-09-13 Jfe Steel Kk Metallic powder for powder magnetic core, and method for manufacturing powder magnetic core
JP4539585B2 (en) * 2006-02-28 2010-09-08 Jfeスチール株式会社 Metal powder for dust core and method for producing dust core
JP2007231330A (en) * 2006-02-28 2007-09-13 Jfe Steel Kk Methods for manufacturing metal powder for dust core and the dust core
US8445105B2 (en) 2006-09-11 2013-05-21 Kobe Steel, Ltd. Iron-based soft magnetic powder for dust core, method for production thereof, and dust core
US8236087B2 (en) * 2006-09-11 2012-08-07 Kobe Steel, Ltd. Powder core and iron-base powder for powder core
EP2060344A4 (en) * 2006-09-11 2011-10-05 Kobe Steel Ltd Powder magnetic core and iron-base powder for powder magnetic core
EP2060344A1 (en) * 2006-09-11 2009-05-20 Kabushiki Kaisha Kobe Seiko Sho Powder magnetic core and iron-base powder for powder magnetic core
JP2008297606A (en) * 2007-05-31 2008-12-11 Jfe Steel Kk Method for manufacturing metal powder for dust core and dust core
WO2008149825A1 (en) 2007-05-31 2008-12-11 Jfe Steel Corporation Metallic powder for powder magnetic core and process for producing powder magnetic core
JP2009117442A (en) * 2007-11-02 2009-05-28 Jfe Steel Corp Compound reactor
US10109406B2 (en) 2013-04-19 2018-10-23 Jfe Steel Corporation Iron powder for dust core and insulation-coated iron powder for dust core
JP2015135920A (en) * 2014-01-17 2015-07-27 株式会社タムラ製作所 Low-noise reactor, dust core, and method for producing the dust core
WO2018035595A1 (en) * 2016-08-25 2018-03-01 Whirlpool S.A. Ferromagnetic particle surface coating layers for obtaining soft magnetic composites (smcs)
JP2019532175A (en) * 2016-08-25 2019-11-07 ワールプール・エシ・ア Coating of ferromagnetic particle surface to obtain soft magnetic composite (SMC)

Similar Documents

Publication Publication Date Title
JP2003142310A (en) Dust core having high electrical resistance and manufacturing method therefor
JP4134111B2 (en) Method for producing insulating soft magnetic metal powder compact
KR101594585B1 (en) Ferromagnetic powder composition and method for its production
JP2006202956A (en) Soft magnetic material and powder magnetic core
JP2008028162A (en) Soft magnetic material, manufacturing method therefor, and dust core
JP5470683B2 (en) Metal powder for dust core and method for producing dust core
JP2012134244A (en) Manufacturing method of dust core, and dust core obtained by the same
JP2006237153A (en) Composite dust core and manufacturing method thereof
JP2008172257A (en) Method for manufacturing insulating soft magnetic metal powder molding
JP2019178402A (en) Soft magnetic powder
KR101639960B1 (en) Iron powder for powder magnetic core and process for producing powder magnetic core
KR101436720B1 (en) Powder mixture for dust cores
JP2002170707A (en) Dust core having high electric resistance and its manufacturing method
JP2011243830A (en) Powder magnetic core and method for manufacturing the same
JP2007231331A (en) Metallic powder for powder magnetic core, and method for manufacturing powder magnetic core
JP2024016066A (en) Ferromagnetic powder composition
US7041148B2 (en) Coated ferromagnetic particles and compositions containing the same
JPS63115309A (en) Magnetic alloy powder
CN108698124B (en) Novel compositions and methods
JP2006183121A (en) Iron based powder for powder magnetic core and powder magnetic core using the same
JP2005079511A (en) Soft magnetic material and its manufacturing method
JP2009235517A (en) Metal powder for dust core and method for producing dust core
EP4227964A1 (en) Soft magnetic powder, preparation method therefor, and use thereof
JP2021093405A (en) Method of manufacturing dust core
JP2009259979A (en) Dust core, manufacturing method of dust core, choke coil, and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070515