JP2009130286A - Method of manufacturing high-strength, high-specific-resistance composite soft magnetic material, and electromagnetic circuit component - Google Patents

Method of manufacturing high-strength, high-specific-resistance composite soft magnetic material, and electromagnetic circuit component Download PDF

Info

Publication number
JP2009130286A
JP2009130286A JP2007306363A JP2007306363A JP2009130286A JP 2009130286 A JP2009130286 A JP 2009130286A JP 2007306363 A JP2007306363 A JP 2007306363A JP 2007306363 A JP2007306363 A JP 2007306363A JP 2009130286 A JP2009130286 A JP 2009130286A
Authority
JP
Japan
Prior art keywords
soft magnetic
strength
powder
low
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007306363A
Other languages
Japanese (ja)
Inventor
Hiroaki Ikeda
裕明 池田
Kazunori Igarashi
和則 五十嵐
Hiroshi Tanaka
寛 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Diamet Corp
Original Assignee
Mitsubishi Materials Corp
Diamet Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Diamet Corp filed Critical Mitsubishi Materials Corp
Priority to JP2007306363A priority Critical patent/JP2009130286A/en
Publication of JP2009130286A publication Critical patent/JP2009130286A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite soft magnetic material which has high strength and high specific resistance. <P>SOLUTION: The high-strength, high-specific-resistance composite soft magnetic material configured by bonding a plurality of insulating-coating soft magnetic particles through a boundary layer formed by baking low-fusion-point glass is manufactured by: mixing and compacting the insulating-coating soft magnetic particles formed by coating the soft magnetic particles with insulating coatings and particles of the low-fusion-point glass of 2 to 200 nm in particle size; and subjecting them to baking processing. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、モータ、アクチュエータ、リアクトル、トランス、チョークコア、磁気センサコアなどの各種電磁気回路部品の素材として使用される高強度高比抵抗複合軟磁性材とその製造方法及び電磁気回路部品に関する。   The present invention relates to a high-strength, high-resistivity composite soft magnetic material used as a material for various electromagnetic circuit components such as a motor, an actuator, a reactor, a transformer, a choke core, and a magnetic sensor core, a manufacturing method thereof, and an electromagnetic circuit component.

従来、モータ、アクチュエータ、磁気センサなどの磁心用材料として、鉄粉末、Fe−Al系鉄基軟磁性合金粉末、Fe−Ni系鉄基軟磁性合金粉末、Fe−Cr系鉄基軟磁性合金粉末、Fe−Si系鉄基軟磁性合金粉末、Fe−Si−Al系鉄基軟磁性合金粉末、Fe−Co系鉄基軟磁性合金粉末、Fe−Co−V系鉄基軟磁性合金粉末、Fe−P系鉄基軟磁性合金粉末(以下、これらを軟磁性粒子と総称する)を焼結して得られた軟磁性焼結材が知られている。
一方、鉄粉末や合金粉末をガス又はアトマイズ法で粉末化して作製した場合、鉄粉末や合金粉末は単体では比抵抗が低いため、鉄粉末や合金粉末の表面に絶縁皮膜の被覆を行うか、有機化合物を混合するなどして焼結を防止し比抵抗を上げるなどの対策を講じている。
この種の軟磁性材において、渦電流損失を抑制するために、鉄を含む金属磁性粒子の表面を非鉄金属の下層被膜と無機化合物を含む絶縁膜とで覆った圧粉軟磁性材料などが提案されている。
Conventionally, as magnetic core materials for motors, actuators, magnetic sensors, etc., iron powder, Fe-Al iron-based soft magnetic alloy powder, Fe-Ni iron-based soft magnetic alloy powder, Fe-Cr iron-based soft magnetic alloy powder Fe-Si-based iron-based soft magnetic alloy powder, Fe-Si-Al-based iron-based soft magnetic alloy powder, Fe-Co-based iron-based soft magnetic alloy powder, Fe-Co-V-based iron-based soft magnetic alloy powder, Fe A soft magnetic sintered material obtained by sintering -P-based iron-based soft magnetic alloy powder (hereinafter collectively referred to as soft magnetic particles) is known.
On the other hand, when iron powder or alloy powder is made by pulverization by gas or atomization method, iron powder or alloy powder alone has a low specific resistance, so the surface of iron powder or alloy powder is coated with an insulating film, Measures such as mixing organic compounds to prevent sintering and increase specific resistance are taken.
In this type of soft magnetic material, in order to suppress eddy current loss, powder soft magnetic materials, etc., in which the surface of metal magnetic particles containing iron are covered with a non-ferrous metal underlayer coating and an insulating film containing an inorganic compound, are proposed. Has been.

この種の軟磁性材の強度を向上させる1つの手段として、MgおよびOが表面から内部に向かって減少しておりかつFeが内部に向かって増加している濃度勾配を有するMg−Fe−O三元系酸化物堆積膜を鉄粉末の表面に被覆したMg含有酸化膜被覆鉄粉末を用い、鉄粉末との界面領域に鉄粉末の中心部に含まれる硫黄よりも高濃度の硫黄を含む硫黄濃化層を有するMg含有酸化鉄膜被覆鉄粉末を低融点ガラス相で結合してなる高強度複合軟磁性材が知られている。(特許文献1参照)
また、この種の軟磁性材の強度を向上させる他の手段として、少なくとも(Mg,Fe)Oを含むMg−Fe−O三元系酸化物堆積膜と鉄粉末との界面領域に鉄粉末の中心部に含まれる硫黄よりも高濃度の硫黄を含む硫黄濃化層を有するMg含有酸化鉄膜被覆鉄粉末を低融点ガラス相で結合してなる高強度複合軟磁性材であって、前記少なくとも(Mg,Fe)Oを含むMg−Fe−O三元系酸化物堆積膜は、結晶粒径:200nm以下の微細結晶組織を有し、前記少なくとも(Mg,Fe)Oを含むMg−Fe−O三元系酸化物堆積膜は、その最表面を実質的にMgOで構成している高強度複合軟磁性材が知られている。(特許文献2参照)
As one means for improving the strength of this kind of soft magnetic material, Mg—Fe—O having a concentration gradient in which Mg and O decrease from the surface toward the inside and Fe increases toward the inside. Sulfur containing a higher concentration of sulfur than the sulfur contained in the center of the iron powder in the interface region with the iron powder using the Mg-containing oxide film-coated iron powder coated with the ternary oxide deposited film on the surface of the iron powder A high-strength composite soft magnetic material obtained by binding Mg-containing iron oxide film-coated iron powder having a concentrated layer with a low-melting glass phase is known. (See Patent Document 1)
As another means for improving the strength of this kind of soft magnetic material, the iron powder is formed in the interface region between the Mg—Fe—O ternary oxide deposited film containing at least (Mg, Fe) O and the iron powder. A high-strength composite soft magnetic material obtained by bonding a Mg-containing iron oxide film-coated iron powder having a sulfur-concentrated layer containing sulfur at a concentration higher than that of sulfur contained in the center portion, in a low-melting glass phase, The Mg—Fe—O ternary oxide deposited film containing (Mg, Fe) O has a fine crystal structure with a crystal grain size of 200 nm or less, and includes Mg—Fe— containing at least (Mg, Fe) O. As the O ternary oxide deposited film, a high-strength composite soft magnetic material whose outermost surface is substantially composed of MgO is known. (See Patent Document 2)

次に、この種の軟磁性材の強度を向上させる更に他の手段として、鉄粉末、リン酸塩被覆鉄粉末または酸化物膜被覆鉄粉末の表面に低融点ガラスを構成する元素の錯体またはアルコキシドを有機溶媒に溶かした溶液を塗布することにより溶液膜形成鉄粉末、溶液膜形成リン酸塩被覆鉄粉末または溶液膜形成酸化物膜被覆鉄粉末を作製し、この溶液膜形成鉄粉末、溶液膜形成リン酸塩被覆鉄粉末または溶液膜形成酸化物膜被覆鉄粉末における溶液膜の有機成分を加熱分解することにより低融点ガラスを被覆した鉄粉末、リン酸塩被覆鉄粉末または酸化物膜被覆鉄粉末を作製したのちこれら粉末を圧縮成形したのち熱処理するか、または前記溶液膜形成鉄粉末、溶液膜形成リン酸塩被覆鉄粉末または溶液膜形成酸化物膜被覆鉄粉末を圧縮成形したのち熱処理して複合軟磁性材を製造する技術が知られている。(特許文献3参照)
特開2006−332525号公報 特開2006−332524号公報 特開2006−278833号公報
Next, as yet another means for improving the strength of this kind of soft magnetic material, the complex or alkoxide of the elements constituting the low melting point glass on the surface of the iron powder, phosphate-coated iron powder or oxide film-coated iron powder is used. A solution film-forming iron powder, a solution film-forming phosphate-coated iron powder, or a solution film-forming oxide film-coated iron powder is prepared by applying a solution in which an organic solvent is dissolved. Low melting point glass coated iron powder, phosphate coated iron powder or oxide film coated iron by thermally decomposing organic components of solution film in formed phosphate coated iron powder or solution film formed oxide film coated iron powder After the powders are prepared, these powders are compression molded and then heat treated, or the solution film-forming iron powder, the solution film-forming phosphate-coated iron powder, or the solution film-forming oxide film-coated iron powder is compression-molded. Technique for producing a composite soft magnetic material with Chi heat treatment is known. (See Patent Document 3)
JP 2006-332525 A JP 2006-332524 A JP 2006-278833 A

前記各特許文献に記載の技術を用いて複合軟磁性材料の特性改善を行う場合、絶縁被覆した鉄粉に低融点ガラスなどの原料粉末を混合し、圧密後に焼成することで製造しているが、絶縁皮膜被覆鉄粉と低融点ガラスの原料粉末との均一混合を行ったとしても、焼成後に得られた軟磁性複合材において数10〜数100μm程度の微細粒径をもつ鉄粉末の周囲の隅々に均一な厚さの低融点ガラス層をバインダー層として形成することが困難なことから、得られた複合軟磁性材の特性において、特に強度の面で不均一性を解消することができない問題があった。   When improving the characteristics of a composite soft magnetic material using the techniques described in the above patent documents, it is manufactured by mixing raw material powder such as low-melting-point glass with insulating coated iron powder and firing it after consolidation. Even if the insulating film-coated iron powder and the low melting point glass raw material powder are uniformly mixed, the soft magnetic composite material obtained after firing has a fine particle diameter of about several tens to several hundreds of micrometers around the iron powder. Since it is difficult to form a low-melting glass layer having a uniform thickness every corner as a binder layer, it is not possible to eliminate non-uniformity particularly in terms of strength in the characteristics of the obtained composite soft magnetic material There was a problem.

例えば、前述の鉄粉末と低融点ガラスの原料粉末を均一混合して焼成する方法により軟磁性材を得ようとすると、微細化された鉄粉末の周囲に前述の技術に基づき形成しているMg−Fe−O三元系酸化物堆積膜は、厚さ100nm程度であるが、この軟磁性材にバインダーとして低融点ガラスの原料粉末を混合する場合、一般的な方法により低融点ガラスの原料粉末を極微細に粉砕しても、粉砕法により微細化する限り、その粒径を1μm程度、あるいはそれよりも若干細粒とする程度が限界であるので、この程度の粒径の原料粉末を前述のMg−Fe−O三元系酸化物堆積膜を備えた鉄粉末と混合して圧密し、焼成しても低融点ガラスの原料成分が全ての鉄粉末の周囲に均一に回り込むことができず、バインダー層としての低融点ガラスの境界層が不均一になり易いという問題を有している。また、前述の粒径の低融点ガラス原料粉末では、加圧成形時にMg−Fe−O三元系酸化物堆積膜が低融点ガラス原料粉末によって損傷される場合があり、本来鉄粉末の周囲を完全に取り囲んでいるべきMg−Fe−O三元系酸化物堆積膜が部分的に損傷し、本来有する優れた絶縁性を確保できていない結果として、抵抗値を高めることができず、渦電流損失の面で不利となり易い問題があった。   For example, when trying to obtain a soft magnetic material by a method of uniformly mixing and firing the above-mentioned iron powder and low melting point glass raw material powder, Mg formed around the refined iron powder based on the above-mentioned technique The Fe-O ternary oxide deposited film has a thickness of about 100 nm, but when a soft-magnetic material is mixed with a low-melting glass raw material powder as a binder, the low-melting glass raw material powder is obtained by a general method. Even if the powder is pulverized extremely finely, as long as it is refined by the pulverization method, the particle size is limited to about 1 μm or slightly finer than that. Mixing with iron powder with Mg-Fe-O ternary oxide deposited film, compacting and firing, the raw material components of the low melting point glass cannot evenly wrap around all the iron powder Low melting glass as a binder layer Boundary layer has a liable to become uneven. In addition, in the low melting point glass raw material powder having the above-mentioned particle size, the Mg—Fe—O ternary oxide deposited film may be damaged by the low melting point glass raw material powder during pressure molding, The Mg-Fe-O ternary oxide deposited film that should be completely surrounded is partially damaged, and as a result of not being able to ensure the excellent insulation inherently, the resistance value cannot be increased, and the eddy current There was a problem that tends to be disadvantageous in terms of loss.

次に、本発明者らは、前述の鉄粉末の表面にMg−Fe−Oの三元系酸化物堆積膜を形成した酸化膜被覆鉄粉末の圧密体を更に高強度とするため、圧密体に水分含有雰囲気中において加熱処理(スチーム処理)することを研究している。
本発明者らの研究によりこの水分含有雰囲気において加熱処理を行うと、確実に強度を向上できることは判明したが、このスチーム処理を行うと、鉄粉末中のFeとスチーム中のH2Oが反応してFe3O4が必要以上に増加し、比抵抗が低下するおそれがあった。
Next, the inventors of the present invention have made it possible to further increase the strength of the compacted oxide film-coated iron powder in which the Mg—Fe—O ternary oxide deposited film is formed on the surface of the iron powder. We are studying heat treatment (steam treatment) in a moisture-containing atmosphere.
It has been found from the study by the present inventors that the strength can be surely improved when heat treatment is performed in this moisture-containing atmosphere. However, when this steam treatment is performed, Fe in the iron powder reacts with H2O in the steam. Fe3O4 may increase more than necessary, and the specific resistance may decrease.

本発明は前記の問題に鑑みて創案されたものであり、その目的は、軟磁性粒子の周囲に形成する絶縁皮膜に損傷を与えることなく圧密し、焼成することが可能であり、高抵抗化することが可能であり、また、バインダーとして用いる低融点ガラスを軟磁性粒子の周囲の隅々まで浸透させて焼成し生成することが可能であるので、高強度化することができ、しかも高比抵抗かつ低損失な特性を確保できる高強度高比抵抗複合軟磁性材の提供を目的とする。   The present invention was devised in view of the above-mentioned problems, and its purpose is to enable compaction and firing without damaging the insulating film formed around the soft magnetic particles, and to increase the resistance. In addition, low melting point glass used as a binder can be infiltrated into every corner of the soft magnetic particles and baked to produce high strength and high ratio. An object of the present invention is to provide a high-strength, high-resistivity composite soft magnetic material that can ensure resistance and low-loss characteristics.

(1)上記目的を達成するために本発明の高強度高比抵抗複合軟磁性材の製造方法は、軟磁性粒子を絶縁皮膜で被覆してなる絶縁被覆軟磁性粒子と、粒径2nm〜200nmの低融点ガラスの原料粉末粒子を混合して圧密し、焼成処理することにより、前記原料粉末粒子を焼成してなる低融点ガラスの境界層を介して前記複数の絶縁被覆軟磁性粒子を結合してなる高強度高比抵抗複合軟磁性材を製造することを特徴とする。
本発明では絶縁被覆軟磁性粒子に対して粒径2nm〜200nmの低融点ガラスの原料粉末粒子を複数混合して圧密し、焼成するので、隅々の軟磁性粒子の周囲まで低融点ガラスの原料が行き渡る結果として、隅々の軟磁性粒子の周囲まで低融点ガラスの境界層が形成される。このため、強度的に弱い部分が生じ難くなるので、高強度高比抵抗の軟磁性材を得ることができる。前記低融点ガラスの原料粉末の粒径は、より好ましくは2nm〜100nmである。
(1) In order to achieve the above object, a method for producing a high-strength, high-resistivity composite soft magnetic material of the present invention comprises insulating coated soft magnetic particles obtained by coating soft magnetic particles with an insulating film, and a particle size of 2 nm to 200 nm. The low-melting-point glass raw material powder particles are mixed, consolidated, and fired to combine the plurality of insulating coated soft magnetic particles through a low-melting-point glass boundary layer obtained by firing the raw powder particles. A high-strength, high-resistivity composite soft magnetic material is produced.
In the present invention, a plurality of low melting point glass raw material powder particles having a particle diameter of 2 nm to 200 nm are mixed with the insulating coated soft magnetic particles, and compacted and fired. As a result, a boundary layer of low-melting glass is formed around the soft magnetic particles in every corner. For this reason, it is difficult to produce a weak portion in strength, and thus a soft magnetic material having high strength and high specific resistance can be obtained. The particle size of the low melting glass raw material powder is more preferably 2 nm to 100 nm.

(2)上記目的を達成するために本発明は、前記低融点ガラスの原料粉末粒子を焼成処理時に完全にまたは部分的に溶融した後、凝固させて前記境界層を形成することを特徴とする(1)に記載の高強度高比抵抗複合軟磁性材の製造方法に関する。
粒径2nm〜200nmの低融点ガラスの原料粉末粒子を混合して圧密し、焼成するので、隅々の軟磁性粒子の周囲まで低融点ガラスが均一に浸透し、焼成体の隅々まで可能な限り均一な厚さの低融点ガラスの境界層を生成することができ、換言すると、均一な厚さの境界層で軟磁性粒子を結合した焼成材が得られる。前記低融点ガラスの原料粉末の粒径は、より好ましくは2nm〜100nmである。
(3)上記目的を達成するために本発明の高強度高比抵抗複合軟磁性材の製造方法は、前記絶縁被覆軟磁性粒子の絶縁皮膜が、(Mg、Fe)Oを主体としてなるMg含有酸化物皮膜であることを特徴とする。
絶縁皮膜として、(Mg、Fe)Oを主体としてなるMg含有酸化物皮膜が膜の強度や絶縁性、耐熱性の面で優れる。
(4)上記目的を達成するために本発明の高強度高比抵抗複合軟磁性材の製造方法は、前記低融点ガラスが、SiO2−B2O3−Na2O系、Na2O−B2O3−ZnO系、SiO2−B2O3−ZnO系、SiO2−B2O3−Li2O系ガラスのうち、少なくとも1種類以上であることを特徴とする。
これらの系列のガラスであるならば、(Mg、Fe)Oを主体としてなるMg含有酸化物皮膜を有する鉄粉末との馴染みも良好であり、絶縁性の被膜を設けることが有利となりやすい。
(2) In order to achieve the above object, the present invention is characterized in that the raw material powder particles of the low-melting glass are completely or partially melted during the firing process and then solidified to form the boundary layer. The present invention relates to a method for producing a high-strength, high-resistivity composite soft magnetic material described in (1).
Since the raw powder particles of a low melting point glass having a particle size of 2 nm to 200 nm are mixed, consolidated, and fired, the low melting point glass uniformly penetrates to the periphery of each soft magnetic particle and is possible to every corner of the fired body. A boundary layer of a low melting point glass having a uniform thickness can be produced as much as possible. In other words, a fired material in which soft magnetic particles are bonded with a boundary layer having a uniform thickness can be obtained. The particle size of the low melting glass raw material powder is more preferably 2 nm to 100 nm.
(3) In order to achieve the above object, the method for producing a high-strength, high-resistivity composite soft magnetic material according to the present invention is characterized in that the insulating coating of the insulating coated soft magnetic particles contains Mg mainly composed of (Mg, Fe) O. It is an oxide film.
As the insulating film, an Mg-containing oxide film mainly composed of (Mg, Fe) O is excellent in terms of film strength, insulation, and heat resistance.
(4) In order to achieve the above object, according to the method for producing a high-strength, high-resistivity composite soft magnetic material of the present invention, the low melting point glass is SiO2-B2O3-Na2O-based, Na2O-B2O3-ZnO-based, SiO2-B2O3. It is characterized in that it is at least one or more of -ZnO-based and SiO2-B2O3-Li2O-based glasses.
If it is glass of these series, familiarity with the iron powder which has Mg content oxide film which has (Mg, Fe) O as a main part is good, and it is easy to be advantageous to provide an insulating film.

(5)上記目的を達成するために本発明の高強度高比抵抗複合軟磁性材の製造方法は、前記絶縁被覆軟磁性粒子の絶縁皮膜が、厚さ5〜200nmの範囲であることを特徴とする。
この範囲の絶縁皮膜厚さであるならば、粒径2nm〜200nmの低融点ガラスの粒子を混合して圧密し、焼成した場合に、絶縁皮膜が損傷するおそれが少なく、しかも適度な厚さによって優れた絶縁性も確保できる。
(5) In order to achieve the above object, the method for producing a high-strength, high-resistivity composite soft magnetic material of the present invention is characterized in that the insulating coating of the insulating coating soft magnetic particles has a thickness in the range of 5 to 200 nm. And
If the thickness of the insulating film is within this range, the low melting point glass particles having a particle size of 2 nm to 200 nm are mixed and consolidated, and when fired, the insulating film is less likely to be damaged, and with an appropriate thickness. Excellent insulation can be secured.

(6)上記目的を達成するために本発明の高強度高比抵抗複合軟磁性材の製造方法は、プラズマを発生させた減圧雰囲気中に、前記低融点ガラスの液体原料を反応ガスとともに供給することで低融点ガラス組成物の微細な液滴を生成し、冷却ガスで瞬間冷却することにより、粒径2nm〜200nmの低融点ガラスの原料粒子を生成し、この低融点ガラスの原料粒子を用いることを特徴とする。
プラズマにより高温となった反応場に,液体原料を反応ガスとともに噴霧する。反応場に放出された液体原料は瞬間的に蒸発気化し、低融点ガラス組成物の微細な液滴となり、さらに冷却ガスにより急速冷却されることで小さなナノ粒子となる。製造プロセスに液体原料を適用することで,多成分粒子を合成した場合でも組成がコントロールされた粒子が合成可能となる。粒子の大きさは反応場の温度、冷却ガス温度、冷却ガス量により制御できる。つまり反応場が高温時にはナノサイズであっても粒子径が大きくなり,反応場が低温時にはナノサイズであっても粒子径がより小さくなる。
(7)上記目的を達成するために本発明の電磁気回路部品は、(1)〜(6)のいずれかに記載の製造方法により得られた高強度高比抵抗複合軟磁性材からなることを特徴とする。
(6) In order to achieve the above object, the method for producing a high-strength, high-resistivity composite soft magnetic material of the present invention supplies the low-melting glass liquid raw material together with a reaction gas in a reduced-pressure atmosphere in which plasma is generated. In this way, fine droplets of the low melting point glass composition are generated, and instantly cooled with a cooling gas, thereby generating low melting point glass raw material particles having a particle size of 2 nm to 200 nm, and the low melting point glass raw material particles are used. It is characterized by that.
Liquid raw material is sprayed together with the reaction gas in the reaction field heated by the plasma. The liquid raw material released into the reaction field is instantly evaporated and becomes fine droplets of a low-melting glass composition, and further rapidly cooled by a cooling gas to become small nanoparticles. By applying a liquid raw material to the manufacturing process, particles having a controlled composition can be synthesized even when multi-component particles are synthesized. The size of the particles can be controlled by the reaction field temperature, the cooling gas temperature, and the cooling gas amount. That is, when the reaction field is high in temperature, the particle size is large even when the reaction field is low, and when the reaction field is low, the particle size is smaller even when the reaction field is nano-sized.
(7) In order to achieve the above object, the electromagnetic circuit component of the present invention is made of a high-strength, high-resistivity composite soft magnetic material obtained by the manufacturing method according to any one of (1) to (6). Features.

本発明の高強度高比抵抗複合軟磁性材によれば、絶縁被覆軟磁性粒子が個々の絶縁皮膜で被覆された上に、低融点ガラスの粒界層を介し結合されているので、粒界層部分での結合力に優れ、高強度な複合軟磁性材が得られる。
また、粒界層が均一であり、かつ、軟磁性粒子が個々に確実に絶縁被覆されているので、粒界層が高比抵抗の状態とされる結果、軟磁性焼成材として高抵抗化ができており、渦電流損失も抑制することができる。
According to the high-strength, high-resistivity composite soft magnetic material of the present invention, the insulating coated soft magnetic particles are coated with individual insulating films and bonded via the grain boundary layer of the low melting point glass. A high-strength composite soft magnetic material having excellent bonding strength at the layer portion can be obtained.
In addition, since the grain boundary layer is uniform and the soft magnetic particles are reliably insulated and coated, the grain boundary layer is brought into a state of high specific resistance. The eddy current loss can be suppressed.

また、絶縁被覆が(Mg、Fe)Oを主体としてなるMg含有酸化物皮膜であるならば、Mg含有酸化物被覆軟磁性粒子が個々に高比抵抗の粒界層で分離されているので、Mg含有酸化物被覆軟磁性粒子が本来有する優れた軟磁気特性を維持しながら、高比抵抗で渦電流損失の抑制された低損失の高強度高比抵抗複合軟磁性材を提供できる。
本発明の製造方法により得られた高強度高比抵抗複合軟磁性材は、高密度、高強度、高比抵抗および高磁束密度を有するので、本発明の軟磁性複合圧密焼成材は、高強度と高磁束密度、かつ、高周波低鉄損の特徴を兼ね備えた優れたものであり、これらの特徴を生かした各種電磁気回路部品の材料として使用できる。
In addition, if the insulating coating is an Mg-containing oxide film mainly composed of (Mg, Fe) O, the Mg-containing oxide-coated soft magnetic particles are individually separated by a high resistivity grain boundary layer. It is possible to provide a low-strength, high-strength, high-resistivity composite soft magnetic material with high specific resistance and reduced eddy current loss while maintaining the excellent soft magnetic properties inherent in Mg-containing oxide-coated soft magnetic particles.
Since the high-strength, high-resistivity composite soft magnetic material obtained by the production method of the present invention has high density, high strength, high specific resistance, and high magnetic flux density, the soft-magnetic composite compacted fired material of the present invention has high strength. It has excellent magnetic flux density and high frequency and low iron loss characteristics, and can be used as a material for various electromagnetic circuit components utilizing these characteristics.

前記高強度高比抵抗低損失複合軟磁性材を用いて構成される電磁気回路部品として、例えば、磁心、電動機コア、発電機コア、ソレノイドコア、イグニッションコア、リアクトルコア、トランスコア、チョークコイルコアまたは磁気センサコアなどとしての利用が可能であり、いずれにおいても優れた特性を発揮し得る電磁気回路部品を提供できる。
そして、これら電磁気回路部品を組み込んだ電気機器には、電動機、発電機、ソレノイド、インジェクタ、電磁駆動弁、インバータ、コンバータ、変圧器、継電器、磁気センサシステム等があり、これら電気機器の高効率高性能化や小型軽量化に寄与するという効果がある。
As an electromagnetic circuit component configured using the high strength, high specific resistance, low loss composite soft magnetic material, for example, a magnetic core, a motor core, a generator core, a solenoid core, an ignition core, a reactor core, a transformer core, a choke coil core or An electromagnetic circuit component that can be used as a magnetic sensor core or the like and can exhibit excellent characteristics in any case can be provided.
Electric devices incorporating these electromagnetic circuit components include motors, generators, solenoids, injectors, electromagnetically driven valves, inverters, converters, transformers, relays, magnetic sensor systems, etc. There is an effect that it contributes to performance improvement and reduction in size and weight.

以下に本発明をMg含有酸化物被覆軟磁性粒子の製造方法に適用した場合を例にして以下に詳細に説明するが、軟磁性粒子の外面に被覆する絶縁皮膜をMgの酸化物皮膜に限定するものではなく、リン酸塩皮膜、またはシリカのゾルゲル溶液(シリケート)もしくはアルミナのゾルゲル溶液などの湿式溶液を添加・混合後に乾燥して焼成した酸化ケイ素もしくは酸化アルミニウム皮膜等であってもよい。
「Mg含有酸化物被覆軟磁性粒子の製造」
本発明ではまず、(Mg,Fe)Oを含むMg−Fe−O三元系酸化物堆積膜が軟磁性粒子の表面に被覆形成されたMg含有酸化物被覆軟磁性粒子(粉末)を作製する。
この被覆軟磁性粒子を得るためには、以下のいずれかの原料粉末を用い、後述に記載の方法で実施すれば良い。
この発明のMg含有酸化物被覆軟磁性粒子の製造方法において使用する原料粉末としてのFe系軟磁性粒子は、従来から一般に知られている鉄粉末、Fe−Al系鉄基軟磁性合金粉末、Fe−Ni系鉄基軟磁性合金粉末、Fe−Cr系鉄基軟磁性合金粉末、Fe−Si系鉄基軟磁性合金粉末、Fe−Si−Al系鉄基軟磁性合金粉末、Fe−Co系鉄基軟磁性合金粉末、Fe−Co−V系鉄基軟磁性合金粉末またはFe−P系鉄基軟磁性合金粉末であることが好ましい。
更に具体的には、鉄粉末は純鉄粉末であり、Fe−Al系鉄基軟磁性合金粉末はAl:0.1〜20質量%を含有し、残部がFeおよび不可避不純物からなるFe−Al系鉄基軟磁性合金粉末(例えば、Fe−15質量%Alからなる組成を有するアルパーム粉末)であることが好ましい。
In the following, the present invention is applied in detail to the production method of Mg-containing oxide-coated soft magnetic particles as an example, but the insulating film covering the outer surface of the soft magnetic particles is limited to the Mg oxide film. However, it may be a phosphate film, or a silicon oxide or aluminum oxide film obtained by adding and mixing a wet solution such as a silica sol-gel solution (silicate) or an alumina sol-gel solution, followed by drying and baking.
"Production of Mg-containing oxide-coated soft magnetic particles"
In the present invention, first, Mg-containing oxide-coated soft magnetic particles (powder) in which a Mg—Fe—O ternary oxide deposition film containing (Mg, Fe) O is coated on the surface of soft magnetic particles are prepared. .
In order to obtain the coated soft magnetic particles, any of the following raw material powders may be used and the method described later may be used.
Fe-based soft magnetic particles as raw material powders used in the method for producing Mg-containing oxide-coated soft magnetic particles of the present invention are conventionally known iron powder, Fe-Al-based iron-based soft magnetic alloy powder, Fe -Ni-based iron-based soft magnetic alloy powder, Fe-Cr-based iron-based soft magnetic alloy powder, Fe-Si-based iron-based soft magnetic alloy powder, Fe-Si-Al-based iron-based soft magnetic alloy powder, Fe-Co-based iron A base soft magnetic alloy powder, an Fe—Co—V iron-based soft magnetic alloy powder, or an Fe—P iron-based soft magnetic alloy powder is preferable.
More specifically, the iron powder is pure iron powder, the Fe—Al-based iron-based soft magnetic alloy powder contains Al: 0.1 to 20% by mass, and the balance is Fe—Al composed of Fe and inevitable impurities. It is preferable to be an iron-based soft magnetic alloy powder (for example, an alpalm powder having a composition composed of Fe-15 mass% Al).

また、Fe−Ni系鉄基軟磁性合金粉末はNi:35〜85質量%を含有し、必要に応じてMo:5質量%以下、Cu:5質量%以下、Cr:2質量%以下、Mn:0.5質量%以下の内の1種または2種以上を含有し、残部がFeおよび不可避不純物からなるニッケル基軟磁性合金粉末(例えば、Fe−49質量%Ni粉末)であり、Fe−Cr系鉄基軟磁性合金粉末はCr:1〜20質量%を含有し、必要に応じてAl:5質量%以下、Ni:5質量%以下の内の1種または2種を含有し、残部がFeおよび不可避不純物からなるFe−Cr系鉄基軟磁性合金粉末であり、Fe−Si系鉄基軟磁性合金粉末は、Si:0.1〜10質量%を含有し、残部がFeおよび不可避不純物からなるFe−Si系鉄基軟磁性合金粉末であることが好ましい。
また、Fe−Si−Al系鉄基軟磁性合金粉末は、Si:0.1〜10質量%、Al:0.1〜20質量%を含有し、残部がFeおよび不可避不純物からなるFe−Si−Al系鉄基軟磁性合金粉末であり、Fe−Co−V系鉄基軟磁性合金粉末は、Co:0.1〜52質量%、V:0.1〜3質量%を含有し、残部がFeおよび不可避不純物からなるFe−Co−V系鉄基軟磁性合金粉末であり、Fe−Co系鉄基軟磁性合金粉末は、Co:0.1〜52質量%を含有し、残部がFeおよび不可避不純物からなるFe−Co系鉄基軟磁性合金粉末であり、Fe−P系鉄基軟磁性合金粉末は、P:0.5〜1質量%を含有し、残部がFeおよび不可避不純物からなるFe−P系鉄基軟磁性合金粉末であることが好ましい。
Further, the Fe—Ni-based iron-based soft magnetic alloy powder contains Ni: 35 to 85% by mass, and Mo: 5% by mass or less, Cu: 5% by mass or less, Cr: 2% by mass or less, and Mn as required. : A nickel-based soft magnetic alloy powder (for example, Fe-49 mass% Ni powder) containing one or more of 0.5 mass% or less, with the balance being Fe and inevitable impurities, Fe— Cr-based iron-based soft magnetic alloy powder contains Cr: 1 to 20% by mass, and optionally contains one or two of Al: 5% by mass or less, Ni: 5% by mass or less, and the balance Is an Fe—Cr-based iron-based soft magnetic alloy powder composed of Fe and inevitable impurities, and the Fe—Si-based iron-based soft magnetic alloy powder contains Si: 0.1 to 10% by mass, with the balance being Fe and inevitable Preferably, the Fe-Si iron-based soft magnetic alloy powder is made of impurities. Arbitrariness.
The Fe—Si—Al-based iron-based soft magnetic alloy powder contains Si: 0.1 to 10% by mass, Al: 0.1 to 20% by mass, and the balance is Fe—Si composed of Fe and inevitable impurities. -Al-based iron-based soft magnetic alloy powder, Fe-Co-V-based iron-based soft magnetic alloy powder contains Co: 0.1 to 52 mass%, V: 0.1 to 3 mass%, the balance Is an Fe—Co—V-based iron-based soft magnetic alloy powder comprising Fe and inevitable impurities, and the Fe—Co-based iron-based soft magnetic alloy powder contains 0.1% to 52% by mass of Co, with the balance being Fe. And Fe—Co-based iron-based soft magnetic alloy powder composed of inevitable impurities, Fe—P-based iron-based soft magnetic alloy powder contains P: 0.5 to 1% by mass, and the balance is Fe and inevitable impurities. The Fe-P-based iron-based soft magnetic alloy powder is preferable.

そして、これらFe系の軟磁性粒子は平均粒径:5〜500μmの範囲内にある軟磁性金属粉末(粒子)を使用することが好ましい。その理由は、平均粒径が5μmより小さすぎると、粉末の圧縮性が低下し、軟磁性粒子の体積割合が低くなるために磁束密度の値が低下するので好ましくなく、一方、平均粒径が500μmより大きすぎると、軟磁性粒子内部の渦電流が増大して高周波における透磁率が低下することによるものである。   The Fe-based soft magnetic particles are preferably soft magnetic metal powders (particles) having an average particle size in the range of 5 to 500 μm. The reason is that if the average particle size is less than 5 μm, the compressibility of the powder is lowered, and the volume ratio of the soft magnetic particles is lowered, so the value of the magnetic flux density is lowered. If it is larger than 500 μm, the eddy current inside the soft magnetic particles increases and the magnetic permeability at high frequency decreases.

これら各種のFe系軟磁性粒子のいずれかを原料粉末とし、酸化雰囲気中で室温〜500℃に保持する酸化処理を施した後、この原料粉末にMg粉末を添加し混合して得られた混合粉末を温度:150〜1100℃、圧力:1×10−12〜1×10−1MPaの不活性ガス雰囲気または真空雰囲気中で加熱し、さらに必要に応じて酸化雰囲気中、温度:50〜400℃で加熱すると、軟磁性粒子表面にMgを含む酸化絶縁皮膜を有するMg含有酸化物被覆軟磁性粉末(粒子)が得られる。
前記Mg粉末の添加量は0.1〜0.3質量%の範囲内にあることが好ましく、前記加熱温度は650℃、前記真空雰囲気は圧力:1×10−7〜1×10−4MPaの真空雰囲気であることが好ましい。
このMg含有酸化物被覆軟磁性粒子は、従来のMgフェライト膜を形成したMg含有酸化物被覆軟磁性粒子に比べて密着性が格段に優れたものとなり、このMg含有酸化物被覆軟磁性粒子をプレス成形して圧粉体を作製しても絶縁皮膜が破壊し剥離することが少なく、また、このMg含有酸化物被覆軟磁性粒子の圧粉体を温度:400〜1300℃で焼成して得られた軟磁性複合圧密焼成材は粒界にMg含有酸化膜が均一に分散し、粒界三重点にMg含有酸化膜が集中していない組織が得られる。
Mixing obtained by using any of these various Fe-based soft magnetic particles as raw material powder, subjecting it to an oxidation treatment in an oxidizing atmosphere at room temperature to 500 ° C., and adding and mixing Mg powder to this raw material powder The powder is heated in an inert gas atmosphere or a vacuum atmosphere at a temperature of 150 to 1100 ° C. and a pressure of 1 × 10 −12 to 1 × 10 −1 MPa, and further in an oxidizing atmosphere, if necessary, a temperature of 50 to 400. When heated at 0 ° C., an Mg-containing oxide-coated soft magnetic powder (particles) having an oxide insulating film containing Mg on the surface of the soft magnetic particles is obtained.
The addition amount of the Mg powder is preferably in the range of 0.1 to 0.3% by mass, the heating temperature is 650 ° C., and the vacuum atmosphere is pressure: 1 × 10 −7 to 1 × 10 −4 MPa The vacuum atmosphere is preferable.
The Mg-containing oxide-coated soft magnetic particles have much better adhesion than the conventional Mg-containing oxide-coated soft magnetic particles on which an Mg ferrite film is formed. Even when a green compact is produced by press molding, the insulating film is less likely to break and peel off, and is obtained by firing the green compact of this Mg-containing oxide-coated soft magnetic particle at a temperature of 400 to 1300 ° C. The resulting soft magnetic composite compacted fired material has a structure in which the Mg-containing oxide film is uniformly dispersed at the grain boundaries, and the Mg-containing oxide film is not concentrated at the grain boundary triple points.

前述の製造方法の場合、酸化処理した軟磁性粒子を原料粉末とし、この原料粉末にMg粉末を添加し混合して得られた混合粉末を温度:150〜1100℃、圧力:1×10−12〜1×10−1MPaの不活性ガス雰囲気または真空雰囲気中で加熱するには、前記混合粉末を転動させながら加熱することが好ましい。 In the case of the manufacturing method described above, oxidized soft magnetic particles are used as raw material powder, and mixed powder obtained by adding and mixing Mg powder to this raw material powder is temperature: 150-1100 ° C., pressure: 1 × 10 −12. In order to heat in an inert gas atmosphere or vacuum atmosphere of ˜1 × 10 −1 MPa, it is preferable to heat the mixed powder while rolling.

「堆積膜」という用語は、通常、真空蒸着やスパッタされた皮膜構成原子が例えば基板上に堆積された皮膜を示すが、本発明において用いる堆積膜とは、酸化鉄膜を有するFe系軟磁性粒子の酸化鉄(Fe−O)とMgが反応を伴って当該Fe系軟磁性粒子表面に堆積した皮膜を示す。このFe系軟磁性粒子の表面に形成されているMg−Fe−O三元系酸化物堆積膜の膜厚は、圧粉成形後に軟磁性複合圧密焼成材の高磁束密度と高比抵抗を得るために、5nm〜200nmの範囲内にあることが好ましい。ここでの膜厚が5nmより薄いと、圧粉成形した軟磁性複合圧密焼成材の比抵抗が充分ではなく、渦電流損失が増加するので好ましくなく、膜厚が200nmを越える厚さでは、圧粉成形した軟磁性複合圧密焼成材の磁束密度が低下する傾向となる。このような範囲において好ましい膜厚は、5nm〜100nmの範囲内である。   The term “deposited film” usually indicates a film in which atoms constituting a film deposited by vacuum evaporation or sputtering are deposited on a substrate, for example. The deposited film used in the present invention is an Fe-based soft magnetic film having an iron oxide film. The film | membrane which the iron oxide (Fe-O) and Mg of particle | grains deposited on the said Fe-type soft-magnetic particle surface with reaction is shown. The film thickness of the Mg—Fe—O ternary oxide deposited film formed on the surface of the Fe-based soft magnetic particles is such that the high magnetic flux density and high specific resistance of the soft magnetic composite compacted fired material are obtained after compacting. Therefore, it is preferable that it exists in the range of 5 nm-200 nm. If the film thickness is thinner than 5 nm, the specific resistance of the compacted soft magnetic composite compacted fired material is not sufficient, and eddy current loss increases. The magnetic flux density of the powdered soft magnetic composite compacted fired material tends to decrease. In such a range, a preferable film thickness is in the range of 5 nm to 100 nm.

「高強度高比抵抗複合軟磁性材の製造方法」
以上説明した方法により前述の如く作製したMg含有酸化物被覆軟磁性粒子を使用して高強度高比抵抗低損失複合軟磁性材を製造するには、まず、前述の方法で作製したMg含有酸化物被覆軟磁性粒子に対し、バインダー材としての低融点ガラスの原料粉末(粒子)を添加する。前記低融点ガラスの原料混合粉末(粒子)として、ナノオーダー、特に2〜100nm程度の原料粉末でなければならない。なお、この範囲の原料粉末をハンドリングすることは容易ではないので、先のMg含有酸化物被覆軟磁性粒子に添加する場合、原料粉末をエタノールなどの有機溶媒に超音波分散により均一分散し、この有機溶媒中に先のMg含有酸化物被覆軟磁性粒子を浸漬して取り出し、有機溶媒を加熱し乾燥して除去し、成形する方法を採用することが好ましい。ただし、乾式によって原料粉末と先のMg含有酸化物被覆軟磁性粒子を混合し成形する方法も可能である。
"Production method of high strength and high resistivity composite soft magnetic material"
In order to produce a high-strength, high-resistivity, low-loss composite soft magnetic material using the Mg-containing oxide-coated soft magnetic particles prepared as described above by the method described above, first, the Mg-containing oxide prepared by the method described above is used. Raw material powder (particles) of low-melting glass as a binder material is added to the material-coated soft magnetic particles. The low-melting glass raw material mixed powder (particles) must be a raw material powder of nano order, particularly about 2 to 100 nm. In addition, since it is not easy to handle the raw material powder in this range, when added to the Mg-containing oxide-coated soft magnetic particles, the raw material powder is uniformly dispersed by ultrasonic dispersion in an organic solvent such as ethanol. It is preferable to employ a method in which the Mg-containing oxide-coated soft magnetic particles are dipped in an organic solvent and taken out, and the organic solvent is heated and dried to remove it. However, a method of mixing and molding the raw material powder and the Mg-containing oxide-coated soft magnetic particles by a dry method is also possible.

ここで用いる低融点ガラスとして、SiO2−B2O3−Na2O系、Na2O−B2O3−ZnO系、SiO2−B2O3−ZnO系、SiO2−B2O3−Li2O系ガラスのうち、少なくとも1種類以上を使用することが好ましい。
また、必要に応じ、これらの低融点ガラスにSiO2、Na2O、ZnO、B2O3、Li2O、SnO、BaO、CaO、Al2O3の1種類または2種類以上を添加した組成を有する低融点ガラスを使用しても良い。
例えば、SiO2−B2O3−ZnO系にAl2O3とLi2Oを添加した組成系、SiO2−B2O3−ZnO系にSnOとBaOとCaOとAl2O3を添加した組成系などを例示することができる。
As the low melting point glass used here, it is preferable to use at least one of SiO 2 -B 2 O 3 -Na 2 O-based, Na 2 O-B 2 O 3 -ZnO-based, SiO 2 -B 2 O 3 -ZnO-based, and SiO 2 -B 2 O 3 -Li 2 O-based glasses.
Moreover, even if it uses the low melting glass which has the composition which added one type or two types or more of SiO2, Na2O, ZnO, B2O3, Li2O, SnO, BaO, CaO, Al2O3 to these low melting glass as needed. good.
For example, a composition system in which Al2O3 and Li2O are added to the SiO2-B2O3-ZnO system, a composition system in which SnO, BaO, CaO, and Al2O3 are added to the SiO2-B2O3-ZnO system can be exemplified.

更に具体的な組成例として、(A1)SiO2:13質量%、ZnO:35質量%、B2O3:40質量%、Al2O3:5質量%、Li2O:7質量%の組成例、(A2)SiO2:10〜15質量%、Na2O:5〜10質量%、ZnO:30〜40質量%、B2O3:40〜50質量%の組成例、(A3)SiO2+Na2O:40質量%以下、ZnO:20〜30質量%、BaO:1〜10質量%、B2O3:20〜30質量%の組成例、(A4)SiO2:5〜25質量%、SnO:1〜10質量%、ZnO:30〜50質量%、BaO:1〜10質量%、CaO:1〜10質量%、Ba2O3:23質量%、Al2O3:1〜10質量%の組成例などを例示することができる。
次に、先の成形体を望ましくは窒素雰囲気中などの非酸化性雰囲気において300℃〜1000℃、例えば650℃で数10分、例えば30分程度焼成して高強度高比抵抗複合軟磁性材を形成する。
As more specific composition examples, (A1) SiO2: 13% by mass, ZnO: 35% by mass, B2O3: 40% by mass, Al2O3: 5% by mass, Li2O: 7% by mass, (A2) SiO2: 10 -15 mass%, Na2O: 5-10 mass%, ZnO: 30-40 mass%, B2O3: 40-50 mass% composition example, (A3) SiO2 + Na2O: 40 mass% or less, ZnO: 20-30 mass%, Composition example of BaO: 1 to 10% by mass, B2O3: 20 to 30% by mass, (A4) SiO2: 5 to 25% by mass, SnO: 1 to 10% by mass, ZnO: 30 to 50% by mass, BaO: 1 to 1 Examples of the composition include 10 mass%, CaO: 1 to 10 mass%, Ba2O3: 23 mass%, and Al2O3: 1 to 10 mass%.
Next, the high-strength and high-resistivity composite soft magnetic material is obtained by firing the molded body in a non-oxidizing atmosphere such as a nitrogen atmosphere, preferably at 300 ° C. to 1000 ° C., for example, 650 ° C. for several tens of minutes, for example, about 30 minutes. Form.

図1はMg含有酸化物被覆軟磁性材を製造する場合において、原料を準備するための最初の工程から、最終処理するまでの工程順の一例を記載したもので、図1の工程S1において用意した原料としての軟磁性合金粉末の原料(例えば純鉄粉末)を工程S2において前酸化して表面酸化し、工程S3においてMgを蒸着し、工程S4において別途用意した低融点ガラス原料粉末(粒子)1と混合した後、工程S5において乾燥し、工程S6において成形し、工程S7において焼成処理することにより、先に説明した如く本発明に係る高強度高比抵抗複合軟磁性材を得ることができる。
なお、前述の混合を行う工程S4においては、1つの例として、低融点ガラス原料混合粉末1をエタノールなどの有機溶媒中において超音波振動を付加してエタノール中に均一分散し、この有機溶媒中に前述のMg−Fe−O三元系酸化物堆積膜を形成した絶縁被覆軟磁性粒子を投入し、この後の工程S5において乾燥する方法でも良いし、前述のMg−Fe−O三元系酸化物堆積膜を形成した絶縁被覆軟磁性粒子と低融点ガラス原料混合粉末1を直接混合しても良い。なお、このような乾式で直接混合する方法を採用する場合、工程S5の加熱し乾燥する工程は必要がない。
以上説明した工程S1〜S7において選択するべき各種の条件は前述した条件、あるいは後述する条件が好ましい。
FIG. 1 shows an example of the order of steps from the initial step for preparing raw materials to the final processing in the case of producing an Mg-containing oxide-coated soft magnetic material, prepared in step S1 of FIG. The raw material of the soft magnetic alloy powder as the raw material (for example, pure iron powder) is pre-oxidized and surface oxidized in step S2, Mg is vapor-deposited in step S3, and low melting point glass raw material powder (particles) prepared separately in step S4 After mixing with No. 1, the high strength and high resistivity composite soft magnetic material according to the present invention can be obtained as described above by drying in step S5, forming in step S6, and firing in step S7. .
In step S4 in which the above mixing is performed, as an example, the low-melting glass raw material mixed powder 1 is uniformly dispersed in ethanol by applying ultrasonic vibration in an organic solvent such as ethanol. Insulation-coated soft magnetic particles having the Mg—Fe—O ternary oxide deposited film formed thereon may be added to the above and dried in the subsequent step S5. Alternatively, the Mg—Fe—O ternary system described above may be used. The insulating coating soft magnetic particles on which the oxide deposited film is formed and the low melting glass raw material mixed powder 1 may be directly mixed. In addition, when employ | adopting the method of mixing directly by such a dry type, the process of heating and drying of process S5 is unnecessary.
The various conditions to be selected in the above-described steps S1 to S7 are preferably the conditions described above or the conditions described later.

図2は工程S5において乾燥した後のMg含有酸化物被覆軟磁性粒子とその周囲に存在する低融点ガラス原料混合粉末の状態を部分的に拡大して模式的に示したものである。純鉄粉末(軟磁性粒子)5の周囲にMg−Fe−O三元系酸化物堆積膜(絶縁皮膜)6が被覆されるとともに、それら純鉄粉末5、5の間に低融点ガラスの原料混合粉末7が分散され付着された構造を呈している。低融点ガラス原料混合粉末7は例えば3種類の原料を添加混合した粉末である場合、平均粒径の比較的大きな第1の原料粉末7aとそれよりも若干小さな平均粒径の第2の原料粉末とそれよりも更に平均粒径の小さな第3の原料粉末7cの混合粉末として模式的に示した。なお、図2では第1〜第3の低融点ガラス原料粉末7a、7b、7cの間に間隙をあけた状態として記載しているが、実際の乾燥後の低融点ガラス原料混合粉末はこれらの核原料粉末がMg−Fe−O三元系酸化物堆積膜6の外面にランダムに付着分散された状態を呈するが、図2では略記している。また、低融点ガラス原料混合粉末7は図2に示す状態とは異なり、第1〜第3低融点ガラス原料粉末7a、7b、7cがいずれも同一平均粒径の粉末を混合した混合粉末であっても良い。   FIG. 2 schematically shows a partially enlarged state of the Mg-containing oxide-coated soft magnetic particles after drying in step S5 and the low melting point glass raw material mixed powder existing therearound. A pure iron powder (soft magnetic particle) 5 is coated with a Mg—Fe—O ternary oxide deposited film (insulating film) 6 and a raw material for low melting point glass between the pure iron powders 5 and 5. The mixed powder 7 is dispersed and adhered. For example, when the low melting point glass raw material mixed powder 7 is a powder in which three kinds of raw materials are added and mixed, the first raw material powder 7a having a relatively large average particle diameter and the second raw material powder having an average particle diameter slightly smaller than that. It is schematically shown as a mixed powder of the third raw material powder 7c having a smaller average particle diameter than that. In FIG. 2, the first to third low-melting glass raw material powders 7a, 7b, and 7c are described as having a gap, but the low-melting glass raw material mixed powder after actual drying is shown in FIG. The nuclear raw material powder is in a state of being randomly attached and dispersed on the outer surface of the Mg—Fe—O ternary oxide deposited film 6, which is abbreviated in FIG. 2. Further, unlike the state shown in FIG. 2, the low melting point glass raw material mixed powder 7 is a mixed powder in which the first to third low melting point glass raw material powders 7a, 7b and 7c are all mixed with powders having the same average particle diameter. May be.

以上説明の方法により得られた高比抵抗複合軟磁性材は、前記複数のMg含有酸化物被覆軟磁性粒子の粒界層を介する結合が、前記軟磁性粒子5と該軟磁性粒子5の表面に被覆されたMg含有酸化物皮膜(絶縁皮膜)6とを具備してなるMg含有酸化物被覆軟磁性粒子と、前述のナノオーダーの原料混合粉末を混合し、圧密して焼成することにより低融点ガラス層からなる境界層が得られた材料であり、例えば、図3に示す如く、Mg含有酸化物被覆軟磁性粒子5、5間の間に存在する低融点ガラスからなる粒界層8が実質的に全てのMg含有酸化物被覆軟磁性粒子間に可能な限り均一に分散されて粒界層8とされたものであるので、高強度のものが得られる。これは、図2に示す如くナノオーダーの微細な低融点ガラスの原料混合粉末7が溶融する際に各元素がMg含有酸化物被覆軟磁性粒子の周囲に容易に流動して組成比の均一な境界層8が生成するためである。   The high specific resistance composite soft magnetic material obtained by the above-described method is such that the bonding through the grain boundary layer of the plurality of Mg-containing oxide-coated soft magnetic particles is the surface of the soft magnetic particles 5 and the soft magnetic particles 5. The Mg-containing oxide-coated soft magnetic particles comprising the Mg-containing oxide film (insulating film) 6 coated on the surface and the above-mentioned nano-order raw material mixed powder are mixed, compacted, and fired. For example, as shown in FIG. 3, a grain boundary layer 8 made of low-melting glass existing between Mg-containing oxide-coated soft magnetic particles 5 and 5 is a material obtained from a boundary layer made of a melting point glass layer. Since the grain boundary layer 8 is dispersed as uniformly as possible between substantially all Mg-containing oxide-coated soft magnetic particles, a high-strength one can be obtained. As shown in FIG. 2, when the raw material mixed powder 7 of fine low-melting glass of nano order is melted, each element easily flows around the Mg-containing oxide-coated soft magnetic particles and the composition ratio is uniform. This is because the boundary layer 8 is generated.

また、以上の製造方法により得られた高強度高比抵抗複合軟磁性材は、高密度、高強度、高比抵抗および高磁束密度を有し、この高比抵抗低損失複合軟磁性材は、高磁束密度で高周波低鉄損の特徴を有する事から、この特徴を生かした各種電磁気回路部品の材料として使用できる。
また、以上の製造方法により得られた高強度高比抵抗複合軟磁性材にあっては、(Mg,Fe)Oを含むMg−Fe−O三元系酸化物堆積膜と、その界面に存在する低融点ガラスの均一性に優れた粒界層を備えているので、特にMg含有酸化物被覆軟磁性粒子同士の接合が良好になされていて、強度が高く、比抵抗の高い、渦電流損失の少ない、低鉄損失の軟磁気特性に優れた高強度高比抵抗低損失複合軟磁性材を得ることができる。
Moreover, the high-strength, high-resistivity composite soft magnetic material obtained by the above manufacturing method has high density, high strength, high specific resistance, and high magnetic flux density. Since it has the characteristics of high magnetic flux density and high frequency and low iron loss, it can be used as a material for various electromagnetic circuit components utilizing this characteristic.
In addition, in the high-strength, high-resistivity composite soft magnetic material obtained by the above manufacturing method, the Mg-Fe-O ternary oxide deposited film containing (Mg, Fe) O and the interface exist. Because it has a grain boundary layer with excellent uniformity of low melting point glass, especially the Mg-containing oxide-coated soft magnetic particles are well bonded, high strength, high specific resistance, eddy current loss A high-strength, high-resistivity, low-loss composite soft magnetic material that is excellent in soft magnetic properties with low iron loss and low iron loss can be obtained.

なお、軟磁性粒子の表面に被覆する絶縁皮膜は先のMg−Fe−O三元系酸化物堆積膜に限るものではなく、リン酸塩皮膜、酸化ケイ素皮膜、酸化アルミニウム皮膜等であっても良い。   The insulating film to be coated on the surface of the soft magnetic particles is not limited to the Mg-Fe-O ternary oxide deposited film, but may be a phosphate film, a silicon oxide film, an aluminum oxide film, etc. good.

粒径100μmの軟磁性粒子(純鉄粉末)に対して大気中250℃にて加熱処理を0〜60分間行った。ここでMgO膜は前段の250℃大気中加熱処理で生成される酸化膜厚に比例するので、Mgの添加量は必要最小限度で良く、鉄粉に対して0.3質量%のMg粉末を配合し、この配合粉末を0.1Paの真空雰囲気中、バッチ式回転キルンによって転動させながら650℃に加熱することによりMg含有酸化物被覆軟磁性粒子を作製した。
Mg含有酸化物被覆軟磁性粒子の外周面に形成されている(Mg,Fe)Oを含むMg−Fe−O三元系酸化物堆積膜の膜厚は、前述の大気中加熱処理で生成される酸化膜厚に比例するので、膜厚20〜200nmのものを試験試料として用いた。
Heat treatment was performed for 0 to 60 minutes at 250 ° C. in the air on soft magnetic particles (pure iron powder) having a particle size of 100 μm. Here, since the MgO film is proportional to the oxide film thickness generated by the heat treatment at 250 ° C. in the previous stage, the addition amount of Mg may be the minimum necessary, and 0.3% by mass of Mg powder with respect to the iron powder. The Mg-containing oxide-coated soft magnetic particles were prepared by mixing and heating the compounded powder in a 0.1 Pa vacuum atmosphere while rolling with a batch-type rotary kiln.
The film thickness of the Mg—Fe—O ternary oxide deposited film containing (Mg, Fe) O formed on the outer peripheral surface of the Mg-containing oxide-coated soft magnetic particle is generated by the above-described heat treatment in the atmosphere. Since the film thickness is proportional to the oxide film thickness, a film having a film thickness of 20 to 200 nm was used as a test sample.

Figure 2009130286
Figure 2009130286

Figure 2009130286
Figure 2009130286

次に表2に示す各組成比であって、表1に示す各平均粒径の低融点ガラス用の原料粉末試料1〜8を用い、これらの原料粉末を適宜使用してMg含有酸化物被覆軟磁性粒子とともにエタノール中に10g/cmの割合で投入し、超音波加振器により均一分散させた後、加熱してエタノールを蒸発させることで、Mg含有酸化物被覆軟磁性粒子の表面に前述の各組成比の低融点ガラスの原料粉末を付着させた混合粉末を得た。
次に表1に示す成形圧力で圧密し、表3に示す如く窒素雰囲気中、650℃にて0.5時間焼成し、目的の軟磁性複合圧密焼成材を得た。
得られた軟磁性複合圧密焼成材の各試料の抗折強度(MPa)、比抵抗(μΩ・m)、密度(Mg/m)、10kA/mにおける磁束密度(T)、1T・400Hzにおけるコアロス(W/kg)の値を測定した結果を表3に示す。
Next, the composition ratios shown in Table 2 and the raw material powder samples 1 to 8 for low-melting-point glasses having the respective average particle diameters shown in Table 1 are used, and these raw material powders are used as appropriate to cover the Mg-containing oxide. Along with soft magnetic particles in ethanol at a rate of 10 g / cm 3 , uniformly dispersed by an ultrasonic vibrator, and heated to evaporate ethanol, the surface of the Mg-containing oxide-coated soft magnetic particles A mixed powder was obtained in which the raw material powder of the low-melting-point glass having each composition ratio described above was adhered.
Next, it compacted with the shaping | molding pressure shown in Table 1, and baked at 650 degreeC in nitrogen atmosphere for 0.5 hour as shown in Table 3, and obtained the target soft-magnetic composite compacted fired material.
Fracture strength (MPa), specific resistance (μΩ · m), density (Mg / m 3 ), magnetic flux density (T) at 10 kA / m and magnetic flux density (T) at 1 T · 400 Hz for each sample of the obtained soft magnetic composite compacted fired material The results of measuring the value of core loss (W / kg) are shown in Table 3.

Figure 2009130286
Figure 2009130286

表3に示す結果から、従来例および比較例に比べ抗折強度が高く、比抵抗が高く、密度が高く、磁束密度が高く、鉄損も少ない優れた高強度高比抵抗低損失複合軟磁性材を得られることが判明した。また、低融点ガラスの原料粉末の粒径が2〜100nmであることがより好ましいことがわかった。   From the results shown in Table 3, superior high strength, high specific resistance, low loss composite soft magnet with higher bending strength, higher specific resistance, higher density, higher magnetic flux density, and less iron loss than the conventional and comparative examples. It turns out that the material can be obtained. Moreover, it turned out that it is more preferable that the particle size of the raw material powder of low melting glass is 2-100 nm.

「比較例」
比較のために、表2に示す各組成比であって、表1に示す各平均粒径の低融点ガラス用の原料粉末試料9〜16を適宜使用してMg含有酸化物被覆軟磁性粒子とともにエタノール中に10g/cmの割合で投入し、超音波加振器により均一分散させた後、加熱してエタノールを蒸発させることで、Mg含有酸化物被覆軟磁性粒子の表面に前述の各組成比の低融点ガラスの原料粉末を付着させた混合粉末を得た。
次に表1に示す成形圧力で圧密し、表3に示す如く窒素雰囲気中、650℃にて0.5時間焼成し、目的の軟磁性複合圧密焼成材を得た。
"Comparative example"
For comparison, the composition ratios shown in Table 2 are used together with the Mg-containing oxide-coated soft magnetic particles by appropriately using the raw material powder samples 9 to 16 for low-melting-point glasses having the average particle diameters shown in Table 1. Each composition described above is put on the surface of the Mg-containing oxide-coated soft magnetic particles by introducing into ethanol at a rate of 10 g / cm 3 and uniformly dispersing with an ultrasonic vibrator, followed by heating to evaporate the ethanol. A mixed powder to which a raw material powder of a low melting point glass having a specific ratio was adhered was obtained.
Next, it compacted with the shaping | molding pressure shown in Table 1, and baked at 650 degreeC in nitrogen atmosphere for 0.5 hour as shown in Table 3, and obtained the target soft-magnetic composite compacted fired material.

「従来例」
Mg含有酸化物被覆軟磁性粒子を成形圧力:790MPaで圧密し、表3に示す如く窒素雰囲気中、650℃にて0.5時間焼成し、前記低融点ガラス用の原料混合粉末無添加の軟磁性複合圧密焼成材を得た。
従来例および比較例で得られた軟磁性複合圧密焼成材の各試料の抗折強度(MPa)、比抵抗(μΩ・m)、密度(Mg/m)、10kA/mにおける磁束密度(T)、1T・400Hzにおけるコアロス(W/kg)の値を測定した結果を表3に示す。
"Conventional example"
The Mg-containing oxide-coated soft magnetic particles are compacted at a molding pressure of 790 MPa, and calcined in a nitrogen atmosphere at 650 ° C. for 0.5 hours as shown in Table 3. A magnetic composite compacted fired material was obtained.
Fracture strength (MPa), specific resistance (μΩ · m), density (Mg / m 3 ), magnetic flux density at 10 kA / m (T) of each sample of the soft magnetic composite compacted fired material obtained in the conventional example and the comparative example ) The results of measuring the core loss (W / kg) value at 1T · 400 Hz are shown in Table 3.

表3においてNo.9〜No.16の試料はいずれも低融点ガラス原料粉末の平均粒径が200nmを超える大きい試料であるが、抗折強度においてNo.9〜12、13、15、16の試料は実施例の試料より大幅に低く、比抵抗についてはNo.9〜16のいずれの試料においても実施例試料よりも大幅に小さく、鉄損について数値が上昇し、特性が悪化した。また、従来例の試料は、抗折強度が著しく劣化しており、比較例の試料よりも比抵抗は若干高いものの、実施例の試料よりも遙かに低い比抵抗となった。
表3に示す対比から、本発明に係るNo.1〜9の試料は、抗折強度が高く、比抵抗値が高く、従って鉄損が少なく、密度も高く磁束密度で示される軟磁気特性においても優秀であることが明らかとなった。
In Table 3, the samples No. 9 to No. 16 are all large samples in which the average particle size of the low-melting glass raw material powder exceeds 200 nm, but in the bending strength, No. 9 to 12, 13, 15, 16 The sample was significantly lower than the sample of the example, and the specific resistance of any of samples Nos. 9 to 16 was much smaller than the sample of the example, the numerical value of the iron loss increased, and the characteristics deteriorated. Moreover, the bending strength of the sample of the conventional example was remarkably deteriorated, and although the specific resistance was slightly higher than that of the sample of the comparative example, the specific resistance was much lower than that of the sample of the example.
From the comparison shown in Table 3, the samples No. 1 to 9 according to the present invention have high bending strength, high specific resistance value, and therefore low iron loss, high density, and high soft magnetic properties indicated by magnetic flux density. Was also found to be excellent.

本発明による高強度高比抵抗低損失複合軟磁性材は、電磁気回路部品として、例えば、磁心、電動機コア、発電機コア、ソレノイドコア、イグニッションコア、リアクトルコア、トランスコア、チョークコイルコアまたは磁気センサコアなどとしての利用が可能であり、いずれにおいても優れた特性を発揮し得る電磁気回路部品へ適用ができる。
そして、これら電磁気回路部品を組み込んだ電気機器には、電動機、発電機、ソレノイド、インジェクタ、電磁駆動弁、インバータ、コンバータ、変圧器、継電器、磁気センサシステム等があり、これら電気機器の高効率高性能化や小型軽量化を推進できる。
The high-strength, high-resistivity, low-loss composite soft magnetic material according to the present invention includes, for example, a magnetic core, an electric motor core, a generator core, a solenoid core, an ignition core, a reactor core, a transformer core, a choke coil core, or a magnetic sensor core. And can be applied to electromagnetic circuit components that can exhibit excellent characteristics.
Electric devices incorporating these electromagnetic circuit components include motors, generators, solenoids, injectors, electromagnetically driven valves, inverters, converters, transformers, relays, magnetic sensor systems, etc. Increase performance and reduce size and weight.

図1は本発明に係る高強度高比抵抗複合軟磁性材を製造するための工程の一例を示す工程説明図。FIG. 1 is a process explanatory view showing an example of a process for producing a high-strength, high-resistivity composite soft magnetic material according to the present invention. 図2は本発明に係る絶縁皮膜を備えた軟磁性粒子とその周囲に設けた低融点ガラスの原料混合粉末の分散状態を模式的に示す図。FIG. 2 is a view schematically showing a dispersion state of the raw mixed powder of the soft magnetic particles having the insulating film according to the present invention and the low melting point glass provided therearound. 図3は焼成後に得られる本発明に係る高強度高比抵抗複合軟磁性材の一例構造を示す図。FIG. 3 is a view showing an example structure of a high-strength, high-resistivity composite soft magnetic material according to the present invention obtained after firing.

符号の説明Explanation of symbols

5…軟磁性粒子、6…酸化物堆積膜(絶縁皮膜)、7…低融点ガラスの原料粉末(粒子)、7a…第1の低融点ガラス原料粉末、7b…第2の低融点ガラス原料粉末、7c…第3の低融点ガラス原料粉末、8…境界層。   DESCRIPTION OF SYMBOLS 5 ... Soft magnetic particle, 6 ... Oxide deposit film (insulating film), 7 ... Raw material powder (particle) of low melting glass, 7a ... 1st low melting glass raw material powder, 7b ... 2nd low melting glass raw material powder 7c: Third low melting point glass raw material powder, 8: Boundary layer.

Claims (7)

軟磁性粒子を絶縁皮膜で被覆してなる絶縁被覆軟磁性粒子と、粒径2nm〜200nmの低融点ガラスの原料粉末粒子を混合して圧密し、焼成処理することにより、前記原料粉末粒子を焼成してなる低融点ガラスの境界層を介して前記複数の絶縁被覆軟磁性粒子を結合してなる高強度高比抵抗複合軟磁性材を製造することを特徴とする高強度高比抵抗複合軟磁性材の製造方法。 Insulating coated soft magnetic particles obtained by coating soft magnetic particles with an insulating film and raw powder particles of low melting point glass having a particle size of 2 nm to 200 nm are mixed and consolidated, followed by firing treatment, thereby firing the raw powder particles. A high-strength, high-resistivity composite soft magnetic material produced by combining the plurality of insulation-coated soft magnetic particles through a low-melting-point glass boundary layer A method of manufacturing the material. 前記低融点ガラスの原料粉末粒子を焼成処理時に完全にまたは部分的に溶融した後、凝固させて前記境界層を形成することを特徴とする請求項1に記載の高強度高比抵抗複合軟磁性材の製造方法。 2. The high-strength, high-resistivity composite soft magnet according to claim 1, wherein the low-melting-point glass raw material powder particles are completely or partially melted during firing and then solidified to form the boundary layer. A method of manufacturing the material. 前記絶縁被覆軟磁性粒子の絶縁皮膜が、(Mg、Fe)Oを主体としてなるMg含有酸化物皮膜であることを特徴とする請求項1または2に記載の高強度高比抵抗複合軟磁性材の製造方法。 3. The high-strength, high-resistivity composite soft magnetic material according to claim 1, wherein the insulating coating of the insulating coating soft magnetic particles is an Mg-containing oxide coating mainly composed of (Mg, Fe) O. Manufacturing method. 前記低融点ガラスが、SiO2−B2O3−Na2O系、Na2O−B2O3−ZnO系、SiO2−B2O3−ZnO系、SiO2−B2O3−Li2O系ガラスのうち、少なくとも1種類以上であることを特徴とする請求項1〜請求項3のいずれか1項に記載の高強度高比抵抗複合軟磁性材の製造方法。 The low-melting glass is at least one of SiO2-B2O3-Na2O-based, Na2O-B2O3-ZnO-based, SiO2-B2O3-ZnO-based, and SiO2-B2O3-Li2O-based glasses. The manufacturing method of the high intensity | strength high specific resistance composite soft magnetic material of any one of Claims 1-3. 前記絶縁被覆軟磁性粒子の絶縁皮膜が、厚さ5〜200nmの範囲であることを特徴とする請求項1〜4のいずれかの1項に記載の高強度高比抵抗複合軟磁性材の製造方法。 5. The production of a high-strength, high-resistivity composite soft magnetic material according to claim 1, wherein the insulating coating of the insulating coating soft magnetic particles has a thickness in the range of 5 to 200 nm. Method. プラズマを発生させた減圧雰囲気中に、前記低融点ガラスの液体原料を反応ガスとともに供給することで瞬間的に蒸発気化され、低融点ガラス組成物の微細な液滴を生成し、この液滴を冷却ガスで急速に冷却することにより、粒径2nm〜200nmの低融点ガラスの原料粉末粒子を生成し、この低融点ガラスの粒子を用いることを特徴とする請求項1〜5のいずれかに記載の高強度高比抵抗複合軟磁性材の製造方法。 By supplying the liquid raw material of the low-melting glass together with the reaction gas in the reduced-pressure atmosphere in which the plasma is generated, the liquid is instantaneously evaporated and vaporized to generate fine droplets of the low-melting glass composition. 6. The raw material powder particles of a low melting glass having a particle diameter of 2 nm to 200 nm are generated by rapidly cooling with a cooling gas, and the particles of the low melting glass are used. Manufacturing method of high strength and high resistivity composite soft magnetic material. 請求項1〜6のいずれかに記載の製造方法により得られた高強度高比抵抗複合軟磁性材からなることを特徴とする電磁気回路部品。   An electromagnetic circuit component comprising a high-strength, high-resistivity composite soft magnetic material obtained by the manufacturing method according to claim 1.
JP2007306363A 2007-11-27 2007-11-27 Method of manufacturing high-strength, high-specific-resistance composite soft magnetic material, and electromagnetic circuit component Withdrawn JP2009130286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007306363A JP2009130286A (en) 2007-11-27 2007-11-27 Method of manufacturing high-strength, high-specific-resistance composite soft magnetic material, and electromagnetic circuit component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007306363A JP2009130286A (en) 2007-11-27 2007-11-27 Method of manufacturing high-strength, high-specific-resistance composite soft magnetic material, and electromagnetic circuit component

Publications (1)

Publication Number Publication Date
JP2009130286A true JP2009130286A (en) 2009-06-11

Family

ID=40820864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007306363A Withdrawn JP2009130286A (en) 2007-11-27 2007-11-27 Method of manufacturing high-strength, high-specific-resistance composite soft magnetic material, and electromagnetic circuit component

Country Status (1)

Country Link
JP (1) JP2009130286A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011181624A (en) * 2010-02-26 2011-09-15 Mitsubishi Materials Corp High-strength, high-specific-resistance composite soft magnetic material, electromagnetic circuit component, and method of manufacturing high-strength, high-specific-resistance composite soft magnetic material
JP2011216571A (en) * 2010-03-31 2011-10-27 Mitsubishi Materials Corp High-strength low-loss composite soft magnetic material, method of manufacturing the same, and electromagnetic circuit part
JP2012104573A (en) * 2010-11-08 2012-05-31 Hitachi Chem Co Ltd Powder for core, manufacturing method of the same, dust core using the same, and electromagnetic device
JP2015005686A (en) * 2013-06-24 2015-01-08 住友電工焼結合金株式会社 Magnetic material, method for manufacturing magnetic material, and reactor
JP2015229628A (en) * 2014-06-06 2015-12-21 旭硝子株式会社 Glass powder, glass slurry and laminate type electronic component
KR101615566B1 (en) 2014-12-12 2016-04-26 한국과학기술연구원 FeSiCr Soft magnetic composite powder on which an heat-resisting oxide insulation film is formed, and powder core thereof
KR101620032B1 (en) 2014-12-12 2016-05-11 한국과학기술연구원 FeSiAl soft magnetic composite powders on which an heat-resistant oxide insulation film is formed, and powder core thereof
CN111029124A (en) * 2019-09-18 2020-04-17 佛山市中研非晶科技股份有限公司 Powder efficient coating method and finished product powder and finished product magnetic powder core preparation method
EP4227021A1 (en) * 2022-02-14 2023-08-16 General Electric Company Dual phase soft magnetic particle combinations, components and manufacturing methods
JP7337112B2 (en) 2021-03-23 2023-09-01 株式会社タムラ製作所 Soft magnetic powder and dust core
CN117079967A (en) * 2023-10-16 2023-11-17 通友微电(四川)有限公司 Composite ceramic soft magnetic powder and preparation method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011181624A (en) * 2010-02-26 2011-09-15 Mitsubishi Materials Corp High-strength, high-specific-resistance composite soft magnetic material, electromagnetic circuit component, and method of manufacturing high-strength, high-specific-resistance composite soft magnetic material
JP2011216571A (en) * 2010-03-31 2011-10-27 Mitsubishi Materials Corp High-strength low-loss composite soft magnetic material, method of manufacturing the same, and electromagnetic circuit part
JP2012104573A (en) * 2010-11-08 2012-05-31 Hitachi Chem Co Ltd Powder for core, manufacturing method of the same, dust core using the same, and electromagnetic device
JP2015005686A (en) * 2013-06-24 2015-01-08 住友電工焼結合金株式会社 Magnetic material, method for manufacturing magnetic material, and reactor
JP2015229628A (en) * 2014-06-06 2015-12-21 旭硝子株式会社 Glass powder, glass slurry and laminate type electronic component
KR101615566B1 (en) 2014-12-12 2016-04-26 한국과학기술연구원 FeSiCr Soft magnetic composite powder on which an heat-resisting oxide insulation film is formed, and powder core thereof
KR101620032B1 (en) 2014-12-12 2016-05-11 한국과학기술연구원 FeSiAl soft magnetic composite powders on which an heat-resistant oxide insulation film is formed, and powder core thereof
CN111029124A (en) * 2019-09-18 2020-04-17 佛山市中研非晶科技股份有限公司 Powder efficient coating method and finished product powder and finished product magnetic powder core preparation method
JP7337112B2 (en) 2021-03-23 2023-09-01 株式会社タムラ製作所 Soft magnetic powder and dust core
EP4227021A1 (en) * 2022-02-14 2023-08-16 General Electric Company Dual phase soft magnetic particle combinations, components and manufacturing methods
CN117079967A (en) * 2023-10-16 2023-11-17 通友微电(四川)有限公司 Composite ceramic soft magnetic powder and preparation method thereof
CN117079967B (en) * 2023-10-16 2023-12-22 通友微电(四川)有限公司 Composite ceramic soft magnetic powder and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2009130286A (en) Method of manufacturing high-strength, high-specific-resistance composite soft magnetic material, and electromagnetic circuit component
JP6071211B2 (en) Low magnetostrictive high magnetic flux density composite soft magnetic material and its manufacturing method
WO2006028100A1 (en) METHOD FOR PRODUCING SOFT MAGNETIC METAL POWDER COATED WITH Mg-CONTAINING OXIDIZED FILM AND METHOD FOR PRODUCING COMPOSITE SOFT MAGNETIC MATERIAL USING SAID POWDER
JP2007123703A (en) SOFT MAGNETIC POWDER COATED WITH Si OXIDE FILM
JP4782058B2 (en) Manufacturing method of high strength soft magnetic composite compacted fired material and high strength soft magnetic composite compacted fired material
WO2006080121A1 (en) Mg-CONTAINING OXIDE COATED IRON POWDER
JP2010238914A (en) Method of producing high strength low loss composite soft magnetic material, and high strength low loss composite soft magnetic material
JP2008028162A (en) Soft magnetic material, manufacturing method therefor, and dust core
JP2009117651A (en) High-strength soft-magnetic composite material obtained by compaction/burning, and method of manufacturing the same
JPWO2010073590A1 (en) Composite soft magnetic material and manufacturing method thereof
JP4903101B2 (en) High specific resistance and low loss composite soft magnetic material and manufacturing method thereof
JP2011181624A (en) High-strength, high-specific-resistance composite soft magnetic material, electromagnetic circuit component, and method of manufacturing high-strength, high-specific-resistance composite soft magnetic material
JP2010236018A (en) High-strength low-core-loss composite soft magnetic material, method for manufacturing the same, and electromagnetic circuit parts
JP2007013069A (en) METHOD FOR PRODUCING SOFT MAGNETIC POWDER COATED WITH OXIDE CONTAINING Mg AND Si
JP2015088529A (en) Powder-compact magnetic core, powder for magnetic core, and manufacturing method thereof
JP2009164317A (en) Method for manufacturing soft magnetism composite consolidated core
JP2006097124A (en) METHOD FOR PRODUCING SOFT MAGNETIC METAL POWDER COATED WITH Mg-CONTAINING OXIDE FILM AND METHOD FOR PRODUCING COMPOSITE SOFT MAGNETIC MATERIAL FROM THE POWDER
JP2004253787A (en) Complex soft magnetic sintered material with high strength, high magnetic flux density, and high resistance, and method of manufacturing same
JP4883755B2 (en) Oxide film-coated Fe-Si-based iron-based soft magnetic powder, manufacturing method thereof, composite soft magnetic material, reactor core, reactor, electromagnetic circuit component, and electrical equipment
JP2011216571A (en) High-strength low-loss composite soft magnetic material, method of manufacturing the same, and electromagnetic circuit part
CN107396630B (en) Method for producing soft magnetic bodies
JP2013004657A (en) Manufacturing method of magnetic component
JP2010016290A (en) Ferrous metal magnetic particle, soft magnetic material, powder magnetic core and manufacturing method of them
JP4761835B2 (en) Mg-containing iron oxide coated iron powder
JP2010185126A (en) Composite soft magnetic material and method for producing the same

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110201