JP6424626B2 - 有機エレクトロルミネッセンス素子、照明装置及び表示装置 - Google Patents

有機エレクトロルミネッセンス素子、照明装置及び表示装置 Download PDF

Info

Publication number
JP6424626B2
JP6424626B2 JP2014552018A JP2014552018A JP6424626B2 JP 6424626 B2 JP6424626 B2 JP 6424626B2 JP 2014552018 A JP2014552018 A JP 2014552018A JP 2014552018 A JP2014552018 A JP 2014552018A JP 6424626 B2 JP6424626 B2 JP 6424626B2
Authority
JP
Japan
Prior art keywords
group
light emitting
general formula
organic
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014552018A
Other languages
English (en)
Other versions
JPWO2014092014A1 (ja
Inventor
押山 智寛
智寛 押山
大津 信也
信也 大津
片倉 利恵
利恵 片倉
井上 暁
暁 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Publication of JPWO2014092014A1 publication Critical patent/JPWO2014092014A1/ja
Application granted granted Critical
Publication of JP6424626B2 publication Critical patent/JP6424626B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1074Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission

Description

本発明は、有機エレクトロルミネッセンス素子、照明装置及び表示装置に関し、特に、低駆動電圧で、発光効率が高く、耐久性に優れ、ダークスポット発生防止効果及び塗布液停滞性に優れた有機エレクトロルミネッセンス素子、照明装置及び表示装置に関する。
従来、発光型の電子ディスプレイデバイスとして、エレクトロルミネッセンスディスプレイ(ELD)がある。ELDの構成要素としては、無機エレクトロルミネッセンス素子や有機エレクトロルミネッセンス素子(以下、有機EL素子ともいう。)が挙げられる。無機エレクトロルミネッセンス素子は、平面型光源として使用されてきたが、発光素子を駆動させるためには交流の高電圧が必要である。
一方、有機EL素子は、発光する化合物を含有する発光層を陰極と陽極で挟んだ構成を有し、発光層に電子及び正孔を注入して、再結合させることにより励起子(エキシトン)を生成させ、このエキシトンが失活する際の光の放出(蛍光・リン光)を利用して発光する素子であり、数V〜数十V程度の電圧で発光が可能であり、さらに自己発光型であるために視野角に富み、視認性が高く、薄膜型の完全固体素子であるために省スペース、携帯性等の観点から注目されている。
実用化に向けた有機EL素子の開発としては、例えば、プリンストン大より、励起三重項からのリン光発光を用いる有機EL素子の報告がされ、以来、室温(25℃)でリン光を示す材料の研究が活発になってきている。
さらに、最近発見されたリン光発光を利用する有機EL素子では、以前の蛍光発光を利用する素子に比べ、原理的に約4倍の発光効率が実現可能であることから、その材料開発を初めとし、発光素子の層構成や電極の研究開発が世界中で行われている。
例えば、多くの化合物が、イリジウム錯体系等重金属錯体を中心に合成検討がなされており、有機エレクトロルミネッセンス素子(有機EL素子ともいう。)の発光層に使用されている。
このように大変ポテンシャルの高い方式であるが、リン光発光を利用する有機ELデバイスにおいては、発光中心の位置をコントロールする方法、とりわけ発光層の内部で再結合を行い、いかに発光を安定に行せることができるかとともに、リン光発光ドーパント自身の発光性を如何に向上させるかが、素子の効率・寿命の面から、重要な技術的な課題となっている。
リン光発光ドーパントの発光性を向上させるには、最低励起三重項状態(T)から基底状態(S)に失活する際の(1)輻射速度定数(kr)を大きくする、(2)無輻射速度定数(knr)を小さくする、の二つのアプローチが考えられる。
無輻射速度定数(knr)を小さくする具体的な手段として、リン光発光ドーパントの配位子の構造を立体的に制御し、基底状態と励起状態の構造変化をより小さくさせる手法が考えられる。代表的なリン光発光ドーパントであるイリジウム錯体では、例えば、特許文献1に開示されているように、ジベンゾフランとピリジンで組み合わされた配位子で立体構造を制御した例が挙げられる。
フェニルピラゾール誘導体(特許文献2参照)、フェニルイミダゾール誘導体(特許文献3参照)、配位子にカルベン部分を含む誘導体から錯形成されるイリジウム錯体(非特許文献1)や、白金錯体でも(非特許文献2)同様な応用例が挙げられる。これらの錯体では、基底状態と励起三重項の間での構造変化が小さいため、再配向エネルギーが小さくなっている。
再配向エネルギーを小さくして無輻射速度定数(knr)を小さくするという観点では、ナフタレン環からペンタセン環へ共役系を伸ばしていくことにより再配向エネルギーが小さくなることが知られている(非特許文献3)。これは電子の非局在化による効果を利用したものである。
発光ホストの再配向エネルギーに関しては、ホスト化合物がアニオンラジカルとなる場合の再配向エネルギーの値が0eV〜0.50eVである場合に、有機EL素子の発光輝度、発光寿命等の性能向上に寄与できることが知られている(特許文献6,7)。
一方、リン光発光ドーパントの耐久性は、発光ドーパントのみならず、ホスト化合物との組み合わせで大きく変動する。膜中でのホスト化合物と発光ドーパントの相互作用の仕方が、キャリア移動度や耐久性に大きな影響を与えるため、ホスト化合物と発光ドーパントをどのように組み合わせるかが、耐久性向上の重要な因子となりうる。特定のヘテロ環構造を有するホスト化合物と発光ドーパントの組み合わせで発光効率が高く、耐熱性に優れる技術が開示されている(特許文献4,5)。
発光ドーパントに関しては、300Kで測定した場合の発光スペクトルの最短波側の発光極大波長と、77Kで測定した場合の発光スペクトルの最短波側の発光極大波長との差が0nm以上5nm以下である場合に、有機EL素子の発光効率、発光寿命等の性能向上に寄与できることが知られている(特許文献8)。
しかしながら、高発光効率で低駆動電圧であり、耐熱性及び生保存性に優れ、なおかつ、長寿命である有機EL素子を提供するという観点からは、発光ドーパントの無輻射速度定数(knr)を小さくして発光効率向上につなげたり、最適なホスト化合物と発光ドーパントを組み合わせて耐久性向上につなげること、さらにそれらを両立させる技術手段については、いまだに不十分であり、さらなる解決方法が模索されている。
特開2005−23071号公報 国際公開第2004/085450号パンフレット 特開2010−135467号公報 国際公開第2009/008099号パンフレット 国際公開第2009/008100号パンフレット 特開2004−273389号公報 特開2007−35678号公報 国際公開第2012/111548号パンフレット
笹部久宏ら.,Advanced Materials., 22巻、5003〜5007頁(2010年) 櫻井芳昭ら,第71回応用物理学会学術講演会(2010年秋、長崎大学、17p−ZK−5) Wei-Qiao Deng and William A. Goddard III,The Journal of Physical Chemistry, B, 108巻、8614〜8621ページ(2004年)
本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、低駆動電圧であり、発光効率が高く、耐久性に優れ、ダークスポット発生防止効果及び塗布液停滞性に優れた有機エレクトロルミネッセンス素子、照明装置及び表示装置を提供することである。
本発明者等は、上記課題を解決すべく、上記問題の原因等について検討する過程において、発光層に含有する発光ドーパントの基底状態(S)と最低励起三重項状態(T)の間の電子遷移時の再配向エネルギーが、0eV〜0.7eVであり、かつ、発光層に含有するホスト化合物の基底状態(S)とアニオンラジカル(AR)の間の電子移動反応時の再配向エネルギーが、0eV〜0.3eVであり、かつ、ホスト化合物の分子量が、500〜3000の範囲内であることを特徴とする有機エレクトロルミネッセンス素子、または、発光層に含有する発光ドーパントの基底状態(S)と最低励起三重項状態(T)の間の電子遷移時の再配向エネルギーが、0eV〜0.7eVであり、かつ、前記発光層に含有するホスト化合物が、下記一般式(1)で表され、かつ、前記ホスト化合物の分子量が、500〜3000の範囲内であることを特徴とする有機エレクトロルミネッセンス素子により、低駆動電圧であり、発光効率が高く、耐久性及び発光色変動に優れ、ダークスポット発生防止効果及び塗布液停滞性に優れることを見出し、本発明に至った。
すなわち、本発明に係る上記課題は、以下の手段により解決される。
1.陽極、陰極及び発光層を有する有機エレクトロルミネッセンス素子であって、
前記発光層に含有する発光ドーパントの基底状態(S)と最低励起三重項状態(T)の間の電子遷移時の再配向エネルギーが、0eV〜0.7eVであり、かつ、
前記発光層に含有するホスト化合物が、下記一般式()で表される構造を有する化合物であり、かつ、
前記ホスト化合物の分子量が、500〜3000の範囲内であることを特徴とする有機エレクトロルミネッセンス素子。
Figure 0006424626
〔一般式()において、R〜Rのうち少なくとも一つがフェニル基、カルバゾリル基、ジベンゾフリル基、ジベンゾチエニル基、ピリジル基、ピラジニル基又は水素原子のいずれかを表し、かつ、R及びRが同時にフェニル基、カルバゾリル基、ジベンゾフリル基、ジベンゾチエニル基、ピリジル基、ピラジニル基のいずれかを表すことはない。 〜R がフェニル基、カルバゾリル基、ジベンゾフリル基、ジベンゾチエニル基、ピリジル基又はピラジニル基のいずれでもないときは水素原子を表す。 、R 、R 、R 及びR は、それぞれ水素原子を表す。R、R及びR10 は、それぞれ水素原子又は置換基を表す。R及びRは、それぞれ水素原子又はアルキル基を表す。〕
.前記発光ドーパントの基底状態(S)と最低励起三重項状態(T)の間の電子遷移時の再配向エネルギーが、0eV〜0.5eVであることを特徴とする第項に記載の有機エレクトロルミネッセンス素子。
3.前記一般式()において、R〜R、R、R、R10のうち少なくとも一つが置換基を有してもよいカルバゾリル基であることを特徴とする第1項又は第2項に記載の有機エレクトロルミネッセンス素子。
4.前記一般式()において、R〜R、R、R、R10のうちただ一つが置換基を有してもよいカルバゾリル基であることを特徴とする第1項又は第2項に記載の有機エレクトロルミネッセンス素子。
5.前記一般式()において、R〜R、R、R、R10のうち少なくとも一つが置換基を有してもよいジベンゾフリル基であることを特徴とする第1項又は第2項に記載の有機エレクトロルミネッセンス素子。
6.前記一般式()において、R〜R、R、R、R10のうちただ一つが置換基を有してもよいジベンゾフリル基であることを特徴とする第1項又は第2項に記載の有機エレクトロルミネッセンス素子。
7.前記一般式()において、R〜R、R、R、R10のうちただ一つが置換基を有してもよいジベンゾフリル基であり、かつ、R〜R、R、R、R10のうちただ一つが置換基を有してもよいカルバゾリル基であることを特徴とする第1項又は第2項に記載の有機エレクトロルミネッセンス素子。
.前記発光ドーパントが、リン光発光性化合物であることを特徴とする第1項からまでのいずれか一項に記載の有機エレクトロルミネッセンス素子。
.前記リン光発光性化合物が、下記一般式(A1)で表されることを特徴とする第項に記載の有機エレクトロルミネッセンス素子。
Figure 0006424626
〔一般式(A1)において、Rは置換基を表す。Zは5〜7員環を形成するのに必要な非金属原子群を表す。n1は0〜5の整数を表す。B〜Bは炭素原子、CRa、窒素原子、NRb、酸素原子又は硫黄原子を表し、少なくとも一つは窒素原子を表す。Ra及びRbは水素原子又は置換基を表す。B〜Bの5つの原子により芳香族含窒素複素環が形成される。BとZは互いに連結して環を形成してもよい。Mは元素周期表における8〜10族の金属を表す。X及びXは炭素原子、窒素原子又は酸素原子を表し、LはX及びXとともに2座の配位子を形成する原子群を表す。m1は1〜3の整数を表し、m2は0〜2の整数を表すが、m1+m2は2又は3である。〕
10.前記発光層が、塗布液を用いて形成された層であることを特徴とする第1項からまでのいずれか一項に記載の有機エレクトロルミネッセンス素子。
11.前記発光層が、白色に発光することを特徴とする第1項から10までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
12.第1項から11までのいずれか一項に記載の有機エレクトロルミネッセンス素子を具備したことを特徴とする照明装置。
13.第1項から12までのいずれか一項に記載の有機エレクトロルミネッセンス素子を具備したことを特徴とする表示装置。
本発明の上記手段により、低駆動電圧で、発光効率が高く、耐久性及び発光色変動に優れ、ダークスポット発生防止効果及び塗布液停滞性に優れた有機エレクトロルミネッセンス素子、当該有機エレクトロルミネッセンス素子を具備した照明装置及び表示装置を提供することができる。
本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。
本発明者等は、従来の金属錯体の問題点の一つとして、発光ドーパントが発光する際に、その分子構造が、基底状態(S)と最低励起三重項状態(T)で大きく変化することにより、無輻射失活が大きくなり、実用に耐えるような、素子寿命や高発光効率が得られていないのではないかと推定し、問題点について鋭意検討した。
その結果、発光層に含有する発光ドーパントの基底状態(S)と最低励起三重項状態(T)の間の電子遷移時の再配向エネルギーが0eV〜0.7eVであるだけでなく、発光層に含有するホスト化合物の場合は、アニオンラジカルの再配向エネルギーが0eV〜0.3eVであり、かつ、ホスト化合物の分子量が500〜3000である場合に、素子寿命が改善され、かつ、発光効率の上昇が得られることを見出した。これは、ホスト化合物が発光層で担う役割が、キャリア移動であることに起因し、さらにカチオンラジカルよりも、アニオンラジカルの方が構造変化が大きいためと推定される。
さらに、ホスト化合物については、その再配向エネルギーが0.3eVより大であっても、上記一般式(1)で表され、かつ、ホスト化合物の分子量が500〜3000の範囲内であるものを組み合わせた場合にも、同様の効果が得られることを見出した。
本発明の発光ドーパントとホスト化合物の組み合わせは、発光を担う発光ドーパントに関しては、SとTの構造変化が小さくなること、キャリア移動を担うホスト化合物に関しては、Sとアニオンラジカル状態の構造変化が小さくなることが性能向上に大きな影響を及ぼすと推定して種々化合物を合成して検討した結果、この組み合わせで性能向上が見出された。
再配向エネルギーを小さくする実現する手段としては、かさ高い置換基の導入等による立体的な効果と、電子の非局在化等による電子的な効果に基づいた分子設計から得られる化合物を、発光層にホスト化合物と発光ドーパントとして導入することにより本発明に至った。
ホスト化合物であるターフェニレン基、クオーターフェニレン基、ペンタフェニレン基等が再配向エネルギーが小さいのは、電子の非局在化による効果と推定される。
このような形で、発光層に含有される異なる二つの材料であるホスト化合物と発光ドーパントを組み合わせることにより、本発明の効果が発現できることが分かってきた。
有機ELの発光層は、主にホストとドーパントの二成分からなり、両者が均一に分散されていることが好ましい。中でも、含有量の多いホストが均一分散し、その状態が製膜後に長時間維持される必要がある。発光層中ではホールと電子がホッピング伝導するため、ホストは基底状態とカチオンラジカル状態の構造変化(ΔSc)が少ないこと、または、基底状態とアニオンラジカル状態の構造変化(ΔSa)が少ないことが好ましい。我々は鋭意検討した結果、ΔSaを抑制することが、有機ELの性能向上に、より効果的であることを見出した。これは前述のようにΔSaの方がΔScよりも値が大きいことに由来するものと考えられる。
一方、ドーパントの発光波形は、ドーパント単独の場合と比べてホストが含有されるとλmaxや半値幅といった波形のパラメーターに変化がみられる。さらに、ドーパントが同一であってもホスト違いで発光波形の形状が異なる場合が多い。発光波形は、構造変化が大きいとブロードになり、変化が小さいとよりシャープになることが知られているため、ホストとドーパントの二成分系では、ホスト違いでもその影響は無視できない。また、ホストやドーパントの劣化、または、それらの相互作用の影響を受けることで、波形は経時によっても変化する。
これらの観点から、我々は発光層内の高い移動度を維持したまま、発光波形を改善、維持するためには、ホストとドーパントの両者の再配向エネルギーを規定すべきであり、これまで認識していたよりも高いレベルが必要であることが分かってきた(特許文献1,2には、0〜0.5eVとあるが、本発明は0〜0.3eVである)。
具体的には、発光ドーパントでは、基底状態(S)と最低励起三重項状態(T)の間の電子遷移時の再配向エネルギーが0eV〜0.7eVであり、ホスト化合物では、基底状態(S)とアニオンラジカル(AR)の間の電子移動反応時の再配向エネルギーが0eV〜0.3eVであり、分子量が500〜3000の範囲内となる組み合わせを用いることで、発光効率と耐久性向上の両立につながると推定される。さらに、発光層内の高い移動度を維持したまま、発光波形が改善、維持され、経時による色度変化が小さくなることを見出した。この抑制効果を測定するのは難易度が高いが、計算から求めたパラメーターで定量化できることが分かった。ホストが発光効率の指標となり、ドーパントが発光波形の指標となるが、組み合わせることにより、耐久性も向上できることが分かった。合わせて塗布液停滞性も改善された。ホストよりもドーパントの方が、より大きなエネルギーの範囲が大きいが、これは含有量の違いで許与範囲が異なるためと推定している。
分子量に関しては、500未満だと熱安定性に劣り、素子寿命に大きな影響を及ぼすが、500以上であれば、本発明の範囲内の再配向エネルギーと組み合わせることで、発光効率と耐久性向上の両立につながることが見出された。
有機EL素子から構成される表示装置の一例を示した模式図 表示部Aの模式図 画素の模式図 パッシブマトリクス方式フルカラー表示装置の模式図 照明装置の概略図 照明装置の模式図
本発明の有機エレクトロルミネッセンス素子は、陽極、陰極及び発光層を有する有機エレクトロルミネッセンス素子であって、前記発光層に含有する発光ドーパントの基底状態(S)と最低励起三重項状態(T)の間の電子遷移時の再配向エネルギーが、0eV〜0.7eVであり、かつ、前記発光層に含有するホスト化合物の基底状態(S)とアニオンラジカル(AR)の間の電子移動反応時の再配向エネルギーが、0eV〜0.3eVであり、かつ、前記ホスト化合物の分子量が、500〜3000の範囲内であることを特徴とする。この特徴は、本実施形態に係る発明に共通又は対応する技術的特徴である。
本発明の実施態様としては、本発明の効果発現の観点から、前記発光ドーパントの基底状態(S)と最低励起三重項状態(T)の間の電子遷移時の再配向エネルギーが、0eV〜0.5eVであることが好ましく、また、前記ホスト化合物の基底状態(S)とアニオンラジカル(AR)の間の電子移動反応時の再配向エネルギーが、0eV〜0.15eVであることが好ましい。
また、前記発光層に含有する発光ドーパントの基底状態(S)と最低励起三重項状態(T)の間の電子遷移時の再配向エネルギーが、0eV〜0.7eVであり、かつ、前記発光層に含有するホスト化合物が、上記一般式(1)で表され、かつ、前記ホスト化合物の分子量が、500〜3000の範囲内であることが好ましく、特に、前記発光ドーパントの基底状態(S)と最低励起三重項状態(T)の間の電子遷移時の再配向エネルギーが、0eV〜0.5eVであることが、低駆動電圧で、発光効率が高く、耐久性に優れ、ダークスポット発生防止効果及び塗布液停滞性に優れる点で好ましい。
また、前記ホスト化合物が、前記一般式(2)で表されることが好ましい。
また、前記一般式(2)において、 〜R 、R 、R 、R 10 のうち少なくとも一つが置換基を有してもよいカルバゾリル基(カルバゾール環基ともいう。)であることが好ましい。
また、前記一般式(2)において、 〜R 、R 、R 、R 10 のうちただ一つが置換基を有してもよいカルバゾリル基であることが好ましい。
また、前記一般式(2)において、 〜R 、R 、R 、R 10 のうち少なくとも一つが置換基を有してもよいジベンゾフリル基(ジベンゾフラン環基ともいう。)であることが好ましい。
また、前記一般式(2)において、 〜R 、R 、R 、R 10 のうちただ一つが置換基を有してもよいジベンゾフリル基であることが好ましい。
また、前記一般式(2)において、 〜R 、R 、R 、R 10 のうちただ一つが置換基を有してもよいジベンゾフリル基であり、かつ、 〜R 、R 、R 、R 10 のうちただ一つが置換基を有してもよいカルバゾリル基であることが好ましい。
前記発光ドーパントが、リン光発光性化合物であることが、発光効率向上の点で好ましい。
前記リン光発光性化合物が、上記一般式(A1)で表されることが、素子の耐久性、ダークスポット発生防止の点で好ましい。
前記発光層が、塗布液を用いて形成された層であることが、均質な膜の層が得られやすく、かつ、ピンホールが生成しにくい点で好ましい。
前記発光層が、白色に発光することが、経時安定性が良い点で好ましい。
本発明の照明装置としては、前記有機エレクトロルミネッセンス素子を具備することが、高品位な照明装置を得ることができる点で好ましい。
本発明の表示装置としては、前記有機エレクトロルミネッセンス素子を具備することが、高品位な表示装置を得ることができる点から好ましい。
以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「〜」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。
[本発明の有機エレクトロルミネッセンス素子の概要]
本発明の有機エレクトロルミネッセンス素子は、発光層に含有する発光ドーパントの基底状態(S)と最低励起三重項状態(T)の間の電子遷移時の再配向エネルギーが、0eV〜0.7eVであり、かつ、発光層に含有するホスト化合物の基底状態(S)とアニオンラジカル(AR)の間の電子移動反応時の再配向エネルギーが、0eV〜0.3eVである。
特に、発光ドーパントの基底状態(S)と最低励起三重項状態(T)の間の電子遷移時の再配向エネルギーは、0eV〜0.5eVであることが好ましく、ホスト化合物の基底状態(S)とアニオンラジカル(AR)の間の電子移動反応時の再配向エネルギーは、0eV〜0.15eVであることが好ましい。
また、ホスト化合物は、上記一般式(1)で表され、かつ、ホスト化合物の分子量が、500〜3000の範囲内であることが好ましく、発光ドーパントは、上記一般式(A1)で表されることが好ましい。
以下、再配向エネルギーについて説明し、一般式(1)及び一般式(A1)の詳細については後述する。
[再配向エネルギー]
本発明でいう再配向エネルギーとは、ドーパント化合物の場合、分子が基底状態である中性分子(S)から最低励起三重項状態(T)となった時の分子の構造変化を表現するエネルギーのパラメーターλであり、以下の式で表される。
式(1):λ=Ea−Eb
式(2):λ=Ec−Ed
式(3):λ=λ+λ
上記式において、Ea、Eb、Ec及びEdは、それぞれ、Ea:Sの構造で計算したTのエネルギー、Eb:Tの最適化構造のエネルギー、Ec:Tの構造で計算した基底状態のエネルギー、Ed:Sの最適化構造のエネルギーである。本発明では、λ(=λ+λ)をドーパント化合物の再配向エネルギーと定義する。
ホスト化合物の場合は、上記においてT部分をアニオンラジカルに置き換えたものであり、以下の式で表される。
式(4):λ=Ee−Ef
式(5):λ=Eg−Eh
式(6):λ=λ+λ
上記式において、Ee、Ef、Eg及びEhは、それぞれ、Ee:Sの構造で計算したアニオンラジカルのエネルギー、Ef:アニオンラジカルの最適化構造のエネルギー、Eg:アニオンラジカルの構造で計算した基底状態のエネルギー、Eh:Sの最適化構造のエネルギーである。本発明では、λ(=λ+λ)をホスト化合物の再配向エネルギーと定義する。
本発明における再配向エネルギーは、Gaussian03(Revision D.02,M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven,K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi,V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega,G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota,R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross,V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann,O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski,P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg,V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain,O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari,J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford,J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz,I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham,C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill,B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.)を用いて行った。
ドーパント、ホスト何れの場合にも汎関数としてB3LYPを、基底関数としては、ドーパントに対してLanL2DZ、ホストに対しては6-31G*を用いて計算した値とする。
再配向エネルギーに関しては、“K.Sakanoue,et al.,J.Phys. Chem.,A 1999, 103,5551−5556”、“M.Malagoli,et al.,Chem.Phys.Letters.,327(2000)13−17”等の文献で参照することができる。
本発明において、発光層に含有するホスト化合物の分子量が、500〜3000の範囲内であり、かつ、ホスト化合物が下記一般式(1)で表される化合物であることが好ましい。本発明において、発光層に含有するホスト化合物は、その再配向エネルギーが0eV〜0.3eV、好ましくは0eV〜0.15eVであり、かつ、分子量が500〜3000の範囲内であるが、その再配向エネルギーが0.3eVより大であっても、下記一般式(1)で表される化合物であって、かつ、分子量が500〜3000の範囲内であれば、本発明の効果を発揮する。本発明において最も好ましいホスト化合物は、下記一般式(1)で表される化合物であって、かつその再配向エネルギーが0eV〜0.3eV、好ましくは0eV〜0.15eVであり、かつ分子量が500〜3000の範囲内のものである。
Figure 0006424626
[一般式(1)で表される化合物]
一般式(1)において、R〜R、R、R10及びRaは、水素原子又は置換基を表し、Rは水素原子を表す。
一般式(1)において、R〜R、R、R10及びRaが置換基を表す場合、その置換基としてはアルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素基(芳香族炭化水素環基、芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p−クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等)、芳香族複素環基(例えば、ピリジル基、ピリミジニル基、フリル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジニル基、トリアゾリル基(例えば、1,2,4−トリアゾール−1−イル基、1,2,3−トリアゾール−1−イル基等)、オキサゾリル基、ベンゾオキサゾリル基、チアゾリル基、イソオキサゾリル基、イソチアゾリル基、フラザニル基、チエニル基、キノリル基、ベンゾフリル基、ジベンゾフリル基、ベンゾチエニル基、ジベンゾチエニル基、インドリル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する炭素原子の一つが窒素原子で置き換わったものを示す)、キノキサリニル基、ピリダジニル基、トリアジニル基、キナゾリニル基、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2−ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2−エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2−エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2−エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2−ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2−ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2−エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2−ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2−エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基又はヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2−ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ジフェニルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2−エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2−ピリジルアミノ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、ホスホノ基等が挙げられる。好ましくは、アルキル基、芳香族炭化水素基、芳香族複素環基、アルコキシ基、アミノ基、シアノ基が挙げられる。
また、これらの置換基は、上記の置換基によってさらに置換されていてもよい。
また、これらの置換基は、複数が互いに結合して環を形成していてもよい。
一般式(1)において、nは0〜4の整数を表す。
上記一般式(1)で表される化合物は、さらに下記一般式(2)で表される化合物であることが好ましい。
Figure 0006424626
一般式(2)において、R〜R、R、R10及びRb〜Reは、水素原子又は置換基を表し、Rは水素原子を表す。
一般式(2)において、R〜R、R、R10、Rb、Rc、Rd、Reが置換基を表す場合、その置換基としては、一般式(1)の場合と同義である。
一般式(1)及び(2)において、置換基として好ましくは、アルキル基、アルコキシ基、アミノ基、シアノ基、芳香族炭化水素環基又は芳香族複素環基を表す。
前記一般式(1)及び(2)において、R〜R又はR、R、R、R10は、互いに結合して環を形成してもよい。
前記一般式(1)及び(2)において、Rが、下記一般式(PA1)又は(PA2)で表される場合が一つの形態として考えられる。
Figure 0006424626
一般式(PA1)において、R71〜R75は、水素原子又は置換基を表す。
一般式(PA1)において、R71〜R75が置換基を表す場合、その置換基としては、一般式(1)の場合と同義である。
一般式(PA2)において、R71〜R73、R75及びR81〜R85は、水素原子又は置換基を表す。
一般式(PA2)において、R71〜R73、R75及びR81〜R85が、置換基を表す場合、その置換基としては、一般式(1)の場合と同義である。
一般式(PA1)及び(PA2)において、*は、Rとの連結部位を表す。
また、一般式(1)及び(2)において、R〜R、R、R10の少なくとも一つが置換基を有してもよいカルバゾール環基又はR〜R、R、R10のうちのただ一つが置換基を有してもよいカルバゾール環基又はR〜R、R、R10の少なくとも一つが置換基を有してもよいジベンゾフラン環基又はR〜R、R、R10のうちのただ一つが置換基を有してもよいジベンゾフラン環基であることが好ましい。あるいは、R〜R、R、R10のうちただ一つが置換基を有してもよいジベンゾフラン環基であり、かつ、R〜R、R、R10のうちただ一つが置換基を有してもよいカルバゾール環基であることが好ましい。
また、一般式(1)及び(2)は、下記一般式(1−A)、(1−B)、(2−A)又は(2−B)であることが好ましい。
Figure 0006424626
一般式(1−A)において、R、R、R〜R、R〜R17、Rb〜Reは水素原子又は置換基を表し、Rは水素原子を表す。一般式(1−A)において、R、R、R〜R、R〜R17、Rb〜Reが置換基を表す場合、一般式(1)のR〜R、R、R10及びRaの場合と同義である。
一般式(1−A)において、Xは酸素原子、硫黄原子、NRxを表す。Rxは水素原子又は置換基を表すが、Rxが置換基を表す場合、一般式(1)のR〜R、R、R10及びRaの場合と同義である。
一般式(1−B)において、R、R、R〜R、R、R10、R21〜R28、Rb〜Reは水素原子又は置換基を表し、Rは水素原子を表す。一般式(1−B)において、R、R、R〜R、R、R10、R21〜R28、Rb〜Reが置換基を表す場合、一般式(1)のR〜R、R、R10及びRaの場合と同義である。
一般式(2−A)において、R、R〜R、R〜R17、Rb〜Reは水素原子又は置換基を表し、Rは水素原子を表す。R、R〜R、R〜R17、Rb〜Reが置換基を表す場合、一般式(1)のR〜R、R、R10及びRaの場合と同義である。一般式(2−A)において、Xは一般式(1−A)のXの場合と同義である。
一般式(2−B)において、R、R〜R、R、R10、R21〜R28、Rb〜Reは水素原子又は置換基を表し、Rは水素原子を表す。R、R〜R、R、R10、R21〜R28、Rb〜Reが置換基を表す場合、一般式(1)のR〜R、R、R10及びRaの場合と同義である。
一般式(1−A)、(1−B)、(2−A)又は(2−B)において、R〜R、R、R10のうちのただ一つが置換基を有してもよいジベンゾフラン環基であることが好ましい。
また、一般式(1)及び(2)は、下記一般式(3−A)、(3−B)又は(3−C)であることが好ましい。
Figure 0006424626
一般式(3−A)において、R、R〜R、R〜R14、R16、R17、R31〜R38、Rb〜Reは水素原子又は置換基を表し、Rは水素原子を表す。R、R〜R、R〜R14、R16、R17、R31〜R38、Rb〜Reが置換基を表す場合、一般式(1)のR〜R、R、R10及びRaの場合と同義である。一般式(3−A)において、Xは一般式(1−A)のXの場合と同義である。
一般式(3−B)において、R、R〜R、R〜R14、R16、R17、R41〜R47、Rb〜Reは水素原子又は置換基を表し、Rは水素原子を表す。R、R〜R、R〜R14、R16、R17、R41〜R47、Rb〜Reが置換基を表す場合、一般式(1)のR〜R、R、R10及びRaの場合と同義である。一般式(3−B)において、Xは一般式(1−A)のXの場合と同義である。一般式(3−B)においてXは一般式(1−A)のXの場合と同義である。
一般式(3−C)において、R、R〜R、R〜R14、R16〜R18、R31〜R37、Rb〜Reは水素原子又は置換基を表し、Rは水素原子を表す。R、R〜R、R〜R14、R16〜R18、R31〜R37、Rb〜Reが置換基を表す場合、一般式(1)のR〜R、R、R10及びRaの場合と同義である。一般式(3−C)において、Xは一般式(1−A)のXの場合と同義である。
前記一般式(1−A)、(1−B)、(2−A)、(2−B)、(3−A)、(3−B)及び(3−C)において、Rが、前記一般式(PA1)又は(PA2)で表される場合が一つの形態として考えられる。
以下に、本発明におけるホスト化合物の具体例を挙げるが、これらに限られるものではない。
Figure 0006424626
Figure 0006424626
Figure 0006424626
Figure 0006424626
Figure 0006424626
Figure 0006424626
Figure 0006424626
Figure 0006424626
Figure 0006424626
Figure 0006424626
Figure 0006424626
Figure 0006424626
本発明において、発光層に含有する発光ドーパントが、リン光発光性化合物であり、当該リン光発光性化合物が、下記一般式(A1)で表されることが好ましい。
Figure 0006424626
[一般式(A1)で表されるリン光発光性化合物]
一般式(A1)において、Rが置換基を表す場合、その置換基としては、一般式(1)のR〜R10及びRaの場合と同義である。
Zは、5〜7員環を形成するのに必要な非金属原子群を表す。Zにより形成される5〜7員環としては、例えば、ベンゼン環、ナフタレン環、ピリジン環、ピリミジン環、ピロール環、チオフェン環、ピラゾール環、イミダゾール環、オキサゾール環及びチアゾール環等が挙げられる。これらのうちで好ましいものは、ベンゼン環である。
n1は0〜5の整数を表す。
〜Bは炭素原子、CRa、窒素原子、NRb、酸素原子又は硫黄原子を表し、少なくとも一つは窒素原子を表す。
Ra及びRbは水素原子又は置換基を表す。置換基としては、一般式(1)のR〜R10及びRaの場合と同義である。
〜Bの5つの原子により芳香族含窒素複素環が形成される。芳香族含窒素複素環としては、例えば、ピロール環、ピラゾール環、イミダゾール環、トリアゾール環、テトラゾール環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、オキサジアゾール環、カルベンを含む環及びチアジアゾー環ル等が挙げられる。これらのうちで好ましいものは、ピラゾール環、イミダゾール環、カルベンを含む環である。
とZは互いに連結して環を形成してもよい。
はX、Xとともに2座の配位子を形成する原子群を表す。X−L−Xで表される2座の配位子の具体例としては、例えば、置換又は無置換のフェニルピリジン、フェニルピラゾール、フェニルイミダゾール、フェニルトリアゾール、フェニルテトラゾール、ピラザボール、イミダゾフェナンスリジン及びアセチルアセトン等が挙げられる。これらの基は上記の置換基によってさらに置換されていてもよい。
m1は1〜3の整数を表し、m2は0〜2の整数を表すが、m1+m2は2又は3である。中でも、m2は0が好ましい。
で表される金属としては、元素周期表の8〜10族の遷移金属元素(単に遷移金属ともいう。)が用いられるが、中でも、イリジウム、白金が好ましく、さらに好ましくはイリジウムである。
一般式(A1)において、B〜Bで形成される芳香族複素環は、下記一般式(DP−1a)、(DP−1b)及び(DP−1c)のいずれかで表されることが好ましい。
Figure 0006424626
一般式(DP−1a)、(DP−1b)及び(DP−1c)において、*1は一般式(A1)のZとの結合部位を表し、*2は一般式(A1)のMとの結合部位を表す。
Rb〜Rbは水素原子又は置換基を表し、Rb〜Rbで表される置換基としては、前述の一般式(1)のR〜R10及びRaの場合と同義である。
一般式(DP−1c)において、Rbは芳香族炭化水素環基、または、芳香族複素環基で表されることが好ましい。
一般式(DP−1a)におけるB及びBは、炭素原子又は窒素原子であり、より好ましくは少なくとも1つは炭素原子である。
一般式(DP−1b)におけるB、B及びBは、炭素原子又は窒素原子であり、より好ましくは少なくとも1つは炭素原子である。
一般式(DP−1c)におけるB及びBは、炭素原子又は窒素原子であり、より好ましくは少なくとも1つは炭素原子である。
また、一般式(A1)の一つの形態として、下記一般式(DP−2)で表すことができる。
Figure 0006424626
一般式(DP−2)において、M、X、X、L、m1、m2は、一般式(A1)のM1、、X、L、m1、m2と同義である。
、A、A、B、B及びBは各々炭素原子又は窒素原子を表す。環Zは、A及びAと共に形成される6員の芳香族炭化水素環、または、5員または6員の芳香族複素環を表し、環ZはB〜Bと共に形成される5員の芳香族複素環を表す。Lは2価の連結基を表す。
で表される2価の連結基としては、例えば、アルキレン基、アルケニレン基、アリーレン基、ヘテロアリーレン基、2価の複素環基、−O−、−S−、またはこれらを任意に組み合わせた連結基等が挙げられる。
一般式(DP−2)は、さらに一般式(DP−2a)で表されることが好ましい。
Figure 0006424626
一般式(DP−2a)において、M、X、X、L、m1、m2、環Z、環Z、A、A、A、B、B及びBは、一般式(DP−2)のM、X、X、L、m1、m2、環Z、環Zと同義である。
及びLはC−Rbまたは窒素原子を表し、Rbは水素原子または置換基を表す。L及びLC−Rbの場合は、Rb同士が互いに結合し環を形成してもよい。Rbで表される置換基としては、前述の一般式(1)のR〜R10及びRaの場合と同義である。
一般式(DP−2a)は、さらに一般式(DP−2b)で表されることが好ましい。
Figure 0006424626
一般式(DP−2b)において、M、X、X、L、m1、m2、環Z、環Z、A、A、A、B、B及びBは、一般式(DP−2)のM、X、X、L、m1、m2、環Z、環Z、A、A、A、B、B及びBと同義である。
好ましくは環Zが置換または無置換のベンゼン環、ピリジン環またはチエニル環であり、さらに好ましくはベンゼン環である。
一般式(DP−2b)において、B〜BとZで形成される芳香族複素環は、前記一般式(DP−1a)、(DP−1b)及び(DP−1c)のいずれかで表されることが好ましい。一般式(DP−1a)、(DP−1b)及び(DP−1c)において、*1は一般式(DP−2b)のZとの結合部位を表し、*2は一般式(DP−2b)のMとの結合部位を表す。
一般式(DP−1a)、(DP−1b)、(DP−1c)、(DP−2)、(DP−2a)及び(DP−2b)におけるAが炭素原子であることが好ましく、さらにAが炭素原子であることが好ましい。より好ましくは環Zが置換または無置換のベンゼン環、ピリジン環またはチエニル環であり、さらに好ましくはベンゼン環である。
以下に、一般式(A1)で表されるリン光発光性化合物の具体例を挙げるが、これらに限られるものではない。
Figure 0006424626
Figure 0006424626
Figure 0006424626
Figure 0006424626
Figure 0006424626
Figure 0006424626
Figure 0006424626
[有機EL素子の構成層]
本発明の有機EL素子は、陽極と陰極の間に発光層を有し、当該発光層中に上記一般式(1)で表される化合物と、上記一般式(A1)で表される化合物とを含有する態様が好ましい態様である。
すなわち、上記一般式(1)で表される化合物は、ホスト化合物として機能し、上記一般式(A1)で表される化合物は、発光ドーパントとして機能する態様が好ましい態様である。
本発明において、有機EL素子の層構成の好ましい具体例を以下に示すが、本発明はこれらに限定されない。
(i)陽極/発光層/電子輸送層/陰極
(ii)陽極/正孔輸送層/発光層/電子輸送層/陰極
(iii)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極
(iv)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
(v)陽極/陽極バッファー層/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
(vi)陽極/正孔輸送層/電子阻止層/発光層/正孔阻止層/電子輸送層/陰極
本発明の有機EL素子においては、青色発光層の発光極大波長は430〜480nmの範囲内にあるものが好ましく、緑色発光層は発光極大波長が510〜550nmの範囲内、赤色発光層は発光極大波長が600〜640nmの範囲内にある単色発光層であることが好ましく、これらを用いた表示装置であることが好ましい。
また、これらの少なくとも3層の発光層を積層して白色発光層としたものであってもよく、これらを用いた照明装置であることがよい。
さらに、発光層間には非発光性の中間層を有していてもよい。
本発明の有機EL素子を構成する各層について説明する。
<発光層>
本発明に係る発光層は、注入されてくる電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよい。
発光層の膜厚の総和は特に制限はないが、膜の均質性や発光時に不必要な高電圧を印加するのを防止し、かつ駆動電流に対する発光色の安定性向上の観点から、2nm〜5μmの範囲内に調整することが好ましく、さらに好ましくは2〜200nmの範囲内に調整され、特に好ましくは10〜20nmの範囲内である。
発光層の作製には、後述する発光ドーパントやホスト化合物を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法、インクジェット法等の公知の薄膜化法により成膜して形成することができる。
本発明の有機EL素子の発光層には、ホスト化合物と発光ドーパント(リン光ドーパント(リン光発光性ドーパントともいう。)や蛍光ドーパント等)の少なくとも1種類とを含有する。
ホスト化合物としては、上記一般式(1)で表される化合物を用いることが好ましいが、ホスト化合物に用いることができる他の化合物について以下に説明する。また、発光ドーパントとしては、上記一般式(A1)で表される化合物を用いることが好ましいが、用いることができる他の化合物についても以下に説明する。
≪ホスト化合物≫
本発明においてホスト化合物(発光ホストともいう。)とは、発光層に含有される化合物の内でその層中での質量比が20%以上であり、かつ室温(25℃)においてリン光発光のリン光量子収率が、0.1未満の化合物と定義される。好ましくはリン光量子収率が0.01未満である。また、発光層に含有される化合物の中で、その層中での質量比が20%以上であることが好ましい。
ホスト化合物としては、上記一般式(1)で表される化合物を用い、公知のホスト化合物を複数種併用して用いてもよい。ホスト化合物を複数種用いることで電荷の移動を調整することが可能であり、有機EL素子を高効率化することができる。また、後述する発光ドーパントを複数種用いることで異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。
また、本発明に用いられるホスト化合物としては、従来公知の低分子化合物でも、繰り返し単位を持つ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(蒸着重合性発光ホスト)でもよい。
上記一般式(1)で表される化合物と併用しても良い公知のホスト化合物としては、正孔輸送能、電子輸送能を有しつつ、かつ発光の長波長化を防ぎ、かつ、高Tg(ガラス転移温度)である化合物が好ましい。
公知のホスト化合物の具体例としては、以下の文献に記載されている化合物が挙げられる。
特開2001−257076号公報、同2002−308855号公報、同2001−313179号公報、同2002−319491号公報、同2001−357977号公報、同2002−334786号公報、同2002−8860号公報、同2002−334787号公報、同2002−15871号公報、同2002−334788号公報、同2002−43056号公報、同2002−334789号公報、同2002−75645号公報、同2002−338579号公報、同2002−105445号公報、同2002−343568号公報、同2002−141173号公報、同2002−352957号公報、同2002−203683号公報、同2002−363227号公報、同2002−231453号公報、同2003−3165号公報、同2002−234888号公報、同2003−27048号公報、同2002−255934号公報、同2002−260861号公報、同2002−280183号公報、同2002−299060号公報、同2002−302516号公報、同2002−305083号公報、同2002−305084号公報、同2002−308837号公報等。
Figure 0006424626
Figure 0006424626
Figure 0006424626
Figure 0006424626
Figure 0006424626
≪発光ドーパント≫
発光ドーパントとしては、蛍光ドーパント(蛍光性化合物ともいう。)、リン光ドーパント(リン光発光体、リン光性化合物、リン光発光性化合物等ともいう。)を用いることができるが、より発光効率の高い有機EL素子を得る観点からは、本発明の有機EL素子の発光層や発光ユニットに使用される発光ドーパント(単に、発光材料ということもある。)としては、上記のホスト化合物を含有すると同時にリン光ドーパントを含有することが好ましい。
≪リン光ドーパント≫
リン光ドーパントは、励起三重項からの発光が観測される化合物であり、具体的には室温(25℃)にてリン光発光する化合物であり、リン光量子収率が25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。
上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できるが、本発明に係るリン光ドーパントは、任意の溶媒のいずれかにおいて上記リン光量子収率(0.01以上)が達成されればよい。
リン光ドーパントの発光は、原理としては2種挙げられ、一つはキャリアが輸送されるホスト化合物上でキャリアの再結合が起こってホスト化合物の励起状態が生成し、このエネルギーをリン光ドーパントに移動させることでリン光ドーパントからの発光を得るというエネルギー移動型、もう一つはリン光ドーパントがキャリアトラップとなり、リン光ドーパント上でキャリアの再結合が起こり、リン光ドーパントからの発光が得られるというキャリアトラップ型であるが、いずれの場合においても、リン光ドーパントの励起状態のエネルギーは、ホスト化合物の励起状態のエネルギーよりも低いことが条件である。
リン光ドーパントは、上記一般式(A1)で表される化合物を使用することができる。
また、本発明に係る発光層には、以下の特許公報に記載されている従来公知の化合物等を併用してもよい。
国際公開第00/70655号パンフレット、特開2002−280178号公報、特開2001−181616号公報、特開2002−280179号公報、特開2001−181617号公報、特開2002−280180号公報、特開2001−247859号公報、特開2002−299060号公報、特開2001−313178号公報、特開2002−302671号公報、特開2001−345183号公報、特開2002−324679号公報、国際公開第02/15645号パンフレット、特開2002−332291号公報、特開2002−50484号公報、特開2002−332292号公報、特開2002−83684号公報、特表2002−540572号公報、特開2002−117978号公報、特開2002−338588号公報、特開2002−170684号公報、特開2002−352960号公報、国際公開第01/93642号パンフレット、特開2002−50483号公報、特開2002−100476号公報、特開2002−173674号公報、特開2002−359082号公報、特開2002−175884号公報、特開2002−363552号公報、特開2002−184582号公報、特開2003−7469号公報、特表2002−525808号公報、特開2003−7471号公報、特表2002−525833号公報、特開2003−31366号公報、特開2002−226495号公報、特開2002−234894号公報、特開2002−235076号公報、特開2002−241751号公報、特開2001−319779号公報、特開2001−319780号公報、特開2002−62824号公報、特開2002−100474号公報、特開2002−203679号公報、特開2002−343572号公報、特開2002−203678号公報等。
本発明に係るリン光ドーパントは、好ましくは元素の周期表で8〜10族の金属を含有する錯体系化合物であり、さらに好ましくはイリジウム化合物、オスミウム化合物又は白金化合物(白金錯体系化合物)、希土類錯体であり、中でも最も好ましいのはイリジウム化合物である。
また、以下に示すような従来公知の発光ドーパントを併用してもよい。
Figure 0006424626
Figure 0006424626
Figure 0006424626
Figure 0006424626
≪蛍光ドーパント)≫
蛍光ドーパント(蛍光性化合物ともいう。)としては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素又は希土類錯体系蛍光体等が挙げられる。
次に、本発明の有機EL素子の構成層として用いられる、注入層、阻止層、正孔輸送層、電子輸送層等について説明する。
<注入層:電子注入層、正孔注入層>
注入層は、必要に応じて設け、電子注入層と正孔注入層があり、上記の如く陽極と発光層又は正孔輸送層の間、及び陰極と発光層又は電子輸送層との間に存在させてもよい。
注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123〜166頁)に詳細に記載されており、正孔注入層(陽極バッファー層)と電子注入層(陰極バッファー層)とがある。
陽極バッファー層(正孔注入層)は、特開平9−45479号公報、同9−260062号公報、同8−288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層等が挙げられる。
陰極バッファー層(電子注入層)は、特開平6−325871号公報、同9−17574号公報、同10−74586号公報等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。
この注入層は、上記材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法、LB法等の公知の方法により、薄膜化することにより形成できる。
上記バッファー層(注入層)はごく薄い膜であることが望ましく、素材にもよるがその膜厚は0.1nm〜5μmの範囲内が好ましい。この注入層は上記材料の一種又は二種以上からなる一層構造であってもよい。
<阻止層:正孔阻止層、電子阻止層>
阻止層は、上記の如く有機化合物薄膜の基本構成層の他に必要に応じて設けられるものである。例えば、特開平11−204258号公報、同11−204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。
正孔阻止層とは、広い意味では電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する電子輸送層の構成を必要に応じて、正孔阻止層として用いることができる。
正孔阻止層には、カルバゾール誘導体、カルボリン誘導体、ジアザカルバゾール誘導体(カルボリン誘導体のカルボリン環を構成する炭素原子のいずれか一つが窒素原子で置き換わったものを示す)を含有することが好ましい。
また、本発明においては、複数の発光色の異なる複数の発光層を有する場合、その発光極大波長が最も短波にある発光層が全発光層中、最も陽極に近いことが好ましいが、このような場合、該最短波層と該層の次に陽極に近い発光層との間に正孔阻止層を追加して設けることが好ましい。さらには、該位置に設けられる正孔阻止層に含有される化合物の50質量%以上が、前記最短波発光層のホスト化合物に対しそのイオン化ポテンシャルが0.3eV以上大きいことが好ましい。
イオン化ポテンシャルは、化合物のHOMO(最高被占分子軌道)レベルにある電子を真空準位に放出するのに必要なエネルギーで定義され、例えば、下記に示すような方法により求めることができる。
理研計器製の低エネルギー電子分光装置「Model AC−1」を用いて、あるいは紫外光電子分光として知られている方法を好適に用いることができる。
一方、電子阻止層とは、広い意味では正孔輸送層の機能を有し、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。
また、後述する正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。上記正孔阻止層、電子阻止層の膜厚としては、好ましくは3〜100nmの範囲内であり、さらに好ましくは5〜30nmの範囲内である。
<正孔輸送層>
正孔輸送層とは、正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層、電子阻止層も正孔輸送層の機能を有する。正孔輸送層は単層又は複数層設けることができる。
正孔輸送材料としては、正孔の注入又は輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。
正孔輸送材料としては上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。
芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′−テトラフェニル−4,4′−ジアミノフェニル、N,N′−ジフェニル−N,N′−ビス(3−メチルフェニル)−〔1,1′−ビフェニル〕−4,4′−ジアミン(TPD)、2,2−ビス(4−ジ−p−トリルアミノフェニル)プロパン、1,1−ビス(4−ジ−p−トリルアミノフェニル)シクロヘキサン、N,N,N′,N′−テトラ−p−トリル−4,4′−ジアミノビフェニル、1,1−ビス(4−ジ−p−トリルアミノフェニル)−4−フェニルシクロヘキサン、ビス(4−ジメチルアミノ−2−メチルフェニル)フェニルメタン、ビス(4−ジ−p−トリルアミノフェニル)フェニルメタン、N,N′−ジフェニル−N,N′−ジ(4−メトキシフェニル)−4,4′−ジアミノビフェニル、N,N,N′,N′−テトラフェニル−4,4′−ジアミノジフェニルエーテル、4,4′−ビス(ジフェニルアミノ)クオードリフェニル、N,N,N−トリ(p−トリル)アミン、4−(ジ−p−トリルアミノ)−4′−〔4−(ジ−p−トリルアミノ)スチリル〕スチルベン、4−N,N−ジフェニルアミノ(2−ジフェニルビニル)ベンゼン、3−メトキシ−4′−N,N−ジフェニルアミノスチルベンゼン、N−フェニルカルバゾール、さらには米国特許第5,061,569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′−ビス〔N−(1−ナフチル)−N−フェニルアミノ〕ビフェニル(NPD)、特開平4−308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4′,4″−トリス〔N−(3−メチルフェニル)−N−フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。
さらに、これらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型−Si、p型−SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。
また、特開平11−251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような、所謂p型正孔輸送材料を用いることもできる。本発明においては、より高効率の発光素子が得られることからこれらの材料を用いることが好ましい。
正孔輸送層は、上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。正孔輸送層の膜厚については特に制限はないが、通常は5nm〜5μm程度、好ましくは5〜200nmである。この正孔輸送層は上記材料の1種又は2種以上からなる一層構造であってもよい。
また、不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4−297076号公報、特開2000−196140号公報、同2001−102175号公報の各公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
本発明においては、このようなp性の高い正孔輸送層を用いることが、より低消費電力の素子を作製することができるため好ましい。
<電子輸送層>
電子輸送層とは、電子を輸送する機能を有する材料からなり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層又は複数層設けることができる。
従来、単層の電子輸送層、及び複数層とする場合は発光層に対して陰極側に隣接する電子輸送層に用いられる電子輸送材料(正孔阻止材料を兼ねる)としては、陰極より注入された電子を発光層に伝達する機能を有していればよく、その材料としては従来公知の化合物の中から任意のものを選択して用いることができ、例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体等が挙げられる。
さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。さらにこれらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
また、8−キノリノール誘導体の金属錯体、例えば、トリス(8−キノリノール)アルミニウム(Alq)、トリス(5,7−ジクロロ−8−キノリノール)アルミニウム、トリス(5,7−ジブロモ−8−キノリノール)アルミニウム、トリス(2−メチル−8−キノリノール)アルミニウム、トリス(5−メチル−8−キノリノール)アルミニウム、ビス(8−キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も、電子輸送材料として用いることができる。
その他、メタルフリーもしくはメタルフタロシアニン又はそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。また、発光層の材料として例示したジスチリルピラジン誘導体も、電子輸送材料として用いることができるし、正孔注入層、正孔輸送層と同様にn型−Si、n型−SiC等の無機半導体も電子輸送材料として用いることができる。
電子輸送層は、上記電子輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。電子輸送層の膜厚については特に制限はないが、通常は5nm〜5μm程度、好ましくは5〜200nmの範囲内である。電子輸送層は上記材料の1種又は2種以上からなる一層構造であってもよい。
また、不純物をドープしたn性の高い電子輸送層を用いることもできる。その例としては、特開平4−297076号公報、同10−270172号公報、特開2000−196140号公報、同2001−102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
このようなn性の高い電子輸送層を用いることは、より低消費電力の素子を作製することができるため好ましい。
<陽極>
有機EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnO等の導電性透明材料が挙げられる。
また、IDIXO(In−ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。
あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。さらに膜厚は材料にもよるが、通常10〜1000nmの範囲内、好ましくは10〜200nmの範囲内で選ばれる。
<陰極>
陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。
これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。
陰極は、これらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm〜5μmの範囲内、好ましくは50〜200nmの範囲内で選ばれる。
なお、発光した光を透過させるため、有機EL素子の陽極又は陰極のいずれか一方が透明又は半透明であれば、発光輝度が向上し好都合である。
また、陰極に上記金属を1〜20nmの範囲内の膜厚で作製した後に、陽極の説明で挙げた導電性透明材料をその上に作製することで透明又は半透明の陰極を作製でき、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
<支持基板>
本発明の有機EL素子に用いることのできる支持基板(以下、基体、基板、基材、支持体等ともいう。)としては、ガラス、プラスチック等の種類には特に限定はなく、また透明であっても不透明であってもよい。支持基板側から光を取り出す場合には、支持基板は透明であることが好ましい。好ましく用いられる透明な支持基板としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましい支持基板は、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。
樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート(TAC)、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリルあるいはポリアリレート類、アートン(JSR製)あるいはアペル(三井化学製)といったシクロオレフィン系樹脂等を挙げられる。
樹脂フィルムの表面には、無機物、有機物の被膜又はその両者のハイブリッド被膜が形成されていてもよく、JIS K 7129−1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が0.01g/(m・24h)以下のバリア性フィルムであることが好ましく、さらにはJIS K 7126−1987に準拠した方法で測定された酸素透過度が10−3ml/(m・24h・atm)以下、水蒸気透過度が10−5g/(m・24h)以下の高バリア性フィルムであることが好ましい。
バリア膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。さらに、該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。
バリア膜の形成方法については、特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004−68143号公報に記載されているような大気圧プラズマ重合法によるものが特に好ましい。
不透明な支持基板としては、例えば、アルミ、ステンレス等の金属板、フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。
本発明の有機EL素子の発光の室温(25℃)における外部取り出し量子効率は、1%以上であることが好ましく、より好ましくは5%以上である。
ここに、外部取り出し量子効率(%)=有機EL素子外部に発光した光子数/有機EL素子に流した電子数×100である。
また、カラーフィルター等の色相改良フィルター等を併用しても、有機EL素子からの発光色を蛍光体を用いて多色へ変換する色変換フィルターを併用してもよい。色変換フィルターを用いる場合においては、有機EL素子の発光のλmaxは480nm以下が好ましい。
<封止>
本発明の有機EL素子は、陽極、陰極、及び陰極と陽極との間にある層を外気から密閉するために封止部材で遮断して封止しておくことが好ましい。
本発明に用いられる封止手段としては、例えば、封止部材と電極、支持基板とを接着剤で接着する方法を挙げることができる。
封止部材としては、有機EL素子の表示領域を覆うように配置されておればよく、凹板状でも平板状でもよい。また、透明性、電気絶縁性は特に問わない。
具体的には、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる1種以上の金属又は合金からなるものが挙げられる。
本発明においては、素子を薄膜化できるということからポリマーフィルム、金属フィルムを好ましく使用することができる。さらには、ポリマーフィルムは、JIS K 7126−1987に準拠した方法で測定された酸素透過度が1×10−3ml/(m・24h・atm)以下、JIS K 7129−1992に準拠した方法で測定された水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が1×10−3g/(m・24h)以下のものであることが好ましい。
封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使われる。
接着剤として具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2−シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。また、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。
なお、有機EL素子が熱処理により劣化する場合があるので、室温(25℃)から80℃までに接着硬化できるものが好ましい。また、前記接着剤中に乾燥剤を分散させておいてもよい。
封止部分への接着剤の塗布は市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。
また、有機層を挟み、支持基板と対向する側の電極の外側に該電極と有機層を被覆し、支持基板と接する形で無機物、有機物の層を形成し、封止膜とすることも好適にできる。この場合、該膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。
さらに、該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることが好ましい。これらの膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。
封止部材と有機EL素子の表示領域との間隙には、気相及び液相では、窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また、真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。
吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、沃化バリウム、沃化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。
<保護膜、保護板>
有機層を挟み支持基板と対向する側の前記封止膜、あるいは前記封止用フィルムの外側に、素子の機械的強度を高めるために保護膜、あるいは保護板を設けてもよい。特に封止が前記封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。これに使用することができる材料としては、前記封止に用いたのと同様なガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量かつ薄膜化ということからポリフィルムを用いることが好ましい。
<光取り出し>
有機EL素子は、空気よりも屈折率の高い(屈折率が1.7〜2.1程度)層の内部で発光し、発光層で発生した光のうち15%から20%程度の光しか取り出せないことが一般的に言われている。これは、臨界角以上の角度θで界面(透明基板と空気との界面)に入射する光は、全反射を起こし素子外部に取り出すことができないことや、透明電極ないし発光層と透明基板との間で光が全反射を起こし、光が透明電極ないし発光層を導波し、結果として光が素子側面方向に逃げるためである。
この光の取り出しの効率を向上させる手法としては、例えば、透明基板表面に凹凸を形成し、透明基板と空気界面での全反射を防ぐ方法(米国特許第4,774,435号明細書)、基板に集光性を持たせることにより効率を向上させる方法(特開昭63−314795号公報)、素子の側面等に反射面を形成する方法(特開平1−220394号公報)、基板と発光体の間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成する方法(特開昭62−172691号公報)、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法(特開2001−202827号公報)、基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法(特開平11−283751号公報)等がある。
本発明においては、これらの方法を本発明の有機EL素子と組み合わせて用いることができるが、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法、あるいは基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法を好適に用いることができる。
本発明はこれらの手段を組み合わせることにより、さらに高輝度あるいは耐久性に優れた素子を得ることができる。
透明電極と透明基板の間に低屈折率の媒質を光の波長よりも長い厚さで形成すると、透明電極から出てきた光は、媒質の屈折率が低いほど外部への取り出し効率が高くなる。
低屈折率層としては、例えば、エアロゲル、多孔質シリカ、フッ化マグネシウム、フッ素系ポリマー等が挙げられる。透明基板の屈折率は一般に1.5〜1.7程度であるので、低屈折率層は、屈折率がおよそ1.5以下であることが好ましい。また、さらに1.35以下であることが好ましい。
また、低屈折率媒質の厚さは、媒質中の波長の2倍以上となるのが望ましい。これは低屈折率媒質の厚さが、光の波長程度になってエバネッセントで染み出した電磁波が基板内に入り込む膜厚になると、低屈折率層の効果が薄れるからである。
全反射を起こす界面もしくはいずれかの媒質中に回折格子を導入する方法は、光取り出し効率の向上効果が高いという特徴がある。この方法は、回折格子が1次の回折や2次の回折といった所謂ブラッグ回折により、光の向きを屈折とは異なる特定の向きに変えることができる性質を利用して、発光層から発生した光のうち、層間での全反射等により外に出ることができない光を、いずれかの層間もしくは媒質中(透明基板内や透明電極内)に回折格子を導入することで光を回折させ、光を外に取り出そうとするものである。
導入する回折格子は、二次元的な周期屈折率を持っていることが望ましい。これは発光層で発光する光は、あらゆる方向にランダムに発生するので、ある方向にのみ周期的な屈折率分布を持っている一般的な1次元回折格子では、特定の方向に進む光しか回折されず、光の取り出し効率がさほど上がらない。
しかしながら、屈折率分布を二次元的な分布にすることにより、あらゆる方向に進む光が回折され、光の取り出し効率が上がる。
回折格子を導入する位置としては前述の通り、いずれかの層間もしくは媒質中(透明基板内や透明電極内)でもよいが、光が発生する場所である有機発光層の近傍が望ましい。
このとき、回折格子の周期は媒質中の光の波長の約1/2〜3倍程度が好ましい。回折格子の配列は、正方形のラチス状、三角形のラチス状、ハニカムラチス状等、2次元的に配列が繰り返されることが好ましい。
<集光シート>
本発明の有機EL素子は、基板の光取り出し側に、例えば、マイクロレンズアレイ状の構造を設けるように加工したり、あるいは所謂集光シートと組み合わせることにより、特定方向、例えば、素子発光面に対し正面方向に集光することにより、特定方向上の輝度を高めることができる。
マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を2次元に配列する。一辺は10〜100μmの範囲内が好ましい。これより小さくなると回折の効果が発生して色付く、大きすぎると厚さが厚くなり好ましくない。
集光シートとしては、例えば、液晶表示装置のLEDバックライトで実用化されているものを用いることが可能である。このようなシートとして、例えば、住友スリーエム製輝度上昇フィルム(BEF)等を用いることができる。プリズムシートの形状としては、例えば、基材に頂角90度、ピッチ50μmの△状のストライプが形成されたものであってもよいし、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、その他の形状であってもよい。
また、発光素子からの光放射角を制御するために、光拡散板・フィルムを集光シートと併用してもよい。例えば、(株)きもと製拡散フィルム(ライトアップ)等を用いることができる。
[有機EL素子の作製方法]
本発明の有機EL素子の作製方法の一例として、陽極/正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極からなる有機EL素子の作製法を説明する。
まず、適当な基体上に所望の電極物質、例えば、陽極用物質からなる薄膜を1μm以下、好ましくは10〜200nmの範囲内の膜厚になるように、蒸着やスパッタリング等の方法により形成させ陽極を作製する。
次に、この上に有機EL素子材料である正孔注入層、正孔輸送層、発光層、正孔阻止層、電子輸送層等の有機化合物薄膜を形成させる。
これら各層の形成方法としては、前記の如く蒸着法、ウェットプロセスによる塗布方法(ダイコート法、スピンコート法、キャスト法、インクジェット法、スプレー法、印刷法等)等があるが、均質な膜が得られやすく、かつピンホールが生成しにくい等の点から、本発明においては、蒸着法、スピンコート法、インクジェット法及び印刷法による成膜が好ましい。
さらに、層ごとに異なる製膜法を適用してもよい。製膜に蒸着法を採用する場合、その蒸着条件は、使用する化合物の種類等により異なるが、一般にボート加熱温度50〜450℃、真空度10−6〜10−2Pa、蒸着速度0.01〜50nm/秒、基板温度−50〜300℃、膜厚0.1〜5μmの範囲内で適宜選ぶことが望ましい。
層をウェットプロセスで製膜する場合、本発明に係る有機EL材料を溶解又は分散する液媒体としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル等の脂肪酸エステル類、ジクロロベンゼン等のハロゲン化炭化水素類、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素類、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類、DMF、DMSO等の有機溶媒を用いることができる。また、分散方法としては、超音波、高剪断力分散やメディア分散等の分散方法により分散することができる。
これらの層を形成後、その上に陰極用物質からなる薄膜を1μm以下、好ましくは50〜200nmの範囲内の膜厚になるように、例えば、蒸着やスパッタリング等の方法により形成させ、陰極を設けることにより所望の有機EL素子が得られる。
この有機EL素子の作製は、一回の真空引きで一貫して正孔注入層から陰極まで作製するのが好ましいが、途中で取り出して異なる製膜法を施しても構わない。その際、作業を乾燥不活性ガス雰囲気下で行う等の配慮が必要となる。
[用途]
本発明の有機EL素子は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。発光光源として、例えば、照明装置(家庭用照明、車内照明)、時計や液晶用バックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではないが、特に液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
本発明の有機EL素子においては、必要に応じ成膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、電極のみをパターニングしてもよいし、電極と発光層をパターニングしてもよいし、素子全層をパターニングしてもよく、素子の作製においては従来公知の方法を用いることができる。
本発明の有機EL素子や本発明に係る化合物の発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図4.16において、分光放射輝度計CS−1000(コニカミノルタセンシング製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。
また、本発明の有機EL素子が白色素子の場合には、白色とは、2度視野角正面輝度を上記方法により測定した際に1000cd/mでのCIE1931表色系における色度がX=0.33±0.07、Y=0.33±0.1の領域内にあることをいう。
[表示装置]
本発明の表示装置は上記有機EL素子を有する。
本発明の表示装置は、単色でも多色でもよいが、ここでは多色表示装置について説明する。多色表示装置の場合は発光層形成時のみシャドーマスクを設け、一面に蒸着法、キャスト法、スピンコート法、インクジェット法、印刷法等で膜を形成できる。
発光層のみパターニングを行う場合、その方法に限定はないが、好ましくは蒸着法、インクジェット法、印刷法である。蒸着法を用いる場合においては、シャドーマスクを用いたパターニングが好ましい。
また、作製順序を逆にして、陰極、電子輸送層、正孔阻止層、発光層、正孔輸送層、陽極の順に作製することも可能である。
このようにして得られた多色表示装置に直流電圧を印加する場合には、陽極を+、陰極を−の極性として電圧2〜40V程度を印加すると発光が観測できる。また、逆の極性で電圧を印加しても電流は流れずに発光は全く生じない。
さらに、交流電圧を印加する場合には、陽極が+、陰極が−の状態になったときのみ発光する。なお、印加する交流の波形は任意でよい。
多色表示装置は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。表示デバイス、ディスプレイにおいて、青、赤、緑発光の3種の有機EL素子を用いることによりフルカラーの表示が可能となる。
表示デバイス、ディスプレイとしては、テレビ、パソコン、モバイル機器、AV機器、文字放送表示、自動車内の情報表示等が挙げられる。特に静止画像や動画像を再生する表示装置として使用してもよく、動画再生用の表示装置として使用する場合の駆動方式は単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。
発光光源としては、家庭用照明、車内照明、時計や液晶用のバックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、これに限定するものではない。
[照明装置]
また、本発明の有機EL素子は、照明用や露光光源のような一種のランプとして使用してもよいし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。
動画再生用の表示装置として使用する場合の駆動方式は、単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。又は、異なる発光色を有する本発明の有機EL素子を2種以上使用することにより、フルカラー表示装置を作製することが可能である。
以下、本発明の有機EL素子を有する表示装置の一例を図面に基づいて説明する。
図1は、有機EL素子から構成される表示装置の一例を示した模式図である。有機EL素子の発光により画像情報の表示を行う、例えば、携帯電話等のディスプレイの模式図である。
ディスプレイ1は、複数の画素を有する表示部A、画像情報に基づいて表示部Aの画像走査を行う制御部B等からなる。
制御部Bは表示部Aと電気的に接続され、複数の画素それぞれに外部からの画像情報に基づいて走査信号と画像データ信号を送り、走査信号により走査線毎の画素が画像データ信号に応じて順次発光して画像走査を行って画像情報を表示部Aに表示する。
図2は、表示部Aの模式図である。
表示部Aは基板上に、複数の走査線5及びデータ線6を含む配線部と複数の画素3等とを有する。表示部Aの主要な部材の説明を以下に行う。
図においては、画素3の発光した光が白矢印方向(下方向)へ取り出される場合を示している。図2中、符号Lは光を示し、後述の図5及び図6も同様である。
配線部の走査線5及び複数のデータ線6はそれぞれ導電材料からなり、走査線5とデータ線6は格子状に直交して、直交する位置で画素3に接続している(詳細は図示していない)。
画素3は走査線5から走査信号が印加されると、データ線6から画像データ信号を受け取り、受け取った画像データに応じて発光する。
発光の色が赤領域の画素、緑領域の画素、青領域の画素を適宜同一基板上に並置することによって、フルカラー表示が可能となる。
次に、画素の発光プロセスを説明する。
図3は、画素の模式図である。
画素は有機EL素子10、スイッチングトランジスタ11、駆動トランジスタ12、コンデンサ13等を備えている。複数の画素に有機EL素子10として、赤色、緑色、青色発光の有機EL素子を用い、これらを同一基板上に並置することでフルカラー表示を行うことができる。
図3において、制御部Bからデータ線6を介してスイッチングトランジスタ11のドレインに画像データ信号が印加される。そして、制御部Bから走査線5を介してスイッチングトランジスタ11のゲートに走査信号が印加されると、スイッチングトランジスタ11の駆動がオンし、ドレインに印加された画像データ信号がコンデンサ13と駆動トランジスタ12のゲートに伝達される。
画像データ信号の伝達により、コンデンサ13が画像データ信号の電位に応じて充電されるとともに、駆動トランジスタ12の駆動がオンする。駆動トランジスタ12は、ドレインが電源ライン7に接続され、ソースが有機EL素子10の電極に接続されており、ゲートに印加された画像データ信号の電位に応じて電源ライン7から有機EL素子10に電流が供給される。
制御部Bの順次走査により走査信号が次の走査線5に移ると、スイッチングトランジスタ11の駆動がオフする。しかし、スイッチングトランジスタ11の駆動がオフしてもコンデンサ13は充電された画像データ信号の電位を保持するので、駆動トランジスタ12の駆動はオン状態が保たれて、次の走査信号の印加が行われるまで有機EL素子10の発光が継続する。順次走査により次に走査信号が印加されたとき、走査信号に同期した次の画像データ信号の電位に応じて駆動トランジスタ12が駆動して有機EL素子10が発光する。
すなわち、有機EL素子10の発光は、複数の画素それぞれの有機EL素子10に対して、アクティブ素子であるスイッチングトランジスタ11と駆動トランジスタ12を設けて、複数の画素3それぞれの有機EL素子10の発光を行っている。このような発光方法をアクティブマトリクス方式と呼んでいる。
ここで、有機EL素子10の発光は複数の階調電位を持つ多値の画像データ信号による複数の階調の発光でもよいし、2値の画像データ信号による所定の発光量のオン、オフでもよい。また、コンデンサ13の電位の保持は次の走査信号の印加まで継続して保持してもよいし、次の走査信号が印加される直前に放電させてもよい。
本発明においては、上述したアクティブマトリクス方式に限らず、走査信号が走査されたときのみデータ信号に応じて有機EL素子を発光させるパッシブマトリクス方式の発光駆動でもよい。
図4は、パッシブマトリクス方式による表示装置の模式図である。図4において、複数の走査線5と複数の画像データ線6が画素3を挟んで対向して格子状に設けられている。
順次走査により走査線5の走査信号が印加されたとき、印加された走査線5に接続している画素3が画像データ信号に応じて発光する。
パッシブマトリクス方式では画素3にアクティブ素子が無く、製造コストの低減が計れる。
また、本発明の有機EL材料は照明装置として、実質白色の発光を生じる有機EL素子に適用できる。複数の発光ドーパント(発光材料)により複数の発光色を同時に発光させて混色により白色発光を得る。複数の発光色の組み合わせとしては、青色、緑色、青色の3原色の3つの発光極大波長を含有させたものでもよいし、青色と黄色、青緑と橙色等の補色の関係を利用した2つの発光極大波長を含有したものでもよい。
また、複数の発光色を得るための発光ドーパントの組み合わせは、複数のリン光又は蛍光で発光する材料を複数組み合わせたもの、蛍光又はリン光で発光する発光ドーパントと、発光ドーパントからの光を励起光として発光する色素材料との組み合わせたもののいずれでもよいが、本発明に係る白色有機EL素子においては、発光ドーパントを複数組み合わせ混合するだけでよい。
発光層もしくは正孔輸送層あるいは電子輸送層等の形成時のみマスクを設け、マスクにより塗り分ける等単純に配置するだけでよく、他層は共通であるのでマスク等のパターニングは不要であり、一面に蒸着法、キャスト法、スピンコート法、インクジェット法、印刷法等で例えば電極膜を形成でき、生産性も向上する。この方法によれば、複数色の発光素子をアレー状に並列配置した白色有機EL装置と異なり、素子自体が発光白色である。
発光層に用いる発光ドーパントとしては、例えば、液晶表示素子におけるバックライトであれば、CF(カラーフィルター)特性に対応した波長範囲に適合するように、本発明に係る上記一般式(A1)で表される化合物、また公知の発光ドーパントの中から任意のものを選択して組み合わせて白色化すればよい。
このように、本発明に係る白色発光有機EL素子は、前記表示デバイス、ディスプレイに加えて、各種発光光源、照明装置として、家庭用照明、車内照明、また露光光源のような一種のランプとして、また液晶表示装置のバックライト等、表示装置にも有用に用いられる。
その他、時計等のバックライト、看板広告、信号機、光記憶媒体等の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等、さらには表示装置を必要とする一般の家庭用電気器具等広い範囲の用途が挙げられる。
<本発明の照明装置の一態様>
本発明の照明装置は、上記有機EL素子を具備している。
本発明の有機EL素子の非発光面をガラスケースで覆い、厚さ300μmのガラス基板を封止用基板として用いて、周囲にシール材として、エポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを陰極上に重ねて透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止し、図5、図6に示すような照明装置を形成することができる。
図5は、照明装置の概略図を示し、本発明の有機EL素子101はガラスカバー102で覆われている(なお、ガラスカバーでの封止作業は、有機EL素子101を大気に接触させることなく窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスの雰囲気下)で行った。)。
図6は、照明装置の断面図を示し、図6において、105は陰極、106は有機EL層、107は透明電極付きガラス基板を示す。なお、ガラスカバー102内には窒素ガス108が充填され、捕水剤109が設けられている。
以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
なお、以下の実施例で使用する発光ドーパント及びホスト化合物を示す。
Figure 0006424626
[実施例1]
<有機EL素子1−1の作製>
陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm成膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定し、一方、モリブデン製抵抗加熱ボートにα−NPDを200mg入れ、別のモリブデン製抵抗加熱ボートにホスト化合物としてOC−6を200mg入れ、別のモリブデン製抵抗加熱ボートにBAlqを200mg入れ、別のモリブデン製抵抗加熱ボートに比較化合物1(Ir−12)を100mg入れ、さらに別のモリブデン製抵抗加熱ボートにAlqを200mg入れ、真空蒸着装置に取付けた。
次いで、真空槽を4×10−4Paまで減圧した後、α−NPDの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で透明支持基板に蒸着し、膜厚40nmの正孔輸送層を設けた。
さらに、ホスト化合物OC−6及びドーパント化合物である比較化合物1(Ir−12)の入った前記加熱ボートに通電して加熱し、それぞれ蒸着速度0.2nm/秒、0.012nm/秒で前記正孔輸送層上に共蒸着して、膜厚40nmの発光層を設けた。なお、蒸着時の基板温度は室温(25℃)であった。
さらに、BAlqの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で前記発光層の上に蒸着して膜厚10nmの正孔阻止層を設けた。
その上に、さらに、Alqの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で前記正孔阻止層の上に蒸着してさらに膜厚40nmの電子輸送層を設けた。なお、蒸着時の基板温度は室温(25℃)であった。
引き続きフッ化リチウム0.5nm及びアルミニウム110nmを蒸着して陰極を形成し、有機EL素子1−1を作製した。
作製後の各有機EL素子の非発光面をガラスケースで覆い、厚さ300μmのガラス基板を封止用基板として用いて、周囲にシール材として、エポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを上記陰極上に重ねて前記透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止して、図5及び図6に示すような照明装置を形成して評価した。
<有機EL素子1−2〜1−45の作製>
有機EL素子1−1の作製において、表1に記載のようなホスト化合物及び発光ドーパントに変更した以外は同様にして、有機EL素子1−2〜1−45を作製した。
<有機EL素子1−1〜1−45の評価>
得られた有機EL素子1−1〜1−45を評価するに際しては、作製後の各有機EL素子の非発光面をガラスケースで覆い、厚さ300μmのガラス基板を封止用基板として用いて、周囲にシール材としてエポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを上記陰極上に重ねて前記透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止して、図5及び図6に示すような照明装置を形成して、以下の項目について評価し、その結果を表1に示した。また、表1に、発光ドーパントの再配向エネルギーλ、ホスト化合物の再配向エネルギーλ及びホスト化合物の分子量を示した。なお、再配向エネルギーについては、上述した方法によって求めた。
≪発光効率≫
有機EL素子を室温(25℃)、2.5mA/cmの定電流条件下による点灯を行い、点灯開始直後の発光輝度(L)[cd/m]を測定することにより、発光効率(外部取り出し量子効率ともいう。)(η)を算出し、発光効率の指標とした。
ここで、発光輝度の測定は、CS−1000(コニカミノルタセンシング製)を用いた。外部取り出し量子効率は、有機EL素子1−1の測定値を100とする相対値で表した。
≪50℃駆動寿命(高温保存時の半減寿命)、発光色変動≫
下記に示す測定法に従って、50℃駆動寿命の評価を行った。
各有機EL素子を50℃の一定条件で初期輝度1000cd/mを与える電流で定電流駆動して、初期輝度の1/2(500cd/m)になる時間を求め、これを50℃駆動寿命の尺度とし、耐久性の指標とした。なお、50℃駆動寿命は比較の有機EL素子1−1を100とした時の相対値で表示した。
また、駆動前後での発光色をCS−1000(コニカミノルタセンシング製)を用いて、素子のCIE色度座標を測定した。例えば、駆動前の有機EL素子1−1の、CIE色度座標を、(x1、y1)、駆動後の有機EL素子1−1のCIE色度座標を、(x2、y2)としたときに、下記の式(A)を用いてΔC値を求めた。
式(A) ΔC=[(x2−x1)+(y2−y1)1/2
得られた結果を表1に示す。
≪ダークスポット≫
各有機EL素子を室温(25℃)下、2.5mA/cmの定電流条件下による連続点灯を行った際の発光面を目視で評価した。無作為に抽出した10人による目視評価により下記のランク評価を行い、ダークスポット発生防止効果の指標とした。
×:ダークスポットを確認した人数が5人以上の場合
△:ダークスポットを確認した人数が1〜4人の場合
○:ダークスポットを確認した人数が0人の場合
とした。
Figure 0006424626
Figure 0006424626
表1の結果に示されるように、比較例の有機EL素子に比べて、本発明の有機EL素子は、発光効率が高く、高温での劣化が小さく、かつ、ダークスポットの生成、色度変動も抑えられていることが明らかである。
[実施例2]
<有機EL素子2−1の作製>
陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm成膜した基板(AvanStrate株式会社製、NA−45)にパターニングを行った。その後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥して、UVオゾン洗浄を5分間行った。
この透明支持基板上に、ポリ(3,4−エチレンジオキシチオフェン)−ポリスチレンスルホネート(PEDOT/PSS、Bayer株式会社製、Baytron P Al 4083)を純水で70%に希釈した溶液をスピンコート法により成膜した後、200℃にて1時間乾燥し、膜厚30nmの第1正孔輸送層を設けた。
この第1正孔輸送層上に、正孔輸送材料Poly(N,N’−ビス(4−ブチルフェニル)−N,N’−ビス(フェニル))ベンジジン(American Dye Source株式会社製、ADS−254)のクロロベンゼン溶液をスピンコート法により成膜した。150℃で1時間加熱乾燥し、膜厚40nmの第2正孔輸送層を設けた。
この第2正孔輸送層上に、ホスト化合物OC−6及びドーパント化合物である比較化合物1(Ir−12)の酢酸ブチル溶液をスピンコート法により成膜し、120℃で1時間加熱乾燥し、膜厚40nmの発光層を設けた。
この発光層上に、電子輸送材料OC−18の1−ブタノールの溶液をスピンコート法により成膜し、膜厚20nmの不溶化した電子輸送層を設けた。
これを、真空蒸着装置に取付け、真空槽を4×10−4Paまで減圧した。次いで、電子注入層としてフッ化リチウム1.0nm、陰極としてアルミニウム110nmを蒸着し、有機EL素子2−1を作製した。
<有機EL素子2−2〜2−45の作製>
有機EL素子1−1の作製において、発光層のホスト化合物OC−6、ドーパント化合物Ir−12を下記表2に示す化合物に置き換えた以外は同様にして、有機EL素子2−2〜2−45を各々作製した。
<有機EL素子2−1〜2−45の評価>
得られた有機EL素子2−1〜2−45を評価するに際しては、作製後の各有機EL素子の非発光面をガラスケースで覆い、厚さ300μmのガラス基板を封止用基板として用いて、周囲にシール材としてエポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを上記陰極上に重ねて前記透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止して、図5及び図6に示すような照明装置を形成して、以下の項目について評価し、その結果を表2に示した。また、表2に、発光ドーパントの再配向エネルギーλ、ホスト化合物の再配向エネルギーλ及びホスト化合物の分子量を示した。なお、再配向エネルギーについては、上述した方法によって求めた。
≪発光効率≫
有機EL素子を室温(25℃)、2.5mA/cmの定電流条件下による点灯を行い、点灯開始直後の発光輝度(L)[cd/m]を測定することにより、発光効率(外部取り出し量子効率)(η)を算出し、発光効率の指標とした。
ここで、発光輝度の測定は、CS−1000(コニカミノルタセンシング製)を用いた。外部取り出し量子効率は、有機EL素子2−1を100とする相対値で表した。
≪初期劣化≫
下記に示す測定法に従って、初期劣化の評価を行い、耐久性の指標とした。上述の高温保存時の半減寿命の測定時に、輝度が90%に到達する時間を測定し、これを初期劣化の尺度とした。なお、初期劣化は比較の有機EL素子2−1を100とした。初期劣化は以下の計算式を基に計算した。
初期劣化=(有機EL素子2−1の輝度90%到達時間)/(各素子の輝度90%到達時間)×100
即ち、初期劣化の値は、小さいほど初期の劣化が小さいことを示す。
≪発光層の塗布溶液の停滞安定性≫
有機EL素子2−1の作製において、発光層の形成に用いた塗布溶液(OC−6(60mg)と、比較化合物1であるIr−12(3.0mg)の混合物をトルエン12mlに溶解した溶液)を室温(25℃)にて1時間放置した後、析出の有無を確認し、塗布溶液の停滞安定性を評価して、ダークスポット発生防止効果の指標とした。
○:目視で析出なし
△:目視で析出かすかにある
×:目視で明らかに析出あり
Figure 0006424626
Figure 0006424626
表2に示した結果より、比較例の有機EL素子に比べて、本発明の有機EL素子は、発光効率が高く、高温での劣化が小さく、かつ、塗布液停滞性も改良されていることが明らかである。
[実施例3]
前記実施例1で作製した有機EL素子1−11(青色発光有機EL素子)と、有機EL素子1−11の発光ドーパントD4を前記したIr−1に置き換えた以外は有機EL素子1−1と同様にして作製した有機EL素子(緑色発光有機EL素子)と、有機EL素子1−11の発光ドーパントD4を前記したIr−9に置き換えた以外は有機EL素子1−1と同様にして作製した有機EL素子(赤色発光有機EL素子)と、を同一基板上に並置し、図1に示すアクティブマトリクス方式フルカラー表示装置(ディスプレイ)1を作製した。
作製したフルカラー表示装置1を駆動することにより、低電圧で輝度が高く耐久性が良好で、駆動時の電圧上昇が小さく、発光効率や経時安定性に優れ、鮮明なフルカラー動画表示が得られた。
[実施例4]
<白色の有機EL素子の作製>
陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm製膜した基板(NHテクノグラス社製NA−45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
この透明支持基板上に、ポリ(3,4−エチレンジオキシチオフェン)−ポリスチレンスルホネート(PEDOT/PSS、Bayer社製、Baytron P Al 4083)を純水で70質量%に希釈した溶液を3000rpm、30秒でスピンコート法により製膜した後、200℃にて1時間乾燥し、膜厚30nmの正孔輸送層を設けた。
この基板を窒素雰囲気下に移し、正孔輸送層上に、上述したホスト化合物4−2(60mg)、上述したドーパント化合物としてIr−1(1.2mg)、D7(12.0mg)、Ir−9(1.2mg)とを、トルエン6mlに溶解した溶液を用い、1000rpm、30秒の条件下、スピンコート法により製膜した。そして、真空中150℃で1時間加熱を行い発光層とした。
さらに、BCP(20mg)をシクロヘキサン6mlに溶解した溶液を用い、1000rpm、30秒の条件下、スピンコート法により製膜した。そして、真空中80℃で1時間加熱を行い第1電子輸送層とした。
続いて、この基板を真空蒸着装置の基板ホルダーに固定し、モリブデン製抵抗加熱ボートにAlqを200mg入れ、真空蒸着装置に取り付けた。真空槽を4×10−4Paまで減圧した後、Alqの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で前記第1電子輸送層の上に蒸着して、さらに膜厚40nmの第2電子輸送層を設けた。なお、蒸着時の基板温度は室温(25℃)であった。
引き続き、フッ化リチウム0.5nm及びアルミニウム110nmを蒸着して陰極を形成し、白色発光有機EL素子を作製した。
この素子に通電したところ、ほぼ白色の光が得られ、照明装置として使用できることが分かった。なお、ホスト化合物4−2を、上述した他の例示化合物に置き換えても同様に白色の発光が得られることが分かった。
以上、本発明について実施の形態及び実施例を示して詳細に説明したが、本発明の趣旨は前記した内容に限定されることなく、本発明の技術的範囲は特許請求の範囲の記載に基づいて解釈しなければならない。なお、本発明の内容は、前記した記載に基づいて改変・変更等することができることはいうまでもない。
例えば、表示装置や照明装置は、本発明の有機EL素子を含むものであればその形状や用途等はどのようなものであってもよい。また、本発明の有機EL素子を含み、本発明の趣旨を損なわないものであれば、その他の装置等に応用してもよい。そして、その使用用途等に応じて、本発明の有機EL素子材料は、塗料、触媒、酸化剤、酸化防止剤、光安定剤、帯電防止剤、良熱伝導性の無機材料、防腐剤、潤滑剤等の物質と混合して用いてもよい。
さらには、本発明の有機EL素子材料からなる薄膜は、支持基板や、前記薄膜の下部の膜の全体に形成されていてもよいし、一部に形成されていてもよい。また、あえて均一に成膜しない場合があってもよい。
以上のように、本発明は、低駆動電圧であり、発光効率が高く、耐久性に優れ、ダークスポット発生防止効果及び塗布液停滞性に優れた有機エレクトロルミネッセンス素子、照明装置及び表示装置を提供することに適している。
1 ディスプレイ
3 画素
5 走査線
6 データ線
7 電源ライン
10 有機EL素子
11 スイッチングトランジスタ
12 駆動トランジスタ
13 コンデンサ
A 表示部
B 制御部
107 透明電極付きガラス基板
106 有機EL層
105 陰極
102 ガラスカバー
108 窒素ガス
109 捕水剤

Claims (13)

  1. 陽極、陰極及び発光層を有する有機エレクトロルミネッセンス素子であって、
    前記発光層に含有する発光ドーパントの基底状態(S)と最低励起三重項状態(T)の間の電子遷移時の再配向エネルギーが、0eV〜0.7eVであり、かつ、
    前記発光層に含有するホスト化合物が、下記一般式()で表される構造を有する化合物であり、かつ、
    前記ホスト化合物の分子量が、500〜3000の範囲内であることを特徴とする有機エレクトロルミネッセンス素子。
    Figure 0006424626
    〔一般式()において、R〜Rのうち少なくとも一つがフェニル基、カルバゾリル基、ジベンゾフリル基、ジベンゾチエニル基、ピリジル基、ピラジニル基又は水素原子のいずれかを表し、かつ、R及びRが同時にフェニル基、カルバゾリル基、ジベンゾフリル基、ジベンゾチエニル基、ピリジル基、ピラジニル基のいずれかを表すことはない。 〜R がフェニル基、カルバゾリル基、ジベンゾフリル環基、ジベンゾチエニル基、ピリジル基又はピラジニル基のいずれでもないときは水素原子を表す。 、R 、R 、R 及びR は、それぞれ水素原子を表す。R、R及びR10 は、それぞれ水素原子又は置換基を表す。R及びRは、それぞれ水素原子又はアルキル基を表す。〕
  2. 前記発光ドーパントの基底状態(S)と最低励起三重項状態(T)の間の電子遷移時の再配向エネルギーが、0eV〜0.5eVであることを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。
  3. 前記一般式()において、R〜R、R、R、R10のうち少なくとも一つが置換基を有してもよいカルバゾリル基であることを特徴とする請求項1又は請求項2に記載の有機エレクトロルミネッセンス素子。
  4. 前記一般式()において、R〜R、R、R、R10のうちただ一つが置換基を有してもよいカルバゾリル基であることを特徴とする請求項1又は請求項2に記載の有機エレクトロルミネッセンス素子。
  5. 前記一般式()において、R〜R、R、R、R10のうち少なくとも一つが置換基を有してもよいジベンゾフリル基であることを特徴とする請求項1又は請求項2に記載の有機エレクトロルミネッセンス素子。
  6. 前記一般式()において、R〜R、R、R、R10のうちただ一つが置換基を有してもよいジベンゾフリル基であることを特徴とする請求項1又は請求項2に記載の有機エレクトロルミネッセンス素子。
  7. 前記一般式()において、R〜R、R、R、R10のうちただ一つが置換基を有してもよいジジベンゾフリル基であり、かつ、R〜R、R、R、R10のうちただ一つが置換基を有してもよいカルバゾリル基であることを特徴とする請求項1又は請求項2に記載の有機エレクトロルミネッセンス素子。
  8. 前記発光ドーパントが、リン光発光性化合物であることを特徴とする請求項1から請求項7までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
  9. 前記リン光発光性化合物が、下記一般式(A1)で表されることを特徴とする請求項8に記載の有機エレクトロルミネッセンス素子。
    Figure 0006424626
    〔一般式(A1)において、Rは置換基を表す。Zは5〜7員環を形成するのに必要な非金属原子群を表す。n1は0〜5の整数を表す。B〜Bは炭素原子、CRa、窒素原子、NRb、酸素原子又は硫黄原子を表し、少なくとも一つは窒素原子を表す。Ra及びRbは水素原子又は置換基を表す。B〜Bの5つの原子により芳香族含窒素複素環が形成される。BとZは互いに連結して環を形成してもよい。Mは元素周期表における8〜10族の金属を表す。X及びXは炭素原子、窒素原子又は酸素原子を表し、LはX及びXとともに2座の配位子を形成する原子群を表す。m1は1〜3の整数を表し、m2は0〜2の整数を表すが、m1+m2は2又は3である。〕
  10. 前記発光層が、塗布液を用いて形成された層であることを特徴とする請求項1から請求項9までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
  11. 前記発光層が、白色に発光することを特徴とする請求項1から請求項10までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
  12. 請求項1から請求項11までのいずれか一項に記載の有機エレクトロルミネッセンス素子を具備したことを特徴とする照明装置。
  13. 請求項1から請求項11までのいずれか一項に記載の有機エレクトロルミネッセンス素子を具備したことを特徴とする表示装置。
JP2014552018A 2012-12-10 2013-12-06 有機エレクトロルミネッセンス素子、照明装置及び表示装置 Active JP6424626B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012269238 2012-12-10
JP2012269238 2012-12-10
PCT/JP2013/082802 WO2014092014A1 (ja) 2012-12-10 2013-12-06 有機エレクトロルミネッセンス素子、照明装置及び表示装置

Publications (2)

Publication Number Publication Date
JPWO2014092014A1 JPWO2014092014A1 (ja) 2017-01-12
JP6424626B2 true JP6424626B2 (ja) 2018-11-21

Family

ID=50934305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014552018A Active JP6424626B2 (ja) 2012-12-10 2013-12-06 有機エレクトロルミネッセンス素子、照明装置及び表示装置

Country Status (5)

Country Link
US (1) US10774261B2 (ja)
EP (1) EP2930763B1 (ja)
JP (1) JP6424626B2 (ja)
KR (1) KR101751150B1 (ja)
WO (1) WO2014092014A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160049974A (ko) * 2014-10-28 2016-05-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 전자기기, 및 조명 장치
KR102541267B1 (ko) 2015-10-05 2023-06-12 삼성전자주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
CN105524114A (zh) * 2015-12-24 2016-04-27 石家庄诚志永华显示材料有限公司 一系列深蓝金属铱磷光oled材料
GB201604199D0 (en) * 2016-03-11 2016-04-27 Cambridge Display Tech Ltd Organic light-emitting device
KR101999709B1 (ko) * 2016-03-21 2019-07-12 주식회사 엘지화학 유기 발광 소자
CN110372683A (zh) * 2019-07-26 2019-10-25 北京燕化集联光电技术有限公司 一种有机电致发光材料及其制备方法与应用

Family Cites Families (115)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0766856B2 (ja) 1986-01-24 1995-07-19 株式会社小松製作所 薄膜el素子
JP2670572B2 (ja) 1987-06-18 1997-10-29 株式会社小松製作所 薄膜el素子
US4774435A (en) 1987-12-22 1988-09-27 Gte Laboratories Incorporated Thin film electroluminescent device
JPH01220394A (ja) 1988-02-29 1989-09-04 Hitachi Ltd 高輝度el素子
US5061569A (en) 1990-07-26 1991-10-29 Eastman Kodak Company Electroluminescent device with organic electroluminescent medium
JPH04297076A (ja) 1991-01-31 1992-10-21 Toshiba Corp 有機el素子
JP3016896B2 (ja) 1991-04-08 2000-03-06 パイオニア株式会社 有機エレクトロルミネッセンス素子
JPH06325871A (ja) 1993-05-18 1994-11-25 Mitsubishi Kasei Corp 有機電界発光素子
JP3561549B2 (ja) 1995-04-07 2004-09-02 三洋電機株式会社 有機エレクトロルミネッセンス素子
JP3529543B2 (ja) 1995-04-27 2004-05-24 パイオニア株式会社 有機エレクトロルミネッセンス素子
US5719467A (en) 1995-07-27 1998-02-17 Hewlett-Packard Company Organic electroluminescent device
JP3645642B2 (ja) 1996-03-25 2005-05-11 Tdk株式会社 有機エレクトロルミネセンス素子
US5776622A (en) 1996-07-29 1998-07-07 Eastman Kodak Company Bilayer eletron-injeting electrode for use in an electroluminescent device
JP4486713B2 (ja) 1997-01-27 2010-06-23 淳二 城戸 有機エレクトロルミネッセント素子
JP3852509B2 (ja) 1998-01-09 2006-11-29 ソニー株式会社 電界発光素子及びその製造方法
JPH11204359A (ja) 1998-01-14 1999-07-30 Tokin Corp 圧粉磁芯の製造方法と製造装置
JPH11251067A (ja) 1998-03-02 1999-09-17 Junji Kido 有機エレクトロルミネッセント素子
JP2991183B2 (ja) 1998-03-27 1999-12-20 日本電気株式会社 有機エレクトロルミネッセンス素子
US6097147A (en) 1998-09-14 2000-08-01 The Trustees Of Princeton University Structure for high efficiency electroluminescent device
GB9820805D0 (en) 1998-09-25 1998-11-18 Isis Innovation Divalent lanthanide metal complexes
JP2000196140A (ja) 1998-12-28 2000-07-14 Sharp Corp 有機エレクトロルミネッセンス素子とその製造法
AU3908400A (en) 1999-03-23 2000-10-09 University Of Southern California Cyclometallated metal complexes as phosphorescent dopants in organic leds
CN101312235B (zh) 1999-05-13 2010-06-09 普林斯顿大学理事会 基于电致磷光的极高效有机发光器件
JP4729154B2 (ja) 1999-09-29 2011-07-20 淳二 城戸 有機エレクトロルミネッセント素子、有機エレクトロルミネッセント素子群及びその発光スペクトルの制御方法
JP4279971B2 (ja) 1999-11-10 2009-06-17 パナソニック電工株式会社 発光素子
US6458475B1 (en) * 1999-11-24 2002-10-01 The Trustee Of Princeton University Organic light emitting diode having a blue phosphorescent molecule as an emitter
JP3929689B2 (ja) 2000-03-28 2007-06-13 富士フイルム株式会社 高効率赤色発光素子、イリジウム錯体から成る発光素子材料及び新規イリジウム錯体
JP2001181616A (ja) 1999-12-27 2001-07-03 Fuji Photo Film Co Ltd オルトメタル化パラジウム錯体からなる発光素子材料および発光素子
JP3929690B2 (ja) 1999-12-27 2007-06-13 富士フイルム株式会社 オルトメタル化イリジウム錯体からなる発光素子材料、発光素子および新規イリジウム錯体
JP2001181617A (ja) 1999-12-27 2001-07-03 Fuji Photo Film Co Ltd オルトメタル化白金錯体からなる発光素子材料および発光素子
JP3929706B2 (ja) 2000-02-10 2007-06-13 富士フイルム株式会社 イリジウム錯体からなる発光素子材料及び発光素子
JP4890669B2 (ja) 2000-03-13 2012-03-07 Tdk株式会社 有機el素子
JP2002008860A (ja) 2000-04-18 2002-01-11 Mitsubishi Chemicals Corp 有機電界発光素子
JP2002015871A (ja) 2000-04-27 2002-01-18 Toray Ind Inc 発光素子
JP2001313178A (ja) 2000-04-28 2001-11-09 Pioneer Electronic Corp 有機エレクトロルミネッセンス素子
JP2001313179A (ja) 2000-05-01 2001-11-09 Mitsubishi Chemicals Corp 有機電界発光素子
JP4382961B2 (ja) 2000-05-02 2009-12-16 富士フイルム株式会社 発光素子
JP4048521B2 (ja) 2000-05-02 2008-02-20 富士フイルム株式会社 発光素子
JP5062797B2 (ja) 2000-05-22 2012-10-31 昭和電工株式会社 有機エレクトロルミネッセンス素子および発光材料
JP4683766B2 (ja) 2000-05-22 2011-05-18 株式会社半導体エネルギー研究所 アクティブマトリクス型発光装置
US6645645B1 (en) 2000-05-30 2003-11-11 The Trustees Of Princeton University Phosphorescent organic light emitting devices
JP2002062824A (ja) 2000-06-05 2002-02-28 Semiconductor Energy Lab Co Ltd 発光装置
JP4290858B2 (ja) 2000-06-12 2009-07-08 富士フイルム株式会社 有機電界発光素子
JP2002083684A (ja) 2000-06-23 2002-03-22 Semiconductor Energy Lab Co Ltd 発光装置
JP4340401B2 (ja) 2000-07-17 2009-10-07 富士フイルム株式会社 発光素子及びイリジウム錯体
JP4712232B2 (ja) 2000-07-17 2011-06-29 富士フイルム株式会社 発光素子及びアゾール化合物
JP2002043056A (ja) 2000-07-19 2002-02-08 Canon Inc 発光素子
CN100505375C (zh) 2000-08-11 2009-06-24 普林斯顿大学理事会 有机金属化合物和发射转换有机电致磷光
JP2002141173A (ja) 2000-08-22 2002-05-17 Semiconductor Energy Lab Co Ltd 発光装置
JP4344494B2 (ja) 2000-08-24 2009-10-14 富士フイルム株式会社 発光素子及び新規重合体子
JP4554047B2 (ja) 2000-08-29 2010-09-29 株式会社半導体エネルギー研究所 発光装置
JP4067286B2 (ja) 2000-09-21 2008-03-26 富士フイルム株式会社 発光素子及びイリジウム錯体
JP4505162B2 (ja) 2000-09-21 2010-07-21 富士フイルム株式会社 発光素子および新規レニウム錯体
JP4454130B2 (ja) 2000-09-25 2010-04-21 京セラ株式会社 有機エレクトロルミネッセンス素子
JP4154140B2 (ja) 2000-09-26 2008-09-24 キヤノン株式会社 金属配位化合物
JP2002184582A (ja) 2000-09-28 2002-06-28 Semiconductor Energy Lab Co Ltd 発光装置
JP4026740B2 (ja) 2000-09-29 2007-12-26 富士フイルム株式会社 有機発光素子材料及びそれを用いた有機発光素子
JP4092901B2 (ja) 2000-10-30 2008-05-28 株式会社豊田中央研究所 有機電界発光素子
JP4086498B2 (ja) 2000-11-29 2008-05-14 キヤノン株式会社 金属配位化合物、発光素子及び表示装置
JP4086499B2 (ja) 2000-11-29 2008-05-14 キヤノン株式会社 金属配位化合物、発光素子及び表示装置
JP3855675B2 (ja) 2000-11-30 2006-12-13 三菱化学株式会社 有機電界発光素子
JP4048525B2 (ja) 2000-12-25 2008-02-20 富士フイルム株式会社 新規インドール誘導体およびそれを利用した発光素子
JP2002255934A (ja) 2000-12-25 2002-09-11 Fuji Photo Film Co Ltd 新規化合物、その重合体、それらを利用した発光素子材料およびその発光素子
JP2002203678A (ja) 2000-12-27 2002-07-19 Fuji Photo Film Co Ltd 発光素子
JP2002203679A (ja) 2000-12-27 2002-07-19 Fuji Photo Film Co Ltd 発光素子
JP4153694B2 (ja) 2000-12-28 2008-09-24 株式会社東芝 有機el素子および表示装置
US6720090B2 (en) 2001-01-02 2004-04-13 Eastman Kodak Company Organic light emitting diode devices with improved luminance efficiency
JP3988915B2 (ja) 2001-02-09 2007-10-10 富士フイルム株式会社 遷移金属錯体及びそれからなる発光素子用材料、並びに発光素子
JP4598282B2 (ja) 2001-02-09 2010-12-15 三井化学株式会社 アミン化合物および該化合物を含有する有機電界発光素子
JP4215145B2 (ja) 2001-02-21 2009-01-28 富士フイルム株式会社 発光素子用材料及び発光素子
JP4307000B2 (ja) 2001-03-08 2009-08-05 キヤノン株式会社 金属配位化合物、電界発光素子及び表示装置
JP3965319B2 (ja) 2001-03-08 2007-08-29 ザ ユニヴァーシティ オブ ホンコン 有機金属発光材料
JP4438042B2 (ja) 2001-03-08 2010-03-24 キヤノン株式会社 金属配位化合物、電界発光素子及び表示装置
JP2002334786A (ja) 2001-03-09 2002-11-22 Sony Corp 有機電界発光素子
JP2002334787A (ja) 2001-03-09 2002-11-22 Sony Corp 有機電界発光素子
JP4655410B2 (ja) 2001-03-09 2011-03-23 ソニー株式会社 有機電界発光素子
JP2002334788A (ja) 2001-03-09 2002-11-22 Sony Corp 有機電界発光素子
JP2002343572A (ja) 2001-03-14 2002-11-29 Canon Inc ポルフィリン誘導体化合物を用いた発光素子および表示装置
JP4307001B2 (ja) 2001-03-14 2009-08-05 キヤノン株式会社 金属配位化合物、電界発光素子及び表示装置
JP2002280178A (ja) 2001-03-16 2002-09-27 Canon Inc 有機発光素子
JP2002280180A (ja) 2001-03-16 2002-09-27 Canon Inc 有機発光素子
JP4169246B2 (ja) 2001-03-16 2008-10-22 富士フイルム株式会社 ヘテロ環化合物及びそれを用いた発光素子
JP2002280179A (ja) 2001-03-16 2002-09-27 Canon Inc 有機発光素子
JP3964245B2 (ja) 2001-03-28 2007-08-22 株式会社半導体エネルギー研究所 有機発光素子および前記素子を用いた発光装置
JP2002299060A (ja) 2001-03-30 2002-10-11 Fuji Photo Film Co Ltd 有機発光素子
JP2002363227A (ja) 2001-04-03 2002-12-18 Fuji Photo Film Co Ltd 新規ポリマーおよびそれを用いた発光素子
JP2002302516A (ja) 2001-04-03 2002-10-18 Fuji Photo Film Co Ltd 新規ポリマーおよびそれを用いた発光素子
JP2002305083A (ja) 2001-04-04 2002-10-18 Mitsubishi Chemicals Corp 有機電界発光素子
JP2002308855A (ja) 2001-04-05 2002-10-23 Fuji Photo Film Co Ltd 新規化合物、およびそれを用いた発光素子
JP2002308837A (ja) 2001-04-05 2002-10-23 Fuji Photo Film Co Ltd 新規化合物、およびそれを用いた発光素子
JP2003007471A (ja) 2001-04-13 2003-01-10 Semiconductor Energy Lab Co Ltd 有機発光素子および前記素子を用いた発光装置
JP2002324679A (ja) 2001-04-26 2002-11-08 Honda Motor Co Ltd 有機エレクトロルミネッセンス素子
JP2002343568A (ja) 2001-05-10 2002-11-29 Sony Corp 有機電界発光素子
JP2002352957A (ja) 2001-05-23 2002-12-06 Honda Motor Co Ltd 有機エレクトロルミネッセンス素子
JP2002352960A (ja) 2001-05-29 2002-12-06 Hitachi Ltd 薄膜電界発光素子
JP2003007469A (ja) 2001-06-25 2003-01-10 Canon Inc 発光素子及び表示装置
JP4628594B2 (ja) 2001-06-25 2011-02-09 昭和電工株式会社 有機発光素子および発光材料
JP4789359B2 (ja) 2001-07-11 2011-10-12 株式会社半導体エネルギー研究所 発光装置
JP4003824B2 (ja) 2001-07-11 2007-11-07 富士フイルム株式会社 発光素子
JP4433680B2 (ja) 2002-06-10 2010-03-17 コニカミノルタホールディングス株式会社 薄膜形成方法
JP4158562B2 (ja) * 2003-03-12 2008-10-01 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子及び表示装置
CN101429219B (zh) 2003-03-24 2014-08-06 南加利福尼亚大学 Ir的苯基-吡唑配合物
JP4525187B2 (ja) 2003-06-09 2010-08-18 日立化成工業株式会社 金属配位化合物、ポリマー組成物、およびこれらを用いた有機エレクトロルミネセンス素子
US20050123790A1 (en) * 2003-12-05 2005-06-09 Royster Tommie L.Jr. Organic element for electroluminescent devices
JP2007035678A (ja) 2005-07-22 2007-02-08 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5040216B2 (ja) 2005-08-30 2012-10-03 三菱化学株式会社 有機化合物、電荷輸送材料、有機電界発光素子用材料、電荷輸送材料組成物及び有機電界発光素子
US20090200925A1 (en) 2006-06-13 2009-08-13 Konica Minolta Holdings, Inc. Organic electroluminescent element, lighting device and display device
JP2008159741A (ja) * 2006-12-22 2008-07-10 Konica Minolta Holdings Inc 発光体
KR101453128B1 (ko) * 2007-07-10 2014-10-27 이데미쓰 고산 가부시키가이샤 유기 전기발광 소자용 재료 및 그것을 이용한 유기 전기발광 소자
JP5707665B2 (ja) 2008-12-03 2015-04-30 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、該素子を備えた照明装置及び表示装置
JP5472301B2 (ja) * 2009-07-07 2014-04-16 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、新規な化合物、照明装置及び表示装置
US8932734B2 (en) * 2010-10-08 2015-01-13 Universal Display Corporation Organic electroluminescent materials and devices
WO2012098996A1 (ja) * 2011-01-17 2012-07-26 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、表示装置、照明装置及び有機エレクトロルミネッセンス素子材料
US9923154B2 (en) * 2011-02-16 2018-03-20 Konica Minolta, Inc. Organic electroluminescent element, lighting device, and display device
JP5742586B2 (ja) * 2011-08-25 2015-07-01 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、照明装置及び表示装置

Also Published As

Publication number Publication date
JPWO2014092014A1 (ja) 2017-01-12
EP2930763A1 (en) 2015-10-14
WO2014092014A1 (ja) 2014-06-19
EP2930763B1 (en) 2020-07-29
US20150318489A1 (en) 2015-11-05
KR20150082538A (ko) 2015-07-15
KR101751150B1 (ko) 2017-06-26
US10774261B2 (en) 2020-09-15
EP2930763A4 (en) 2016-10-05

Similar Documents

Publication Publication Date Title
JP5533652B2 (ja) 白色発光有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP5707665B2 (ja) 有機エレクトロルミネッセンス素子、該素子を備えた照明装置及び表示装置
JP5853964B2 (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP5870782B2 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の製造方法、照明装置及び表示装置
JP6015451B2 (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP2013110263A (ja) 有機エレクトロルミネッセンス素子および照明装置
JP6094480B2 (ja) 有機エレクトロルミネッセンス素子、照明装置、表示装置及び有機エレクトロルミネッセンス素子の製造方法
JP2013045923A (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP2013149880A (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2013048190A (ja) 有機エレクトロルミネッセンス素子および照明装置
JP6424626B2 (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
WO2011052250A1 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子材料、表示装置及び照明装置
JP2013168552A (ja) 有機エレクトロルミネッセンス素子、それが具備された表示装置及び照明装置
JP5423363B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5849853B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2014017494A (ja) 有機エレクトロルミネッセンス素子、該素子を備えた照明装置及び表示装置
WO2013027633A1 (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP2009152435A (ja) 白色有機エレクトロルミネッセンス素子、白色有機エレクトロルミネッセンス素子の製造方法、表示装置及び照明装置
JPWO2013031662A1 (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP6717150B2 (ja) 有機エレクトロニクス素子、及び、電子機器
JP2016213312A (ja) 有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び有機金属錯体
JP6809468B2 (ja) 環状ヘテロ芳香族化合物、有機エレクトロニクス素子用材料、有機エレクトロニクス素子、及び、電子機器
WO2013161739A1 (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP2013168471A (ja) 有機エレクトロニクス素子、表示装置及び照明装置
JP2013048194A (ja) 有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181008

R150 Certificate of patent or registration of utility model

Ref document number: 6424626

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150