JP6410834B2 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
JP6410834B2
JP6410834B2 JP2016551374A JP2016551374A JP6410834B2 JP 6410834 B2 JP6410834 B2 JP 6410834B2 JP 2016551374 A JP2016551374 A JP 2016551374A JP 2016551374 A JP2016551374 A JP 2016551374A JP 6410834 B2 JP6410834 B2 JP 6410834B2
Authority
JP
Japan
Prior art keywords
time
power supply
drive signal
power
correction amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016551374A
Other languages
English (en)
Other versions
JPWO2016051487A1 (ja
Inventor
裕次 ▲高▼山
裕次 ▲高▼山
崇 山川
崇 山川
有澤 浩一
浩一 有澤
成雄 梅原
成雄 梅原
友美 東川
友美 東川
誠 谷川
誠 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2016051487A1 publication Critical patent/JPWO2016051487A1/ja
Application granted granted Critical
Publication of JP6410834B2 publication Critical patent/JP6410834B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4283Arrangements for improving power factor of AC input by adding a controlled rectifier in parallel to a first rectifier feeding a smoothing capacitor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)

Description

本発明は、交流電力を直流電力に変換する電力変換装置に関する。
下記特許文献1の直流電源装置は、交流電圧を整流する整流手段と、倍電圧整流回路と、リアクタを介して交流電源を短絡するスイッチング手段と、スイッチング手段を短絡または開放する制御手段と、負荷に対応したスイッチング手段の駆動パターンを記憶する記憶手段とを備え、予め記憶した駆動パターンでスイッチング手段を動作させる構成である。
下記特許文献2の直流電源装置は、整流回路と、整流回路に接続されたリアクタと、リアクタを介して交流電源を短絡するスイッチング部と、スイッチング部の短絡タイミングを記憶する短絡タイミング記憶部と、リアクタのインダクタンス値を記憶するインダクタンス記憶部と、スイッチング部を短絡または開放させる制御を行うスイッチング制御部と、インダクタンス推定部とを備える。下記特許文献2の直流電源装置では、短絡タイミング記憶部に記憶された短絡タイミングとインダクタンス推定部で推定されたリアクタのインダクタンス値と検出手段で検出された電圧および電流の情報とに基づいて、短絡に係る継続時間を決定し、スイッチング部を制御し、あるいは、短絡タイミング記憶部に記憶された短絡タイミングとインダクタンス記憶部に記憶されたインダクタンス値と検出手段で検出された電圧および電流の情報とに基づいて、短絡に係る継続時間を決定し、スイッチング部を制御する。
特開2006−174689号公報 特開2013−106455号公報
上記特許文献1に示す従来技術では、瞬間電流の変化に起因したリアクタのインダクタンスの変動が考慮されていない。そのため、上記特許文献1に示す従来技術では、リアクタに流れる瞬時電流の大きさが変化してしまい、所望の波形形状、力率、高調波、および昇圧性能を得ることが困難である。
一方、上記特許文献2に示す従来技術では、リアクタのインダクタンスの変動を考慮した複雑な計算が必要である。そのため、所望の波形形状、力率、高調波、および昇圧性能を得るための設計負荷の増加を招くと共に、短絡に係る継続時間の演算処理に長い時間を要するという問題がある。
本発明は、上記に鑑みてなされたものであって、設計負荷を低減しながら、力率の改善、高調波成分の抑制、または回路損失の抑制を図ることができる電力変換装置を得ることを目的とする。
上述した課題を解決し、目的を達成するために、本発明に係る電力変換装置は、交流電源からの交流電力を直流電力に変換する整流器と、リアクタを介して前記交流電源を短絡する短絡部と、前記交流電源の半周期中に、前記短絡部を制御する制御部と、を備え、前記制御部には、前記リアクタのインダクタンスの補正量が設定され、前記補正量は、電源電流の検出値の増加に伴い増加する傾向を示し、前記制御部は、前記短絡部を制御するための複数のスイッチングパルスのオン時間を前記補正量の分変更し、前記複数のスイッチングパルスのオフ時間を前記補正量の分変更し、前記オン時間が減少されると共に前記オフ時間が変更された複数のスイッチングパルスを用いて前記短絡部のオンオフ動作を制御する。
本発明に係る電力変換装置は、設計負荷を低減しながら、力率の改善、高調波成分の抑制、または回路損失の抑制を図ることができる、という効果を奏する。
本発明の実施の形態に係る電力変換装置の構成例を示す図 図1に示す整流器および短絡部の構成例を示す図 リアクタ、短絡部、整流回路、および平滑コンデンサから成る簡易回路を示す図 交流電源の正極側半周期に短絡素子を1回スイッチングさせたときの電源電流の波形を示す図 駆動信号を複数のパルスに分割していないときの電源電流の波形を示す図 駆動信号を複数のパルスに分割したときの電源電流の波形を示す図 正極側半周期および負極側半周期に駆動信号を複数のパルスに分割したときの電源電流の波形を示す図 データ記憶部に格納されるデータとパルスパターン生成部で生成される駆動信号との関係を表す図 (1)式を用いて算出される電源半周期中のオンデューティの経時的変化を表す図 (2)式を用いて算出される電源半周期中のオフデューティの経時的変化を表す図 負荷と補正係数の関係を表す図 リアクタに流れる電源電流とリアクタのインダクタンスとの関係を表す図 オンオフデューティを移動する前の駆動信号で短絡部を制御したときに流れる電源電流の波形を表す図 オンオフデューティを移動した後の駆動信号で短絡部を制御したときに流れる電源電流の波形を表す図
以下に、本発明の実施の形態に係る電力変換装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態.
図1は本発明の実施の形態に係る電力変換装置100の構成例を示す図である。電源部である交流電源1からの交流電力を直流電力に変換する整流器3と、交流電源1と整流器3との間に接続されたリアクタ2と、交流電源1の電源電圧Vsを検出する電源電圧検出部7と、リアクタ2と整流器3の間に接続され接続位置における電流値を検出する電流検出素子9と、電流検出素子9で検出された電流に比例した電圧を制御部20が取り扱い可能な低圧範囲内の電流検出電圧Visに変換して出力する電流検出部8と、リアクタ2を介して交流電源1を短絡する短絡部30と、交流電源1の半周期中に複数のスイッチングパルスである駆動信号Sa2を生成し、生成した駆動信号Sa2で短絡部30の開閉動作を制御する制御部20とを有する。
リアクタ2は、短絡部30よりも交流電源1側に接続され、整流器3の一方の入力端と交流電源1との間に挿入されている。電流検出素子9には、一例でカレントトランスまたはシャント抵抗が用いられる。電流検出部8は、増幅器あるいはレベルシフト回路で実現される。
図2は図1に示す整流器3および短絡部30の構成例を示す図である。整流器3は、4つのダイオードを組み合わせたダイオードブリッジ31で構成された整流回路4と、整流回路4の出力端間に接続され整流回路4から出力される全波整流波形の電圧を平滑化する平滑コンデンサ5とから成る。図2では、電流検出素子9および電流検出部8から成る電流検出手段10が示され、電流検出手段10では交流電源1の電源電流Isが検出される。
直流電圧検出部6は、増幅器あるいはレベルシフト回路で実現され、平滑コンデンサ5の両端電圧を検出し、検出した電圧を制御部20が取り扱い可能な低圧範囲内の電圧検出値である直流出力電圧Vdcに変換して出力する。なお整流回路4の構成はこれに限定されるものではなく、ダイオード接続された単方向導通素子である金属酸化膜半導体電界効果トランジスタを組み合わせて構成してもよい。
双方向スイッチである短絡部30は、リアクタ2を介して交流電源1に並列に接続されたダイオードブリッジ31と、ダイオードブリッジ31の両出力端に接続された短絡素子32とで構成される。短絡素子32が金属酸化膜半導体電界効果トランジスタである場合、短絡素子32のゲートはパルス伝達部24に接続され、パルス伝達部24からの駆動信号Sa2によって短絡素子32がオンオフする構成である。短絡素子32がオンされたとき、リアクタ2およびダイオードブリッジ31を介して交流電源1が短絡する。
制御部20は、マイクロコンピュータで構成され、直流出力電圧Vdcおよび電源電圧Vsに基づいて短絡素子32を制御するためのスイッチングパルスである駆動信号Saを生成する駆動信号生成部21と、パルスパターン生成部23における演算に必要なデータを格納するデータ記憶部22と、データ記憶部22から読み出したデータと駆動信号生成部21からの駆動信号Saとに基づいて、複数のパルスから成るパルスパターンである駆動信号Sa1を生成するパルスパターン生成部23と、パルスパターン生成部23からの駆動信号Sa1を駆動信号Sa2に変換し短絡部30へ伝達するパルス伝達部24とを有する。
データ記憶部22に格納されるデータは、各駆動信号Sa1のオンデューティとパルス番号とを関連付けた関数の近似式に関するデータと、各駆動信号Sa1のオフデューティとパルス間番号とを関連付けた関数の近似式に関するデータと、近似式の定数に関するデータである。オンデューティとは、駆動信号Saのオン時間に対する各駆動信号Sa1のオン時間の比率であり、オフデューティとは、駆動信号Saのオン時間に対する各駆動信号Sa1のオフ時間の比率である。これらのデータの詳細は後述する。
パルスパターン生成部23は、少なくとも電源電流Isの検出値と補正量とに基づいて、短絡部30を制御する複数のスイッチングパルスのオン時間およびオフ時間を変更するオンオフ時間変更部23aと、変更されたオン時間およびオフ時間で駆動信号Saを分割し駆動信号Sa1を生成するパルス分割部23bとを有する。補正量の詳細は後述する。
パルス伝達部24は、レベルシフト回路で構成され、ゲート駆動が行えるよう電圧レベルシフトを行い、パルスパターン生成部23からの駆動信号Sa1をゲート駆動信号である駆動信号Sa2に変換し短絡部30に出力する。
図3から図7を用いてパルスパターン生成部23で生成される駆動信号Sa1と電源電流Isとの関係を説明する。
図3はリアクタ2、短絡部30、整流回路4、および平滑コンデンサ5から成る簡易回路を示す図であり、図3には短絡部30のオンオフ時における電流経路が示されている。
図4は交流電源1の正極側半周期に短絡素子32を1回スイッチングさせたときの電源電流Isの波形を示す図である。図4には電源半周期中に短絡部30を1回スイッチングさせたときのシングルパルスである駆動信号Sa1が示されている。短絡部30がオンされたとき、交流電源1、リアクタ2、および短絡部30により閉回路が形成され、交流電源1がリアクタ2を介して短絡される。そのため閉回路に電源電流Isが流れ、リアクタ2には、(1/2)×LIで求められる磁気エネルギーが蓄積される。蓄積エネルギーは、短絡部30がオフされると同時に負荷11側に放出され、整流回路4で整流され、平滑コンデンサ5に転送される。この一連の動作により、図2の電流経路には電源電流Isが流れる。これにより、力率改善無しのパッシブモードよりも電源電流Isの通電角を広げることができ、力率を改善できる。
図5は駆動信号Saを複数のパルスに分割していないときの電源電流Isの波形を示す図である。駆動信号Saがオンされたタイミングで駆動信号Sa1がオンとなり、駆動信号Saのオン期間tでは、駆動信号Sa1も駆動信号Saのオン期間tと同じ期間だけオンになる。オン期間tは、駆動信号Saがオンされてからオフされるまでの期間である。従って、短絡素子32の短絡時間は、電源電圧Vsが昇圧する際に駆動信号Saのオン期間tに正比例して長くなり、電源電流Isが増加する。電源電流Isが設定値に達したとき駆動信号Saがオフにされ、駆動信号Saがオフされたタイミングで駆動信号Sa1がオフとなる。短絡素子32の短絡時間を長くした場合、リアクタ2にはより多くのエネルギーを蓄積することができるものの、電源電流Isのピークが大きくなるため、力率の悪化、高調波成分の増加、回路損失の増加といった問題が生じる。
図6は駆動信号Saを複数のパルスに分割したときの電源電流Isの波形を示す図である。図6に示す上限閾値とは、短絡部30がオンとなったときに流れる短絡電流の上限を規制する閾値であり、下限閾値とは、上限閾値より小さい値に設定された閾値である。電流制御範囲wは上限閾値から下限閾値までの幅を表す。図6では電源電流Isのピーク値が電流制御範囲w内に収まるように電源半周期に生成される複数の駆動信号Sa1が示される。
駆動信号Saがオンされたタイミングで駆動信号Sa1がオンとなり電源電流Isが増加し、電源電流Isの増加に伴い、電流検出電圧Vis、すなわち電流検出部8で検出される電流検出値が上昇する。駆動信号Saがオンの期間中に電流検出値が上限閾値を超えたとき、駆動信号Sa1がオフになる。これにより、電源電流Isが低下し電流検出値が下降する。その後、駆動信号Saがオンの期間中に電流検出値が下限閾値を下回ったとき、再び駆動信号Sa1がオンになり、電源電流Isは再び増加し、電流検出部8で検出される電流検出値が上昇する。
駆動信号Saのオン期間t内に駆動信号Sa1のオンオフが繰り返されることで、駆動信号Saのオン期間t内の電流検出電圧Visのピーク値、すなわち電源電流Isのピーク値が、電流制御範囲w内に制御される。従って、直流出力電圧Vdcを比較的高い値にまで昇圧させる場合でも、駆動信号Saがオン期間t中の電源電流Isのピーク値は抑制される。
図7は正極側半周期および負極側半周期に駆動信号Saを複数のパルスに分割したときの電源電流Isの波形を示す図である。正極側で駆動信号Sa1のオンオフが繰り返されることにより、正極側の電源電流Isのピーク値が正極側上限閾値VTHH(H)から正極側下限閾値VTHH(L)までの電流制御範囲w内に収まる。また負極側で駆動信号Sa1のオンオフが繰り返されることにより、負極側の電源電流Isのピーク値が負極側上限閾値VTHL(H)から負極側下限閾値VTHL(L)までの電流制御範囲w内に収まる。
本発明では、電源電流Isのピーク値が電流制御範囲w内に収まるように電源半周期に生成される複数の駆動信号Sa1のオンオフ時間の経時的変化の傾向に着目し、事前の解析において、駆動信号Saのオン期間t内に電源電流Isのピーク値が電流制御範囲w内に収まるような各駆動信号Sa1のオンオフ時間に基づいて、各駆動信号Sa1のオンデューティとパルス番号とを対応付けたデータを求め、各駆動信号Sa1のオフデューティとパルス間番号とを対応付けたデータを求める。求められたデータはデータ記憶部22に格納される。パルスパターン生成部23では、データ記憶部22に格納されたこれらのデータを用いて図7に示すようなパルスパターンである駆動信号Sa1が生成される。またパルスパターン生成部23は、負荷に対応した補正量でオンオフデューティを移動することで、負荷が変わった場合でも電源電流Isのピーク値を電流制御範囲w内に収めるように駆動信号Sa1を生成する。
データ記憶部22に格納されるデータの具体例とパルスパターン生成部23で生成される駆動信号Sa1の関係を説明する。
図8はデータ記憶部22に格納されるデータとパルスパターン生成部23で生成される駆動信号Sa1との関係を表す図である。図8には、正極側半周期において駆動信号Saがオン期間t内に生成される6つの駆動信号Sa1と、負極側半周期において駆動信号Saがオン期間t内に生成される6つの駆動信号Sa1が示される。
電源電圧Vsが上昇する際のゼロクロス点T0から一定時間Tdlが経過した時点で1番目の駆動信号Sa1がオンになる。Ton(1)は、正極側半周期内に生成される1番目の駆動信号Sa1のオン時間、すなわち1番目の駆動信号Sa1が立ち上がった時点から立ち下がるまでの時間を表す。同様にTon(2)は2番目の駆動信号Sa1のオン時間、Ton(3)は3番目の駆動信号Sa1のオン時間、Ton(4)は4番目の駆動信号Sa1のオン時間、Ton(5)は5番目の駆動信号Sa1のオン時間、Ton(6)は6番目の駆動信号Sa1のオン時間を表す。符号Aで示されるon_duty(1)からon_duty(6)は、データ記憶部22に格納されたデータの1つであり、各駆動信号Sa1のオンデューティとパルス番号とを対応付けたものである。符号Bで示される番号がパルス番号である。駆動信号Saのオン時間Tonにオンデューティを乗じることで、各駆動信号Sa1のオン時間Ton(1)からTon(6)を得ることができる。
電源電圧Vsが下降する際のゼロクロス点から一定時間が経過した時点で1番目の駆動信号Saがオンになる。Toff(1)は、負極側半周期内に生成される1番目の駆動信号Sa1が立ち下がった時点から2番目の駆動信号Sa1が立ち上がるまでの時間、すなわち1番目の駆動信号Sa1と2番目の駆動信号Sa1との間のオフ時間を表す。同様にToff(2)は2番目の駆動信号Sa1と3番目の駆動信号Sa1との間のオフ時間、Toff(3)は3番目の駆動信号Sa1と4番目の駆動信号Sa1との間のオフ時間、Toffは4番目の駆動信号Sa1と5番目の駆動信号Sa1との間のオフ時間、Toff(5)は5番目の駆動信号Sa1と6番目の駆動信号Sa1との間のオフ時間を表す。符号Cで示されるoff_duty(1)からoff_duty(5)は、データ記憶部22に格納されたデータの1つであり、各駆動信号Sa1のオフデューティとパルス間番号とを対応付けたものである。符号Dで示される番号がパルス間番号である。駆動信号Saのオン時間Tonにオフデューティを乗じることで、各駆動信号Sa1のオフ時間Toff(1)からToff(5)を得ることができる。またゼロクロス点T0から1番目の駆動信号Sa1が立ち上がるまでの時間をデータとして保有すれば、短絡部30のオンオフタイミングを特定することができる。
ここで図8に示すオンデューティとオフデューティの算出にあたり、以下の関数を定義する。
Figure 0006410834
Figure 0006410834
(1)式は、駆動信号Saのオン時間Tonに対する、電源半周期内のx番目の駆動信号Sa1のオン時間Ton(x)のオンデューティである。Nは電源半周期内に生成される駆動信号Sa1の総数である。
(2)式は、駆動信号Saのオン時間Tonに対する、電源半周期内のx番目の駆動信号Sa1とx−1番目の駆動信号Sa1との間のオフ時間Toff(y)のオフデューティである。Nは電源半周期内に生成される駆動信号Sa1の総数である。
図9は(1)式を用いて算出される電源半周期中のオンデューティの経時的変化を表す図である。横軸は、電源半周期内に生成されるN個の駆動信号Sa1の内、2番目からN番目までの駆動信号Sa1のパルス番号xを表し、縦軸は、(1)式で求めた2番目からN番目までの駆動信号Sa1に対するオンデューティを表す。三角の点を連ねた曲線は、移動前のオンデューティであり、丸の点を連ねた曲線は、移動後のオンデューティである。図9に示すように、電源電流Isのピーク値が電流制御範囲w内に収まるときのオンデューティは、下にの放物線を描くことが分かる。
図10は(2)式を用いて算出される電源半周期中のオフデューティの経時的変化を表す図である。横軸は、電源半周期内に生成される各駆動信号Sa1のパルス間番号yを表し、縦軸は、(2)式で求めた1番目からN番目までの駆動信号Sa1に対するオフデューティの値である。三角の点を連ねた曲線は、移動前のオフデューティであり、丸の点を連ねた曲線は、移動後のオフデューティである。図10に示すように、電源電流Isのピーク値が電流制御範囲内に収まるときのオフデューティは、上にの放物線を描くことが分かる。
このように電源半周期に生成される複数の駆動信号Sa1のオンデューティとオフデューティは、経時的に変化すると共に、各々の変化の傾向が異なる。この点に着目すると、電源半周期に生成される複数の駆動信号Sa1の内、特定領域の駆動信号Sa1のオンデューティと、電源半周期に生成される複数の駆動信号Sa1のオフデューティとは、以下の近似式で表すことができる。
(1)式のオンデューティは、(3)式に示す2次式で近似することができる。ただし ,B ,C は近似式の各定数を示す。
Figure 0006410834
(2)式のオフデューティは、(4)式に示す2次式で近似することができる。ただし ,B ,C は近似式の各定数を示す。
Figure 0006410834
なおオンデューティおよびオフデューティは、2次以上の近似式で定義してもよい。
特定領域以外のパルスである1番目の駆動信号Sa1のオンデューティは(5)式で表すことができる。Nは電源半周期内に生成される駆動信号Sa1の総数である。このように1番目の駆動信号Sa1のオン時間に関しては、オンデューティの設定を行わずに(5)式を用いることで、近似式の誤差も吸収可能である。
Figure 0006410834
このようにして各駆動信号Sa1のオンデューティとパルス番号とを関連付けた関数の近似式と、各駆動信号Sa1のオフデューティとパルス間番号とを関連付けた関数の近似式とを求めることができる。関数化したデータと近似式の定数に関するデータは、データ記憶部22に格納され、パルスパターン生成部23が駆動信号Sa1を生成する際に利用される。
次に図11から図14を用いて、データ記憶部22に格納される補正量Cqとパルスパターン生成部23の機能を説明する。
図11は負荷Poと補正係数Cfの関係を表す図である。横軸の負荷Poは、例えば図3に示す負荷11に供給される電力値を表し、縦軸の補正係数Cfは、負荷Poの値に対応する補正係数Cfを表す。補正係数Cfは、解析または実機試験で得られる値である。例えば図11に示すように、補正係数Cfは、負荷Poが低い領域では一定の値を示し、負荷Poが高い領域では負荷Poの増加に従い高まるように調整された値である。
図12はリアクタ2に流れる電源電流Isとリアクタ2のインダクタンスLとの関係を表す図である。横軸はリアクタ2に流れる電源電流Isを表し、縦軸はリアクタ2のインダクタンスLを表す。図12に示すように電源電流Isが低い領域aと、領域aよりも高い領域bでは、インダクタンスLは一定値を示す。ところが領域bよりも高い領域cでは、電源電流Isの増加に従いインダクタンスLが低下する傾向を示す。
ここで、電源電圧Vsの実効値は一定であるため、負荷Poと電源電流Isとの間には(6)式に示す相関関係がある。
Figure 0006410834
インダクタンスLと電源電流Isとの関係は(7)式で近似できるものとする。ただしa,b,cは近似式の各定数を示す。
Figure 0006410834
(6)式より、電源電流Isと負荷Poとの間には相関関係があるため、(7)式のインダクタンスLと負荷Poとの関係は(8)式で表すことができる。
Figure 0006410834
図9,10で示したオンオフデューティの補正量Cqは、(9)式で表すことができる。Cfは図11に示す補正係数、Lは(8)式で求めたインダクタンス、LaはインダクタンスLの変化量である。
Figure 0006410834
(9)式から分かるようにインダクタンスLの変化量と補正係数Cfが大きくなるに従って補正量Cqの絶対値が増加する。インダクタンスLの変化量は、図12に示すように電源電流Isの増加に対するインダクタンスLのから導かれる。従って、電源電流Isまたは負荷Poの値が分かれば補正量Cqを導出することができる。
オンオフ時間変更部23aでは、データ記憶部22に格納されたオンオフデューティの近似式と、電源電圧Vsと電流検出電圧Visに基づいて演算した電力値である負荷Poの値と、(8)式と、(9)式より補正量Cqを求め、図9に示すようにパルス番号xに対応するオンデューティを補正量Cqの分だけ移動し、また図10に示すようにパルス間番号yに対応するオフデューティを補正量Cqの分だけ移動する。
図9,10に示すようにオンオフデューティを平行移動させる場合、オンオフ時間変更部23aでは、補正量Cqに対応したオンオフデューティのx,y座標上の移動量を決定する。移動量はx軸方向の移動量とy軸方向の移動量である。
(10)式は移動前のオンデューティ、(11)式は移動後のオンデューティを表す。パルス番号に対応するオンデューティが4次の近似式で表現されている場合においては、x,y座標上のある位置から決定した移動量、すなわちx軸方向にm、y軸方向にnだけオンデューティを平行移動させる。
Figure 0006410834
Figure 0006410834
なお、パルス間番号に対応するオフデューティが4次の近似式で表現されている場合においては、x,y座標上のある位置から決定した移動量、x軸方向に−m、y軸方向に−nだけオフデューティを平行移動させる。移動後のオンオフデューティに原信号である駆動信号Saのオン時間を乗じることで、駆動信号Sa1のオンオフ時間を得ることができる。
図13はオンオフデューティを移動する前の駆動信号Sa1で短絡部30を制御したときに流れる電源電流Isの波形を表す図である。図14はオンオフデューティを移動した後の駆動信号Sa1で短絡部30を制御したときに流れる電源電流Isの波形を表す図である。
リアクタ2のインダクタンスLが小さい場合、補正を加える前の電源電流Isの波形は、図13のようにピーク値が右下がりの傾向を示す。詳細には、正極側の電源電流Isのピーク値は、事前の解析で求めた正極側上限閾値VTHH(H)をオーバーシュートする形で正極側に上昇した後に徐々に低下し、正極側上限閾値VTHH(H)から正極側下限閾値VTHH(L)までの電流制御範囲内に収まる。負極側の電源電流Isのピーク値は、事前の解析で求めた負極側下限閾値V THL (L)をオーバーシュートする形で負極側に上昇した後に徐々に低下し、負極側上限閾値VTHL(H)から負極側下限閾値VTHL(L)までの電流制御範囲内に収まる。これに対して補正を加えた後の電源電流Isの波形は、図14に示すように、電源電流Isのピーク値が一定であり、かつ、正極側および負極側の各々の電流制御範囲内に収まる。なお、補正後の電源電流Isのピーク値は、一定でなくてもよく、例えば右下がりの傾向の度合いが補正前より小さくなっていればよい。
上記特許文献1に示す従来技術では、短絡部がオンになった瞬間に流れる電流の変化に起因したリアクタのインダクタンスの変動が考慮されていないため、図13に示すように電源電流Isの波形が変化し、電源電流Isのピークが大きくなることにより、力率の悪化、高調波成分の増加、回路損失の増加といった問題が生じる。一方、高調波発生量を一定レベルに抑制しつつ直流出力電圧を昇圧する場合、昇圧能力に限界があるため、高負荷側での運転が不安定になり、あるいは高負荷側での安定運転を考えると負荷の選択幅が狭くなってしまう。
上記特許文献2の従来技術では、インダクタンスの変動を考慮した複雑な計算が必要なため、設計負荷の増加を招くと共に、短絡に係る継続時間の演算処理に長い時間を要するという問題がある。
本実施の形態によれば、設定した補正量によりオンオフデューティをx,y座標上で移動させることで、瞬時電流の変化に起因したリアクタ2のインダクタンスの変動分を相殺することができる。そのため、上記特許文献2に示すような複雑な演算を行うことなく、力率を改善し、高調波成分を抑制し、回路損失の増加を抑制し、あるいは所望の昇圧能力を得ることが可能である。
以下に図1に示した構成の動作を説明する。オンオフ時間変更部23aは、データ記憶部22に格納されたオンオフデューティの近似式を読み出し、電源電圧Vsと電流検出電圧Visに基づいて演算した電力値と(8)式によりリアクタ2のインダクタンスLを求め、インダクタンスLと(9)式により補正量Cqを求める。さらにオンオフ時間変更部23aでは、パルス番号xに対応するオンデューティが補正量Cqの分だけ移動され、オフデューティが補正量Cqの分だけ移動され、オンオフ時間変更部23aは、移動後のオンオフデューティに原信号である駆動信号Saのオン時間を乗じることで、駆動信号Sa1のオンオフ時間を得る。パルス分割部23bは、変更されたオンオフ時間で駆動信号Saを分割することで駆動信号Sa1を生成する。このように制御部20では、簡易的にインダクタンスLの変化に対応した駆動信号Sa1を生成する。
なお、本実施の形態では、演算した負荷Poと(8)式と(9)式より補正量Cqを求める構成例を説明したが、(7)式に示すようにインダクタンスLと電源電流Isとの間にも相関関係があるため、電源電流Isの検出値と(7)式と(9)式より補正量Cqを求める構成でもよい。また、本実施の形態では、(9)式に示す補正量Cqでオンオフデューティを移動する構成例を示したが、(9)式の補正量Cqの代えて(7)式または(8)式で得られるインダクタンスLの値をオンオフデューティの移動量として用いてもよく、制御部20に設定するデータの設計負荷をより軽減することができる。また(7)式と(8)式に示す関数は2次の近似式に限定されるものではなく、2次以上の近似式でもよい。また本実施の形態では、オン時間とオフ時間の双方を変化させる構成例を説明したが、オン時間またはオフ時間を一定値として、このオンオフ時間で駆動信号Saを分割することで駆動信号Sa1を生成してもよい。
また、本実施の形態では、リアクタ2が交流電源1と整流器3との間に挿入され、整流器3がリアクタ2を介して交流電源1に接続されているが、電力変換装置100はリアクタ2を介して電源の短絡と開放を行うことができればよいため、整流器3、リアクタ2、および短絡部30の位置関係は図示例の構成に限定されるものではない。すなわち、電力変換装置100は、短絡時に交流電源1、リアクタ2、短絡部30、交流電源1の順で電源電流Isが流れる構成であればよく、例えば交流電源1とリアクタ2との間に整流器3が挿入され、リアクタ2が整流器3を介して交流電源1に接続される構成でもよい。
また、本実施の形態では、オンオフデューティを関数化する例を示したが、これに限定されるものではなく、以下のように構成してもよい。例えばオンオフ時間変更部23aにオン時間およびオフ時間を関数化したデータ、あるいはオン時間とオフ時間を2次以上の近似式で表したデータを設定し、オンオフ時間変更部23aは、補正量Cqの分だけパルス番号に対応したオン時間とパルス間番号に対応したオフ時間とを移動することでオン時間とオフ時間を変更し、パルス分割部23bは、変更後のオン時間とオフ時間で駆動信号Sa1を生成する。また、例えばオンオフ時間変更部23aには、各スイッチングパルスのオン時間とオフ時間と各スイッチングパルスのパルス番号と各スイッチングパルスのパルス間番号とを対応付けたマップテーブルが設定され、オンオフ時間変更部23aは、補正量の分だけ、パルス番号に対応したオン時間とパルス間番号に対応したオフ時間とを移動する構成でもよい。この構成によっても電源電流Isのピーク値の経時的変化の傾きを小さくすることができる。
以上に説明したように本実施の形態に係る電力変換装置100は、交流電源1からの交流電力を直流電力に変換する整流器3と、リアクタ2を介して交流電源1を短絡する短絡部30と、交流電源1の半周期中に、短絡部30を制御する制御部20と、を備え、制御部20には、リアクタ2のインダクタンスを用いた補正量Cqが設定され、制御部20は、少なくとも電源電流Isの検出値と補正量Cqとを用いて、複数のスイッチングパルスのオン時間およびオフ時間を変更し、変更された複数のスイッチングパルスを用いて短絡部30のオンオフ動作を制御する。この構成により、複雑な演算を行うことなく電源電流Isのピーク値の変動を抑えることができる。複雑な演算が不要なため、制御部20に設定するデータの設計負荷の増加を招くことがなく、また制御部20における処理負担が軽減され、短絡動作の遅延を回避することができる。電源電流Isのピーク値の変動を抑えることができるため、力率が改善され、高調波成分が抑制され、または回路損失の増加が抑制される。
また制御部20は、インダクタンス値と電源電流Isとを関連付けた関数の近似式を用いて、電源電流Isの検出値に対応した補正量Cqを演算し、演算した補正量Cqの分だけオン時間およびオフ時間を変更する。この構成により(7)式と(9)式で導かれる補正量Cqのみでオンオフ時間を変更することができ、所望の波形形状、力率、高調波、および昇圧性能を得るための設計負荷の増加を招くことがない。
また制御部20は、インダクタンス値と電力値とを関連付けた関数の近似式を用いて、電源電流Isの検出値と交流電源1の電圧検出値とにより算出される電力値に対応した補正量Cqを演算し、演算した補正量Cqの分だけオン時間およびオフ時間を変更する。この構成により(8)式と(9)式で導かれる補正量Cqのみでオンオフ時間を変更することができ、所望の波形形状、力率、高調波、および昇圧性能を得るための設計負荷の増加を招くことがない。
また制御部20には、オン時間と、オフ時間と、複数のスイッチングパルスのパルス番号と、複数のスイッチングパルスのパルス間番号とを対応付けたマップテーブルが設定され、制御部20は、補正量Cqの分だけ、パルス番号に対応したオン時間とパルス間番号に対応したオフ時間とを変更する。この構成により補正量Cqとマップテーブルのみでオンオフ時間を変更することができ、複雑な演算が不要になるため、制御部20に設定するデータの設計負荷の増加を招くことがない。
また制御部20には、オン時間とオフ時間を複数のスイッチングパルスの番号に基づく関数で表したデータが設定され、制御部20は、補正量Cqの分だけ、複数のスイッチングパルスの番号に対応したオン時間およびオフ時間を変更する。関数で表したデータを用いることで、データ記憶部22に格納される制御パラメータが少なくて済むため、高価なメモリを用いる必要がなく、またデータの信頼性検証あるいは評価に要する時間および負担を軽減することができ、装置コストの増加を抑えることもできる。
また関数で表したデータは、オン時間およびオフ時間を2次以上の近似式で表したデータである。このようなデータを用いることで、データ記憶部22に格納される制御パラメータをより一層低減することができるため、データの信頼性検証あるいは評価に要する時間および負担を大幅に軽減することができる。
以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
1 交流電源、2 リアクタ、3 整流器、4 整流回路、5 平滑コンデンサ、6 直流電圧検出部、7 電源電圧検出部、8 電流検出部、9 電流検出素子、10 電流検出手段、11 負荷、20 制御部、21 駆動信号生成部、22 データ記憶部、23 パルスパターン生成部、23a オンオフ時間変更部、23b パルス分割部、24
パルス伝達部、30 短絡部、31 ダイオードブリッジ、32 短絡素子、100 電力変換装置。

Claims (8)

  1. 交流電源からの交流電力を直流電力に変換する整流器と、
    リアクタを介して前記交流電源を短絡する短絡部と、
    前記交流電源の半周期中に、前記短絡部を制御する制御部と、
    を備え、
    前記制御部には、前記リアクタのインダクタンスの補正量が設定され、
    前記補正量は、電源電流の検出値の増加に伴い増加する傾向を示し、
    前記制御部は、前記短絡部を制御するための複数のスイッチングパルスのオン時間を前記補正量の分減少させ、前記複数のスイッチングパルスのオフ時間を前記補正量の分変更し、前記オン時間が減少されると共に前記オフ時間が変更された複数のスイッチングパルスを用いて前記短絡部のオンオフ動作を制御する電力変換装置。
  2. 前記複数のスイッチングパルスの前記オフ時間を前記オン時間の変化とは異なる傾向で変更する請求項1に記載の電力変換装置。
  3. 前記制御部は、前記インダクタンスと前記電源電流とを関連付けた関数の近似式を用いて、前記電源電流の検出値に対応した前記補正量を演算し、演算した前記補正量の分だけ前記オン時間および前記オフ時間を変更する請求項1に記載の電力変換装置。
  4. 前記制御部は、前記インダクタンスと電力値とを関連付けた関数の近似式を用いて、前記電源電流の検出値と前記交流電源の電圧検出値とにより算出される電力値に対応した前記補正量を演算し、演算した前記補正量の分だけ前記オン時間および前記オフ時間を変更する請求項1に記載の電力変換装置。
  5. 前記制御部には、前記オン時間と、前記オフ時間と、前記複数のスイッチングパルスのパルス番号と、前記複数のスイッチングパルスのパルス間番号とを対応付けたマップテーブルが設定され、
    前記制御部は、前記補正量の分だけ、前記パルス番号に対応した前記オン時間と前記パルス間番号に対応した前記オフ時間とを変更する請求項1に記載の電力変換装置。
  6. 前記制御部には、前記オン時間および前記オフ時間を前記複数のスイッチングパルスの番号に基づく関数で表したデータが設定され、
    前記制御部は、前記補正量の分だけ、前記番号に対応した前記オン時間および前記オフ時間を変更する請求項1に記載の電力変換装置。
  7. 前記関数で表した前記データは、前記オン時間および前記オフ時間を2次以上の近似式で表したデータである請求項に記載の電力変換装置。
  8. 前記制御部はマイクロコンピュータで構成されている請求項1から請求項の何れか1項に記載の電力変換装置。
JP2016551374A 2014-09-30 2014-09-30 電力変換装置 Active JP6410834B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/076016 WO2016051487A1 (ja) 2014-09-30 2014-09-30 電力変換装置

Publications (2)

Publication Number Publication Date
JPWO2016051487A1 JPWO2016051487A1 (ja) 2017-04-27
JP6410834B2 true JP6410834B2 (ja) 2018-10-24

Family

ID=55629586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016551374A Active JP6410834B2 (ja) 2014-09-30 2014-09-30 電力変換装置

Country Status (4)

Country Link
US (1) US9941780B2 (ja)
JP (1) JP6410834B2 (ja)
CN (1) CN107078654B (ja)
WO (1) WO2016051487A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10468995B2 (en) * 2016-01-28 2019-11-05 Mitsubishi Electric Corporation Power converter
WO2019097806A1 (ja) * 2017-11-15 2019-05-23 三菱電機株式会社 整流器、およびレクテナ装置
WO2020079828A1 (ja) * 2018-10-19 2020-04-23 日立ジョンソンコントロールズ空調株式会社 電力変換装置および空気調和機
JP7379131B2 (ja) * 2019-12-16 2023-11-14 東芝テック株式会社 電力変換装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4831508A (en) * 1987-10-20 1989-05-16 Computer Products Inc. Power supply system having improved input power factor
TW364049B (en) * 1997-09-24 1999-07-11 Toshiba Corp Power conversion apparatus and air conditioner using the same
JP2001169553A (ja) * 1999-12-02 2001-06-22 Mitsubishi Electric Corp スイッチドモード整流器
JP4784207B2 (ja) * 2004-11-18 2011-10-05 パナソニック株式会社 直流電源装置
JP5481165B2 (ja) * 2009-11-06 2014-04-23 日立アプライアンス株式会社 直流電源装置およびこれを用いた空気調和機
JP2011155813A (ja) * 2010-01-28 2011-08-11 Fujitsu General Ltd Pfcコンバータの制御回路、制御方法、および電源装置
JP5874019B2 (ja) * 2010-11-24 2016-03-01 パナソニックIpマネジメント株式会社 直流電源装置
JP2013106455A (ja) * 2011-11-15 2013-05-30 Hitachi Appliances Inc 直流電源装置およびこれを用いた空気調和機
US9089083B2 (en) * 2012-12-03 2015-07-21 Avogy, Inc. AC-DC converter for wide range output voltage and high switching frequency
JP5868920B2 (ja) 2013-09-30 2016-02-24 三菱電機株式会社 電力変換装置
JP6147209B2 (ja) 2014-03-05 2017-06-14 三菱電機株式会社 電力変換装置

Also Published As

Publication number Publication date
US9941780B2 (en) 2018-04-10
US20170302150A1 (en) 2017-10-19
CN107078654A (zh) 2017-08-18
WO2016051487A1 (ja) 2016-04-07
JPWO2016051487A1 (ja) 2017-04-27
CN107078654B (zh) 2019-06-21

Similar Documents

Publication Publication Date Title
JP5446137B2 (ja) スイッチング電源
JP6410834B2 (ja) 電力変換装置
US9866140B2 (en) AC/DC power converting apparatus with AC source shortcircuiting for power factor correction and harmonic suppression
JP6147209B2 (ja) 電力変換装置
JP5868920B2 (ja) 電力変換装置
US9941810B2 (en) Power conversion device for converting AC power into DC power
KR101858059B1 (ko) 스위치 제어 회로, 및 이를 포함하는 역률 보상기 및 그 구동 방법
JP6599024B2 (ja) 力率補償電源装置およびled照明装置
CN108604867B (zh) 电力变换装置
JP6395318B2 (ja) スイッチング電源装置
JP6285756B2 (ja) 照明用led電源
JP6505261B2 (ja) 電力変換装置
JP5471513B2 (ja) 電源装置
CN110754032B (zh) 交流-直流转换
JP6410832B2 (ja) 電力変換装置
JP2014108041A (ja) 電源装置
JP6689636B2 (ja) 電力変換装置
JP7355686B2 (ja) 制御装置及びそれを有する電力変換装置
JP6825704B2 (ja) 電力変換装置、照明器具、電気機器
JP6220634B2 (ja) 電源装置
JPWO2018146840A1 (ja) 電力変換装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161027

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180925

R150 Certificate of patent or registration of utility model

Ref document number: 6410834

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250