JP7355686B2 - 制御装置及びそれを有する電力変換装置 - Google Patents

制御装置及びそれを有する電力変換装置 Download PDF

Info

Publication number
JP7355686B2
JP7355686B2 JP2020049911A JP2020049911A JP7355686B2 JP 7355686 B2 JP7355686 B2 JP 7355686B2 JP 2020049911 A JP2020049911 A JP 2020049911A JP 2020049911 A JP2020049911 A JP 2020049911A JP 7355686 B2 JP7355686 B2 JP 7355686B2
Authority
JP
Japan
Prior art keywords
control device
drive pulse
switching frequency
output voltage
power conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020049911A
Other languages
English (en)
Other versions
JP2021151121A (ja
Inventor
康徳 箱田
薫平 吉川
俊之 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP2020049911A priority Critical patent/JP7355686B2/ja
Publication of JP2021151121A publication Critical patent/JP2021151121A/ja
Application granted granted Critical
Publication of JP7355686B2 publication Critical patent/JP7355686B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Description

本発明は、入力電圧をスイッチングして出力電圧を送出する電力変換装置(例えば、スイッチングコンバータ)の制御装置と、その電力変換装置に関するものである。
特許文献1には、交流入力電圧を直流電圧に変換する直流電源装置(例えば、昇圧チョッパ回路)が開示されている。昇圧チョッパ回路は、チョークコイル、入力電流を導通/遮断(スイッチング)するスイッチ素子、逆阻止ダイオード、及び平滑コンデンサにより構成されている。スイッチ素子は、例えば、電流境界モード制御により、オン/オフのスイッチング動作が行われる。電流境界モード制御では、チョークコイルに流れるチョーク電流を検出し、このチョーク電流が零になる時点で、スイッチ素子をスイッチング動作させる。そして、スイッチ素子によるスイッチングの休止区間を制御することにより、平滑コンデンサに流れる各種周波数成分のリプル電流を低減している。
これに対し、チョークコイルを有し、直流入力電圧を直流出力電圧に変換する非絶縁型スイッチングコンバータ(例えば、降圧チョッパ回路、昇圧チョッパ回路、昇降圧チョッパ回路等)が知られている。
図2は、従来の電力変換装置の一つである非絶縁型スイッチングコンバータ(例えば、降圧チョッパ回路)の回路図である。
この降圧チョッパ回路は、電力変換部10と、この電力変換部10を制御する制御装置19と、を備えている。
電力変換部10は、直流電源11から供給される直流の入力電圧Viをスイッチングして、直流の出力電圧Vo及び出力電流Ioを送出するものであり、その入力電圧Viを平滑する入力コンデンサ12を有している。入力コンデンサ12の両電極には、スイッチ素子13と整流素子14のカソード及びアノードとが直列に接続されている。整流素子14のアノード及びカソードには、チョークコイル15と平滑用の出力コンデンサ16とが直列に接続されている。チョークコイル15には、変動するリプル電流iLを有するチョーク電流ILが流れる。出力コンデンサ16の両電極には、出力電圧Vo及び出力電流Ioを出力するための一対の出力端子17a,17bが接続され、この出力端子17a,17b間に、負荷18が接続される。制御装置19は、駆動パルスS19を生成してスイッチ素子13のオン/オフ動作を制御するものである。
図2の降圧チョッパ回路では、スイッチ素子13がオン状態になると、入力コンデンサ12の正極側→スイッチ素子13→チョークコイル15→出力コンデンサ16及び負荷18、の経路で電流が流れる。次に、スイッチ素子13がオフ状態になると、チョークコイル15の蓄積エネルギーにより、出力コンデンサ16及び負荷18→整流素子14→チョークコイル15、の経路で電流が流れる。
そのため、出力電圧Voは、次式(1)のように、入力電圧Viよりも低い電圧になる。
Vo=Vi*α・・・(1)
但し、α;スイッチ素子13のオンデューティ比
特開2013-21882号公報
図3は、図2の降圧チョッパ回路のチョーク電流ILを示す波形図である。
図3の横軸は時間(t)、及び縦軸はチョークコイル15に流れるチョーク電流ILである。iL(ave.)はチョークコイル15のリプル電流平均値、iLminはリプル電流最低値、D1,D2はリプル電流iLの立ち上がり時間、Tsはスイッチ素子13のスイッチング周期(=1/fs、但し、fs;スイッチング周波数)である。
一般的に、チョークコイル15を有するスイッチングコンバータ(例えば、図2の降圧チョッパ回路等)は、入出力条件によって動作条件が変化する。
例えば、図2の降圧チョッパ回路において、入力条件として、入力電圧Viを上限値と下限値に設定する(図3参照)。
図3において、左側上段の波形(1)は、入力電圧Viが上限値であってチョークコイル15のインダクタンスLが大きい場合の電流波形、右側上段の波形(2)は、入力電圧Viが下限値であってインダクタンスLが大きい場合の電流波形、左側下段の波形(3)は、入力電圧Viが上限値であってインダクタンスLが小さい場合の電流波形、及び、右側下段の波形(4)は、入力電圧Viが下限値であってインダクタンスLが小さい場合の電流波形である。
図3の波形(2)に示すように、入力電圧Viが下限値の場合にチョークコイル15のインダクタンスLが大きいと、チョーク電流ILが負にならない。そこで、波形(4)に示すように、入力電圧Viが下限値の場合にインダクタンスLを小さくすると、全動作領域でチョーク電流ILが負になり、ゼロ・ボルト・スイッチング(以下「ZVS」という。)が可能になる。しかし、波形(3)に示すように、入力電圧Viが上限値であってインダクタンスLが小さい場合、リプル電流iLが全体的に増加するため、電力変換効率が低下する。
このように、降圧チョッパ回路は、入力条件によって動作条件が変化するため、全動作領域においてZVSを行うことが困難である。全mンえ動作領域でZVSを行うためには、ZVSのワース卜条件に対して、チョークコイル15のリプル電流iLを設定することになる。この場合、リプル電流iLを抑制するためには、チョークコイル15のインダクタンスLを小さくすることが有効である。しかし、チョークコイル15のインダクタンスLを過度に小さくすると、かえってリプル電流iLが大きくなる。リプル電流iLが大きくなると、電流実効値が増加し、電力変換効率が低下する。その上、その大きなリプル電流iLに比例して電力変換部10の主要部品を選定するため、平滑用の入出力コンデンサ12,16の数量が過度に増加してしまう、という課題がある。降圧チョッパ回路以外の他のスイッチングコンバータについても、同様の課題が生じる。
このような課題を解決するために、特許文献1の技術を適用することも考えられる。しかし、特許文献1の技術は、チョーク電流を検出し、電流境界モード制御により、スイッチング動作を行わせる構成であるので、複雑な制御となる。そのため、制御を複雑にすることなく、前記の課題を解決することが困難である。
本発明の制御装置は、駆動パルスでオン/オフ動作するスイッチ素子により、入力電圧をスイッチングして出力電圧を送出する電力変換部に対して、前記駆動パルスを供給するものであり、前記出力電圧の測定値と目標出力電圧値との誤差を減少するようなデューティ比を算出し、前記入力電圧の測定値と前記出力電圧の測定値とからスイッチング周波数を算出し、前記スイッチング周波数及び前記デューティ比に基づき、スイッチング周期を変えた前記駆動パルスを生成することを特徴とする。
本発明の電力変換装置は、前記制御装置と、前記駆動パルスでオン/オフ動作する前記スイッチ素子により、前記入力電圧をスイッチングして前記出力電圧を送出する前記電力変換部と、を備えることを特徴とする。
本発明によれば、スイッチング周波数を固定制御から可変制御の構成に変更しているので、スイッチング周波数を制御することで、全動作領域でチョーク電流のリプル分を一定に制御することができる。これにより、比較的簡単な制御で、チョーク電流のリプル分を低減でき、平滑用の入出力コンデンサを有する電力変換装置の場合には、その入出力コンデンサの数量を減少できる。
本発明の実施例1における電力変換装置(例えば、降圧チョッパ回路)の回路図 従来の電力変換装置(例えば、降圧チョッパ回路)の回路図 図2の降圧チョッパ回路のチョーク電流を示す波形図 図1の降圧チョッパ回路のチョーク電流を示す波形図 本発明の実施例2における電力変換装置(例えば、昇圧チョッパ回路)の回路図 本発明の実施例3における電力変換装置(例えば、昇降圧チョッパ回路)の回路図 本発明の実施例4における電力変換装置(例えば、フォワード式コンバータ)の回路図
本発明を実施するための形態は、以下の好ましい実施例の説明を添付図面と照らし合わせて読むと、明らかになるであろう。但し、図面はもっぱら解説のためのものであって、本発明の範囲を限定するものではない。
(実施例1の構成)
図1は、本発明の実施例1における電力変換装置の一つである非絶縁型スイッチングコンバータ(例えば、降圧チョッパ回路)の回路図である。
この降圧チョッパ回路は、電力変換部20と、この電力変換部20を制御する制御装置30と、を備えている。
電力変換部20は、直流電源21から供給される直流の入力電圧Viを降圧して、直流の出力電圧Vo及び出力電流Ioを送出するものであり、その入力電圧Viを平滑する入力コンデンサ22を有している。入力コンデンサ22の両電極には、スイッチ素子23と整流素子24のカソード及びアノードとが直列に接続されている。スイッチ素子23は、駆動パルスS30によりオン/オフ動作するMOS型電界効果トランジスタ(以下「MOSFET」という。)、絶縁ゲートバイポーラトランジスタ(以下「IGBT」という。)等の半導体素子により構成されている。又、整流素子24は、ダイオード、MOSFET、IGBT等により構成されている。
整流素子24のアノード及びカソードには、チョークコイル25と平滑用の出力コンデンサ26とが直列に接続されている。チョークコイル25には、変動するリプル電流iLを有するチョーク電流ILが流れる。出力コンデンサ26の両電極には、出力電圧Vo及び出力電流Ioを出力するための一対の出力端子27a,27bが接続され、その出力端子27a,27b間に、負荷28が接続される。
制御装置30は、駆動パルスS30を生成してスイッチ素子23のオン/オフ動作を制御するものである。この制御装置30は、出力電圧Voの測定値voと目標出力電圧値Vthとの誤差eを減少するようなデューティ比Dtを算出し、入力電圧Viの測定値viと出力電圧Voの測定値voとからスイッチング周波数fsを算出し、そのスイッチング周波数fs及びデューティ比Dtに基づき、スイッチング周期Tsを変えた駆動パルスS30を生成する機能を有している。
制御装置30は、例えば、出力電圧Voの測定値voと目標出力電圧値Vthとの誤差eを求める誤差部31を有し、この出力側に、補償部32が接続されている。補償部32は、フィードバック制御やフィードフォワード制御により、入力された誤差eを減少するようなデューティ比Dtを算出するものである。フィードバック制御には、例えば、比例積分(以下「PI」という。)制御、比例積分微分(以下「PID」という。)制御等がある。この補償部32の出力側には、駆動パルス生成部34が接続されている。又、駆動パルス生成部34の入力側には、スイッチング周波数演算部33が接続されている。
スイッチング周波数演算部33は、入力電圧Viの測定値viと出力電圧Voの測定値voとからスイッチング周波数fsを算出し、算出したスイッチング周波数fsを駆動パルス生成部34に与えるものである。このスイッチング周波数演算部33は、例えば、次式(2)に基づき、スイッチング周波数fsを算出する機能を有している。
fs=1/(L*ΔiL)*(vo*(vi-vo)/vi)・・・(2)
但し、ΔiL; チョークコイル25の目標リプル電流
L; チョークコイル25のインダクタンス
vi; 入力電圧Viの測定値
vo; 出力電圧Voの測定値
fs; スイッチング周波数
(1/fs;スイッチング周期Ts)
駆動パルス生成部34は、入力されたスイッチング周波数fs及びデューティ比Dtに基づき、スイッチング周期Tsを変えた駆動パルスS30を生成し、スイッチ素子23をオン/オフ動作させるものである。この駆動パルス生成部34は、例えば、パルス幅変調(以下「PWM」という。)制御方式により、スイッチング周波数fsとデューティ比Dtとを乗算し、この乗算結果を、トランジスタ等のドライバにより駆動して駆動パルスS30を生成する機能を有している。
このような制御装置30は、中央処理装置(CPU)を用いたデジタル・シグナル・プロセッサ(DSP)等のプロセッサや、半導体素子等の個別回路により構成されている。
(実施例1の動作)
図1の降圧チョッパ回路は、従来の図2の降圧チョッパ回路と同様に、制御装置30から供給される駆動パルスS30により、スイッチ素子23がオン状態になると、入力コンデンサ22の正極側→スイッチ素子23→チョークコイル25→出力コンデンサ26及び負荷28→入力コンデンサ22の負極側、の経路で電流が流れる。次に、駆動パルスS30により、スイッチ素子23がオフ状態になると、チョークコイル25の蓄積エネルギーにより、出力コンデンサ26及び負荷28→整流素子24→チョークコイル25、の経路で電流が流れる。
そのため、出力電圧Voは、前記式(1)のように、入力電圧Viよりも低い電圧になる。この出力電圧Voは、制御装置30の以下のような制御により、スイッチ素子23のオンデューティ比αが変化し、定電圧に維持される。
図示しない電圧測定器により、入力電圧Vi及び出力電圧Voが測定され、入力電圧Viの測定値viと出力電圧Voの測定値voとが制御装置30に与えられる。制御装置30内において、誤差部31は、出力電圧Voの測定値voと目標出力電圧値Vthとの誤差eを求め、この誤差eを補償部32に与える。補償部32は、PI制御、PID制御等のフィードバック制御や、フィードフォワード制御により、入力された誤差eを減少するようなデューティ比Dtを算出し、このデューティ比Dtを駆動パルス生成部34に与える。
又、スイッチング周波数演算部33は、入力電圧Viの測定値viと出力電圧Voの測定値voとから、前記式(2)に基づき、スイッチング周波数fsを算出し、このスイッチング周波数fsを駆動パルス生成部34に与える。駆動パルス生成部34は、入力されたスイッチング周波数fs及びデューティ比Dtに基づき、PWM制御方式により、スイッチング周波数fsとデューティ比Dtとを乗算し、この乗算結果をドライバにより駆動して駆動パルスS30を生成し、スイッチ素子23をオン/オフ動作させる。これにより、出力電圧Voが目標出力電圧値Vthに追随するような定電圧動作が行われる。
図4は、図1の降圧チョッパ回路のチョーク電流ILを示す波形図である。
図4の横軸は時間(t)、及び縦軸はチョークコイル25に流れるチョーク電流ILである。iL(ave.)はチョークコイル25のリプル電流平均値、iLminはリプル電流最低値、D1,D2はリプル電流iLの立ち上がり時間、Tsはスイッチ素子23のスイッチング周期(=1/fs、但し、fs;スイッチング周波数)である。
図1の降圧チョッパ回路は、従来の図2の降圧チョッパ回路と同様に、入力条件によって動作条件が変化する。
図1の降圧チョッパ回路の入力条件として、従来と同様に、例えば、入力電圧Viを上限値と下限値に設定する(図4参照)。
図4の左側の波形は、入力電圧Viが上限値の場合の電流波形、右側の波形は、入力電圧Viが下限値の場合の電流波形である。
図4に示すように、入力電圧Viが下限値の場合、スイッチング周波数fs(=1/Ts)が小さくなってスイッチング周期Tsが長くなり、リプル電流iLの立ち上がり時間D2が長くなる。これに対して、入力電圧Viが上限値の場合、スイッチング周波数fsが大きくなってスイッチング周期Tsが短くなり、リプル電流iLの立ち上がり時間D1が短くなる。入力電圧Viが下限値と上限値の何れの場合でも、全動作領域でチョーク電流ILは負になってZVSが可能になる。しかも、チョーク電流ILのリプル分(式(2)中の目標リプル電流ΔiL)が一定になっているので、電力変換効率が向上する。
(実施例1の効果)
本実施例1によれば、スイッチング周波数fsを固定制御から可変制御の構成に変更しているので、スイッチング周波数fsを制御することで、全動作領域でチョーク電流ILのリプル分(ΔiL)を一定に制御することができる。これにより、比較的簡単な制御で、チョーク電流ILのリプル分(ΔiL)を低減でき、更に、平滑用の入出力コンデンサ22,26の数量を減少できる。
(実施例2の構成)
図5は、本発明の実施例2における電力変換装置の一つである非絶縁型スイッチングコンバータ(例えば、昇圧チョッパ回路)の回路図である。この図5では、実施例1を示す図1中の要素と共通の要素には共通の符号が付されている。
この昇圧チョッパ回路は、電力変換部20Aと、この電力変換部20Aを制御する制御装置30Aと、を備えている。
電力変換部20Aは、直流電源21から供給される直流の入力電圧Viを昇圧して、直流の出力電圧Vo及び出力電流Ioを送出するものである。本実施例2の電力変換部20Aは、実施例1の電力変換部20に対して回路部品の接続状態が異なっている。
即ち、本実施例2の電力変換部20Aは、入力電圧Viを平滑する入力コンデンサ22を有し、この入力コンデンサ22の両電極に、チョークコイル25と、MOSFET、IGBT等のスイッチ素子23と、が直列に接続されている。スイッチ素子23の両電極には、ダイオード等の整流素子24のアノード及びカソードと、平滑用の出力コンデンサ26と、が直列に接続されている。出力コンデンサ26の両電極には、出力電圧Vo及び出力電流Ioを出力するための一対の出力端子27a,27bが接続され、この出力端子27a,27b間に、負荷28が接続される。
制御装置30Aは、駆動パルスS30Aを生成してスイッチ素子23のオン/オフ動作を制御するものである。本実施例2の制御装置30Aは、実施例1の制御装置30と略同様の構成であるが、スイッチング周波数演算部33Aの機能が、実施例1におけるスイッチング周波数演算部33の機能と異なっている。即ち、本実施例2のスイッチング周波数演算部33Aは、入力電圧Viの測定値viと出力電圧Voの測定値voとを入力し、例えば、次式(3)に基づいて、スイッチング周波数fsを算出する機能を有している。
fs=1/(L*ΔiL)*(vi*(vo-vi)/vo)・・・(3)
但し、ΔiL; チョークコイル25の目標リプル電流
L; チョークコイル25のインダクタンス
vi; 入力電圧Viの測定値
vo; 出力電圧Voの測定値
fs; スイッチング周波数
(1/fs;スイッチング周期Ts)
その他の構成は、実施例1と同様である。
(実施例2の動作)
図5の昇圧チョッパ回路は、制御装置30Aから供給される駆動パルスS30Aにより、スイッチ素子23がオン状態になると、入力コンデンサ22の正極側→チョークコイル25→スイッチ素子23→入力コンデンサ22の負極側、の経路で電流が流れる。次に、駆動パルスS30Aにより、スイッチ素子23がオフ状態になると、入力コンデンサ22の正極側→チョークコイル25→整流素子24→出力コンデンサ26及び負荷28→入力コンデンサ22の負極側、の経路で電流が流れる。そのため、入力電圧Viとチョークコイル25の蓄積エネルギーとが加算され、次式(4)のように、入力電圧Viが昇圧された出力電圧Voが出力端子27a,27bから出力される。
Vo=Vi*(1/(1-α))・・・(4)
但し、α;スイッチ素子23のオンデューティ比
出力電圧Voは、制御装置30Aの以下のような制御により、スイッチ素子23のオンデューティ比αが変化し、定電圧に維持される。
制御装置30Aは、実施例1の制御装置30と略同様の動作を行う。実施例1と異なる点は、スイッチング周波数演算部33Aが、入力電圧Viの測定値viと出力電圧Voの測定値voとから、前記式(3)に基づき、スイッチング周波数fsを算出する。このスイッチング周波数fsと、実施例1と同様に求められたデューティ比Dtと、に基づいて駆動パルスS30Aが生成され、スイッチ素子23がオン/オフ動作する。これにより、出力電圧Voが目標出力電圧値Vthに追随するような定電圧動作が行われる。
本実施例2の昇圧チョッパ回路は、実施例1の降圧チョッパ回路と同様に、入力条件によって動作条件が変化する。そのため、実施例1と略同様に、入力電圧Viが変化した場合、全動作領域でZVSが可能になり、しかも、チョーク電流ILのリプル分(式(3)中の目標リプル電流ΔiL)が一定になるので、電力変換効率が向上する。
(実施例2の効果)
本実施例2によれば、実施例1と同様に、スイッチング周波数fsを固定制御から可変制御の構成に変更しているので、スイッチング周波数fsを制御することで、全動作領域でチョーク電流ILのリプル分(ΔiL)を一定に制御することができる。これにより、チョーク電流ILのリプル分(ΔiL)を低減でき、更に、平滑用の入出力コンデンサ22,26の数量を減少できる。
(実施例3の構成)
図6は、本発明の実施例3における電力変換装置の一つである非絶縁型スイッチングコンバータ(例えば、昇降圧チョッパ回路)の回路図である。この図6では、実施例1を示す図1中の要素と共通の要素には共通の符号が付されている。
この昇降圧チョッパ回路は、電力変換部20Bと、この電力変換部20Bを制御する制御装置30Bと、を備えている。
電力変換部20Bは、直流電源21から供給される直流の入力電圧Viを昇降圧して、直流の出力電圧Vo及び出力電流Ioを送出するものである。本実施例3の電力変換部20Bは、実施例1の電力変換部20に対して回路部品の接続状態が異なっている。
即ち、本実施例3の電力変換部20Bは、入力電圧Viを平滑する入力コンデンサ22を有し、この入力コンデンサ22の両電極に、MOSFET、IGBT等のスイッチ素子23と、チョークコイル25と、が直列に接続されている。チョークコイル25の両電極には、ダイオード等の整流素子24のカソード及びアノードと、平滑用の出力コンデンサ26と、が直列に接続されている。出力コンデンサ26の両電極には、出力電圧Vo及び出力電流Ioを出力するための一対の出力端子27a,27bが接続され、その出力端子27a,27b間に、負荷28が接続される。
制御装置30Bは、駆動パルスS30Bを生成してスイッチ素子23のオン/オフ動作を制御するものである。本実施例3の制御装置30Bは、実施例1の制御装置30と略同様の構成であるが、スイッチング周波数演算部33Bの機能が、実施例1におけるスイッチング周波数演算部33の機能と異なっている。即ち、本実施例3のスイッチング周波数演算部33Bは、入力電圧Viの測定値viと出力電圧Voの測定値voとを入力し、例えば、次式(5)に基づいて、スイッチング周波数fsを算出する機能を有している。
fs=1/(L*ΔiL)*(vo*Vi/(Vi+vo))・・・(5)
但し、ΔiL; チョークコイル25の目標リプル電流
L; チョークコイル25のインダクタンス
vi; 入力電圧Viの測定値
vo; 出力電圧Voの測定値
fs; スイッチング周波数
(1/fs;スイッチング周期Ts)
その他の構成は、実施例1と同様である。
(実施例3の動作)
図6の昇降圧チョッパ回路は、制御装置30Bから供給される駆動パルスS30Bにより、スイッチ素子23がオン状態になると、入力コンデンサ22の正極側→スイッチ素子23→チョークコイル25→入力コンデンサ22の負極側、の経路で電流が流れる。次に、駆動パルスS30Bにより、スイッチ素子23がオフ状態になると、チョークコイル26の蓄積エネルギーにより、出力コンデンサ26及び負荷28→整流素子24→チョークコイル25、の経路で電流が流れる。
そのため、次式(6)で表わされる出力電圧Voが、出力端子27a,27bから出力される。
Vo=Vi*(α/(1-α))・・・(6)
但し、α;スイッチ素子23のオンデューティ比
ここで、オンデューティα(=0.5)の場合、出力電圧Voは入力電圧Viと同一の電圧(Vo=Vi)、オンデューティα(>0.5)の場合、出力電圧Voは入力電圧Viが昇圧された電圧(Vo>Vi)、オンデューティα(<0.5)の場合、出力電圧Voは入力電圧Viが降圧された電圧(Vo<Vi)となる。
出力電圧Voは、制御装置30Bの以下のような制御により、スイッチ素子23のオンデューティ比αが変化し、定電圧に維持される。
制御装置30Bは、実施例1の制御装置30と略同様の動作を行う。実施例1と異なる点は、スイッチング周波数演算部33Bが、入力電圧Viの測定値viと出力電圧Voの測定値voとから、前記式(5)に基づき、スイッチング周波数fsを算出する。このスイッチング周波数fsと、実施例1と同様に求められたデューティ比Dtと、に基づいて駆動パルスS30Bが生成され、スイッチ素子23がオン/オフ動作する。これにより、出力電圧Voが目標出力電圧値Vthに追随するような定電圧動作が行われる。
本実施例3の昇降圧チョッパ回路は、実施例1の降圧チョッパ回路と同様に、入力条件によって動作条件が変化する。そのため、実施例1と略同様に、入力電圧Viが変化した場合、全動作領域でZVSが可能になり、しかも、チョーク電流ILのリプル分(式(5)中の目標リプル電流ΔiL)が一定になるので、電力変換効率が向上する。
(実施例3の効果)
本実施例3によれば、実施例1と同様に、スイッチング周波数fsを固定制御から可変制御の構成に変更しているので、スイッチング周波数fsを制御することで、全動作領域でチョーク電流ILのリプル分(ΔiL)を一定に制御することができる。これにより、チョーク電流ILのリプル分(ΔiL)を低減でき、更に、平滑用の入出力コンデンサ22,26の数量を減少できる。
(実施例4の構成)
図7は、本発明の実施例4における電力変換装置の一つである絶縁型スイッチングコンバータ(例えば、フォワード式コンバータ)の回路図である。この図7では、実施例1を示す図1中の要素と共通の要素には共通の符号が付されている。
このフォワード式コンバータは、電力変換部20Cと、この電力変換部20Cを制御する制御装置30Cと、を備えている。
電力変換部20Cは、直流電源21から供給される直流の入力電圧Viを、他の直流の出力電圧Voに変換し、その直流の出力電圧Vo及び出力電流Ioを送出するものである。本実施例4の電力変換部20Cは、実施例1の電力変換部20に対して回路部品と接続状態が異なっている。
即ち、本実施例4の電力変換部20Cは、入力電圧Viを平滑する入力コンデンサ22を有し、この入力コンデンサ22の両電極に、変圧器29の1次巻線29aの巻き始め(図7中の黒丸側)及び巻き終わりと、MOSFET、IGBT等のスイッチ素子23と、が直列に接続されている。変圧器29の2次巻線29bにおける巻き始め(図7中の黒丸側)と巻き終わりには、ダイオード等の整流素子24aのアノード及びカソードと、ダイオード等の整流素子24bのカソード及びアノードと、が直列に接続されている。整流素子24bのカソード及びアノードには、チョークコイル25と出力コンデンサ26とが直列に接続されている。出力コンデンサ26の両電極には、出力電圧Vo及び出力電流Ioを出力するための一対の出力端子27a,27bが接続され、その出力端子27a,27b間に、負荷28が接続される。
制御装置30Cは、駆動パルスS30Cを生成してスイッチ素子23のオン/オフ動作を制御するものである。この制御装置30Cは、例えば、実施例1の図1に示す制御装置30と同様に、出力電圧Voの測定値voと目標出力電圧値Vthとの誤差eを減少するようなデューティ比Dtを算出し、入力電圧Viの測定値viと出力電圧Voの測定値voとからスイッチング周波数fsを算出し、そのスイッチング周波数fs及びデューティ比Dtに基づき、スイッチング周期Tsを変えた駆動パルスS30Cを生成する機能を有している。
制御装置30Cは、例えば、実施例1の図1に示す制御装置30と同様に、誤差部、補償部、スイッチング周波数演算部、及び駆動パルス生成部により構成されている。
(実施例4の動作)
図7のフォワード式コンバータは、制御装置30Cから供給される駆動パルスS30Cにより、スイッチ素子23がオン状態になると、入力コンデンサ22の正極側→変圧器29の1次巻線29a→スイッチ素子23→入力コンデンサ22の負極側、の経路で電流が流れる。すると、変圧器29の2次巻線29bにおける巻き終わりから巻き始め方向に誘導電流が流れる。この誘導電流は、整流素子24a→チョークコイル25→出力コンデンサ26及び負荷28、の経路で流れる。この時、チョークコイル25にエネルギーが蓄積される。
次に、駆動パルスS30Cにより、スイッチ素子23がオフ状態になると、チョークコイル25の蓄積エネルギー→出力コンデンサ26及び負荷28→整流素子24b→チョークコイル25、の経路で電流が流れる。
そのため、所定の数式で表わされる出力電圧Voが、出力端子27a,27bから出力される。実施例1の制御装置30と略同様に、出力電圧Voは、制御装置30Cの動作により、スイッチ素子23のオンデューティ比αが変化し、定電圧に維持される。
本実施例4のフォワード式コンバータは、実施例1の降圧チョッパ回路と略同様に、入力条件によって動作条件が変化する。そのため、実施例1と略同様に、入力電圧Viが変化した場合、全動作領域でZVSが可能になり、しかも、チョーク電流ILのリプル分(目標リプル電流ΔiL)が一定になるので、電力変換効率が向上する。
(実施例4の効果)
本実施例4によれば、実施例1と同様に、スイッチング周波数fsを固定制御から可変制御の構成に変更しているので、スイッチング周波数fsを制御することで、全動作領域でチョーク電流ILのリプル分(ΔiL)を一定に制御することができる。これにより、チョーク電流ILのリプル分(ΔiL)を低減でき、更に、平滑用の入出力コンデンサ22,26の数量を減少できる。
(実施例1~4の変形例)
本発明は、上記実施例1~4に限定されず、種々の利用形態や変形が可能である。この利用形態や変形例としては、例えば、次の(a),(b)のようなものがある。
(a) 本発明の電力変換装置は、図7のフォワード式コンバータ以外の他の絶縁型スイッチングコンバータ(例えば、フライバック式コンバータ、フルブリッジ型コンバータ、ハーフブリッジ型コンバータ等)にも適用が可能である。
(b) 前記(a)の場合、絶縁型スイッチングコンバータの電力変換部を制御する制御装置の構成は、その電力変換部に対応するように変更すれば良い。
20,20A,20B,20C 電力変換部
23 スイッチ素子
30,30A,30B,30C 制御装置
31 誤差部
32 補償部
33,33B,33A スイッチング周波数演算部
34 駆動パルス生成部

Claims (7)

  1. 駆動パルスでオン/オフ動作するスイッチ素子により、入力電圧をスイッチングして出力電圧を送出する電力変換部に対して、前記駆動パルスを供給する制御装置であって、
    前記出力電圧の測定値と目標出力電圧値との誤差を減少するようなデューティ比を算出し、前記入力電圧の測定値と前記出力電圧の測定値とからスイッチング周波数を算出し、前記スイッチング周波数及び前記デューティ比に基づき、スイッチング周期を変えた前記駆動パルスを生成する、
    ことを特徴とする制御装置。
  2. 前記制御装置は、
    前記誤差を求める誤差部と、
    前記デューティ比を算出する補償部と、
    前記スイッチング周波数を算出するスイッチング周波数演算部と、
    前記駆動パルスを生成する駆動パルス生成部と、
    を有することを特徴とする請求項1記載の制御装置。
  3. 前記補償部は、
    フィードバック制御又はフィードフォワード制御により、前記デューティ比を算出する、
    ことを特徴とする請求項2記載の制御装置。
  4. 前記駆動パルス生成部は、
    前記スイッチング周波数と前記デューティ比とを乗算し、前記乗算の結果より前記駆動パルスを生成する、
    ことを特徴とする請求項2又は3記載の制御装置。
  5. 請求項1~4のいずれか1項記載の制御装置と、
    前記駆動パルスでオン/オフ動作する前記スイッチ素子により、前記入力電圧をスイッチングして前記出力電圧を送出する前記電力変換部と、
    を備えることを特徴とする電力変換装置。
  6. 前記電力変換部は、
    降圧チョッパ回路、昇圧チョッパ回路、及び昇降圧チョッパ回路を含む非絶縁型スイッチングコンバータである、
    ことを特徴とする請求項5記載の電力変換装置。
  7. 前記電力変換部は、
    フォワード式コンバータ、フライバック式コンバータ、フルブリッジ型コンバータ、及びハーフブリッジ型コンバータを含む絶縁型スイッチングコンバータである、
    ことを特徴とする請求項5記載の電力変換装置。
JP2020049911A 2020-03-19 2020-03-19 制御装置及びそれを有する電力変換装置 Active JP7355686B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020049911A JP7355686B2 (ja) 2020-03-19 2020-03-19 制御装置及びそれを有する電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020049911A JP7355686B2 (ja) 2020-03-19 2020-03-19 制御装置及びそれを有する電力変換装置

Publications (2)

Publication Number Publication Date
JP2021151121A JP2021151121A (ja) 2021-09-27
JP7355686B2 true JP7355686B2 (ja) 2023-10-03

Family

ID=77849759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020049911A Active JP7355686B2 (ja) 2020-03-19 2020-03-19 制御装置及びそれを有する電力変換装置

Country Status (1)

Country Link
JP (1) JP7355686B2 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012164981A1 (ja) 2011-06-02 2012-12-06 富士電機株式会社 スイッチング電源装置
JP2018129907A (ja) 2017-02-07 2018-08-16 ローム株式会社 Dc/dcコンバータおよびその制御回路、制御方法、車載電装機器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6331065B2 (ja) * 2013-09-19 2018-05-30 カシオ計算機株式会社 電源装置及びその制御方法並びに光源装置
US10389245B2 (en) * 2015-09-16 2019-08-20 Mitsubishi Electric Corporation Electric power converter and driving apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012164981A1 (ja) 2011-06-02 2012-12-06 富士電機株式会社 スイッチング電源装置
JP2018129907A (ja) 2017-02-07 2018-08-16 ローム株式会社 Dc/dcコンバータおよびその制御回路、制御方法、車載電装機器

Also Published As

Publication number Publication date
JP2021151121A (ja) 2021-09-27

Similar Documents

Publication Publication Date Title
US9450496B2 (en) Multi-stage power converters and methods for varying a regulated voltage of one stage as a function of an output current of another stage
US9800138B2 (en) Power factor correction circuit
US9143043B2 (en) Multi-mode operation and control of a resonant converter
JP5136364B2 (ja) 力率改善回路の制御方式
US9488995B2 (en) Voltage converter and voltage conversion method having multiple converter stages
US20140211515A1 (en) Dc-dc converter and power supply device having dc-dc converter
US8193790B2 (en) Switching power converter and controller
US9160238B2 (en) Power converter with current feedback loop
EP2545638B1 (en) Switching power supply circuit and control method therefor
US10050530B2 (en) Method and apparatus for control adaptation in resonant-tapped inductor converters
JP4807142B2 (ja) Dc/dcコンバータ
JP2020080625A (ja) 電源装置
US11953971B2 (en) Method for extending hold-up time
JP4466089B2 (ja) 力率改善回路
JP5538481B2 (ja) 電力変換装置、モーター駆動制御装置、送風機、圧縮機および冷凍空気調和装置
JP2019187004A (ja) スイッチング電源装置
JP2011083049A (ja) 電圧変換装置
JP7355686B2 (ja) 制御装置及びそれを有する電力変換装置
JP4473041B2 (ja) 直流電源装置
KR101609726B1 (ko) 고역률 스위칭 정류기의 제어회로
WO2018221031A1 (ja) スイッチング電源装置
JP3874291B2 (ja) 電源装置
JP2009219329A (ja) リニアモータ駆動用スイッチング電源
JP2010226909A (ja) 電源装置
JP5194666B2 (ja) 電源装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230302

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230921

R150 Certificate of patent or registration of utility model

Ref document number: 7355686

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150