JP6410127B2 - 電解液循環型電池、熱交換器、及び配管 - Google Patents

電解液循環型電池、熱交換器、及び配管 Download PDF

Info

Publication number
JP6410127B2
JP6410127B2 JP2014048171A JP2014048171A JP6410127B2 JP 6410127 B2 JP6410127 B2 JP 6410127B2 JP 2014048171 A JP2014048171 A JP 2014048171A JP 2014048171 A JP2014048171 A JP 2014048171A JP 6410127 B2 JP6410127 B2 JP 6410127B2
Authority
JP
Japan
Prior art keywords
electrolyte
heat exchanger
main body
path
barrier layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014048171A
Other languages
English (en)
Other versions
JP2015173038A (ja
Inventor
淳夫 池内
淳夫 池内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2014048171A priority Critical patent/JP6410127B2/ja
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to ES14885479T priority patent/ES2714510T3/es
Priority to KR1020167022039A priority patent/KR102325922B1/ko
Priority to US15/119,445 priority patent/US10249891B2/en
Priority to PCT/JP2014/078285 priority patent/WO2015136763A1/ja
Priority to AU2014385962A priority patent/AU2014385962B2/en
Priority to CN201480076885.1A priority patent/CN106104890B/zh
Priority to EP14885479.7A priority patent/EP3118923B1/en
Priority to TW103137612A priority patent/TWI620363B/zh
Publication of JP2015173038A publication Critical patent/JP2015173038A/ja
Application granted granted Critical
Publication of JP6410127B2 publication Critical patent/JP6410127B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/20Indirect fuel cells, e.g. fuel cells with redox couple being irreversible
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel Cell (AREA)

Description

本発明は、レドックスフロー電池などの電解液循環型電池、電解液循環型電池の電解液など腐食性液体を冷却する熱交換器、及び腐食性液体の流路に用いられる配管に関する。特に、電解液を酸化させ難く、電解液を冷却し易い電解液循環型電池に関する。
太陽光発電や風力発電といった自然エネルギー由来の電力を蓄電する大容量の蓄電池の一つにレドックスフロー電池(RF電池)などの電解液循環型電池がある。RF電池は、正極電解液に含まれるイオンと負極電解液に含まれるイオンの酸化還元電位の差を利用して充放電を行う電池である。RF電池として、例えば、特許文献1に示すものがある。
図4のRF電池の動作原理図に示すように、特許文献1のRF電池1は、水素イオンを透過させる隔膜101で正極セル102と負極セル103とに分離された電池セル100を備える。正極セル102には正極電極104が内蔵され、かつ正極電解液を貯留する正極電解液タンク106が供給流路108及び排出流路110を有する循環路を介して接続されている。同様に、負極セル103には負極電極105が内蔵され、かつ負極電解液を貯留する負極電解液タンク107が供給流路109及び排出流路111を有する循環路を介して接続されている。
各タンク106、107内の電解液は、各供給流路108、109の途中に設けられたポンプ112、113により各供給流路108、109から各セル102、103に供給され、各セル102、103から各排出流路110、111を流通して各タンク106、107に排出されることで各セル102、103に循環される。電解液には、代表的に、酸化還元反応により価数が変化するバナジウムイオンといった金属イオンを含有する水溶液が利用される。各流路108〜111は、電解液が直接接触することから、電解液と反応せず、電解液に対する耐性に優れる材料、ポリ塩化ビニル(PVC)などの樹脂の導管で構成されている。図4において、実線矢印は充電、破線矢印は放電を意味する。
RF電池1では、電池反応に伴い電解液が発熱する。この発熱により、電池効率が低下したり、電解液に接する各流路108〜111の構成樹脂が軟化するなどの劣化が生じたりし得る。この対策として、RF電池1は、冷却装置114、115が各排出流路110、111の途中に設けられる。冷却装置114、115は、一般に循環路の一部に構成される冷却領域を有する熱交換器(図示略)と、熱交換器内の電解液を強制冷却する強制冷却機構(図示略)とを備える。
上記熱交換器の流路は、各流路108〜111と同様、PVCなどの樹脂の導管で構成され、その入口から出口に亘って蛇行するように設けられている。電解液は、熱交換器(導管)の入口から出口に亘る過程で熱が奪われて冷却される。冷却には、上記導管を冷却水で冷却する水冷式や、上記導管に強制的に送風を行う空冷式が利用されている。上記熱交換器の流路は、上述のように蛇行する他、例えば、入口から出口に亘る過程で複数の直線状に枝分かれするように設けられたりすることもある。
特開2013−206566号公報
各流路108〜111や熱交換器の流路を構成する導管の構成樹脂であるPVCは、放熱性が悪く電解液を冷却させ難い。導管の厚さを薄くすれば放熱性を高められるが、酸素を透過させ易くなる。導管内に酸素が侵入することで、その酸素により電解液が酸化されてしまい、電解液の有効量が減少することがある。その結果、電池の放電容量の低下や電池効率の低下などが生じることがある。
本発明は、上記事情に鑑みてなされたもので、その目的の一つは、電解液を酸化させ難く、電解液を冷却し易い電解液循環型電池を提供することにある。
本発明の別の目的は、内部を流通する腐食性液体を酸化させ難く、腐食性液体を冷却し易い熱交換器を提供することにある。
本発明の他の目的は、内部を流通する腐食性液体を酸化させ難く、腐食性液体を冷却するのに好適な配管を提供することにある。
本発明の一態様に係る電解液循環型電池は、電池セルと、電池セルに電解液を循環する循環路とを備える。循環路が、樹脂で構成される管状の本体部と、本体部の外周に形成され、本体部よりも酸素透過率の低い有機材料で構成される酸素遮断層とを有する複合導管を備える。
本発明の一態様に係る熱交換器は、腐食性液体が流通する流路を備え、流路の少なくとも一部に腐食性液体を冷却する冷却領域を備える。冷却領域は、樹脂で構成される管状の本体部と、本体部の外周に形成され、本体部よりも酸素透過率の低い有機材料で構成される酸素遮断層とを有する複合導管を備える。
本発明の一態様に係る配管は、腐食性液体が内部に流通する。配管は、樹脂で構成される管状の本体部と、本体部の外周に形成され、本体部よりも酸素透過率の低い有機材料で構成される酸素遮断層とを備える。
上記電解液循環型電池は、電解液を酸化させ難く、電解液を冷却し易い。
上記熱交換器は、内部を流通する腐食性液体を酸化させ難く、腐食性液体を冷却し易い。
上記配管は、内部を流通する腐食性液体を酸化させ難く、腐食性液体を冷却するのに好適である。
実施形態1に係るレドックスフロー電池に備わる複合導管を示す断面図である。 実施形態1に係るレドックスフロー電池に備わる熱交換器を示す概略図である。 実施形態1に係るレドックスフロー電池に備わるセルスタックの概略構成図である。 レドックスフロー電池の動作原理図である。
《本発明の実施形態の説明》
最初に本発明の実施態様の内容を列記して説明する。
(1)本発明の一態様に係る電解液循環型電池は、電池セルと、電池セルに電解液を循環する循環路とを備える。循環路が、樹脂で構成される管状の本体部と、本体部の外周に形成され、本体部よりも酸素透過率の低い有機材料で構成される酸素遮断層とを有する複合導管を備える。
上記の構成によれば、電解液を酸化させ難い。酸素遮断層を備えて酸素を侵入させ難くすることで、電解液が酸素と触れることを抑制できるからである。
また、上記電解液を冷却し易い。本体部の厚みを薄くするほど放熱性を高められるものの酸素が浸入し易くなるが、酸素遮断層を備えて酸素を本体部内に侵入させ難くできることで本体部の厚さを薄くできるからである。
(2)上記電解液循環型電池の一形態として、循環路の途中に設けられる熱交換器を備えることが挙げられる。この場合、熱交換器は、循環路の一部を形成して循環路内の電解液を冷却する冷却領域を有する。そして、冷却領域が、前記複合導管で構成されている。
上記の構成によれば、熱交換器において、電解液を冷却する冷却領域を上述の複合導管で構成することで、電解液を酸化させることなく良好に冷却できる。
(3)上記電解液循環型電池の一形態として、本体部が、ポリエチレン樹脂で構成され、酸素遮断層が、エチレン‐ビニルアルコール共重合樹脂で構成されることが挙げられる。
上記の構成によれば、本体部を熱伝導率が高いポリエチレン樹脂で構成することで電解液を良好に冷却できる。また、ポリエチレン樹脂は加工性に優れるため、所望の形状に加工し易い。ポリエチレン樹脂は酸素透過率が高くて酸素を侵入させ易いが、酸素遮断層を酸素透過率の低いエチレン‐ビニルアルコール共重合樹脂で構成することで本体部内部への酸素の侵入を抑制できる。
(4)上記電解液循環型電池の一形態として、本体部の厚みが、1mm以下であることが挙げられる。
上記の構成によれば、酸素遮断層を備えることで本体部の厚みを1mm以下にできる。本体部の厚みを1mm以下とすることで、放熱性を高められて電解液を良好に冷却できる。
(5)上記電解液循環型電池の一形態として、循環路は、複数の前記複合導管と、複合導管同士を連結する連結部とを備えることが挙げられる。この場合、連結部は、前記複合導管同士を融着して形成される。
上記の構成によれば、複数の複合導管同士を融着して連結するため、接着剤で連結する場合に比べて複合導管同士の接合強度を高められる。また、接着剤を不要にできる上に、接着剤の使用に伴う作業の煩雑さを解消できる。更に、融着することで連結部の密封性を高められ、電解液が連結部から漏洩し難くできる。
(6)上記電解液循環型電池の一形態として、熱交換器を空冷するファンを備えることが挙げられる。
上記の構成によれば、電解液を良好に冷却できる。また、熱交換器を水冷する場合に比べて構成を簡略化できる。熱交換器に冷却水を供給(循環)するポンプや冷却水を冷却する冷却機などの部材が不要だからである。
(7)本発明の一態様に係る熱交換器は、腐食性液体が流通する流路を備え、流路の少なくとも一部に設けられて腐食性液体を冷却する冷却領域を備える。冷却領域は、樹脂で構成される管状の本体部と、本体部の外周に形成され、本体部よりも酸素透過率の低い有機材料で構成される酸素遮断層とを有する複合導管を備える。
上記の構成によれば、熱交換器の冷却領域が上述の複合導管を備えることで、内部を流通する腐食性液体を酸化させ難く、腐食性液体を冷却し易い。ここでは、腐食性液体は、化学反応、電池反応、或いは通電によるジュール熱などによって発熱する液体であり、流通中に放熱が必要な液体である。
(8)本発明の一態様に係る配管は、腐食性液体が内部に流通する。配管は、樹脂で構成される管状の本体部と、本体部の外周に形成され、本体部よりも酸素透過率の低い有機材料で構成される酸素遮断層とを備える。
上記の構成によれば、配管が酸素遮断層を備えることで内部を流通する腐食性液体を酸化させ難い。また、配管が酸素遮断層を備えることで本体部の厚みを薄くできるので、腐食性液体を冷却するのに好適である。
《本発明の実施形態の詳細》
本発明の実施形態の詳細を、以下に図面を参照しつつ説明する。なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。ここでは、電解液循環型電池としてレドックスフロー電池(RF電池)を例に説明する。
〔実施形態1〕
実施形態に係るRF電池は、図4を用いて説明した従来のRF電池と同様、電池セル100と、正極セル102にタンク106内の正極電解液を循環させる循環路(供給流路108、排出流路110)と、負極セル103にタンク107内の負極電解液を循環させる循環路(供給流路109、排出流路111)とを備える。各極電解液の循環は、各循環路の途中に設けたポンプ112,113により行う。実施形態に係るRF電池の主たる特徴とするところは、循環路が、特定の構造・材質の複合導管を備える点にある。即ち、実施形態1に係るRF電池は、循環路の構成が従来のRF電池とは異なるため、以下の実施形態ではその循環路の構成を中心に説明する。本形態では、循環路の途中に設けられて循環路の一部を構成する冷却領域を有する熱交換器を含む冷却装置を備え、熱交換器の冷却領域を上記複合導管で構成する。以下、まず複合導管の構成、その複合導管を備える熱交換器(冷却装置)の構成の順に説明し、その後、その他の構成を説明する。従来と同様の構成については、図4と同一符号を付してその説明を省略する。
[複合導管]
図1に示す複合導管10は、内部に後述する電解液が流通する。複合導管10は、樹脂で構成される管状の本体部11と、本体部11の外周に形成され、本体部11よりも酸素透過率の低い有機材料で構成される酸素遮断層12とを備える多層構造である。
(本体部)
本体部11は、内部に電解液が流通する流路を形成する。本体部11の構成樹脂は、電解液と反応せず、電解液に対する耐性に優れる樹脂が挙げられる。具体的な樹脂は、ポリ塩化ビニル(PVC)、ポリプロピレン(PP)、ポリエチレン(PE)、及びポリテトラフルオロエチレン(PTFE)などが挙げられ、中でもPEが好適に利用できる。通常、PE樹脂は従来一般的に使用されたPVC樹脂に比べて酸素透過率が高く内部に酸素を侵入させ易いが、後述する酸素遮断層12を備えることで本体部11の構成材料にPE樹脂を用いることができる。PE樹脂は、上述したその他の樹脂に比べて熱伝導率が高いため電解液を冷却し易い。また、曲げなどの加工性に優れるため、例えば、循環路の一部である熱交換器の長さ(以下、強制冷却長ということがある)を長くするために本体部11を蛇行させる場合、PVC樹脂に比べて全体のサイズを小さくできる。更に、PE樹脂は融着できるので、例えば、複合導管10同士の接合を融着することで行え、接着剤を不要にできる上に、接着剤の使用に伴う作業の煩雑さを解消できる。ここでは、本体部11はPE樹脂で構成している。
本体部11の形状は上述のように管状であり、その断面形状は円形、楕円、矩形などの多角形などが挙げられる。断面形状が円形や楕円であれば、多角形に比べて電解液の流通時の圧力損失を小さくできる。特に断面形状が円形であれば、電解液を均等に冷却し易い。ここでは、本体部11の断面形状は、円形である。
本体部11の厚みは、薄いほど電解液の冷却性能を高められることから薄いほど好ましい。従来のようなPVC樹脂で構成される導管は、薄くすることで酸素が浸入し易くなるため薄くすることが困難であり、RF電池の熱交換器を構成する場合、2mm以上の厚みが必要である。対して本形態の複合導管10によれば、後述の酸素遮断層12を備えることで本体部11内への酸素の侵入を抑制できるため本体部11の厚みを薄くできる。具体的には、本体部11の厚みを1mm以下とすることができ、更に、0.7mm以下とすることができる。本体部の厚みは0.5mm以上とすることが好ましい。そうすれば、本体部11の機械的強度に優れる。特に、本体部11厚みは、複合導管10の厚みが1mm以下、更には0.7mm以下となるように酸素遮断層12の厚みとの兼ね合いで適宜選択するとよい。
(酸素遮断層)
酸素遮断層12は、外部から本体部11内への酸素の侵入を抑制する。酸素遮断層12は、本体部11の全長に亘ってその外周を覆う。酸素遮断層12の形状は、本体部11の外面形状に応じた形状であり、例えば、本体部11が円筒管の場合、酸素遮断層12の形状も円筒状である。
酸素遮断層12の材質は、上述のように本体部11よりも酸素透過率の低い有機材料が挙げられる。酸素遮断層12を酸素透過率の低い有機材料で構成することで、本体部11内への酸素の侵入を抑制できる上に、本体部11の厚さを薄くできて電解液の冷却性能を高められる。具体的には、エチレン‐ビニルアルコール共重合樹脂(エチレン‐酢酸ビニルランダム共重合体けん化物)、ポリ塩化ビニリデン樹脂、ポリビニルアルコール樹脂、ナイロン6などが挙げられる。
酸素遮断層12の厚みは、20μm以上500μm以下とすることが好ましい。酸素遮断層12の厚みを20μm以上とすることで、酸素の侵入を良好に抑制できる。酸素遮断層12の厚みを500μm以下とすることで、厚くなりすぎず電解液を効率的に冷却できる。
複合導管10の製造は、例えば、以下の(1)〜(3)の方法で行える。(1)押出成形した本体部11の外周に酸素遮断層12のフィルムやシートを接着剤で貼り付ける。(2)押出成形した本体部11に酸素遮断層12を押出被覆する。(3)本体部11と酸素遮断層12とを同時押出成形し、本体部11の成形と同時に本体部11の外周に酸素遮断層12を形成する。上記(2)や(3)の方法によれば、本体部11と酸素遮断層12との接合性を高められる。加えて、フィルムやシートを張り合わせる際に形成される継ぎ目が形成されないため、本体部11の外周全周に亘って隙間なく酸素遮断層12を形成できて、電解液の酸化をより一層抑制できる。特に、上記(3)の方法によれば、本体部11と酸素遮断層12とを同時に成形できるため複合導管10の生産性を高められる。
[冷却装置]
図2、4に示す冷却装置20、21は、各極電解液の熱を奪うことでその電解液を冷却する。冷却装置20、21は、各極の循環路の途中に設けられて循環路の一部を構成する冷却領域を有する熱交換器30と、熱交換器30を強制冷却する強制冷却機構とを備える。本形態では、上述したように熱交換器30を上述の複合導管10で構成する。
(熱交換器)
熱交換器30は、循環路内の電解液が冷却される。ここでの冷却は、自然放冷による冷却でもよいが、後述する強制冷却機構による強制冷却とすることで、電解液を良好に冷却できる。熱交換器30の設置箇所は、供給流路108、109の途中、又は排出流路110、111の途中のいずれでもよいが、排出流路110、111の途中とすることが好ましい。各極電解液は、電池反応に伴い発熱する。そのため、熱交換器30の設置箇所を排出流路110、111の途中とすることで、電解液を良好に冷却できる。ここでは、熱交換器30の設置箇所を排出流路110、111の途中としている。
熱交換器30の入口(図2では流入路31)は、排出流路110、111(図4)のうち上流側排出流路110u、111uに接続され、熱交換器30の出口(図2では流出路35)は、下流側排出流路110d、111dに接続される。各極セル102、103から排出された電解液は、上流側排出流路110u、111uから熱交換器30の入口を介して熱交換器30内に流通され、熱交換器30の入口から出口に亘る過程で電解液の熱が奪われる。熱が奪われた電解液は、熱交換器30の出口から下流側排出流路110d、111dを介して各極タンク106、107に排出される。
熱交換器30の入口から出口に亘る流路は、連続する1本の流路で構成したり、複数の流路で構成したりすることができる。連続する1本の流路とする場合、流路を蛇行させることが好ましい。そうすれば、同じ流路断面積で同じ流路長とする場合、流路を直線状とする場合に比べて熱交換器30のサイズ、ひいては冷却装置20、21のサイズを小型化できる。また、熱交換器30を同じサイズとする場合、直線状の流路に比べて流路を構成する複合導管10の表面積を大きく(強制冷却長を長く)できて電解液を所望の温度に冷却し易い。複数の流路とする場合、各流路を直線状としてもよいし、蛇行させてもよい。連続する1本の流路と同じ流路断面積で同じ流路長とする場合、複数の流路で構成することで、各流路断面積(径)を小さくできるので、各流路を構成する複合導管10の合計表面積を大きくできる。また、各流路断面積(径)を小さくできることで、流路の中心部分まで冷却させ易い。
ここでは、熱交換器30の入口から出口に亘る流路を、複数の流路で構成する。具体的には、熱交換器30は、電解液を熱交換器30(冷却装置20,21)内に流入させる流入路31及び電解液を熱交換器30(冷却装置20、21)外へ流出させる流出路35と、流入路31と流出路35との間で熱交換器30のうち主として電解液を冷却する複数の分岐路33とを備える。流入路31及び流出路35と複数の分岐路33とは、中継路32及び集約路34を介して連結している。そして、各流路31〜35が複合導管10で構成される。
流入路31は、各極セル102、103から排出された電解液を熱交換器30(冷却装置20,21)内に流入させる。流入路31の一端は上流側排出流路110u,111u(図4)に連結している。
中継路32は、流入路31と複数の分岐路33とを中継して、流入路31から流入した電解液を各分岐路33へ分岐する。中継路32の一端は流入路31の途中に連結し、他端は閉口している。中継路32の途中には、複数の分岐路33が連結される。
各分岐路33は、熱交換器30のうち主として電解液を冷却する流路である。各分岐路33の一端が中継路32に連結され、他端が集約路34に連結される。各分岐路33は、一端から他端に亘って直線状としてもよいし蛇行させてもよい。直線状の分岐路33とする場合、分岐路33を構成する複合導管10を曲げ加工する必要がない上に、蛇行する分岐路33に比べて電解液の圧力損失が少ない。蛇行する分岐路33とする場合、同じ流路断面積で同じ流路長とすると、直線状の分岐路33に比べて、熱交換器30のサイズ、ひいては冷却装置20、21のサイズを小型化できる。また、複合導管10の本体部11をPE樹脂で構成することで曲げ加工し易いため、蛇行する流路を従来のようにPVC樹脂の導管を曲げ加工して構成する場合に比べても、熱交換器30(冷却装置20、21)のサイズを小型化できる。一方、熱交換器30を同じサイズとすると、直線状の分岐路33に比べて複合導管10の表面積を大きく(強制冷却長を長く)できて電解液を所望の温度に冷却し易い。ここでは各分岐路33を直線状に構成し、中継路32と集約路34との間で互いに平行するように並列して配置している。各分岐路33の断面積(径)は、熱交換器30を構成するその他の流路(流入路31、中継路32、集約路34、及び流出路35)に比べて小さく(細く)している。
集約路34は、複数の分岐路33を流通した電解液を集約すると共に電解液を流出路35へ輸送する。集約路34の一端は流出路35に連結し、他端は閉口している。集約路34の途中には、各分岐路33の他端が連結される。
流出路35は、集約路34から輸送された電解液を熱交換器30(冷却装置20、21)外へ流出させる。流出路35の一端は下流側排出流路110d、111d(図4)に連結している。
これら流入路31と中継路32、中継路32と各分岐路33、各分岐路33と集約路34、集約路34と流出路35の連結はそれぞれ、連結部39を介して行われる。なお、図2では中継路32及び集約路34と各分岐路33との連結部39を示し、それ以外の連結部を省略して示している。各連結部39は、それぞれを構成する複合導管10同士を融着して形成することが好ましい。複合導管10の本体部11をPE樹脂で構成することで、各連結部39を融着して形成できる。複合導管10同士を融着することで、複合導管10同士の接合に接着剤を不要にできる上に、接着剤の使用に伴う作業の煩雑さを解消できる。また、融着することで、連結部39の密封性を高められ、電解液の漏洩を防止し易い。連結部39の表面は、本体部11が酸素遮断層12から露出することを許容する。融着により連結部39の表面は本体部11が露出することがあるが、露出箇所の熱交換器30全体に対する割合は小さく、この露出箇所から侵入する酸素による電解液の酸化の影響は小さいからである。
(強制冷却機構)
強制冷却機構は、冷却水で冷却する水冷式や、送風を行う空冷式が挙げられる。水冷式の場合、熱交換器30を容器内に収納し、容器内に冷却水を供給(循環)することが挙げられる。この場合、冷却水で外部からの酸素の侵入を抑制できて好ましいが、冷却水中に酸素が溶存する場合がある。熱交換器30を上述の複合導管10で構成しているため、冷却水中に溶存する酸素の侵入をも抑制できる。一方、空冷式の場合、ファン40を設けることが挙げられる。この場合、冷却水自体が不要であることは勿論、冷却水を供給(循環)するポンプや冷却水の冷却機などの部材が不要であるため、水冷式に比べて強制冷却機構を小型化かつ簡略化できる。ここでは、強制冷却機構はファン40で構成している。
ファン40の配置箇所は、熱交換器30全体、特に分岐路33に風を当てることのできる位置であればよい。例えば、分岐路33の長手方向及び並列方向の両方に直交する位置に設けてもよいし、分岐路33の流通方向に沿った位置に設けてもよい。ここでは、分岐路33の流通方向に沿った位置、即ち集約路34の直上に設けている。
なお、熱交換器30は、各流路31〜35で構成したが、中継路32、複数の分岐路33、及び集約路34を1つの冷却ユニットとし、熱交換器30は、流入路31と複数の上記冷却ユニットと流出路35とで構成してもよい。その場合、冷却ユニット同士を並列させて配置し、各冷却ユニットにおける中継路32の一端を流入路31の途中に接続し、集約路34の一端を流出路35の途中に接続する。即ち、図2では、紙面奥側に複数の冷却ユニットが並列して配置される。
(電解液)
各極電解液は共に、ここでは図4に示すようにバナジウムイオン水溶液を用いているが、電解液はバナジウムイオン水溶液に限定されるわけではない。例えば、各極電解液の組み合わせとしては以下が挙げられる。(1)正極電解液は、マンガンイオンを含有し、負極電解液は、チタンイオン、バナジウムイオン、クロムイオン、亜鉛イオン、及びスズイオンから選択される少なくとも一種の金属イオンを含有する。(2)正極電解液は、マンガンイオン及びチタンイオンの双方を含有し、負極電解液は、チタンイオン、バナジウムイオン、クロムイオン、亜鉛イオン、及びスズイオンから選択される少なくとも一種の金属イオンを含有する。(3)正極電解液及び負極電解液は、マンガンイオン及びチタンイオンの双方を含有する。(4)正極電解液は、鉄イオンを含有し、負極電解液は、チタンイオン、バナジウムイオン、クロムイオン、亜鉛イオン、及びスズイオンから選択される少なくとも一種の金属イオンを含有する。
電解液の溶媒としては、HSO、KSO、NaSO、HPO、H、KHPO、NaPO、KPO、HNO、KNO、HCl、及びNaNOから選択される少なくとも一種の水溶液を利用することができる。特に硫酸アニオン(SO 2−)を含むものが利用し易い。
[その他の構成の説明]
RF電池1は、図3に示すように、電池セル100を複数備えるサブセルスタック200sを複数積層して構成するセルスタック200を備える。セルスタック200は、積層された複数のサブセルスタック200sをその両側から2枚のエンドプレート210、220で挟み込んで締付機構230により締め付けて構成される。締付機構230は、例えば、締付軸231と、締付軸231の両端に螺合されるナット(図示略)と、ナットとエンドプレート210の間に介在される圧縮バネ(図示略)とで構成されている。
各サブセルスタック200sは、双極板121と双極板121の外周縁を保持するフレーム122を備えるセルフレーム120、正極電極104、隔膜101、及び負極電極105を、この順番で積層することで形成される積層体を備える。この構成の場合、隣接するセルフレーム120の双極板121の間に一つの電池セル100が形成されることになる。更に、各サブセルスタック200sは、積層体の両側に配置される一対の集電板と、一対の集電板の両側に配置される一対の給排板201とを備える。集電板は、上記積層体の積層方向両端に位置する双極板121に導通されている。そして、一対の給排板201の間(給排板201と端部の双極板121との間)から集電板の周縁よりも外側へ突出する端子部を有する。この端子部を介して、サブセルスタック200sの電池セル100と外部機器との間の電気の入出力が行われる。
各給排板201には、供給流路108(109)に接続される供給パイプ202i、及び排出流路110(111)に接続される排出パイプ202oが取り付けられている。このパイプ202i,202oを介してサブセルスタック200sと各タンク106、107との間での各電解液の流通が行われる。
サブセルスタック200s内の電解液の流通は、フレーム122に形成される給液マニホールド123、124と、排液マニホールド125,126とにより行われる。正極電解液は、給液マニホールド123からフレーム122の一面側(紙面表側)に形成される溝を介して正極電極104に供給され、フレーム122の上部に形成される溝を介して排液マニホールド125に排出される。同様に、負極電解液は、給液マニホールド124からフレーム122の他面側(紙面裏側)に形成される溝を介して負極電極105に供給され、フレーム122の上部に形成される溝を介して排液マニホールド126に排出される。各フレーム122間には、Oリングや平パッキンなどの環状のシール部材127が配置され、サブセルスタック200sからの電解液の漏洩を抑制している。
〔作用効果〕
上述したRF電池1によれば、以下の効果を奏する。
(1)熱交換器30の各流路31〜35を本体部11と酸素遮断層12とを備える複合導管10で構成することで、熱交換器30内を流通する電解液を酸化させることなく良好に冷却できる。本体部11の外周の酸素遮断層12により本体部11内への酸素の侵入を抑制できる。この酸素遮断層12により酸素の侵入を抑制できることで本体部11の厚みを薄くできるため、電解液の放熱性を高められる。従って、電解液の酸化による電解液の有効量の減少を抑制でき、電池の放電容量の低下や電池効率の低下などを抑制できる。
(2)複合導管10を構成する本体部11と酸素遮断層12との両方を樹脂で構成されるため、熱交換器30、ひいては冷却装置20,21を軽量化できる。特に、複合導管10の厚みを薄くできるので熱交換器30(冷却装置20、21)の軽量化に寄与する。また、万一複合導管10同士の連結部39から電解液が漏れても、酸素遮断層12が腐食することがない上に、複合導管10が導電性部材を備えていないので複合導管10が漏電経路となる等の問題がない。
〔実施形態2〕
実施形態2として、実施形態1の構成(冷却装置20、21の熱交換器30を複合導管10で形成すること)に加えて、各循環路(流路108〜111)を複合導管10で構成することができる。この場合、上流側排出流路110u、111uと流入路31とを連結する連結部と、下流側排出流路110d、111dと流出路35とを連結する連結部とはそれぞれ、融着して形成することができる。上述したように、従来は各循環路と熱交換器とをPVC樹脂で構成している。従来の場合、一般的には、各循環路と熱交換器との接合は接着剤で行ったり機械的接合(ボルトやナット)で行ったりしていた。これに対して本形態によれば、各循環路と熱交換器30とを同じ複合導管10で構成することで、両者の接合を融着により行える。そのため、接着剤やボルト及びナットなど不要にできる上に、それらの使用に伴う接続作業の煩雑さを解消できる。
この形態によれば、各循環路を複合導管10で構成することで、各循環路を流通する際にも電解液の酸化を抑制できる。その上、熱交換器30(冷却装置20,21)のような強制冷却機構による冷却ではなく自然冷却であるものの、各循環路でも電解液を冷却でき、電解液の冷却性能を高められる。また、各循環路と熱交換器との接合に加えて、各循環路と各タンク106,107の接合や各循環路とセルスタックとの接合を融着により行える。
〔実施形態3〕
実施形態1、2では、複合導管10を本体部11と酸素遮断層12との2層構造で構成した。実施形態3として、複合導管が本体部と酸素遮断層と酸素遮断層の外周に形成される単層または多層の保護層とを備える形態とすることができる。酸素遮断層の外周に保護層を備えることで、酸素遮断層を機械的に保護できる。保護層は、上述した本体部と同様の樹脂で構成することができ、特に本体部と同じ樹脂で構成することが好ましい。それにより、電解液を良好に冷却できる。ここでは、PE樹脂で構成する。本体部と保護層との合計厚みは、1mm以下とすることが好ましく、更に0.7mm以下とすることが好ましい。上記合計厚みは、0.5mm以上とすることが好ましい。そして、複合導管全体の厚みを1mm以下、更に0.7mm以下とすることが好ましい。この複合導管の製造は、本体部と酸素遮断層と保護層の3層の同時押出成形が好適である。
この形態によれば、酸素遮断層の外周の保護層により酸素遮断層を保護しつつも、本体部及び保護層の合計厚さが上述の2層構造の場合と比較しても厚くならないので電解液の放熱性を低下させることが無く、電解液を良好に冷却できる。
〔実施形態4〕
実施形態1〜3では、RF電池の電解液が流通する熱交換器や循環路が複合導管を備える形態を説明した。実施形態4として、RF電池の電解液以外の腐食性液体の流路が複合導管を備える形態とすることができる。腐食性液体は、化学反応、電池反応、或いは通電によるジュール熱などによって発熱する液体であり、流通中に放熱が必要な液体である。特に、硫酸、硝酸、及び塩酸などの金属を腐食させる液体が含まれる。このような腐食性液体が流通する熱交換器の流路のうち、流路の少なくとも一部に設けられて腐食性液体を冷却する冷却領域を上述の複合導管で構成することができる。
なお、上述の実施形態1〜3のRF電池1では、複数の電池セルを備えるサブセルスタックを複数積層したセルスタックを備える形態としたが、RF電池1は、単セルの電池であってもよいし、一組の給排板の間に複数の電池セルを積層したセルスタックを備える形態であってもよい。
本発明の一態様に係る電解液循環型電池は、太陽光発電、風力発電などの新エネルギーの発電に対して、発電出力の変動の安定化、発電電力の余剰時の蓄電、負荷平準化などを目的とした用途に好適に利用することができる。また、本発明の一態様に係る電解液循環型電池は、一般的な発電所に併設されて、瞬低・停電対策や負荷平準化を目的とした大容量の蓄電池としても好適に利用することができる。そして、本発明の一態様に係る熱交換器は、本発明の一態様に係る電解液循環型電池、例えばRF電池の他、薬液用熱交換器などに好適に利用できる。本発明の一態様に係る配管は、本発明の一態様に係る熱交換器や本発明の一態様に係る電解液循環型電池、例えばRF電池の熱交換器や循環路の他、薬液用配管などに好適に利用できる。
1 レドックスフロー(RF)電池
10 複合配管
11 本体部 12 酸素遮断層
20、21 冷却装置
30 熱交換器
31 流入路 32 中継路 33 分岐路 34 集約路 35 流出路
39 連結部
40 ファン
100 電池セル
101 隔膜 102 正極セル 103 負極セル
104 正極電極 105 負極電極
106 正極電解液タンク 107 負極電解液タンク
108、109 供給流路
110、111 排出流路
110u、111u 上流側排出流路 110d、111d 下流側排出流路
112、113 ポンプ
114、115 冷却装置
120 セルフレーム 121 双極板 122 フレーム
123、124 給液マニホールド 125、126 排液マニホールド
127 シール部材
200 セルスタック 200s サブセルスタック
201 給排板 202i 供給パイプ 202o 排出パイプ
210、220 エンドプレート
230 締付機構
231 締付軸

Claims (6)

  1. 電池セルと、前記電池セルに電解液を循環する循環路とを備える電解液循環型電池であって、
    前記循環路が、
    ポリエチレン樹脂で構成される管状の本体部と、
    前記本体部の外周に形成され、前記本体部よりも酸素透過率の低いエチレン‐ビニルアルコール共重合樹脂で構成される酸素遮断層と
    前記酸素遮断層の外周に形成され、前記酸素遮断層を機械的に保護する保護層とを有する複合導管を備え
    前記複合導管全体の厚みが、1mm以下である電解液循環型電池。
  2. 前記循環路の途中に設けられると共に前記循環路の一部を形成して前記循環路内の前記電解液を冷却する冷却領域を有する熱交換器を備え、
    前記冷却領域が、前記複合導管で構成されている請求項1に記載の電解液循環型電池。
  3. 前記循環路は、
    複数の前記複合導管と、
    前記複合導管同士を連結する連結部とを備え、
    前記連結部は、前記複合導管同士を融着して形成される請求項1又は請求項2に記載の電解液循環型電池。
  4. 前記熱交換器を空冷するファンを備える請求項2に記載の電解液循環型電池。
  5. 腐食性液体が流通する流路を備え、前記流路の少なくとも一部に前記腐食性液体を冷却する冷却領域を備える熱交換器であって、
    前記冷却領域は、
    ポリエチレン樹脂で構成される管状の本体部と、
    前記本体部の外周に形成され、前記本体部よりも酸素透過率の低いエチレン‐ビニルアルコール共重合樹脂で構成される酸素遮断層と、
    前記酸素遮断層の外周に形成され、前記酸素遮断層を機械的に保護する保護層とを有する複合導管を備え
    前記複合導管全体の厚みが、1mm以下である熱交換器。
  6. 腐食性液体が内部に流通する配管であって、
    ポリエチレン樹脂で構成される管状の本体部と、
    前記本体部の外周に形成され、前記本体部よりも酸素透過率の低いエチレン‐ビニルアルコール共重合樹脂で構成される酸素遮断層と、
    前記酸素遮断層の外周に形成され、前記酸素遮断層を機械的に保護する保護層とを備え
    前記配管全体の厚みが、1mm以下である配管。
JP2014048171A 2014-03-11 2014-03-11 電解液循環型電池、熱交換器、及び配管 Active JP6410127B2 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2014048171A JP6410127B2 (ja) 2014-03-11 2014-03-11 電解液循環型電池、熱交換器、及び配管
KR1020167022039A KR102325922B1 (ko) 2014-03-11 2014-10-24 전해액 순환형 전지, 열교환기, 및 배관
US15/119,445 US10249891B2 (en) 2014-03-11 2014-10-24 Electrolyte-circulating battery
PCT/JP2014/078285 WO2015136763A1 (ja) 2014-03-11 2014-10-24 電解液循環型電池、熱交換器、及び配管
ES14885479T ES2714510T3 (es) 2014-03-11 2014-10-24 Batería de circulación de electrolito
AU2014385962A AU2014385962B2 (en) 2014-03-11 2014-10-24 Electrolyte-circulating battery, heat exchanger, and pipe
CN201480076885.1A CN106104890B (zh) 2014-03-11 2014-10-24 电解液循环型电池、热交换器及配管
EP14885479.7A EP3118923B1 (en) 2014-03-11 2014-10-24 Electrolyte-circulating battery
TW103137612A TWI620363B (zh) 2014-03-11 2014-10-30 Electrolyte circulating battery, heat exchanger, and piping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014048171A JP6410127B2 (ja) 2014-03-11 2014-03-11 電解液循環型電池、熱交換器、及び配管

Publications (2)

Publication Number Publication Date
JP2015173038A JP2015173038A (ja) 2015-10-01
JP6410127B2 true JP6410127B2 (ja) 2018-10-24

Family

ID=54071229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014048171A Active JP6410127B2 (ja) 2014-03-11 2014-03-11 電解液循環型電池、熱交換器、及び配管

Country Status (9)

Country Link
US (1) US10249891B2 (ja)
EP (1) EP3118923B1 (ja)
JP (1) JP6410127B2 (ja)
KR (1) KR102325922B1 (ja)
CN (1) CN106104890B (ja)
AU (1) AU2014385962B2 (ja)
ES (1) ES2714510T3 (ja)
TW (1) TWI620363B (ja)
WO (1) WO2015136763A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102265172B1 (ko) * 2016-05-25 2021-06-16 스미토모덴키고교가부시키가이샤 레독스 플로우 전지용 배관, 및 레독스 플로우 전지용 배관의 제조 방법, 및 배관 유닛, 레독스 플로우 전지
FR3057709B1 (fr) * 2016-10-19 2018-11-23 IFP Energies Nouvelles Batterie a flux redox comportant un systeme de reduction des courants de derivation
US11289728B2 (en) 2017-09-01 2022-03-29 Stryten Critical E-Storage Llc Segmented frames for redox flow batteries
CN112512424B (zh) 2018-08-07 2023-07-04 美国西门子医疗***股份有限公司 多模态康普顿和单光子发射计算机断层摄影医学成像***
US11701074B2 (en) 2018-08-07 2023-07-18 Siemens Medical Solutions Usa, Inc. Compton camera with segmented detection modules
EP3817663A1 (en) 2018-08-07 2021-05-12 Siemens Medical Solutions USA, Inc. Adaptive compton camera for medical imaging
US11450863B2 (en) * 2018-12-13 2022-09-20 Stryten Critical E-Storage Llc Co-molded components of a redox flow battery stack
AU2020223584A1 (en) * 2019-02-14 2021-08-26 Sumitomo Electric Industries, Ltd. Bipolar plate, cell frame, cell stack, and redox flow battery
CN112687912B (zh) * 2020-12-29 2022-01-14 湖南钒谷新能源技术有限公司 液流电池换热装置及安装换热装置的方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2146142B1 (ja) * 1971-07-20 1974-03-15 Alsthom Cgee
DE3047181A1 (de) * 1980-12-15 1982-06-16 Hoechst Ag, 6000 Frankfurt Kunststoffrohr mit sauerstoffdichter ummantelung
JPS6037674A (ja) 1983-08-11 1985-02-27 Agency Of Ind Science & Technol レドツクス電池
CA1309134C (en) * 1987-09-25 1992-10-20 Wilfrid B. O'callaghan Metal/air battery with recirculating electrolyte
US20050221040A1 (en) * 2001-12-26 2005-10-06 Masaki Koike Fuel tube
JP2004225820A (ja) * 2003-01-23 2004-08-12 Hitachi Metals Ltd 多層樹脂管
JP2004225821A (ja) * 2003-01-23 2004-08-12 Hitachi Metals Ltd 多層樹脂管
JP2005315405A (ja) * 2004-04-01 2005-11-10 Mitsubishi Plastics Ind Ltd 電気融着継手
JP2006151365A (ja) * 2004-10-26 2006-06-15 Tokai Rubber Ind Ltd 樹脂製燃料タンク用接合部品およびその製法
US8828591B2 (en) * 2006-03-02 2014-09-09 Sony Corporation External packaging material for battery device, nonaqueous electrolyte secondary battery using the same, and battery pack
JP5228360B2 (ja) * 2007-04-12 2013-07-03 ソニー株式会社 電池パック
JP4954775B2 (ja) * 2007-04-12 2012-06-20 ソニー株式会社 電池パック
IT1391775B1 (it) * 2008-11-17 2012-01-27 Ilpea Ind Spa Circuito di raffraddamento
CA2794702C (en) * 2010-03-31 2017-07-25 Kuraray Co., Ltd. Resin composition, molded article, multilayered pipe and method for producing the same
EP2590791B1 (en) * 2010-07-09 2016-11-09 Nestec S.A. Labeled containers and processes for producing labeled containers
KR101088039B1 (ko) * 2010-11-29 2011-11-30 소민철 에어컨용 냉매관 및 그 제작방법
JP5477672B2 (ja) * 2011-03-31 2014-04-23 住友電気工業株式会社 電解液流通型電池用セルフレーム、電解液流通型電池用セルスタック、及び電解液流通型電池
JP5634623B2 (ja) * 2011-05-11 2014-12-03 グリッドテンシャル エナジー インコーポレイテッドGridtential Energy,Inc. 改良されたバッテリーおよび組立方法
JP2013037776A (ja) * 2011-08-03 2013-02-21 Sumitomo Electric Ind Ltd レドックスフロー電池
JP5935405B2 (ja) * 2012-03-08 2016-06-15 日産自動車株式会社 積層構造電池
EP2639876B1 (en) * 2012-03-15 2015-11-18 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery
JP5598883B2 (ja) * 2012-03-16 2014-10-01 ワイティーエス・サイエンス・プロパティーズ・プライベート・リミテッド マグネシウム空気電池用燃料体、マグネシウム空気電池、マグネシウム空気電池用燃料体の製造方法、マグネシウム空気電池システム、及びマグネシウム空気電池システムの使用方法
JP2013206566A (ja) * 2012-03-27 2013-10-07 Sumitomo Electric Ind Ltd レドックスフロー電池用熱交換器、およびレドックスフロー電池
US9722289B2 (en) * 2012-05-02 2017-08-01 Florida State University Research Foundation Metal-air flow batteries using oxygen enriched electrolyte
JP5626602B2 (ja) * 2012-06-29 2014-11-19 トヨタ自動車株式会社 非水電解質二次電池
CN105339433B (zh) * 2013-04-04 2019-07-05 日本克乐嘉制盖株式会社 具有热塑性树脂的层的成形体
JP6345062B2 (ja) * 2013-09-30 2018-06-20 株式会社吉野工業所 積層剥離容器

Also Published As

Publication number Publication date
AU2014385962A1 (en) 2016-08-18
AU2014385962B2 (en) 2019-05-09
US20170012308A1 (en) 2017-01-12
CN106104890B (zh) 2021-03-30
TW201535830A (zh) 2015-09-16
EP3118923A4 (en) 2017-03-29
TWI620363B (zh) 2018-04-01
JP2015173038A (ja) 2015-10-01
ES2714510T3 (es) 2019-05-28
US10249891B2 (en) 2019-04-02
EP3118923B1 (en) 2018-12-26
KR102325922B1 (ko) 2021-11-12
EP3118923A1 (en) 2017-01-18
WO2015136763A1 (ja) 2015-09-17
KR20160132378A (ko) 2016-11-18
CN106104890A (zh) 2016-11-09

Similar Documents

Publication Publication Date Title
JP6410127B2 (ja) 電解液循環型電池、熱交換器、及び配管
TWI643395B (zh) 電解液循環型電池
JP6112331B2 (ja) レドックスフロー電池用電解液、及びレドックスフロー電池システム
JP2013206566A (ja) レドックスフロー電池用熱交換器、およびレドックスフロー電池
JP6536840B2 (ja) レドックスフロー電池
JP5891379B2 (ja) 燃料電池及びそれを備える燃料電池スタック
JP2013037776A (ja) レドックスフロー電池
JP6843730B2 (ja) 燃料電池及びその運転方法
JP2017084456A5 (ja)
WO2016117265A1 (ja) レドックスフロー電池の運転方法、およびレドックスフロー電池
TW201628247A (zh) 氧化還原液流電池的運轉方法、及氧化還原液流電池
JP6849954B2 (ja) 枠体、セルフレーム、セルスタック、及びレドックスフロー電池
WO2016117262A1 (ja) レドックスフロー電池の運転方法、およびレドックスフロー電池
JP2008059942A (ja) 燃料電池モジュール及び燃料電池
JP2019032984A (ja) 燃料電池
WO2019030817A1 (ja) レドックスフロー電池、及びレドックスフロー電池の運転方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180913

R150 Certificate of patent or registration of utility model

Ref document number: 6410127

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250