WO2015136763A1 - 電解液循環型電池、熱交換器、及び配管 - Google Patents

電解液循環型電池、熱交換器、及び配管 Download PDF

Info

Publication number
WO2015136763A1
WO2015136763A1 PCT/JP2014/078285 JP2014078285W WO2015136763A1 WO 2015136763 A1 WO2015136763 A1 WO 2015136763A1 JP 2014078285 W JP2014078285 W JP 2014078285W WO 2015136763 A1 WO2015136763 A1 WO 2015136763A1
Authority
WO
WIPO (PCT)
Prior art keywords
main body
electrolyte
heat exchanger
path
cooling
Prior art date
Application number
PCT/JP2014/078285
Other languages
English (en)
French (fr)
Inventor
淳夫 池内
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to US15/119,445 priority Critical patent/US10249891B2/en
Priority to ES14885479T priority patent/ES2714510T3/es
Priority to AU2014385962A priority patent/AU2014385962B2/en
Priority to EP14885479.7A priority patent/EP3118923B1/en
Priority to CN201480076885.1A priority patent/CN106104890B/zh
Priority to KR1020167022039A priority patent/KR102325922B1/ko
Publication of WO2015136763A1 publication Critical patent/WO2015136763A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/20Indirect fuel cells, e.g. fuel cells with redox couple being irreversible
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrolyte circulation type battery such as a redox flow battery, a heat exchanger for cooling a corrosive liquid such as an electrolyte of an electrolyte circulation type battery, and a pipe used for a flow path of the corrosive liquid.
  • the present invention relates to an electrolyte circulation type battery that is difficult to oxidize an electrolyte and that can be easily cooled.
  • An electrolyte circulation type battery such as a redox flow battery (RF battery).
  • An RF battery is a battery that charges and discharges using a difference in oxidation-reduction potential between ions contained in a positive electrode electrolyte and ions contained in a negative electrode electrolyte.
  • An example of the RF battery is disclosed in Patent Document 1.
  • the RF battery 1 of Patent Document 1 includes a battery cell 100 separated into a positive electrode cell 102 and a negative electrode cell 103 by a diaphragm 101 that transmits hydrogen ions.
  • a positive electrode 104 is built in the positive electrode cell 102, and a positive electrode electrolyte tank 106 that stores a positive electrode electrolyte is connected via a circulation path having a supply channel 108 and a discharge channel 110.
  • a negative electrode 105 is built in the negative electrode cell 103, and a negative electrode electrolyte tank 107 for storing a negative electrode electrolyte is connected through a circulation path having a supply channel 109 and a discharge channel 111.
  • the electrolyte solution in the tanks 106 and 107 is supplied from the supply channels 108 and 109 to the cells 102 and 103 by the pumps 112 and 113 provided in the middle of the supply channels 108 and 109.
  • 103 circulates through the discharge passages 110 and 111 and is discharged to the tanks 106 and 107 to be circulated to the cells 102 and 103.
  • the electrolytic solution typically, an aqueous solution containing metal ions such as vanadium ions whose valence changes by an oxidation-reduction reaction is used.
  • each of the flow paths 108 to 111 is in direct contact with the electrolytic solution, the flow paths 108 to 111 are made of a material that does not react with the electrolytic solution and has excellent resistance to the electrolytic solution, and a resin conduit such as polyvinyl chloride (PVC).
  • a solid line arrow means charging, and a broken line arrow means discharging.
  • the electrolytic solution In the RF battery 1, the electrolytic solution generates heat with the battery reaction. Due to this heat generation, the battery efficiency may be lowered, or deterioration such as softening of the constituent resins of the respective channels 108 to 111 in contact with the electrolytic solution may occur.
  • the cooling devices 114 and 115 are provided in the middle of the discharge channels 110 and 111.
  • the cooling devices 114 and 115 generally include a heat exchanger (not shown) having a cooling region configured as a part of a circulation path, and a forced cooling mechanism (not shown) for forcibly cooling the electrolyte in the heat exchanger. Prepare.
  • the flow path of the heat exchanger is composed of a conduit of resin such as PVC, like the flow paths 108 to 111, and is provided so as to meander from the inlet to the outlet.
  • the electrolyte is cooled by removing heat in the process from the inlet to the outlet of the heat exchanger (conduit).
  • a water-cooling type in which the conduit is cooled with cooling water or an air-cooling type in which air is forced to flow through the conduit is used.
  • the flow path of the heat exchanger may be provided so as to branch into a plurality of straight lines in the process from the inlet to the outlet, for example.
  • PVC which is a constituent resin of the conduits constituting the channels 108 to 111 and the channel of the heat exchanger, has poor heat dissipation and is difficult to cool the electrolyte. If the thickness of the conduit is reduced, heat dissipation can be improved, but oxygen can be easily transmitted. When oxygen enters into the conduit, the electrolytic solution is oxidized by the oxygen, and the effective amount of the electrolytic solution may be reduced. As a result, a decrease in battery discharge capacity, a decrease in battery efficiency, and the like may occur.
  • the present invention has been made in view of the above circumstances, and one of its purposes is to provide an electrolyte circulation type battery that is difficult to oxidize the electrolyte and that can be easily cooled.
  • Another object of the present invention is to provide a heat exchanger that is difficult to oxidize corrosive liquid flowing through the inside and that can easily cool corrosive liquid.
  • Another object of the present invention is to provide a pipe that is difficult to oxidize corrosive liquid flowing inside and is suitable for cooling the corrosive liquid.
  • the electrolyte circulation type battery includes a battery cell and a circulation path for circulating the electrolyte through the battery cell.
  • the circulation path includes a composite conduit, and the composite conduit includes a tubular main body made of resin, an oxygen barrier layer formed on the outer periphery of the main body and made of an organic material having a lower oxygen permeability than the main body.
  • the heat exchanger includes a flow path through which the corrosive liquid flows, and includes a cooling region that cools the corrosive liquid in at least a part of the flow path.
  • the cooling region includes a composite conduit, and the composite conduit includes a tubular main body made of resin, an oxygen barrier layer formed on the outer periphery of the main body and made of an organic material having a lower oxygen permeability than the main body.
  • a corrosive liquid flows inside.
  • the pipe includes a tubular main body made of resin, and an oxygen barrier layer formed on the outer periphery of the main body and made of an organic material having a lower oxygen permeability than the main body.
  • the electrolyte circulation type battery is difficult to oxidize the electrolyte and easily cools the electrolyte.
  • the above heat exchanger is difficult to oxidize the corrosive liquid flowing inside, and easily cools the corrosive liquid.
  • the above-mentioned piping is difficult to oxidize corrosive liquid flowing inside, and is suitable for cooling corrosive liquid.
  • FIG. 3 is a cross-sectional view showing a composite conduit provided in the redox flow battery according to Embodiment 1.
  • FIG. 1 is a schematic diagram showing a heat exchanger provided in a redox flow battery according to Embodiment 1.
  • FIG. 1 is a schematic configuration diagram of a cell stack provided in a redox flow battery according to Embodiment 1.
  • FIG. It is an operation
  • An electrolyte circulation type battery includes a battery cell and a circulation path for circulating the electrolyte through the battery cell.
  • the circulation path includes a composite conduit, and the composite conduit includes a tubular main body made of resin, an oxygen barrier layer formed on the outer periphery of the main body and made of an organic material having a lower oxygen permeability than the main body.
  • the heat exchanger As one mode of the above electrolyte circulation type battery, it may be provided with a heat exchanger provided in the middle of the circulation path.
  • the heat exchanger has a cooling region that forms part of the circulation path and cools the electrolytic solution in the circulation path.
  • region is comprised with the said composite conduit
  • the cooling region for cooling the electrolytic solution is configured by the above-described composite conduit, so that the electrolytic solution can be satisfactorily cooled without being oxidized.
  • the main body part is made of polyethylene resin
  • the oxygen barrier layer is made of ethylene-vinyl alcohol copolymer resin.
  • the electrolytic solution can be satisfactorily cooled by configuring the main body portion with the polyethylene resin having a high thermal conductivity.
  • polyethylene resin is excellent in workability, it is easy to process into a desired shape.
  • Polyethylene resin has a high oxygen permeability and easily allows oxygen to enter.
  • the oxygen barrier layer is made of an ethylene-vinyl alcohol copolymer resin having a low oxygen permeability, so that the intrusion of oxygen into the main body can be suppressed.
  • the thickness of the main body is 1 mm or less.
  • the thickness of a main-body part can be 1 mm or less by providing an oxygen interruption
  • the heat dissipation can be enhanced and the electrolyte can be cooled well.
  • the circulation path includes a plurality of the composite conduits and a connecting portion that connects the composite conduits.
  • the connecting portion is formed by fusing the composite conduits together.
  • the joint strength between the composite conduits can be increased as compared with the case of connecting with an adhesive. Further, it is possible to eliminate the need for an adhesive and to eliminate the troublesome work associated with the use of the adhesive. Furthermore, the sealing performance of the connecting portion can be improved by fusing, and the electrolyte can be hardly leaked from the connecting portion.
  • the above electrolyte circulation type battery it may be provided with a fan for air-cooling the heat exchanger.
  • the electrolyte solution can be cooled well. Further, the configuration can be simplified as compared with the case where the heat exchanger is water-cooled. This is because members such as a pump for supplying (circulating) cooling water to the heat exchanger and a cooler for cooling the cooling water are unnecessary.
  • a heat exchanger includes a flow path through which a corrosive liquid flows, and includes a cooling region provided in at least a part of the flow path to cool the corrosive liquid.
  • the cooling region includes a composite conduit, and the composite conduit includes a tubular main body made of resin, an oxygen barrier layer formed on the outer periphery of the main body and made of an organic material having a lower oxygen permeability than the main body.
  • the cooling region of the heat exchanger since the cooling region of the heat exchanger includes the above-described composite conduit, it is difficult to oxidize the corrosive liquid flowing through the inside, and it is easy to cool the corrosive liquid.
  • the corrosive liquid is a liquid that generates heat due to a chemical reaction, a battery reaction, Joule heat due to energization, or the like, and is a liquid that requires heat dissipation during distribution.
  • Corrosive liquid circulates in the pipe according to one aspect of the present invention.
  • the pipe includes a tubular main body made of resin, and an oxygen barrier layer formed on the outer periphery of the main body and made of an organic material having a lower oxygen permeability than the main body.
  • the RF battery according to the embodiment is similar to the conventional RF battery described with reference to FIG. 4.
  • the battery cell 100 and the circulation path for circulating the positive electrode electrolyte in the tank 106 to the positive electrode cell 102 (supply channel 108, discharge) A flow path 110) and a circulation path (a supply flow path 109, a discharge flow path 111) for circulating the negative electrode electrolyte in the tank 107 in the negative electrode cell 103.
  • Circulation of each electrolytic solution is performed by pumps 112 and 113 provided in the middle of each circulation path.
  • the main characteristic of the RF battery according to the embodiment is that the circulation path includes a composite conduit having a specific structure and material.
  • the present embodiment includes a cooling device, and the cooling device includes a heat exchanger provided in the middle of the circulation path.
  • the heat exchanger has a cooling region that forms part of the circulation path.
  • the cooling area of the heat exchanger is constituted by the composite conduit.
  • the composite conduit 10 is a multilayer including a tubular main body 11 made of resin, and an oxygen barrier layer 12 formed on the outer periphery of the main body 11 and made of an organic material having a lower oxygen permeability than the main body 11. Structure.
  • the main body 11 forms a flow path through which the electrolytic solution flows.
  • the constituent resin of the main body 11 include a resin that does not react with the electrolytic solution and has excellent resistance to the electrolytic solution.
  • the resin include polyvinyl chloride (PVC), polypropylene (PP), polyethylene (PE), and polytetrafluoroethylene (PTFE).
  • PE can be suitably used.
  • PE resin has a higher oxygen permeability than conventional PVC resin and it is easy for oxygen to enter inside.
  • PE resin is used as a constituent material of the main body 11 by providing an oxygen blocking layer 12 described later. Can be used. Since PE resin has higher thermal conductivity than other resins described above, it is easy to cool the electrolytic solution.
  • the main body 11 is meandered in order to lengthen the length of the heat exchanger that is a part of the circulation path (hereinafter sometimes referred to as forced cooling length)
  • the overall size can be reduced.
  • the PE resin can be fused, for example, it can be performed by fusing the composite conduits 10 together, so that the adhesive can be made unnecessary and the troublesome work associated with the use of the adhesive can be eliminated.
  • the main body 11 is made of PE resin.
  • the shape of the main body 11 is tubular as described above, and the cross-sectional shape thereof may be a polygon such as a circle, an ellipse, or a rectangle. If the cross-sectional shape is a circle or an ellipse, the pressure loss during the circulation of the electrolyte can be reduced compared to a polygon. In particular, if the cross-sectional shape is circular, it is easy to cool the electrolyte uniformly.
  • the cross-sectional shape of the main body 11 is circular.
  • a conventional conduit made of PVC resin is difficult to thin because it is easy to infiltrate oxygen by making it thin, and a thickness of 2 mm or more is required when configuring a heat exchanger for an RF battery. is there.
  • the thickness of the main body 11 can be reduced.
  • the thickness of the main body 11 can be set to 1 mm or less, and further can be set to 0.7 mm or less.
  • the thickness of the main body is preferably 0.5 mm or more.
  • the mechanical strength of the main body 11 is excellent.
  • the thickness of the main body 11 may be appropriately selected in consideration of the thickness of the oxygen barrier layer 12 so that the thickness of the composite conduit 10 is 1 mm or less, and further 0.7 mm or less.
  • the oxygen blocking layer 12 suppresses oxygen from entering the main body 11 from the outside.
  • the oxygen barrier layer 12 covers the outer periphery over the entire length of the main body 11.
  • the shape of the oxygen barrier layer 12 is a shape corresponding to the outer surface shape of the main body 11. For example, when the main body 11 is a cylindrical tube, the shape of the oxygen barrier layer 12 is also cylindrical.
  • Examples of the material of the oxygen blocking layer 12 include an organic material having an oxygen transmission rate lower than that of the main body 11 as described above. By configuring the oxygen blocking layer 12 with an organic material having a low oxygen permeability, intrusion of oxygen into the main body 11 can be suppressed, and the thickness of the main body 11 can be reduced to improve the cooling performance of the electrolyte. It is done. Specifically, ethylene-vinyl alcohol copolymer resin (saponified ethylene-vinyl acetate random copolymer), polyvinylidene chloride resin, polyvinyl alcohol resin, nylon 6 and the like can be mentioned.
  • the thickness of the oxygen barrier layer 12 is preferably 20 ⁇ m or more and 500 ⁇ m or less. By setting the thickness of the oxygen blocking layer 12 to 20 ⁇ m or more, oxygen intrusion can be satisfactorily suppressed. By setting the thickness of the oxygen blocking layer 12 to 500 ⁇ m or less, the electrolyte solution can be efficiently cooled without becoming too thick.
  • the composite conduit 10 can be manufactured, for example, by the following methods (1) to (3).
  • (1) A film or sheet of the oxygen barrier layer 12 is attached to the outer periphery of the extruded main body 11 with an adhesive.
  • (3) The main body portion 11 and the oxygen barrier layer 12 are simultaneously extruded, and the oxygen barrier layer 12 is formed on the outer periphery of the main body portion 11 simultaneously with the molding of the main body portion 11. According to the above methods (2) and (3), the bondability between the main body 11 and the oxygen barrier layer 12 can be improved.
  • the oxygen barrier layer 12 can be formed without any gap over the entire outer periphery of the main body 11, and the oxidation of the electrolyte can be further suppressed. .
  • the body 11 and the oxygen barrier layer 12 can be formed simultaneously, so that the productivity of the composite conduit 10 can be increased.
  • the cooling devices 20 and 21 shown in FIGS. 2 and 4 cool the electrolyte solution by removing the heat of each electrode electrolyte solution.
  • the cooling devices 20 and 21 include a heat exchanger 30 having a cooling region provided in the middle of the circulation path of each pole and constituting a part of the circulation path, and a forced cooling mechanism for forcibly cooling the heat exchanger 30.
  • the heat exchanger 30 is configured by the composite conduit 10 described above.
  • the electrolytic solution in the circulation path is cooled.
  • cooling by natural cooling may be sufficient as cooling here
  • electrolyte solution can be cooled favorably by setting it as forced cooling by the forced cooling mechanism mentioned later.
  • the installation location of the heat exchanger 30 may be in the middle of the supply channels 108 and 109 or in the middle of the discharge channels 110 and 111, but is preferably in the middle of the discharge channels 110 and 111.
  • Each electrode electrolyte generates heat with the battery reaction. Therefore, the electrolytic solution can be satisfactorily cooled by setting the installation location of the heat exchanger 30 in the middle of the discharge channels 110 and 111.
  • the installation location of the heat exchanger 30 is in the middle of the discharge flow paths 110 and 111.
  • the inlet (inlet channel 31 in FIG. 2) of the heat exchanger 30 is connected to the upstream outlet channels 110u and 111u of the outlet channels 110 and 111 (FIG. 4), and the outlet (in FIG. 2).
  • the outflow passage 35) is connected to the downstream discharge passages 110d and 111d.
  • the electrolyte discharged from each of the polar cells 102 and 103 is circulated into the heat exchanger 30 from the upstream discharge channels 110u and 111u through the inlet of the heat exchanger 30, and from the inlet of the heat exchanger 30 to the outlet. In the process, the heat of the electrolyte is lost.
  • the electrolyte from which heat has been removed is discharged from the outlet of the heat exchanger 30 to the electrode tanks 106 and 107 through the downstream discharge passages 110d and 111d.
  • the flow path from the inlet to the outlet of the heat exchanger 30 can be composed of one continuous flow path or a plurality of flow paths. In the case of a single continuous flow path, the flow path is preferably meandered. By doing so, when the same flow path cross-sectional area and the same flow path length are used, the size of the heat exchanger 30 and thus the size of the cooling devices 20 and 21 can be reduced as compared with the case where the flow path is linear. Further, when the heat exchanger 30 has the same size, the surface area of the composite conduit 10 constituting the flow path can be increased (the forced cooling length can be increased) compared to the straight flow path, and the electrolyte can be cooled to a desired temperature. Easy to do.
  • each channel may be linear or meandering.
  • each flow path cross-sectional area can be reduced by configuring with a plurality of flow paths.
  • the total surface area of the composite conduit 10 can be increased.
  • each channel cross-sectional area (diameter) can be reduced, it is easy to cool to the central portion of the channel.
  • the flow path from the inlet to the outlet of the heat exchanger 30 is composed of a plurality of flow paths.
  • the heat exchanger 30 flows out of the heat exchanger 30 (cooling devices 20 and 21) and the inflow path 31 through which the electrolyte flows into the heat exchanger 30 (cooling devices 20 and 21) and the electrolyte.
  • the inflow path 31 and the outflow path 35 and the plurality of branch paths 33 are connected via a relay path 32 and an aggregation path 34, respectively.
  • Each of the flow paths 31 to 35 is composed of the composite conduit 10.
  • the inflow path 31 allows the electrolyte discharged from the electrode cells 102 and 103 to flow into the heat exchanger 30 (cooling devices 20 and 21).
  • One end of the inflow passage 31 is connected to the upstream discharge passages 110u and 111u (FIG. 4).
  • the relay path 32 relays the inflow path 31 and the plurality of branch paths 33 and branches the electrolyte flowing in from the inflow path 31 to each branch path 33.
  • One end of the relay path 32 is connected in the middle of the inflow path 31, and the other end is closed.
  • a plurality of branch paths 33 are connected in the middle of the relay path 32.
  • Each branch path 33 is a flow path that mainly cools the electrolyte in the heat exchanger 30.
  • One end of each branch path 33 is connected to the relay path 32, and the other end is connected to the aggregation path 34.
  • Each branch path 33 may be linear from one end to the other end or may meander.
  • the composite conduit 10 constituting the branch path 33 does not need to be bent, and the pressure loss of the electrolytic solution is smaller than that of the meandering branch path 33.
  • the meandering branch path 33 has the same flow path cross-sectional area and the same flow path length, the size of the heat exchanger 30 and thus the size of the cooling devices 20 and 21 are reduced compared to the straight branch path 33. it can.
  • each branch path 33 is configured in a straight line, and is arranged in parallel so as to be parallel to each other between the relay path 32 and the aggregation path 34.
  • the cross-sectional area (diameter) of each branch path 33 is smaller (thinner) than the other flow paths (inflow path 31, relay path 32, aggregation path 34, and outflow path 35) constituting the heat exchanger 30.
  • the aggregation path 34 aggregates the electrolyte solution that has circulated through the plurality of branch paths 33 and transports the electrolyte solution to the outflow path 35.
  • One end of the collecting path 34 is connected to the outflow path 35 and the other end is closed. In the middle of the aggregation path 34, the other end of each branch path 33 is connected.
  • the outflow path 35 allows the electrolyte transported from the aggregation path 34 to flow out of the heat exchanger 30 (cooling devices 20 and 21).
  • One end of the outflow passage 35 is connected to the downstream discharge passages 110d and 111d (FIG. 4).
  • connection unit 39 The inflow path 31 and the relay path 32, the relay path 32 and the branch paths 33, the branch paths 33 and the aggregation path 34, and the aggregation path 34 and the outflow path 35 are connected via a connection unit 39.
  • a connecting part 39 between the relay path 32 and the aggregation path 34 and each branch path 33 is shown, and other connecting parts are omitted.
  • Each connecting portion 39 is preferably formed by fusing the composite conduits 10 constituting each connecting portion 39. By forming the main body portion 11 of the composite conduit 10 from PE resin, the connecting portions 39 can be fused and formed. By fusing the composite conduits 10 together, it is possible to eliminate the need for an adhesive for joining the composite conduits 10 and to eliminate the troublesome work associated with the use of the adhesive.
  • the sealing performance of the connecting portion 39 can be improved, and it is easy to prevent leakage of the electrolytic solution.
  • the surface of the connecting portion 39 allows the main body portion 11 to be exposed from the oxygen blocking layer 12. Although the main body 11 may be exposed at the surface of the connecting portion 39 due to the fusion, the ratio of the exposed portion to the entire heat exchanger 30 is small, and the influence of the oxidation of the electrolytic solution due to oxygen entering from the exposed portion is small. It is.
  • the forced cooling mechanism examples include a water cooling type for cooling with cooling water and an air cooling type for blowing air.
  • the heat exchanger 30 is accommodated in a container, and cooling water is supplied (circulated) into the container.
  • cooling water can suppress the entry of oxygen from the outside, but oxygen may be dissolved in the cooling water.
  • the heat exchanger 30 is composed of the composite conduit 10 described above, the intrusion of oxygen dissolved in the cooling water can also be suppressed.
  • the air cooling type it is possible to provide a fan 40. In this case, not only the cooling water itself is unnecessary, but also a member such as a pump for supplying (circulating) the cooling water or a cooling water cooler is unnecessary. It can be simplified.
  • the forced cooling mechanism is constituted by the fan 40.
  • the location where the fan 40 is disposed may be a location where wind can be applied to the entire heat exchanger 30, particularly the branch path 33.
  • it may be provided at a position orthogonal to both the longitudinal direction and the parallel direction of the branch path 33, or may be provided at a position along the flow direction of the branch path 33.
  • it is provided at a position along the flow direction of the branch path 33, that is, immediately above the aggregation path 34.
  • the heat exchanger 30 is configured by the flow paths 31 to 35, the relay path 32, the plurality of branch paths 33, and the aggregation path 34 are used as one cooling unit, and the heat exchanger 30 is connected to the inflow path 31.
  • a plurality of the cooling units and the outflow passage 35 may be used. In that case, the cooling units are arranged in parallel, one end of the relay path 32 in each cooling unit is connected in the middle of the inflow path 31, and one end of the aggregation path 34 is connected in the middle of the outflow path 35. That is, in FIG. 2, a plurality of cooling units are arranged in parallel on the back side of the drawing.
  • Each of the electrode electrolytes uses a vanadium ion aqueous solution as shown in FIG. 4 here, but the electrolyte is not limited to the vanadium ion aqueous solution.
  • the electrolyte is not limited to the vanadium ion aqueous solution.
  • the following is mentioned as a combination of each electrode electrolyte solution.
  • the positive electrode electrolyte contains manganese ions
  • the negative electrode electrolyte contains at least one metal ion selected from titanium ions, vanadium ions, chromium ions, zinc ions, and tin ions.
  • the positive electrode electrolyte contains both manganese ions and titanium ions, and the negative electrode electrolyte contains at least one metal ion selected from titanium ions, vanadium ions, chromium ions, zinc ions, and tin ions. .
  • the positive electrode electrolyte and the negative electrode electrolyte contain both manganese ions and titanium ions.
  • the positive electrode electrolyte contains iron ions, and the negative electrode electrolyte contains at least one metal ion selected from titanium ions, vanadium ions, chromium ions, zinc ions, and tin ions.
  • Solvents for the electrolyte include H 2 SO 4 , K 2 SO 4 , Na 2 SO 4 , H 3 PO 4 , H 4 P 2 O 7 , K 2 HPO 4 , Na 3 PO 4 , K 3 PO 4 , HNO 3 , at least one aqueous solution selected from KNO 3 , HCl, and NaNO 3 can be used.
  • those containing sulfate anions (SO 4 2 ⁇ ) are easy to use.
  • the RF battery 1 includes a cell stack 200 configured by stacking a plurality of subcell stacks 200 s including a plurality of battery cells 100.
  • the cell stack 200 is configured by sandwiching a plurality of stacked sub cell stacks 200 s from both sides by two end plates 210 and 220 and fastening them by a fastening mechanism 230.
  • the tightening mechanism 230 includes, for example, a tightening shaft 231, a nut (not shown) screwed to both ends of the tightening shaft 231, and a compression spring (not shown) interposed between the nut and the end plate 210. It consists of
  • Each subcell stack 200s is formed by laminating a cell frame 120 including a bipolar plate 121 and a frame 122 holding the outer peripheral edge of the bipolar plate 121, a positive electrode 104, a diaphragm 101, and a negative electrode 105 in this order.
  • a laminate is provided.
  • one battery cell 100 is formed between the bipolar plates 121 of the adjacent cell frames 120.
  • each subcell stack 200s includes a pair of current collecting plates disposed on both sides of the stacked body and a pair of supply / discharge plates 201 disposed on both sides of the pair of current collecting plates. The current collecting plate is electrically connected to the bipolar plate 121 located at both ends in the stacking direction of the stacked body.
  • a supply pipe 202i connected to the supply flow path 108 (109) and a discharge pipe 202o connected to the discharge flow path 110 (111) are attached to each supply / discharge plate 201.
  • Each electrolyte solution is circulated between the subcell stack 200s and the tanks 106 and 107 via the pipes 202i and 202o.
  • the circulation of the electrolyte in the subcell stack 200s is performed by the liquid supply manifolds 123 and 124 formed in the frame 122 and the drainage manifolds 125 and 126.
  • the positive electrode electrolyte is supplied from the liquid supply manifold 123 to the positive electrode 104 through a groove formed on one surface side (the front surface of the paper) of the frame 122, and the drainage manifold 125 through the groove formed on the upper portion of the frame 122. To be discharged.
  • the negative electrode electrolyte is supplied from the liquid supply manifold 124 to the negative electrode 105 via a groove formed on the other surface side (the back side of the paper) of the frame 122, and via the groove formed on the upper portion of the frame 122. It is discharged to the drainage manifold 126.
  • An annular seal member 127 such as an O-ring or a flat packing is disposed between the frames 122 to suppress leakage of the electrolytic solution from the subcell stack 200s.
  • the RF battery 1 described above has the following effects. (1) By forming each flow path 31 to 35 of the heat exchanger 30 with the composite conduit 10 including the main body 11 and the oxygen barrier layer 12, the electrolyte flowing through the heat exchanger 30 is oxidized. It can cool well. Oxygen intrusion into the main body 11 can be suppressed by the oxygen barrier layer 12 on the outer periphery of the main body 11. Since the oxygen blocking layer 12 can suppress the intrusion of oxygen, the thickness of the main body 11 can be reduced, so that the heat dissipation of the electrolyte can be improved.
  • both the main body part 11 and the oxygen barrier layer 12 constituting the composite conduit 10 are made of resin, the heat exchanger 30 and thus the cooling devices 20 and 21 can be reduced in weight.
  • the thickness of the composite conduit 10 can be reduced, it contributes to weight reduction of the heat exchanger 30 (cooling devices 20 and 21).
  • the oxygen barrier layer 12 does not corrode and the composite conduit 10 does not include a conductive member, so that the composite conduit 10 leaks. There is no problem of becoming a route.
  • each circulation path (the flow paths 108 to 111) is configured by the composite conduit 10. can do.
  • the connection part that connects the upstream discharge flow paths 110u and 111u and the inflow path 31 and the connection part that connects the downstream discharge flow paths 110d and 111d and the outflow path 35 are formed by fusing. can do.
  • each circulation path and the heat exchanger are made of PVC resin. In the conventional case, generally, each circulation path and the heat exchanger are joined by an adhesive or mechanical joining (bolts and nuts).
  • each circulation path and the heat exchanger 30 are comprised by the same composite conduit 10, and both can be joined by fusion
  • each circulation path by constituting each circulation path with the composite conduit 10, it is possible to suppress oxidation of the electrolyte even when circulating through each circulation path.
  • the electrolytic solution can be cooled in each circulation path, and the cooling performance of the electrolytic solution can be improved.
  • joining each circulation path and each tank 106, 107 and joining each circulation path and the cell stack can be performed by fusion.
  • the composite conduit 10 has a two-layer structure including a main body 11 and an oxygen barrier layer 12.
  • the composite conduit may include a main body, an oxygen barrier layer, and a single layer or a multilayer protective layer formed on the outer periphery of the oxygen barrier layer.
  • the protective layer can be made of the same resin as that of the main body described above, and is particularly preferably made of the same resin as that of the main body. Thereby, the electrolytic solution can be cooled well. Here, it is made of PE resin.
  • the total thickness of the main body and the protective layer is preferably 1 mm or less, and more preferably 0.7 mm or less.
  • the total thickness is preferably 0.5 mm or more.
  • the total thickness of the composite conduit is preferably 1 mm or less, more preferably 0.7 mm or less.
  • the composite conduit is preferably manufactured by coextrusion molding of the main body, the oxygen barrier layer and the protective layer.
  • the oxygen barrier layer is protected by the protective layer on the outer periphery of the oxygen barrier layer, and the total thickness of the main body and the protective layer does not become thicker than that of the above-described two-layer structure.
  • the electrolyte solution can be cooled well without degrading the heat dissipation of the solution.
  • the mode in which the heat exchanger and the circulation path through which the electrolyte solution of the RF battery flows is provided with the composite conduit has been described.
  • the corrosive liquid flow path other than the electrolyte solution of the RF battery may include a composite conduit.
  • the corrosive liquid is a liquid that generates heat due to a chemical reaction, a battery reaction, or Joule heat generated by energization, and is a liquid that needs to dissipate heat during distribution.
  • liquids that corrode metals such as sulfuric acid, nitric acid, and hydrochloric acid are included.
  • a cooling region that is provided in at least a part of the flow path and cools the corrosive liquid can be configured by the composite conduit described above.
  • the RF battery 1 includes a cell stack in which a plurality of subcell stacks including a plurality of battery cells are stacked.
  • the RF battery 1 may be a single cell battery.
  • stacked the several battery cell between one set of supply / discharge plate may be sufficient.
  • the electrolyte circulation type battery according to one embodiment of the present invention is a new energy generation such as solar power generation, wind power generation, stabilization of fluctuations in power generation output, power storage when surplus generated power, load leveling, etc. It can utilize suitably for the use which aimed at.
  • the electrolyte circulation type battery according to one aspect of the present invention can be suitably used as a large-capacity storage battery that is installed in a general power plant for the purpose of instantaneous voltage drop, power failure countermeasures, and load leveling. Can do.
  • the heat exchanger which concerns on 1 aspect of this invention can be utilized suitably for the heat exchanger for chemical
  • the piping according to one aspect of the present invention includes a heat exchanger according to one aspect of the present invention and an electrolyte circulation type battery according to one aspect of the present invention, such as a heat exchanger and circulation path of an RF battery, and a chemical liquid piping. It can utilize suitably for.
  • Redox flow (RF) battery 10 Composite conduit DESCRIPTION OF SYMBOLS 11 Main-body part 12 Oxygen interruption

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel Cell (AREA)

Abstract

電解液を酸化させ難く、電解液を冷却し易い電解液循環型電池、内部を流通する腐食性液体を酸化させ難く、腐食性液体を冷却し易い熱交換器、及び内部を流通する腐食性液体を酸化させ難く、腐食性液体を冷却するのに好適な配管を提供する。前記電解液循環型電池は、電池セルと、前記電池セルに電解液を循環する循環路とを備える電解液循環型電池であって、前記循環路が複合導管を備え、前記複合導管は、樹脂で構成される管状の本体部と、前記本体部の外周に形成され、前記本体部よりも酸素透過率の低い有機材料で構成される酸素遮断層とを有する。

Description

電解液循環型電池、熱交換器、及び配管
 本発明は、レドックスフロー電池などの電解液循環型電池、電解液循環型電池の電解液など腐食性液体を冷却する熱交換器、及び腐食性液体の流路に用いられる配管に関する。特に、電解液を酸化させ難く、電解液を冷却し易い電解液循環型電池に関する。
 太陽光発電や風力発電といった自然エネルギー由来の電力を蓄電する大容量の蓄電池の一つにレドックスフロー電池(RF電池)などの電解液循環型電池がある。RF電池は、正極電解液に含まれるイオンと負極電解液に含まれるイオンの酸化還元電位の差を利用して充放電を行う電池である。RF電池として、例えば、特許文献1に示すものがある。
 図4のRF電池の動作原理図に示すように、特許文献1のRF電池1は、水素イオンを透過させる隔膜101で正極セル102と負極セル103とに分離された電池セル100を備える。正極セル102には正極電極104が内蔵され、かつ正極電解液を貯留する正極電解液タンク106が供給流路108及び排出流路110を有する循環路を介して接続されている。同様に、負極セル103には負極電極105が内蔵され、かつ負極電解液を貯留する負極電解液タンク107が供給流路109及び排出流路111を有する循環路を介して接続されている。
 各タンク106、107内の電解液は、各供給流路108、109の途中に設けられたポンプ112、113により各供給流路108、109から各セル102、103に供給され、各セル102、103から各排出流路110、111を流通して各タンク106、107に排出されることで各セル102、103に循環される。電解液には、代表的に、酸化還元反応により価数が変化するバナジウムイオンといった金属イオンを含有する水溶液が利用される。各流路108~111は、電解液が直接接触することから、電解液と反応せず、電解液に対する耐性に優れる材料、ポリ塩化ビニル(PVC)などの樹脂の導管で構成されている。図4において、実線矢印は充電、破線矢印は放電を意味する。
 RF電池1では、電池反応に伴い電解液が発熱する。この発熱により、電池効率が低下したり、電解液に接する各流路108~111の構成樹脂が軟化するなどの劣化が生じたりし得る。この対策として、RF電池1は、冷却装置114、115が各排出流路110、111の途中に設けられる。冷却装置114、115は、一般に循環路の一部に構成される冷却領域を有する熱交換器(図示略)と、熱交換器内の電解液を強制冷却する強制冷却機構(図示略)とを備える。
 上記熱交換器の流路は、各流路108~111と同様、PVCなどの樹脂の導管で構成され、その入口から出口に亘って蛇行するように設けられている。電解液は、熱交換器(導管)の入口から出口に亘る過程で熱が奪われて冷却される。冷却には、上記導管を冷却水で冷却する水冷式や、上記導管に強制的に送風を行う空冷式が利用されている。上記熱交換器の流路は、上述のように蛇行する他、例えば、入口から出口に亘る過程で複数の直線状に枝分かれするように設けられたりすることもある。
特開2013-206566号公報
 各流路108~111や熱交換器の流路を構成する導管の構成樹脂であるPVCは、放熱性が悪く電解液を冷却させ難い。導管の厚さを薄くすれば放熱性を高められるが、酸素を透過させ易くなる。導管内に酸素が侵入することで、その酸素により電解液が酸化されてしまい、電解液の有効量が減少することがある。その結果、電池の放電容量の低下や電池効率の低下などが生じることがある。
 本発明は、上記事情に鑑みてなされたもので、その目的の一つは、電解液を酸化させ難く、電解液を冷却し易い電解液循環型電池を提供することにある。
 本発明の別の目的は、内部を流通する腐食性液体を酸化させ難く、腐食性液体を冷却し易い熱交換器を提供することにある。
 本発明の他の目的は、内部を流通する腐食性液体を酸化させ難く、腐食性液体を冷却するのに好適な配管を提供することにある。
 本発明の一態様に係る電解液循環型電池は、電池セルと、電池セルに電解液を循環する循環路とを備える。循環路が複合導管を備え、複合導管は、樹脂で構成される管状の本体部と、本体部の外周に形成され、本体部よりも酸素透過率の低い有機材料で構成される酸素遮断層とを有する。
 本発明の一態様に係る熱交換器は、腐食性液体が流通する流路を備え、流路の少なくとも一部に腐食性液体を冷却する冷却領域を備える。冷却領域は複合導管を備え、複合導管は、樹脂で構成される管状の本体部と、本体部の外周に形成され、本体部よりも酸素透過率の低い有機材料で構成される酸素遮断層とを有する。
 本発明の一態様に係る配管は、腐食性液体が内部に流通する。配管は、樹脂で構成される管状の本体部と、本体部の外周に形成され、本体部よりも酸素透過率の低い有機材料で構成される酸素遮断層とを備える。
 上記電解液循環型電池は、電解液を酸化させ難く、電解液を冷却し易い。
 上記熱交換器は、内部を流通する腐食性液体を酸化させ難く、腐食性液体を冷却し易い。
 上記配管は、内部を流通する腐食性液体を酸化させ難く、腐食性液体を冷却するのに好適である。
実施形態1に係るレドックスフロー電池に備わる複合導管を示す断面図である。 実施形態1に係るレドックスフロー電池に備わる熱交換器を示す概略図である。 実施形態1に係るレドックスフロー電池に備わるセルスタックの概略構成図である。 レドックスフロー電池の動作原理図である。
 《本発明の実施形態の説明》
 最初に本発明の実施態様の内容を列記して説明する。
 (1)本発明の一態様に係る電解液循環型電池は、電池セルと、電池セルに電解液を循環する循環路とを備える。循環路が複合導管を備え、複合導管は、樹脂で構成される管状の本体部と、本体部の外周に形成され、本体部よりも酸素透過率の低い有機材料で構成される酸素遮断層とを有する。
 上記の構成によれば、電解液を酸化させ難い。この理由は、酸素遮断層を備えて酸素を侵入させ難くすることで、電解液が酸素と触れることを抑制できるからである。
 また、上記電解液を冷却し易い。この理由は、本体部の厚みを薄くするほど放熱性を高められるものの酸素が浸入し易くなるが、酸素遮断層を備えて酸素を本体部内に侵入させ難くできることで本体部の厚さを薄くできるからである。
 (2)上記電解液循環型電池の一形態として、循環路の途中に設けられる熱交換器を備えることが挙げられる。この場合、熱交換器は、循環路の一部を形成して循環路内の電解液を冷却する冷却領域を有する。そして、冷却領域が、前記複合導管で構成されている。
 上記の構成によれば、熱交換器において、電解液を冷却する冷却領域を上述の複合導管で構成することで、電解液を酸化させることなく良好に冷却できる。
 (3)上記電解液循環型電池の一形態として、本体部が、ポリエチレン樹脂で構成され、酸素遮断層が、エチレン‐ビニルアルコール共重合樹脂で構成されることが挙げられる。
 上記の構成によれば、本体部を熱伝導率が高いポリエチレン樹脂で構成することで電解液を良好に冷却できる。また、ポリエチレン樹脂は加工性に優れるため、所望の形状に加工し易い。ポリエチレン樹脂は酸素透過率が高くて酸素を侵入させ易いが、酸素遮断層を酸素透過率の低いエチレン‐ビニルアルコール共重合樹脂で構成することで本体部内部への酸素の侵入を抑制できる。
 (4)上記電解液循環型電池の一形態として、本体部の厚みが、1mm以下であることが挙げられる。
 上記の構成によれば、酸素遮断層を備えることで本体部の厚みを1mm以下にできる。本体部の厚みを1mm以下とすることで、放熱性を高められて電解液を良好に冷却できる。
 (5)上記電解液循環型電池の一形態として、循環路は、複数の前記複合導管と、複合導管同士を連結する連結部とを備えることが挙げられる。この場合、連結部は、前記複合導管同士を融着して形成される。
 上記の構成によれば、複数の複合導管同士を融着して連結するため、接着剤で連結する場合に比べて複合導管同士の接合強度を高められる。また、接着剤を不要にできる上に、接着剤の使用に伴う作業の煩雑さを解消できる。更に、融着することで連結部の密封性を高められ、電解液が連結部から漏洩し難くできる。
 (6)上記電解液循環型電池の一形態として、熱交換器を空冷するファンを備えることが挙げられる。
 上記の構成によれば、電解液を良好に冷却できる。また、熱交換器を水冷する場合に比べて構成を簡略化できる。この理由は、熱交換器に冷却水を供給(循環)するポンプや冷却水を冷却する冷却機などの部材が不要だからである。
 (7)本発明の一態様に係る熱交換器は、腐食性液体が流通する流路を備え、流路の少なくとも一部に設けられて腐食性液体を冷却する冷却領域を備える。冷却領域は複合導管を備え、複合導管は、樹脂で構成される管状の本体部と、本体部の外周に形成され、本体部よりも酸素透過率の低い有機材料で構成される酸素遮断層とを有する。
 上記の構成によれば、熱交換器の冷却領域が上述の複合導管を備えることで、内部を流通する腐食性液体を酸化させ難く、腐食性液体を冷却し易い。ここでは、腐食性液体は、化学反応、電池反応、或いは通電によるジュール熱などによって発熱する液体であり、流通中に放熱が必要な液体である。
 (8)本発明の一態様に係る配管は、腐食性液体が内部に流通する。配管は、樹脂で構成される管状の本体部と、本体部の外周に形成され、本体部よりも酸素透過率の低い有機材料で構成される酸素遮断層とを備える。
 上記の構成によれば、配管が酸素遮断層を備えることで内部を流通する腐食性液体を酸化させ難い。また、配管が酸素遮断層を備えることで本体部の厚みを薄くできるので、腐食性液体を冷却するのに好適である。
 《本発明の実施形態の詳細》
 本発明の実施形態の詳細を、以下に図面を参照しつつ説明する。なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。ここでは、電解液循環型電池としてレドックスフロー電池(RF電池)を例に説明する。
 〔実施形態1〕
 実施形態に係るRF電池は、図4を用いて説明した従来のRF電池と同様、電池セル100と、正極セル102にタンク106内の正極電解液を循環させる循環路(供給流路108、排出流路110)と、負極セル103にタンク107内の負極電解液を循環させる循環路(供給流路109、排出流路111)とを備える。各極電解液の循環は、各循環路の途中に設けたポンプ112,113により行う。実施形態に係るRF電池の主たる特徴とするところは、循環路が、特定の構造・材質の複合導管を備える点にある。即ち、実施形態1に係るRF電池は、循環路の構成が従来のRF電池とは異なるため、以下の実施形態ではその循環路の構成を中心に説明する。本形態は冷却装置を備え、冷却装置は循環路の途中に設けられる熱交換器を含む。熱交換器は、循環路の一部を構成する冷却領域を有する。熱交換器の冷却領域を上記複合導管で構成する。以下、まず複合導管の構成、その複合導管を備える熱交換器(冷却装置)の構成の順に説明し、その後、その他の構成を説明する。従来と同様の構成については、図4と同一符号を付してその説明を省略する。
 [複合導管]
 図1に示す複合導管10は、内部に後述する電解液が流通する。複合導管10は、樹脂で構成される管状の本体部11と、本体部11の外周に形成され、本体部11よりも酸素透過率の低い有機材料で構成される酸素遮断層12とを備える多層構造である。
  (本体部)
 本体部11は、内部に電解液が流通する流路を形成する。本体部11の構成樹脂は、電解液と反応せず、電解液に対する耐性に優れる樹脂が挙げられる。具体的な樹脂は、ポリ塩化ビニル(PVC)、ポリプロピレン(PP)、ポリエチレン(PE)、及びポリテトラフルオロエチレン(PTFE)などが挙げられ、中でもPEが好適に利用できる。通常、PE樹脂は従来一般的に使用されたPVC樹脂に比べて酸素透過率が高く内部に酸素を侵入させ易いが、後述する酸素遮断層12を備えることで本体部11の構成材料にPE樹脂を用いることができる。PE樹脂は、上述したその他の樹脂に比べて熱伝導率が高いため電解液を冷却し易い。また、曲げなどの加工性に優れるため、例えば、循環路の一部である熱交換器の長さ(以下、強制冷却長ということがある)を長くするために本体部11を蛇行させる場合、PVC樹脂に比べて全体のサイズを小さくできる。更に、PE樹脂は融着できるので、例えば、複合導管10同士の接合を融着することで行え、接着剤を不要にできる上に、接着剤の使用に伴う作業の煩雑さを解消できる。ここでは、本体部11はPE樹脂で構成している。
 本体部11の形状は上述のように管状であり、その断面形状は円形、楕円、矩形などの多角形などが挙げられる。断面形状が円形や楕円であれば、多角形に比べて電解液の流通時の圧力損失を小さくできる。特に断面形状が円形であれば、電解液を均等に冷却し易い。ここでは、本体部11の断面形状は、円形である。
 本体部11の厚みは、薄いほど電解液の冷却性能を高められることから薄いほど好ましい。従来のようなPVC樹脂で構成される導管は、薄くすることで酸素が浸入し易くなるため薄くすることが困難であり、RF電池の熱交換器を構成する場合、2mm以上の厚みが必要である。対して本形態の複合導管10によれば、後述の酸素遮断層12を備えることで本体部11内への酸素の侵入を抑制できるため本体部11の厚みを薄くできる。具体的には、本体部11の厚みを1mm以下とすることができ、更に、0.7mm以下とすることができる。本体部の厚みは0.5mm以上とすることが好ましい。そうすれば、本体部11の機械的強度に優れる。特に、本体部11厚みは、複合導管10の厚みが1mm以下、更には0.7mm以下となるように酸素遮断層12の厚みとの兼ね合いで適宜選択するとよい。
  (酸素遮断層)
 酸素遮断層12は、外部から本体部11内への酸素の侵入を抑制する。酸素遮断層12は、本体部11の全長に亘ってその外周を覆う。酸素遮断層12の形状は、本体部11の外面形状に応じた形状であり、例えば、本体部11が円筒管の場合、酸素遮断層12の形状も円筒状である。
 酸素遮断層12の材質は、上述のように本体部11よりも酸素透過率の低い有機材料が挙げられる。酸素遮断層12を酸素透過率の低い有機材料で構成することで、本体部11内への酸素の侵入を抑制できる上に、本体部11の厚さを薄くできて電解液の冷却性能を高められる。具体的には、エチレン‐ビニルアルコール共重合樹脂(エチレン‐酢酸ビニルランダム共重合体けん化物)、ポリ塩化ビニリデン樹脂、ポリビニルアルコール樹脂、ナイロン6などが挙げられる。
 酸素遮断層12の厚みは、20μm以上500μm以下とすることが好ましい。酸素遮断層12の厚みを20μm以上とすることで、酸素の侵入を良好に抑制できる。酸素遮断層12の厚みを500μm以下とすることで、厚くなりすぎず電解液を効率的に冷却できる。
 複合導管10の製造は、例えば、以下の(1)~(3)の方法で行える。(1)押出成形した本体部11の外周に酸素遮断層12のフィルムやシートを接着剤で貼り付ける。(2)押出成形した本体部11に酸素遮断層12を押出被覆する。(3)本体部11と酸素遮断層12とを同時押出成形し、本体部11の成形と同時に本体部11の外周に酸素遮断層12を形成する。上記(2)や(3)の方法によれば、本体部11と酸素遮断層12との接合性を高められる。加えて、フィルムやシートを張り合わせる際に形成される継ぎ目が形成されないため、本体部11の外周全周に亘って隙間なく酸素遮断層12を形成できて、電解液の酸化をより一層抑制できる。特に、上記(3)の方法によれば、本体部11と酸素遮断層12とを同時に成形できるため複合導管10の生産性を高められる。
 [冷却装置]
 図2、4に示す冷却装置20、21は、各極電解液の熱を奪うことでその電解液を冷却する。冷却装置20、21は、各極の循環路の途中に設けられて循環路の一部を構成する冷却領域を有する熱交換器30と、熱交換器30を強制冷却する強制冷却機構とを備える。本形態では、上述したように熱交換器30を上述の複合導管10で構成する。
  (熱交換器)
 熱交換器30は、循環路内の電解液が冷却される。ここでの冷却は、自然放冷による冷却でもよいが、後述する強制冷却機構による強制冷却とすることで、電解液を良好に冷却できる。熱交換器30の設置箇所は、供給流路108、109の途中、又は排出流路110、111の途中のいずれでもよいが、排出流路110、111の途中とすることが好ましい。各極電解液は、電池反応に伴い発熱する。そのため、熱交換器30の設置箇所を排出流路110、111の途中とすることで、電解液を良好に冷却できる。ここでは、熱交換器30の設置箇所を排出流路110、111の途中としている。
 熱交換器30の入口(図2では流入路31)は、排出流路110、111(図4)のうち上流側排出流路110u、111uに接続され、熱交換器30の出口(図2では流出路35)は、下流側排出流路110d、111dに接続される。各極セル102、103から排出された電解液は、上流側排出流路110u、111uから熱交換器30の入口を介して熱交換器30内に流通され、熱交換器30の入口から出口に亘る過程で電解液の熱が奪われる。熱が奪われた電解液は、熱交換器30の出口から下流側排出流路110d、111dを介して各極タンク106、107に排出される。
 熱交換器30の入口から出口に亘る流路は、連続する1本の流路で構成したり、複数の流路で構成したりすることができる。連続する1本の流路とする場合、流路を蛇行させることが好ましい。そうすれば、同じ流路断面積で同じ流路長とする場合、流路を直線状とする場合に比べて熱交換器30のサイズ、ひいては冷却装置20、21のサイズを小型化できる。また、熱交換器30を同じサイズとする場合、直線状の流路に比べて流路を構成する複合導管10の表面積を大きく(強制冷却長を長く)できて電解液を所望の温度に冷却し易い。複数の流路とする場合、各流路を直線状としてもよいし、蛇行させてもよい。連続する1本の流路と同じ流路断面積で同じ流路長とする場合、複数の流路で構成することで、各流路断面積(径)を小さくできるので、各流路を構成する複合導管10の合計表面積を大きくできる。また、各流路断面積(径)を小さくできることで、流路の中心部分まで冷却させ易い。
 ここでは、熱交換器30の入口から出口に亘る流路を、複数の流路で構成する。具体的には、熱交換器30は、電解液を熱交換器30(冷却装置20,21)内に流入させる流入路31及び電解液を熱交換器30(冷却装置20、21)外へ流出させる流出路35と、流入路31と流出路35との間で熱交換器30のうち主として電解液を冷却する複数の分岐路33とを備える。流入路31及び流出路35と複数の分岐路33とは、それぞれ中継路32及び集約路34を介して連結している。そして、各流路31~35が複合導管10で構成される。
 流入路31は、各極セル102、103から排出された電解液を熱交換器30(冷却装置20,21)内に流入させる。流入路31の一端は上流側排出流路110u,111u(図4)に連結している。
 中継路32は、流入路31と複数の分岐路33とを中継して、流入路31から流入した電解液を各分岐路33へ分岐する。中継路32の一端は流入路31の途中に連結し、他端は閉口している。中継路32の途中には、複数の分岐路33が連結される。
 各分岐路33は、熱交換器30のうち主として電解液を冷却する流路である。各分岐路33の一端が中継路32に連結され、他端が集約路34に連結される。各分岐路33は、一端から他端に亘って直線状としてもよいし蛇行させてもよい。直線状の分岐路33とする場合、分岐路33を構成する複合導管10を曲げ加工する必要がない上に、蛇行する分岐路33に比べて電解液の圧力損失が少ない。蛇行する分岐路33とする場合、同じ流路断面積で同じ流路長とすると、直線状の分岐路33に比べて、熱交換器30のサイズ、ひいては冷却装置20、21のサイズを小型化できる。また、複合導管10の本体部11をPE樹脂で構成することで曲げ加工し易いため、蛇行する流路を従来のようにPVC樹脂の導管を曲げ加工して構成する場合に比べても、熱交換器30(冷却装置20、21)のサイズを小型化できる。一方、熱交換器30を同じサイズとすると、直線状の分岐路33に比べて複合導管10の表面積を大きく(強制冷却長を長く)できて電解液を所望の温度に冷却し易い。ここでは各分岐路33を直線状に構成し、中継路32と集約路34との間で互いに平行するように並列して配置している。各分岐路33の断面積(径)は、熱交換器30を構成するその他の流路(流入路31、中継路32、集約路34、及び流出路35)に比べて小さく(細く)している。
 集約路34は、複数の分岐路33を流通した電解液を集約すると共に電解液を流出路35へ輸送する。集約路34の一端は流出路35に連結し、他端は閉口している。集約路34の途中には、各分岐路33の他端が連結される。
 流出路35は、集約路34から輸送された電解液を熱交換器30(冷却装置20、21)外へ流出させる。流出路35の一端は下流側排出流路110d、111d(図4)に連結している。
 これら流入路31と中継路32、中継路32と各分岐路33、各分岐路33と集約路34、集約路34と流出路35の連結はそれぞれ、連結部39を介して行われる。なお、図2では中継路32及び集約路34と各分岐路33との連結部39を示し、それ以外の連結部を省略して示している。各連結部39は、それぞれを構成する複合導管10同士を融着して形成することが好ましい。複合導管10の本体部11をPE樹脂で構成することで、各連結部39を融着して形成できる。複合導管10同士を融着することで、複合導管10同士の接合に接着剤を不要にできる上に、接着剤の使用に伴う作業の煩雑さを解消できる。また、融着することで、連結部39の密封性を高められ、電解液の漏洩を防止し易い。連結部39の表面は、本体部11が酸素遮断層12から露出することを許容する。融着により連結部39の表面は本体部11が露出することがあるが、露出箇所の熱交換器30全体に対する割合は小さく、この露出箇所から侵入する酸素による電解液の酸化の影響は小さいからである。
  (強制冷却機構)
 強制冷却機構は、冷却水で冷却する水冷式や、送風を行う空冷式が挙げられる。水冷式の場合、熱交換器30を容器内に収納し、容器内に冷却水を供給(循環)することが挙げられる。この場合、冷却水で外部からの酸素の侵入を抑制できて好ましいが、冷却水中に酸素が溶存する場合がある。熱交換器30を上述の複合導管10で構成しているため、冷却水中に溶存する酸素の侵入をも抑制できる。一方、空冷式の場合、ファン40を設けることが挙げられる。この場合、冷却水自体が不要であることは勿論、冷却水を供給(循環)するポンプや冷却水の冷却機などの部材が不要であるため、水冷式に比べて強制冷却機構を小型化かつ簡略化できる。ここでは、強制冷却機構はファン40で構成している。
 ファン40の配置箇所は、熱交換器30全体、特に分岐路33に風を当てることのできる位置であればよい。例えば、分岐路33の長手方向及び並列方向の両方に直交する位置に設けてもよいし、分岐路33の流通方向に沿った位置に設けてもよい。ここでは、分岐路33の流通方向に沿った位置、即ち集約路34の直上に設けている。
 なお、熱交換器30は、各流路31~35で構成したが、中継路32、複数の分岐路33、及び集約路34を1つの冷却ユニットとし、熱交換器30は、流入路31と複数の上記冷却ユニットと流出路35とで構成してもよい。その場合、冷却ユニット同士を並列させて配置し、各冷却ユニットにおける中継路32の一端を流入路31の途中に接続し、集約路34の一端を流出路35の途中に接続する。即ち、図2では、紙面奥側に複数の冷却ユニットが並列して配置される。
  (電解液)
 各極電解液は共に、ここでは図4に示すようにバナジウムイオン水溶液を用いているが、電解液はバナジウムイオン水溶液に限定されるわけではない。例えば、各極電解液の組み合わせとしては以下が挙げられる。(1)正極電解液は、マンガンイオンを含有し、負極電解液は、チタンイオン、バナジウムイオン、クロムイオン、亜鉛イオン、及びスズイオンから選択される少なくとも一種の金属イオンを含有する。(2)正極電解液は、マンガンイオン及びチタンイオンの双方を含有し、負極電解液は、チタンイオン、バナジウムイオン、クロムイオン、亜鉛イオン、及びスズイオンから選択される少なくとも一種の金属イオンを含有する。(3)正極電解液及び負極電解液は、マンガンイオン及びチタンイオンの双方を含有する。(4)正極電解液は、鉄イオンを含有し、負極電解液は、チタンイオン、バナジウムイオン、クロムイオン、亜鉛イオン、及びスズイオンから選択される少なくとも一種の金属イオンを含有する。
 電解液の溶媒としては、HSO、KSO、NaSO、HPO、H、KHPO、NaPO、KPO、HNO、KNO、HCl、及びNaNOから選択される少なくとも一種の水溶液を利用することができる。特に硫酸アニオン(SO 2-)を含むものが利用し易い。
 [その他の構成の説明]
 RF電池1は、図3に示すように、電池セル100を複数備えるサブセルスタック200sを複数積層して構成するセルスタック200を備える。セルスタック200は、積層された複数のサブセルスタック200sをその両側から2枚のエンドプレート210、220で挟み込んで締付機構230により締め付けて構成される。締付機構230は、例えば、締付軸231と、締付軸231の両端に螺合されるナット(図示略)と、ナットとエンドプレート210の間に介在される圧縮バネ(図示略)とで構成されている。
 各サブセルスタック200sは、双極板121と双極板121の外周縁を保持するフレーム122を備えるセルフレーム120、正極電極104、隔膜101、及び負極電極105を、この順番で積層することで形成される積層体を備える。この構成の場合、隣接するセルフレーム120の双極板121の間に一つの電池セル100が形成されることになる。更に、各サブセルスタック200sは、積層体の両側に配置される一対の集電板と、一対の集電板の両側に配置される一対の給排板201とを備える。集電板は、上記積層体の積層方向両端に位置する双極板121に導通されている。そして、一対の給排板201の間(給排板201と端部の双極板121との間)から集電板の周縁よりも外側へ突出する端子部を有する。この端子部を介して、サブセルスタック200sの電池セル100と外部機器との間の電気の入出力が行われる。
 各給排板201には、供給流路108(109)に接続される供給パイプ202i、及び排出流路110(111)に接続される排出パイプ202oが取り付けられている。このパイプ202i,202oを介してサブセルスタック200sと各タンク106、107との間での各電解液の流通が行われる。
 サブセルスタック200s内の電解液の流通は、フレーム122に形成される給液マニホールド123、124と、排液マニホールド125,126とにより行われる。正極電解液は、給液マニホールド123からフレーム122の一面側(紙面表側)に形成される溝を介して正極電極104に供給され、フレーム122の上部に形成される溝を介して排液マニホールド125に排出される。同様に、負極電解液は、給液マニホールド124からフレーム122の他面側(紙面裏側)に形成される溝を介して負極電極105に供給され、フレーム122の上部に形成される溝を介して排液マニホールド126に排出される。各フレーム122間には、Oリングや平パッキンなどの環状のシール部材127が配置され、サブセルスタック200sからの電解液の漏洩を抑制している。
 〔作用効果〕
 上述したRF電池1によれば、以下の効果を奏する。
 (1)熱交換器30の各流路31~35を、本体部11と酸素遮断層12とを備える複合導管10で構成することで、熱交換器30内を流通する電解液を酸化させることなく良好に冷却できる。本体部11の外周の酸素遮断層12により本体部11内への酸素の侵入を抑制できる。この酸素遮断層12により酸素の侵入を抑制できることで本体部11の厚みを薄くできるため、電解液の放熱性を高められる。従って、電解液の酸化による電解液の有効量の減少を抑制でき、電池の放電容量の低下や電池効率の低下などを抑制できる。
 (2)複合導管10を構成する本体部11と酸素遮断層12との両方を樹脂で構成されるため、熱交換器30、ひいては冷却装置20,21を軽量化できる。特に、複合導管10の厚みを薄くできるので熱交換器30(冷却装置20、21)の軽量化に寄与する。また、万一複合導管10同士の連結部39から電解液が漏れても、酸素遮断層12が腐食することがない上に、複合導管10が導電性部材を備えていないので複合導管10が漏電経路となる等の問題がない。
 〔実施形態2〕
 実施形態2として、実施形態1の構成(冷却装置20、21の熱交換器30を複合導管10で形成すること)に加えて、各循環路(流路108~111)を複合導管10で構成することができる。この場合、上流側排出流路110u、111uと流入路31とを連結する連結部と、下流側排出流路110d、111dと流出路35とを連結する連結部とはそれぞれ、融着して形成することができる。上述したように、従来は各循環路と熱交換器とをPVC樹脂で構成している。従来の場合、一般的には、各循環路と熱交換器との接合は接着剤で行ったり機械的接合(ボルトやナット)で行ったりしていた。これに対して本形態によれば、各循環路と熱交換器30とを同じ複合導管10で構成することで、両者の接合を融着により行える。そのため、接着剤やボルト及びナットなど不要にできる上に、それらの使用に伴う接続作業の煩雑さを解消できる。
 この形態によれば、各循環路を複合導管10で構成することで、各循環路を流通する際にも電解液の酸化を抑制できる。その上、熱交換器30(冷却装置20,21)のような強制冷却機構による冷却ではなく自然冷却であるものの、各循環路でも電解液を冷却でき、電解液の冷却性能を高められる。また、各循環路と熱交換器との接合に加えて、各循環路と各タンク106,107の接合や各循環路とセルスタックとの接合を融着により行える。
 〔実施形態3〕
 実施形態1、2では、複合導管10を本体部11と酸素遮断層12との2層構造で構成した。実施形態3として、複合導管が本体部と酸素遮断層と酸素遮断層の外周に形成される単層または多層の保護層とを備える形態とすることができる。酸素遮断層の外周に保護層を備えることで、酸素遮断層を機械的に保護できる。保護層は、上述した本体部と同様の樹脂で構成することができ、特に本体部と同じ樹脂で構成することが好ましい。それにより、電解液を良好に冷却できる。ここでは、PE樹脂で構成する。本体部と保護層との合計厚みは、1mm以下とすることが好ましく、更に0.7mm以下とすることが好ましい。上記合計厚みは、0.5mm以上とすることが好ましい。そして、複合導管全体の厚みを1mm以下、更に0.7mm以下とすることが好ましい。この複合導管の製造は、本体部と酸素遮断層と保護層の3層の同時押出成形が好適である。
 この形態によれば、酸素遮断層の外周の保護層により酸素遮断層を保護しつつも、本体部及び保護層の合計厚さが上述の2層構造の場合と比較しても厚くならないので電解液の放熱性を低下させることが無く、電解液を良好に冷却できる。
 〔実施形態4〕
 実施形態1~3では、RF電池の電解液が流通する熱交換器や循環路が複合導管を備える形態を説明した。実施形態4として、RF電池の電解液以外の腐食性液体の流路が複合導管を備える形態とすることができる。腐食性液体は、化学反応、電池反応、或いは通電によるジュール熱などによって発熱する液体であり、流通中に放熱が必要な液体である。特に、硫酸、硝酸、及び塩酸などの金属を腐食させる液体が含まれる。このような腐食性液体が流通する熱交換器の流路のうち、流路の少なくとも一部に設けられて腐食性液体を冷却する冷却領域を上述の複合導管で構成することができる。
 なお、上述の実施形態1~3のRF電池1では、複数の電池セルを備えるサブセルスタックを複数積層したセルスタックを備える形態としたが、RF電池1は、単セルの電池であってもよいし、一組の給排板の間に複数の電池セルを積層したセルスタックを備える形態であってもよい。
 本発明の一態様に係る電解液循環型電池は、太陽光発電、風力発電などの新エネルギーの発電に対して、発電出力の変動の安定化、発電電力の余剰時の蓄電、負荷平準化などを目的とした用途に好適に利用することができる。また、本発明の一態様に係る電解液循環型電池は、一般的な発電所に併設されて、瞬低・停電対策や負荷平準化を目的とした大容量の蓄電池としても好適に利用することができる。そして、本発明の一態様に係る熱交換器は、本発明の一態様に係る電解液循環型電池、例えばRF電池の他、薬液用熱交換器などに好適に利用できる。本発明の一態様に係る配管は、本発明の一態様に係る熱交換器や本発明の一態様に係る電解液循環型電池、例えばRF電池の熱交換器や循環路の他、薬液用配管などに好適に利用できる。
 1 レドックスフロー(RF)電池
 10 複合導管 
  11 本体部 12 酸素遮断層
 20、21 冷却装置
 30 熱交換器
  31 流入路 32 中継路 33 分岐路 34 集約路 35 流出路
  39 連結部
 40 ファン
 100 電池セル
 101 隔膜 102 正極セル 103 負極セル
 104 正極電極 105 負極電極
 106 正極電解液タンク 107 負極電解液タンク
 108、109 供給流路
 110、111 排出流路
  110u、111u 上流側排出流路 110d、111d 下流側排出流路
 112、113 ポンプ
 114、115 冷却装置
 120 セルフレーム 121 双極板 122 フレーム
 123、124 給液マニホールド 125、126 排液マニホールド
 127 シール部材
 200 セルスタック 200s サブセルスタック
 201 給排板 202i 供給パイプ 202o 排出パイプ
 210、220 エンドプレート
 230 締付機構
 231 締付軸

Claims (8)

  1.  電池セルと、前記電池セルに電解液を循環する循環路とを備える電解液循環型電池であって、
     前記循環路が複合導管を備え、前記複合導管は、
     樹脂で構成される管状の本体部と、前記本体部の外周に形成され、前記本体部よりも酸素透過率の低い有機材料で構成される酸素遮断層とを有する電解液循環型電池。
  2.  前記循環路の途中に設けられる熱交換器をさらに備え、
     前記熱交換器は、前記循環路の一部を形成して前記循環路内の前記電解液を冷却する冷却領域を有し、
     前記冷却領域が、前記複合導管で構成されている請求項1に記載の電解液循環型電池。
  3.  前記本体部が、ポリエチレン樹脂で構成され、
     前記酸素遮断層が、エチレン‐ビニルアルコール共重合樹脂で構成される請求項1又は請求項2に記載の電解液循環型電池。
  4.  前記本体部の厚みが、1mm以下である請求項1~請求項3のいずれか1項に記載の電解液循環型電池。
  5.  前記循環路は、
      複数の前記複合導管と、
      前記複合導管同士を連結する連結部とを備え、
     前記連結部は、前記複合導管同士を融着して形成される請求項1~請求項4のいずれか1項に記載の電解液循環型電池。
  6.  前記熱交換器を空冷するファンを備える請求項2に記載の電解液循環型電池。
  7.  腐食性液体が流通する流路を備え、前記流路の少なくとも一部に前記腐食性液体を冷却する冷却領域を備える熱交換器であって、
     前記冷却領域は複合導管を備え、前記複合導管は、
     樹脂で構成される管状の本体部と、前記本体部の外周に形成され、前記本体部よりも酸素透過率の低い有機材料で構成される酸素遮断層とを有する熱交換器。
  8.  腐食性液体が内部に流通する配管であって、
     樹脂で構成される管状の本体部と、
     前記本体部の外周に形成され、前記本体部よりも酸素透過率の低い有機材料で構成される酸素遮断層とを備える配管。
PCT/JP2014/078285 2014-03-11 2014-10-24 電解液循環型電池、熱交換器、及び配管 WO2015136763A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US15/119,445 US10249891B2 (en) 2014-03-11 2014-10-24 Electrolyte-circulating battery
ES14885479T ES2714510T3 (es) 2014-03-11 2014-10-24 Batería de circulación de electrolito
AU2014385962A AU2014385962B2 (en) 2014-03-11 2014-10-24 Electrolyte-circulating battery, heat exchanger, and pipe
EP14885479.7A EP3118923B1 (en) 2014-03-11 2014-10-24 Electrolyte-circulating battery
CN201480076885.1A CN106104890B (zh) 2014-03-11 2014-10-24 电解液循环型电池、热交换器及配管
KR1020167022039A KR102325922B1 (ko) 2014-03-11 2014-10-24 전해액 순환형 전지, 열교환기, 및 배관

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014048171A JP6410127B2 (ja) 2014-03-11 2014-03-11 電解液循環型電池、熱交換器、及び配管
JP2014-048171 2014-03-11

Publications (1)

Publication Number Publication Date
WO2015136763A1 true WO2015136763A1 (ja) 2015-09-17

Family

ID=54071229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078285 WO2015136763A1 (ja) 2014-03-11 2014-10-24 電解液循環型電池、熱交換器、及び配管

Country Status (9)

Country Link
US (1) US10249891B2 (ja)
EP (1) EP3118923B1 (ja)
JP (1) JP6410127B2 (ja)
KR (1) KR102325922B1 (ja)
CN (1) CN106104890B (ja)
AU (1) AU2014385962B2 (ja)
ES (1) ES2714510T3 (ja)
TW (1) TWI620363B (ja)
WO (1) WO2015136763A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102265172B1 (ko) * 2016-05-25 2021-06-16 스미토모덴키고교가부시키가이샤 레독스 플로우 전지용 배관, 및 레독스 플로우 전지용 배관의 제조 방법, 및 배관 유닛, 레독스 플로우 전지
FR3057709B1 (fr) * 2016-10-19 2018-11-23 IFP Energies Nouvelles Batterie a flux redox comportant un systeme de reduction des courants de derivation
US11289728B2 (en) 2017-09-01 2022-03-29 Stryten Critical E-Storage Llc Segmented frames for redox flow batteries
US11701074B2 (en) 2018-08-07 2023-07-18 Siemens Medical Solutions Usa, Inc. Compton camera with segmented detection modules
US11744528B2 (en) * 2018-08-07 2023-09-05 Siemens Medical Solutions Usa, Inc. Adaptive Compton camera for medical imaging
CN112512424B (zh) 2018-08-07 2023-07-04 美国西门子医疗***股份有限公司 多模态康普顿和单光子发射计算机断层摄影医学成像***
US11450863B2 (en) * 2018-12-13 2022-09-20 Stryten Critical E-Storage Llc Co-molded components of a redox flow battery stack
JP7281094B2 (ja) * 2019-02-14 2023-05-25 住友電気工業株式会社 双極板、セルフレーム、セルスタック、およびレドックスフロー電池
CN112687912B (zh) * 2020-12-29 2022-01-14 湖南钒谷新能源技术有限公司 液流电池换热装置及安装换热装置的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004225821A (ja) * 2003-01-23 2004-08-12 Hitachi Metals Ltd 多層樹脂管
JP2005315405A (ja) * 2004-04-01 2005-11-10 Mitsubishi Plastics Ind Ltd 電気融着継手
JP2013037776A (ja) * 2011-08-03 2013-02-21 Sumitomo Electric Ind Ltd レドックスフロー電池
JP2013206566A (ja) * 2012-03-27 2013-10-07 Sumitomo Electric Ind Ltd レドックスフロー電池用熱交換器、およびレドックスフロー電池

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2146142B1 (ja) * 1971-07-20 1974-03-15 Alsthom Cgee
DE3047181A1 (de) * 1980-12-15 1982-06-16 Hoechst Ag, 6000 Frankfurt Kunststoffrohr mit sauerstoffdichter ummantelung
JPS6037674A (ja) 1983-08-11 1985-02-27 Agency Of Ind Science & Technol レドツクス電池
CA1309134C (en) * 1987-09-25 1992-10-20 Wilfrid B. O'callaghan Metal/air battery with recirculating electrolyte
US20050221040A1 (en) * 2001-12-26 2005-10-06 Masaki Koike Fuel tube
JP2004225820A (ja) * 2003-01-23 2004-08-12 Hitachi Metals Ltd 多層樹脂管
JP2006151365A (ja) * 2004-10-26 2006-06-15 Tokai Rubber Ind Ltd 樹脂製燃料タンク用接合部品およびその製法
US8828591B2 (en) * 2006-03-02 2014-09-09 Sony Corporation External packaging material for battery device, nonaqueous electrolyte secondary battery using the same, and battery pack
JP4954775B2 (ja) * 2007-04-12 2012-06-20 ソニー株式会社 電池パック
JP5228360B2 (ja) * 2007-04-12 2013-07-03 ソニー株式会社 電池パック
IT1391775B1 (it) * 2008-11-17 2012-01-27 Ilpea Ind Spa Circuito di raffraddamento
US9290636B2 (en) * 2010-03-31 2016-03-22 Kuraray Co., Ltd. Resin composition, molded article, multilayered pipe and method for producing the same
AU2011277031B2 (en) * 2010-07-09 2016-09-22 Kuraray Co. Ltd. Labeled containers and processes for producing labeled containers
KR101088039B1 (ko) * 2010-11-29 2011-11-30 소민철 에어컨용 냉매관 및 그 제작방법
JP5477672B2 (ja) * 2011-03-31 2014-04-23 住友電気工業株式会社 電解液流通型電池用セルフレーム、電解液流通型電池用セルスタック、及び電解液流通型電池
KR101702414B1 (ko) * 2011-05-11 2017-02-03 그리드텐셜 에너지, 아이엔씨. 개량된 배터리 및 조립 방법
JP5935405B2 (ja) * 2012-03-08 2016-06-15 日産自動車株式会社 積層構造電池
US9017861B2 (en) * 2012-03-15 2015-04-28 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery
US20150044580A1 (en) * 2012-03-16 2015-02-12 Yts Science Properties Pte. Ltd. Fuel Element For Magnesium-Air Battery, Magnesium-Air Battery, Production Method For Fuel Element For Magnesium-Air Battery, Magnesium-Air Batter System, And Use Method For Magnesium-Air Battery
WO2014014548A2 (en) * 2012-05-02 2014-01-23 Florida State University Research Foundation, Inc. Metal-air flow batteries using oxygen enriched electrolyte
JP5626602B2 (ja) * 2012-06-29 2014-11-19 トヨタ自動車株式会社 非水電解質二次電池
WO2014163149A1 (ja) * 2013-04-04 2014-10-09 日本クロージャー株式会社 熱可塑性樹脂から成る層を有する成形体
JP6345062B2 (ja) * 2013-09-30 2018-06-20 株式会社吉野工業所 積層剥離容器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004225821A (ja) * 2003-01-23 2004-08-12 Hitachi Metals Ltd 多層樹脂管
JP2005315405A (ja) * 2004-04-01 2005-11-10 Mitsubishi Plastics Ind Ltd 電気融着継手
JP2013037776A (ja) * 2011-08-03 2013-02-21 Sumitomo Electric Ind Ltd レドックスフロー電池
JP2013206566A (ja) * 2012-03-27 2013-10-07 Sumitomo Electric Ind Ltd レドックスフロー電池用熱交換器、およびレドックスフロー電池

Also Published As

Publication number Publication date
TW201535830A (zh) 2015-09-16
JP2015173038A (ja) 2015-10-01
EP3118923A1 (en) 2017-01-18
EP3118923A4 (en) 2017-03-29
CN106104890B (zh) 2021-03-30
CN106104890A (zh) 2016-11-09
US10249891B2 (en) 2019-04-02
ES2714510T3 (es) 2019-05-28
KR102325922B1 (ko) 2021-11-12
EP3118923B1 (en) 2018-12-26
AU2014385962B2 (en) 2019-05-09
TWI620363B (zh) 2018-04-01
US20170012308A1 (en) 2017-01-12
JP6410127B2 (ja) 2018-10-24
KR20160132378A (ko) 2016-11-18
AU2014385962A1 (en) 2016-08-18

Similar Documents

Publication Publication Date Title
JP6410127B2 (ja) 電解液循環型電池、熱交換器、及び配管
JP6215830B2 (ja) 一体型熱交換器を有したフローバッテリスタック
TWI643395B (zh) 電解液循環型電池
JP6536840B2 (ja) レドックスフロー電池
JP2013206566A (ja) レドックスフロー電池用熱交換器、およびレドックスフロー電池
JP2013037776A (ja) レドックスフロー電池
JP6843730B2 (ja) 燃料電池及びその運転方法
JP2017084456A5 (ja)
WO2016117265A1 (ja) レドックスフロー電池の運転方法、およびレドックスフロー電池
KR20170015798A (ko) 레독스 흐름 전지용 열교환기
TW201628247A (zh) 氧化還原液流電池的運轉方法、及氧化還原液流電池
JP6849954B2 (ja) 枠体、セルフレーム、セルスタック、及びレドックスフロー電池
KR101821946B1 (ko) 레독스 플로우 전지용 프레임, 레독스 플로우 전지 및 셀 스택
WO2016117262A1 (ja) レドックスフロー電池の運転方法、およびレドックスフロー電池
JP7247882B2 (ja) 温度調節システム
JP2008311107A (ja) 燃料電池およびそのセパレータ
WO2019030817A1 (ja) レドックスフロー電池、及びレドックスフロー電池の運転方法
JP2008059942A (ja) 燃料電池モジュール及び燃料電池
JP2019032984A (ja) 燃料電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14885479

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167022039

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15119445

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014385962

Country of ref document: AU

Date of ref document: 20141024

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014885479

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014885479

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE