JP6362252B2 - Lead-acid battery charging / discharging device - Google Patents

Lead-acid battery charging / discharging device Download PDF

Info

Publication number
JP6362252B2
JP6362252B2 JP2014054093A JP2014054093A JP6362252B2 JP 6362252 B2 JP6362252 B2 JP 6362252B2 JP 2014054093 A JP2014054093 A JP 2014054093A JP 2014054093 A JP2014054093 A JP 2014054093A JP 6362252 B2 JP6362252 B2 JP 6362252B2
Authority
JP
Japan
Prior art keywords
charging
storage battery
lead storage
lead
discharging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014054093A
Other languages
Japanese (ja)
Other versions
JP2015176829A (en
Inventor
鈴木 弥志雄
弥志雄 鈴木
高田 賢治
賢治 高田
巌 水本
巌 水本
桂一郎 山本
桂一郎 山本
博 小熊
博 小熊
正治 能村
正治 能村
清 和泉
清 和泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Housetec Inc
Institute of National Colleges of Technologies Japan
Original Assignee
Housetec Inc
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Housetec Inc, Institute of National Colleges of Technologies Japan filed Critical Housetec Inc
Priority to JP2014054093A priority Critical patent/JP6362252B2/en
Publication of JP2015176829A publication Critical patent/JP2015176829A/en
Application granted granted Critical
Publication of JP6362252B2 publication Critical patent/JP6362252B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、鉛蓄電池の充放電装置に関する。   The present invention relates to a charge / discharge device for a lead storage battery.

鉛蓄電池の性能を低下させる要因の一つとして、鉛蓄電池の正電極、負電極に発生するサルフェーション(硫酸塩被膜:PbSO)が知られている。サルフェーションは、鉛蓄電池を放電する際に、希硫酸電解質溶液と、正極(酸化鉛電極)と負極(鉛電極)が電気化学反応を起こすことによって両電極上に形成される。そして、正極及び負極の表面が、サルフェーションによって被膜に覆われることによって、各電極と電解質溶液との間で生じる所期の電気化学反応が阻害され、鉛蓄電池の充電性能及び放電性能が低下してしまう。 As one of the factors that deteriorate the performance of the lead storage battery, sulfation (sulfate coating: PbSO 4 ) generated on the positive electrode and the negative electrode of the lead storage battery is known. The sulfation is formed on both electrodes by causing an electrochemical reaction between the dilute sulfuric acid electrolyte solution, the positive electrode (lead oxide electrode), and the negative electrode (lead electrode) when discharging the lead acid battery. Then, the surfaces of the positive electrode and the negative electrode are covered with a film by sulfation, so that an expected electrochemical reaction that occurs between each electrode and the electrolyte solution is inhibited, and the charge performance and discharge performance of the lead storage battery are reduced. End up.

サルフェーションに起因して低下した鉛蓄電池の性能を回復させる技術として、鉛蓄電池に対して、パルス電流を印加する技術が知られている(特許文献1を参照)。特許文献1に記載された技術では、微小なパルス電流を印加することによって、被膜の表層部に電荷が集中し、サルフェーションが電気分解される。   As a technique for recovering the performance of a lead storage battery that has deteriorated due to sulfation, a technique for applying a pulse current to the lead storage battery is known (see Patent Document 1). In the technique described in Patent Document 1, by applying a minute pulse current, charges are concentrated on the surface layer portion of the coating, and sulfation is electrolyzed.

特許第3902212号公報Japanese Patent No. 3902212

しかしながら、特許文献1に記載された技術では、微小なパルス電流を印加しているため、サルフェーションの電気分解により除去される領域は、鉛あるいは被膜表面の浅い部分のサルフェーションに終始してしまう。よって、鉛蓄電池の性能低下の抑制効果は得られないおそれがある。   However, in the technique described in Patent Document 1, since a minute pulse current is applied, the region to be removed by sulfation electrolysis is always sulfation of lead or a shallow portion of the coating surface. Therefore, there is a possibility that the effect of suppressing the performance deterioration of the lead storage battery cannot be obtained.

この課題を解決するために、大電流のパルス電流を印加する方法が提案されている。しかし、この方法では、電極とその表面との間に電撃ショックが加えられるため、サルフェーションの多くが電極下部に落下してしまい、あるいは、溶解せずに電解液中に浮遊した状態となり、電池の放電時には再び電極板に皮膜が付着してしまうという問題があった。   In order to solve this problem, a method of applying a large pulse current has been proposed. However, in this method, an electric shock is applied between the electrode and the surface thereof, so that most of the sulfation falls to the lower part of the electrode, or it does not dissolve and floats in the electrolyte solution. There was a problem that the film adhered to the electrode plate again during discharge.

本発明は、このような事情に鑑みてなされたもので、その目的は、鉛蓄電池を充放電する鉛蓄電池の充放電装置において、電撃ショックを加えずに、パルス電流を印加することなく鉛蓄電池のサルフェーションを除去することができる鉛蓄電池の充放電装置を提供することである。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a lead-acid battery in a lead-acid battery charging / discharging device that charges and discharges the lead-acid battery without applying a pulse current without applying an electric shock. It is providing the charging / discharging apparatus of the lead acid battery which can remove the sulfation of.

本発明の一態様は、鉛蓄電池の容量を回復するための機能回復動作と、前記鉛蓄電池を満充電するための充電動作を行う鉛蓄電池の充放電装置であって、前記鉛蓄電池を充電する充電部と、前記鉛蓄電池を放電する放電部と、前記充電部と前記放電部とを制御する制御部と、を備え、前記制御部は、前記機能回復動作として、前記鉛蓄電池の容量に応じた電流で分単位の充電を行った後、前記充電を停止し、前記鉛蓄電池の容量に応じた分単位の待機状態とする操作を繰り返し複数回行い、続いて、前記鉛蓄電池の容量に応じた電流で分単位の放電を行った後、前記放電を停止し、前記鉛蓄電池の容量に応じた分単位の待機状態とするプロセスを1サイクルとして、該サイクルを複数回繰り返し行い、次いで前記制御部は、充電動作として、充電電流を検出しながら前記鉛蓄電池の容量に応じた前記機能回復動作時の充電電流と同じ電流で分単位の定電流充電を行った後、前記鉛蓄電池の容量に応じた分単位の待機状態とする処理を1サイクルとして複数サイクル繰り返し、先の定電流充電時に鉛蓄電池の端子電圧が満充電電圧に達すると満充電電圧で定電圧充電を行い、検出している充電電流が一定値以下になると充電終了と判断して充電終了とする鉛蓄電池の充放電装置である。
また、本発明の一態様によれば、前記制御部は前記充電電流が2Aを超える場合は満充電に達していないと判断し、前記充電電流が2A以下となった場合に満充電と判断して充電終了とする鉛蓄電池の充放電装置である。


One aspect of the present invention is a charge / discharge device for a lead storage battery that performs a function recovery operation for recovering the capacity of the lead storage battery and a charge operation for fully charging the lead storage battery, and charging the lead storage battery. A charging unit; a discharging unit that discharges the lead storage battery; and a control unit that controls the charging unit and the discharging unit, the control unit according to a capacity of the lead storage battery as the function recovery operation. After charging in units of minutes with a current, the charging is stopped, and the operation of setting the standby state in units of minutes according to the capacity of the lead storage battery is repeated a plurality of times, followed by the capacity of the lead storage battery The discharge is stopped by a minute current, and then the discharge is stopped, and the process of setting the standby state in minutes according to the capacity of the lead storage battery is set as one cycle, the cycle is repeated a plurality of times, and then the control Is a charging operation, After constant current charge was performed in minutes at the same current as the charging current of DENDEN flow the functional recovery operation in response to the capacity of the lead-acid battery while detecting a standby state in minutes corresponding to the capacitance of the lead-acid battery The process is repeated multiple times as one cycle, and when the terminal voltage of the lead storage battery reaches the full charge voltage at the time of the previous constant current charge, constant voltage charge is performed at the full charge voltage, and the detected charging current falls below a certain value In this case , the lead-acid battery charging / discharging device determines that charging is completed and ends charging.
Further, according to one aspect of the present invention, the control unit determines that full charge is not reached when the charge current exceeds 2 A, and determines full charge when the charge current is 2 A or less. Thus, the charge / discharge device for the lead storage battery is charged.


また、本発明の一態様は、上述した鉛蓄電池の充放電装置であって、前記充電の電流は、0.07C以上0.25C以下であり、前記放電の電流は、0.14C以上0.4C以下であり、分単位の充電時間と放電時間との各々は、少なくとも1分以上である。   One embodiment of the present invention is the above-described charge / discharge device for a lead storage battery, in which the charging current is 0.07 C or more and 0.25 C or less, and the discharging current is 0.14 C or more and 0.00. 4C or less, and each of the charging time and discharging time in minutes is at least 1 minute.

また、本発明の一態様は、上述した鉛蓄電池の充放電装置であって、分単位の待機状態は、少なくとも1分以上である。   Moreover, 1 aspect of this invention is the charging / discharging apparatus of the lead acid battery mentioned above, Comprising: The standby state of a minute unit is at least 1 minute or more.

また、本発明の一態様は、上述した鉛蓄電池の充放電装置であって、2つの鉛蓄電池が接続された鉛蓄電池の充放電装置であって、前記制御部は、一方の鉛蓄電池の待機状態の時に、他方の鉛蓄電池の放電又は充電を行うように制御する。   Another embodiment of the present invention is the above-described charge / discharge device for a lead storage battery, which is a charge / discharge device for a lead storage battery in which two lead storage batteries are connected, and the control unit waits for one lead storage battery. Control is performed so that the other lead-acid battery is discharged or charged in the state.

本発明によれば、鉛蓄電池を充放電する鉛蓄電池の充放電装置において、電撃ショックを加えずに、パルス電流を印加することなく鉛蓄電池のサルフェーションを除去することができ、機能回復効果を得ることができる鉛蓄電池の充放電装置を提供できるAccording to the present invention, in a lead-acid battery charging / discharging device that charges and discharges a lead-acid battery, sulfation of the lead-acid battery can be removed without applying a pulse current without applying an electric shock, and a function recovery effect is obtained. it is possible to provide a charge and discharge device of the lead-acid battery that is Ru can.

本発明の実施形態における充放電装置の外観を示す概略図である。It is the schematic which shows the external appearance of the charging / discharging apparatus in embodiment of this invention. 本発明の実施形態における充放電装置の内部回路を示すブロック図である。It is a block diagram which shows the internal circuit of the charging / discharging apparatus in embodiment of this invention. 本発明の実施形態における充放電装置の制御部の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the control part of the charging / discharging apparatus in embodiment of this invention. 本発明の実施形態における充放電装置の機能回復動作を説明するタイムチャートである。It is a time chart explaining the function recovery operation | movement of the charging / discharging apparatus in embodiment of this invention. 鉛蓄電池の容量に応じた機能回復動作の電流・時間の設定値のテーブルを示す図である。It is a figure which shows the table of the setting value of the electric current and time of a function recovery operation according to the capacity | capacitance of a lead storage battery. 通常充電方法と本発明の充電方法との機能回復効果の比較を示すグラフである。It is a graph which shows the comparison of the function recovery effect of the normal charging method and the charging method of this invention. 本発明の実施例の充放電装置の2台動作の主要部を示すタイムチャートである。It is a time chart which shows the principal part of 2 units | sets operation | movement of the charging / discharging apparatus of the Example of this invention.

以下に、本発明の実施形態における鉛蓄電池の充放電装置(以下、「充放電装置」という。)について説明する。
まず、本実施形態の概要について説明する。
充放電装置は、出力端子が鉛蓄電池に接続されている。充放電装置は、鉛蓄電池を充電するための充電部と、鉛蓄電池を放電するための放電部と、充電部及び放電部を制御するための制御部と、商用電源から直流を生成する直流電源回路とを備える。
また、充放電装置は、電源入/切スイッチ、充電や放電状態を示す出力表示部、外部モニターや記憶素子を接続する外部出力部などを適宜設けることができる。
Below, the charging / discharging apparatus (henceforth a "charge / discharge apparatus") of the lead acid battery in embodiment of this invention is demonstrated.
First, an outline of the present embodiment will be described.
The charging / discharging device has an output terminal connected to the lead storage battery. The charging / discharging device includes a charging unit for charging the lead storage battery, a discharging unit for discharging the lead storage battery, a control unit for controlling the charging unit and the discharging unit, and a direct current power source that generates direct current from a commercial power source. Circuit.
In addition, the charging / discharging device can be appropriately provided with a power on / off switch, an output display unit that indicates a charging or discharging state, an external output unit that connects an external monitor or a storage element, and the like.

直流電源回路は、充放電装置の駆動電源と充電部と放電部とに電圧を出力する。
充電部は、充電電流及び充電電圧を鉛蓄電池に出力する充電用電源と、鉛蓄電池の充電電流を検出する電流検出器と、充電用電源をオン/オフするための充電スイッチング回路とで構成されている。また、充電部は、制御部からの信号に基づいて運転される。
The DC power supply circuit outputs a voltage to the drive power supply, the charging unit, and the discharging unit of the charging / discharging device.
The charging unit includes a charging power source that outputs a charging current and a charging voltage to the lead storage battery, a current detector that detects the charging current of the lead storage battery, and a charge switching circuit for turning on / off the charging power source. ing. The charging unit is operated based on a signal from the control unit.

充電スイッチング回路は、直流電源回路から鉛蓄電池へ供給される充電電流をオンまたはオフするための回路である。例えば、充電スイッチング回路は、充電用リレーと、充電用リレーの駆動回路をオン/オフするFET(Field effect transistor:電界効果トランジスタ)とで構成されている。充電スイッチング回路は、制御部からの信号に基づいて、FETのゲート端子への通電のオン/オフによって充電用リレーを駆動する。なお、充電電流をオン/オフする手段は、この方式の限りではない。また、充電スイッチング回路は、充電用リレーを含まない構成にしてもよい。   The charge switching circuit is a circuit for turning on or off a charging current supplied from the DC power supply circuit to the lead storage battery. For example, the charging switching circuit includes a charging relay and an FET (Field effect transistor) that turns on / off a driving circuit of the charging relay. The charge switching circuit drives the charging relay by turning on / off the energization to the gate terminal of the FET based on a signal from the control unit. The means for turning on / off the charging current is not limited to this method. Further, the charging switching circuit may be configured not to include a charging relay.

放電部は、放電装置としての電子負荷装置と、放電電流を検出する電流検出器と、放電電流をオン/オフするための放電スイッチング回路とで構成されている。放電部は、制御部からの信号に基づいて運転される。   The discharge unit includes an electronic load device as a discharge device, a current detector for detecting a discharge current, and a discharge switching circuit for turning on / off the discharge current. The discharge unit is operated based on a signal from the control unit.

電子負荷装置は、放電負荷として作動するとともに、制御部からの信号に基づき、放電電流の調整装置として用いる。   The electronic load device operates as a discharge load and is used as a discharge current adjusting device based on a signal from the control unit.

放電スイッチング回路は、鉛蓄電池から電子負荷装置へ供給される放電電流をオン/オフするための回路である。例えば、放電スイッチング回路は、放電用リレーと、放電用リレーの駆動回路とをオン/オフするFETで構成されている。放電スイッチング回路は、制御部からの信号に基づいてFETのゲート端子への通電をオン/オフすることによって、放電用リレーを駆動する。なお、放電電流をオン/オフする手段は、この限りではない。また、放電スイッチング回路は、放電用リレーを含まない構成にしてもよい。   The discharge switching circuit is a circuit for turning on / off a discharge current supplied from the lead storage battery to the electronic load device. For example, the discharge switching circuit is configured by an FET that turns on / off a discharge relay and a drive circuit for the discharge relay. The discharge switching circuit drives the discharge relay by turning on / off the energization to the gate terminal of the FET based on a signal from the control unit. The means for turning on / off the discharge current is not limited to this. Further, the discharge switching circuit may be configured not to include a discharge relay.

制御部は、例えば、所定の動作をプラグラムされたマイコンであって、充電、放電、待機といった動作を組み合せながら、機能回復動作や充電動作を実行する。ここで、機能回復動作とは、鉛蓄電池の容量を回復する動作である。充電動作とは、鉛蓄電池を満充電する動作である。
充電に関しては、制御部は、直流電源を制御し、所定の電流及び電圧を生成する。また、制御部は、FETを制御し、リレーを連続または所定間隔で動作させ、電流検出によって充電動作を確認する。また、制御部は、鉛蓄電池の端子電圧を検出して、充電動作全体の制御を行うことができる。
The control unit is, for example, a microcomputer programmed with a predetermined operation, and performs a function recovery operation and a charging operation while combining operations such as charging, discharging, and standby. Here, the function recovery operation is an operation of recovering the capacity of the lead storage battery. The charging operation is an operation of fully charging the lead storage battery.
Regarding charging, the control unit controls the DC power supply to generate a predetermined current and voltage. The control unit controls the FET, operates the relay continuously or at predetermined intervals, and confirms the charging operation by current detection. Further, the control unit can detect the terminal voltage of the lead storage battery and control the entire charging operation.

放電に関しては、制御部は、電子負荷装置を制御し、所定の電流及び電圧を生成する。また、制御部は、FETを制御し、リレーを連続または所定間隔で動作させ、電流検出によって放電動作を確認する。また、制御部は、鉛蓄電池の端子電圧を検出して、放電動作全体の制御を行うことができる。
なお、制御部は、待機状態の設定や、充放電の繰り返し回数といった充放電全体の制御を行うことができる。
Regarding the discharge, the control unit controls the electronic load device to generate a predetermined current and voltage. Further, the control unit controls the FET, operates the relay continuously or at predetermined intervals, and confirms the discharge operation by current detection. Further, the control unit can detect the terminal voltage of the lead storage battery and control the entire discharge operation.
In addition, the control part can perform control of the whole charging / discharging, such as the setting of a standby state, and the repetition frequency of charging / discharging.

鉛蓄電池は、その容量によって、必要な充放電電流量が異なるので、充放電電流値は一般的に充放電率Cで表記される。ここでCとは、鉛蓄電池の定格容量を1時間で充電または放電するのに相当する電流の大きさを表し、nC=充放電電流(A)÷定格容量(Ah)で表される。すなわち、nの値が小さいほど、小電流の充放電を意味する。   Since the required charge / discharge current amount differs depending on the capacity of the lead storage battery, the charge / discharge current value is generally expressed as a charge / discharge rate C. Here, C represents the magnitude of current corresponding to charging or discharging the rated capacity of the lead storage battery in one hour, and is represented by nC = charge / discharge current (A) ÷ rated capacity (Ah). That is, the smaller the value of n, the smaller the charge / discharge of current.

次に本実施形態における効果について説明する。
<従来の充放電装置>
まず、従来の充放電装置の充放電について説明する。
鉛蓄電池に充電する場合、従来の充放電装置は、普通充電として、電流値0.1C程度で約12時間かけて満充電まで実施することが多い。また、充放電装置は、緊急対応の急速充電として、30分間を限度に、1C程度で鉛蓄電池に充電するが、鉛蓄電池自体を痛める恐れがあるため、満充電までは充電しない。
Next, the effect in this embodiment is demonstrated.
<Conventional charge / discharge device>
First, charge / discharge of a conventional charge / discharge device will be described.
When charging a lead-acid battery, the conventional charging / discharging device often performs a full charge at a current value of about 0.1 C for about 12 hours as a normal charge. In addition, the charging / discharging device charges the lead storage battery at about 1 C for 30 minutes as a quick charge for emergency response, but does not charge the battery until it is fully charged because it may damage the lead storage battery itself.

一方、鉛蓄電池を放電する場合、充放電装置は、一般的に0.05C〜3C程度の電流で鉛蓄電池を放電する。これは、鉛蓄電池が短時間の大電流放電や、長時間の緩やかな放電にも比較的安定した性能を持つためである。
しかし、鉛蓄電池は、完全放電すると、電極板表面にサルフェーションが発生しやすくなる。よって、電極板表面がサルフェーションによって被膜に覆われ、充放電装置は、鉛蓄電池に十分な充放電ができなくなる。この現象が進行すると、鉛蓄電池は、使用に耐えなくなる。そのため、充放電装置は、過放電を避けて、鉛蓄電池の放電後すぐに鉛蓄電池に充電を行う。このように、充放電装置は、常に鉛蓄電池の容量を満たしておくことで、電極板表面にサルフェーションが発生するのを抑制している。
On the other hand, when discharging a lead storage battery, the charging / discharging device generally discharges the lead storage battery with a current of about 0.05C to 3C. This is because the lead-acid battery has a relatively stable performance against a large current discharge for a short time or a gentle discharge for a long time.
However, when the lead storage battery is completely discharged, sulfation is likely to occur on the electrode plate surface. Therefore, the surface of the electrode plate is covered with a film by sulfation, and the charge / discharge device cannot sufficiently charge / discharge the lead storage battery. As this phenomenon progresses, the lead-acid battery becomes unusable. Therefore, the charging / discharging device avoids overdischarge and charges the lead storage battery immediately after the discharge of the lead storage battery. Thus, the charging / discharging device suppresses the occurrence of sulfation on the electrode plate surface by always satisfying the capacity of the lead storage battery.

次に、従来の充放電装置のサルフェーションに起因して低下した鉛蓄電池の性能を回復させる方法について説明する。
一般的に、サルフェーションに起因して低下した鉛蓄電池の性能を回復するには、電極に付着したサルフェーションを強制的に電気分解し硫酸に戻すことで、サルフェーションを除去する必要がある。
Next, a method for recovering the performance of the lead-acid battery that has deteriorated due to the sulfation of the conventional charge / discharge device will be described.
In general, in order to recover the performance of a lead storage battery that has been reduced due to sulfation, it is necessary to remove the sulfation by forcibly electrolyzing the sulfation attached to the electrode and returning it to sulfuric acid.

その方法の一つとして、高周波パルス電圧刺激によるPbSO(サルフェーション)のイオン化がある。これは、充放電装置が鉛蓄電池にμ秒単位の高周波短パルスで20V近くの電圧を繰り返し印加するものである。しかし、電極をコンデンサと考えると、電極が刺激される時間が短いため、電極における化学反応は電極の浅い部分に終始してしまい、結果的にPbSOのイオン化にはほとんど影響を及ぼさない可能性がある。 One of the methods is ionization of PbSO 4 (sulfation) by high-frequency pulse voltage stimulation. In this case, the charging / discharging device repeatedly applies a voltage close to 20 V to the lead-acid battery with a high-frequency short pulse in microseconds. However, when the electrode is considered as a capacitor, since the time for which the electrode is stimulated is short, the chemical reaction in the electrode may end up in the shallow part of the electrode, and as a result, the ionization of PbSO 4 may hardly be affected. There is.

<本発明の充放電装置>
次に、本実施形態の充放電装置の充放電について説明する。
鉛蓄電池に充電する場合、本発明の実施形態における充放電装置は、定電流による充電と充電の間断とを繰り返し行う間断充電方式で充電を行う。特に、機能回復動作として、充放電装置は、充放電電流値を比較的大電流に設定し、分単位の充放電のサイクルを行うことで、鉛蓄電池の電極を刺激する。
さらに、充電と放電との間の待機状態を分単位にすることで、充放電装置は、サルフェーションを抑制することができる。つまり、本発明の実施形態における充放電装置は、比較的大電流の定電流で充放電を行うことにより、電極上の活物質の深部から活物質を取り出すことができる。また、本発明の実施形態における充放電装置は、充電と放電と間に分単位の「間」を設けることで、鉛蓄電池の電極の化学反応を確実に行うことができる。
<Charging / discharging device of the present invention>
Next, charging / discharging of the charging / discharging apparatus of this embodiment is demonstrated.
When charging a lead storage battery, the charging / discharging device in the embodiment of the present invention performs charging by an intermittent charging method in which charging by constant current and intermittent charging are repeated. In particular, as a function recovery operation, the charging / discharging device sets the charging / discharging current value to a relatively large current, and stimulates the electrodes of the lead storage battery by performing a charging / discharging cycle in minutes.
Furthermore, the charging / discharging device can suppress sulfation by setting the standby state between charging and discharging in units of minutes. That is, the charge / discharge device according to the embodiment of the present invention can take out the active material from the deep part of the active material on the electrode by performing charge / discharge with a relatively large constant current. Moreover, the charging / discharging apparatus in embodiment of this invention can perform the chemical reaction of the electrode of a lead storage battery reliably by providing "between" of a minute unit between charge and discharge.

なお、上述した比較的大電流の充放電の定電流値は、鉛蓄電池の容量に応じて適宜設定される。ただし、分単位レベルの充電の場合、充放電の電流値が0.07C未満では十分に電極が刺激されない。また、充放電の電流値が0.25Cを超えると鉛蓄電池の破壊につながる恐れがある。よって、鉛蓄電池を充電する場合は、充放電の電流値を0.07C〜0.25Cに設定することが望ましい。   In addition, the constant current value of charge / discharge of the comparatively large current mentioned above is suitably set according to the capacity | capacitance of a lead storage battery. However, in the case of charge at the minute unit level, the electrode is not sufficiently stimulated when the charge / discharge current value is less than 0.07C. Moreover, when the current value of charging / discharging exceeds 0.25C, it may lead to destruction of the lead storage battery. Therefore, when charging a lead storage battery, it is desirable to set the electric current value of charging / discharging to 0.07C-0.25C.

また、分単位レベルの放電の場合、充放電電流値が0.14C未満では十分に電極が刺激されない。また、充放電の電流値が0.4Cを超えると鉛蓄電池の破壊につながる恐れがある。よって、鉛蓄電池を放電する場合は、充放電の電流値を0.14C〜0.4Cに設定することが望ましい。
ここで、充放電の分単位と待機状態の分単位とは、1分以上のことをいう。また、充放電の分単位の時間と待機状態の分単位の時間とは、鉛蓄電池の状態に応じて、適宜設定される。
Further, in the case of discharge at a minute unit level, if the charge / discharge current value is less than 0.14 C, the electrode is not sufficiently stimulated. Moreover, when the current value of charging / discharging exceeds 0.4 C, there is a possibility of leading to destruction of the lead storage battery. Therefore, when discharging a lead acid battery, it is desirable to set the charging / discharging current value to 0.14C to 0.4C.
Here, the minute unit of charge / discharge and the minute unit of the standby state mean one minute or more. Moreover, the time of the unit of charge / discharge and the time of the unit of minute of the standby state are appropriately set according to the state of the lead storage battery.

また、分単位の待機状態を設けることで、充放電装置は、2つの鉛蓄電池の各々に接続された場合、2つの鉛蓄電池に対して交互に充放電を行うとともに、予め決められた時間内に充放電を行うことができる。例えば、充放電装置は、一方の鉛蓄電池に充電し、その後の待機状態中に、他方の鉛蓄電池に充電する。また、充放電装置は、他方の鉛蓄電池への充電後の待機時間中に、再び一方の鉛蓄電池の充電をする。よって、充放電装置は、予め決められた時間内に、2つの鉛蓄電池の機能回復の作業を実施することができる。
なお、本発明の充放電装置は、機能回復動作の後に、鉛蓄電池を満充電にするための充電動作を行うことができる。また、本発明の充放電装置の充電動作は、充電時の電流値を確認しながら定電圧を連続して印加する方法や、充電時の電流値を確認しながら、通電と待機を繰り返す方法を用いることができる。
In addition, by providing a standby state in units of minutes, when the charging / discharging device is connected to each of the two lead storage batteries, the charge / discharge device alternately charges and discharges the two lead storage batteries and within a predetermined time period. Can be charged and discharged. For example, the charging / discharging device charges one lead storage battery, and charges the other lead storage battery during the subsequent standby state. In addition, the charging / discharging device charges one lead storage battery again during the standby time after charging the other lead storage battery. Therefore, the charging / discharging device can carry out the work of functional recovery of the two lead storage batteries within a predetermined time.
In addition, the charging / discharging apparatus of this invention can perform the charge operation | movement for making a lead storage battery full charge after function recovery operation | movement. In addition, the charging operation of the charging / discharging device of the present invention includes a method of applying a constant voltage continuously while checking a current value during charging, and a method of repeating energization and standby while checking a current value during charging. Can be used.

次に、本実施形態の具体例について、図面を参照しながら説明する。図1は、本発明の実施形態における充放電装置1の外観を示す概略図である。
図1に示すように、充放電装置1は、外観構成として、電源スイッチ2と、充電入/切スイッチ3と、鉛蓄電池10が接続される出力端子4と、充電時間と間隔と回数と電流と電圧とを設定する充電操作部5と、放電時間と間隔と回数と電流と電圧とを設定する放電操作部6と、待機時間と間隔と回数とを設定する待機操作部7と、充電と放電と待機との運転状態を表示する表示部8とを備えている。また、充放電装置1は、電源コード9を通じて、商用電源から電圧が供給される。
充電入/切スイッチ3は、充電入3aと充電切スイッチ3bとを備えている。また、出力端子4は、出力端子4aと出力端子4bとを備えている。
Next, specific examples of the present embodiment will be described with reference to the drawings. FIG. 1 is a schematic diagram showing an external appearance of a charge / discharge device 1 according to an embodiment of the present invention.
As shown in FIG. 1, the charging / discharging device 1 includes, as an external configuration, a power switch 2, a charge on / off switch 3, an output terminal 4 to which a lead storage battery 10 is connected, a charging time, an interval, a frequency, and a current. A charging operation unit 5 for setting the discharge time, the interval, the number of times, a discharge operation unit 6 for setting the current and the voltage, a standby operation unit 7 for setting the standby time, the interval and the number of times, A display unit 8 is provided for displaying operating states of discharge and standby. In addition, the charging / discharging device 1 is supplied with a voltage from a commercial power source through the power cord 9.
The charge on / off switch 3 includes a charge on 3a and a charge off switch 3b. The output terminal 4 includes an output terminal 4a and an output terminal 4b.

充放電装置1は、鉛蓄電池10aに出力端子4aを介して接続されている。また、充放電装置1は、鉛蓄電池10bに出力端子4bを介して接続されている。よって、充放電装置1は、1台で2台の鉛蓄電池(鉛蓄電池10a、鉛蓄電池10b)に充放電を行う。   The charging / discharging device 1 is connected to the lead storage battery 10a via the output terminal 4a. Moreover, the charging / discharging apparatus 1 is connected to the lead storage battery 10b via the output terminal 4b. Therefore, the charge / discharge device 1 charges and discharges two lead storage batteries (the lead storage battery 10a and the lead storage battery 10b).

次に、充放電装置1の内部回路について説明する。充放電装置1の内部回路は、制御基板11に設けられている。
図2は、本発明の実施形態における充放電装置の内部回路を示すブロック図である。
図2に示すように、充放電装置1の内部回路は、定電流直流電源12と、充電スイッチング回路13と、充電用リレー14と、電子負荷装置15と、放電スイッチング回路16と、放電用リレー17と、図示しないマイコンと、図示しない直流電源回路とを備える。
なお、定電流直流電源12は、直流電源回路から供給される直流電源である。
Next, an internal circuit of the charge / discharge device 1 will be described. An internal circuit of the charging / discharging device 1 is provided on the control board 11.
FIG. 2 is a block diagram illustrating an internal circuit of the charge / discharge device according to the embodiment of the present invention.
As shown in FIG. 2, the internal circuit of the charging / discharging device 1 includes a constant current DC power supply 12, a charging switching circuit 13, a charging relay 14, an electronic load device 15, a discharging switching circuit 16, and a discharging relay. 17, a microcomputer (not shown), and a DC power supply circuit (not shown).
The constant current DC power supply 12 is a DC power supply supplied from a DC power supply circuit.

制御部であるマイコンは、操作部の設定に基づいて充電スイッチング回路13と放電スイッチング回路16とを制御することで、上述した充放電と待機運転とを行う。
鉛蓄電池10は、出力端子4に接続され、充放電装置1により制御基板11を通じて充放電が制御される。
The microcomputer serving as the control unit performs the above-described charging / discharging and standby operation by controlling the charging switching circuit 13 and the discharging switching circuit 16 based on the setting of the operation unit.
The lead storage battery 10 is connected to the output terminal 4, and charging / discharging is controlled by the charging / discharging device 1 through the control board 11.

本発明の実施形態における充放電装置に接続される鉛蓄電池として、5時間率放電容量28Ah、公称電圧12Vの鉛蓄電池(株)ジーエス・ユアサコーポレーション製エコ.アールECT−40B19Rを使用した。また、鉛蓄電池の状態を以下の方法で評価した。
<評価方法>
鉛蓄電池の状態の評価は、(1)一連の充電動作後、連続放電し、終止電圧として10.2Vに低下するまでの時間(以下、「放電可能時間」という。)を測定する。(2)自動車のエンジン始動性能を示す尺度であるCCA(Cold Cranking Ampere)を測定した。測定にはCCAメーター(MIDTRONICS社製PBT−200)を使用した。
<比較例1>
新品の鉛蓄電池Aの放電可能時間は130分、CCAは310であった。
<比較例2>
実使用された鉛蓄電池Bを評価したところ、放電可能時間は40分、CCAは285であり、Aに対して時間は31%、CCAは92%に低下していた。
<比較例3>
実使用された別の鉛蓄電池Cを評価したところ、放電可能時間は45分、CCAは22
0であり、Aに対して時間は35%、CCAは71%に大幅に低下していた。
As a lead storage battery connected to the charge / discharge device according to the embodiment of the present invention, a lead storage battery having a 5-hour rate discharge capacity of 28 Ah and a nominal voltage of 12 V, manufactured by GS Yuasa Corporation, Eco. RECT-40B19R was used. Moreover, the state of the lead acid battery was evaluated by the following method.
<Evaluation method>
The evaluation of the state of the lead storage battery is as follows: (1) After a series of charging operations, continuous discharge is performed, and the time until the end voltage is reduced to 10.2 V (hereinafter referred to as “dischargeable time”) is measured. (2) CCA (Cold Cranking Ampere), which is a scale indicating the engine starting performance of an automobile, was measured. A CCA meter (MBTRONICS PBT-200) was used for the measurement.
<Comparative Example 1>
The new lead-acid battery A had a dischargeable time of 130 minutes and a CCA of 310.
<Comparative example 2>
When the lead storage battery B actually used was evaluated, the dischargeable time was 40 minutes, the CCA was 285, the time was 31% relative to A, and the CCA was reduced to 92%.
<Comparative Example 3>
When another lead storage battery C actually used was evaluated, the dischargeable time was 45 minutes and the CCA was 22
0, the time was significantly reduced to 35% for A and CCA to 71%.

次に、本発明の充放電装置1の機能回復動作と充電動作について説明する。なお、機能回復動作と充電動作を行うにあたり、電源スイッチと、充電入/切スイッチと、充電操作部と、放電操作部と、待機操作部と、表示部とを適宜操作する。しかし、本実施形態において、これらの操作方法に関する説明は省略する。   Next, the function recovery operation and the charging operation of the charging / discharging device 1 of the present invention will be described. In performing the function recovery operation and the charging operation, the power switch, the charging on / off switch, the charging operation unit, the discharging operation unit, the standby operation unit, and the display unit are appropriately operated. However, in the present embodiment, description regarding these operation methods is omitted.

図3は、本発明の実施形態における充放電装置の制御部の動作を示すフローチャートである。まず、充放電装置1は、機能回復可否処理を行う。
ステップS1において、充放電装置1は、定電圧18V、定電流5Aで鉛蓄電池10に5分間の充電を行う。
FIG. 3 is a flowchart showing the operation of the controller of the charge / discharge device in the embodiment of the present invention. First, the charging / discharging device 1 performs function recovery availability processing.
In step S1, the charging / discharging device 1 charges the lead storage battery 10 for 5 minutes with a constant voltage of 18V and a constant current of 5A.

制御部は、ステップS2とステップS3において、鉛蓄電池10に充電を開始してから30秒経過した時点で機能回復が可能な鉛蓄電池かどうかを判定する。
ステップS2において、制御部は、出力端子4の端子電圧を検出し、検出した端子電圧の上昇率が10%以下か否かを判定する。制御部は、検出した端子電圧の上昇率が10%以下である場合(ステップS2:YES)、ステップS3に進む。一方、制御部は、検出した端子電圧の上昇率が10%を超える場合(ステップS2:NO)、機能回復不可能である鉛蓄電池であると判定し、ステップS4に進む。
In step S2 and step S3, the control unit determines whether or not the lead storage battery is capable of function recovery when 30 seconds have elapsed after the lead storage battery 10 has been charged.
In step S2, the control unit detects the terminal voltage of the output terminal 4, and determines whether or not the rate of increase of the detected terminal voltage is 10% or less. When the increase rate of the detected terminal voltage is 10% or less (step S2: YES), the control unit proceeds to step S3. On the other hand, when the increase rate of the detected terminal voltage exceeds 10% (step S2: NO), the control unit determines that the lead storage battery cannot recover its function, and proceeds to step S4.

ステップS3において、制御部は、出力端子4の端子電圧が12V以下か否かを判定する。制御部は、出力端子4の端子電圧が12V以下である場合(ステップS3:YES)、機能回復可能である鉛蓄電池であると判定し、ステップS7に進む。一方、制御部は、出力端子4の端子電圧が12Vを超える場合(ステップS3:NO)、機能回復不可能である鉛蓄電池であると判定し、ステップS4に進む。   In step S3, the control unit determines whether or not the terminal voltage of the output terminal 4 is 12V or less. When the terminal voltage of the output terminal 4 is 12 V or less (step S3: YES), the control unit determines that the lead storage battery can recover its function, and proceeds to step S7. On the other hand, when the terminal voltage of the output terminal 4 exceeds 12 V (step S3: NO), the control unit determines that the lead storage battery cannot recover its function, and proceeds to step S4.

ステップS4において、制御部は、出力端子4の端子電圧の上昇率や出力端子4の端子電圧が高く機能回復不可能であるため、表示部8などに警告を発し、ステップS5に進む。
ステップS5において、制御部は、鉛蓄電池10の充電動作を停止する。このように、出力端子4の端子電圧の上昇率や出力端子4の端子電圧が高すぎることは、鉛蓄電池の電極の活物質が有効に還元されていないことを意味する。すなわち鉛蓄電池は、劣化が著しく、機能回復不可能であると判定される。
In step S4, since the rate of increase in the terminal voltage of the output terminal 4 and the terminal voltage of the output terminal 4 are high and the function cannot be recovered, the control unit issues a warning to the display unit 8 and the like, and proceeds to step S5.
In step S <b> 5, the control unit stops the charging operation of the lead storage battery 10. Thus, the rate of increase of the terminal voltage of the output terminal 4 or the terminal voltage of the output terminal 4 being too high means that the active material of the lead storage battery electrode is not effectively reduced. That is, it is determined that the lead storage battery is significantly deteriorated and cannot recover its function.

次に、制御部は、機能回復動作に移行する。
ステップS6において、制御部は、充電判定回数nを0(ゼロ)に設定する。ここで、充電判定回数nは、機能回復動作において鉛蓄電池に充電を行った回数を示す。なお、充電判定回数nの初期値は、0(ゼロ)である。
ステップS7において、制御部は、定電流5A(0.18C)で5分間鉛蓄電池に充電を行い、ステップS8に進む。
ステップS8において、制御部は、3分間鉛蓄電の充電を停止し、ステップS9に進む。
Next, the control unit shifts to a function recovery operation.
In step S6, the control unit sets the charge determination count n to 0 (zero). Here, the charge determination number n indicates the number of times the lead storage battery is charged in the function recovery operation. Note that the initial value of the charge determination count n is 0 (zero).
In step S7, the control unit charges the lead storage battery for 5 minutes with a constant current of 5A (0.18C), and then proceeds to step S8.
In step S8, the controller stops charging the lead storage for 3 minutes, and proceeds to step S9.

ステップS9において、制御部は、充電判定回数nを1インクリメントする。制御部は、充電判定回数nを1インクリメントした後、ステップS10に進む。
ステップS10において、制御部は、充電判定回数nが5以上か否かを判定する。制御部は、充電判定回数nが5以上である場合(ステップS10:YES)、ステップS11に進む。一方、制御部は、充電判定回数nが5未満である場合(ステップS10:NO)、ステップS7に進む。
In step S9, the control unit increments the charge determination count n by one. The control unit increments the charge determination number n by 1, and then proceeds to step S10.
In step S10, the control unit determines whether or not the charging determination number n is 5 or more. When the number n of charge determinations is 5 or more (step S10: YES), the control unit proceeds to step S11. On the other hand, when the charge determination count n is less than 5 (step S10: NO), the control unit proceeds to step S7.

ステップS11において、制御部は、定電流10A(0.36C)で1分間鉛蓄電池を放電し、ステップS12に進む。
ステップS12において、制御部は、3分間鉛蓄電の放電を停止し、ステップS13に進む。
In step S11, the control unit discharges the lead storage battery for 1 minute at a constant current of 10A (0.36C), and proceeds to step S12.
In step S12, the controller stops discharging the lead storage for 3 minutes, and proceeds to step S13.

ステップS13において、制御部は、放電判定回数mを1インクリメントする。ここで、充電判定回数mは、機能回復動作において鉛蓄電池に放電を行った回数を示す。なお、放電判定回数mの初期値は、0(ゼロ)である。制御部は、放電判定回数mを1インクリメントした後、ステップS14に進む。   In step S13, the control unit increments the discharge determination number m by 1. Here, the charge determination number m indicates the number of times the lead storage battery is discharged in the function recovery operation. The initial value of the discharge determination number m is 0 (zero). After incrementing the discharge determination count m by 1, the control unit proceeds to step S14.

ステップS14において、制御部は、放電判定回数mが5以上か否かを判定する。制御部は、放電判定回数mが5以上である場合(ステップS14:YES)、ステップS15に進む。一方、制御部は、放電判定回数mが5未満である場合(ステップS14:NO)、ステップS6に進む。   In step S14, the control unit determines whether or not the discharge determination count m is 5 or more. When the discharge determination count m is 5 or more (step S14: YES), the control unit proceeds to step S15. On the other hand, when the discharge determination count m is less than 5 (step S14: NO), the control unit proceeds to step S6.

図4は、本発明の実施形態における充放電装置の機能回復動作を説明するタイムチャートである。図4に示すように、横軸が時間(分)を示し、縦軸が充電電流(A)を示す。
図4に示すように、制御部は、機能回復動作において、定電流5A(0.18C)で5分間充電し、その後、3分間充電を停止する充電処理を5回行う。また、制御部は、充電処理を5回行った後、定電流10A(0.36C)で1分間放電し、その後、3分間放電を停止する放電処理を1回行う。制御部は、5回充電処理を行うことと、1回放電処理を行うこととを1サイクルとして、5サイクル繰り返す。
FIG. 4 is a time chart for explaining the function recovery operation of the charge / discharge device according to the embodiment of the present invention. As shown in FIG. 4, the horizontal axis indicates time (minutes), and the vertical axis indicates charging current (A).
As shown in FIG. 4, in the function recovery operation, the control unit performs charging processing for 5 minutes at a constant current of 5 A (0.18 C) and then stops charging for 3 minutes 5 times. Moreover, after performing a charging process 5 times, a control part discharges for 1 minute with 10 A (0.36C) of constant current, and performs the discharge process which stops discharge for 3 minutes once after that. The controller repeats 5 cycles, with 5 cycles of charge processing and 1 discharge processing as one cycle.

なお、機能回復動作時において、充電電流値と充電時間と、放電電流値と放電時間と、待機状態の時間とは、鉛蓄電池の容量に応じて、図5に示すように設定できる。
図5は、鉛蓄電池の容量に応じた機能回復動作の電流・時間の設定値のテーブルを示す図である。
In the function recovery operation, the charging current value, the charging time, the discharging current value, the discharging time, and the standby state time can be set as shown in FIG. 5 according to the capacity of the lead storage battery.
FIG. 5 is a diagram showing a table of set values of current and time for function recovery operation according to the capacity of the lead storage battery.

次に、制御部は、充電動作に移行する。
ステップS15において、制御部は、18V、5Aで5分間の充電を行い、ステップS16に進む。
ステップS16において、制御部は、満充電に達したかどうかを判定する。制御部は、充電電流が2A以下の場合(ステップS16:YES)、満充電に達したと判定し、ステップS17に進む。ここで、2Aとなる充電電流値は、電極の活物質の還元反応が終了する電流値である。一方、制御部は、充電電流が2Aを超える場合(ステップS16:NO)、満充電に達していないと判定し、ステップS18に進む。
Next, the control unit shifts to a charging operation.
In step S15, the controller performs charging for 5 minutes at 18V, 5A, and proceeds to step S16.
In step S16, the control unit determines whether or not a full charge has been reached. When the charging current is 2 A or less (step S16: YES), the control unit determines that full charge has been reached, and proceeds to step S17. Here, the charging current value of 2A is a current value at which the reduction reaction of the electrode active material is completed. On the other hand, when the charging current exceeds 2A (step S16: NO), the control unit determines that the full charge has not been reached, and proceeds to step S18.

ステップS17において、制御部は、充電動作を終了する。
ステップS18において、制御部は、鉛蓄電池の充電を3分間停止し、ステップS19に進む。
ステップS19において、制御部は、充電動作判定回数Lを1インクリメントする。ここで、充電動作判定回数Lは、ステップS15の処理及びステップS18の処理を行った回数を示す。なお、充電動作判定回数Lの初期値は、0(ゼロ)である。制御部は、充電動作判定回数Lを1インクリメントした後、ステップS20に進む。
In step S17, the control unit ends the charging operation.
In step S18, the control unit stops charging the lead storage battery for 3 minutes, and proceeds to step S19.
In step S19, the control unit increments the charging operation determination count L by one. Here, the charging operation determination number L indicates the number of times the process in step S15 and the process in step S18 have been performed. Note that the initial value of the charging operation determination count L is 0 (zero). The control unit increments the charging operation determination number L by 1, and then proceeds to step S20.

ステップS20において、制御部は、充電動作判定回数Lが25以上か否かを判定する。制御部は、充電動作判定回数Lが25以上である場合(ステップS20:YES)、ステップS21に進む。一方、制御部は、充電動作判定回数Lが25未満である場合(ステップS20:NO)、ステップS15に進む。   In step S20, the control unit determines whether or not the charging operation determination count L is 25 or more. When the charging operation determination count L is 25 or more (step S20: YES), the control unit proceeds to step S21. On the other hand, when the charging operation determination count L is less than 25 (step S20: NO), the control unit proceeds to step S15.

ステップS21において、制御部は、鉛蓄電池の充電エラーとして、表示部などに警告を発し、ステップS22に進む。
ステップS22において、制御部は、充電動作を終了する。
In step S21, the control unit issues a warning to the display unit or the like as a charge error of the lead storage battery, and proceeds to step S22.
In step S22, the control unit ends the charging operation.

このように、充電動作において、制御部は、5分間充電を行い、充電電流が2Aを超える場合は、満充電に達していないと判定し、3分間充電を停止する。制御部は、この5分間充電した後、3分間待機する処理を1サイクルとして、最低でも25サイクル繰り返す。制御部は、上記のサイクルを行っている途中で、充電電流が2A以下に低下した場合は、満充電に達したと判定して、充電動作を停止する。一方、制御部は、上記のサイクルを25回繰り返しても、充電電流が低下しない場合は充電エラーとして警告を発し、充電を停止する。   Thus, in the charging operation, the control unit performs charging for 5 minutes, and when the charging current exceeds 2 A, it determines that the battery has not reached full charge and stops charging for 3 minutes. After charging for 5 minutes, the control unit repeats the process of waiting for 3 minutes as one cycle and repeats at least 25 cycles. When the charging current is reduced to 2 A or less during the above-described cycle, the control unit determines that the full charge has been reached and stops the charging operation. On the other hand, if the charging current does not decrease after repeating the above cycle 25 times, the control unit issues a warning as a charging error and stops charging.

次に、本発明の充放電装置1において、鉛蓄電池Bと鉛蓄電池Cとを用いて機能回復動作と満充電とを行い、放電可能時間とCCAとを鉛蓄電池Aと比較した。
<実施例1>
鉛蓄電池Bを用いて、機能回復動作と満充電とを実施した後、放電可能時間とCCAとを評価した。鉛蓄電池Bは、放電可能時間が120分、CCAが335となり、鉛蓄電池Aに対して時間が92%に、CCAが108%に回復した。
<実施例2>
鉛蓄電池Cを用いて、機能回復動作と満充電とを実施した後、放電可能時間とCCAとを評価した。鉛蓄電池Cは、放電可能時間が65分、CCAが225となり、鉛蓄電池Aに対して放電可能時間が50%、CCAが82%に回復した。これにより、劣化が進行し過ぎた鉛蓄電池であっても、わずかであるが機能回復することがわかる。
Next, in the charging / discharging device 1 of the present invention, the function recovery operation and full charge were performed using the lead storage battery B and the lead storage battery C, and the dischargeable time and CCA were compared with the lead storage battery A.
<Example 1>
After performing the function recovery operation and full charge using the lead storage battery B, the dischargeable time and CCA were evaluated. In the lead storage battery B, the dischargeable time was 120 minutes, the CCA was 335, the time for the lead storage battery A was restored to 92%, and the CCA was restored to 108%.
<Example 2>
After performing the function recovery operation and full charge using the lead storage battery C, the dischargeable time and CCA were evaluated. The lead storage battery C had a dischargeable time of 65 minutes and a CCA of 225, and the lead storage battery A recovered to a dischargeable time of 50% and CCA of 82%. Thereby, even if it is a lead storage battery in which deterioration progressed too much, it turns out that a function is recovered although it is slight.

<通常の充電方法と本発明の充電方法の機能回復効果比較>
次に、通常の充電方法と本発明の充電方法(間断充電方式)との機能回復効果の比較を図6に基づき説明する。
図6は、通常の充電方法と本発明の充電方法との機能回復効果を比較したグラフである。図6に示すように、横軸は、充電と放電と測定とを1サイクルとするサイクル数を示し、縦軸は、放電可能時間(分)を示す。
<Comparison of function recovery effect between normal charging method and charging method of the present invention>
Next, a comparison of the function recovery effect between the normal charging method and the charging method of the present invention (intermittent charging method) will be described with reference to FIG.
FIG. 6 is a graph comparing the function recovery effect between the normal charging method and the charging method of the present invention. As shown in FIG. 6, the horizontal axis represents the number of cycles in which charging, discharging, and measurement are taken as one cycle, and the vertical axis represents the dischargeable time (minutes).

通常の充電方法として、充放電装置は、鉛蓄電池に15Vの定電圧で満充電(完了時電流3A)し、上述した(1)の評価方法同様に連続放電し、放電可能時間を測定した。この充電と放電と測定とを1サイクルとして100サイクル繰り返した。
その結果、図6に示すように、放電可能時間は、当初105分であったが、指数関数的に短くなった。具体的には、20サイクルで放電可能電圧が40分に低下し、40サイクルで放電可能電圧が25分に低下、100サイクルでは放電可能電圧が15分に低下した。これより、通常の充電方法は、機能回復効果が全くないことがわかる。
As a normal charging method, the charging / discharging device fully charged a lead-acid battery with a constant voltage of 15 V (current at the time of completion of 3 A), continuously discharged in the same manner as the evaluation method of (1) described above, and measured the dischargeable time. This charge, discharge, and measurement were taken as one cycle and repeated 100 cycles.
As a result, as shown in FIG. 6, the dischargeable time was 105 minutes at the beginning, but became exponentially shorter. Specifically, the dischargeable voltage dropped to 40 minutes in 20 cycles, the dischargeable voltage dropped to 25 minutes in 40 cycles, and the dischargeable voltage dropped to 15 minutes in 100 cycles. This shows that the normal charging method has no function recovery effect.

次に、本発明の充電方法として、充放電装置は、放電可能時間が低下した鉛蓄電池を用いて、機能回復動作と満充電までの充電とを行い、前記(1)の評価方法同様に連続放電し、放電可能時間を測定した。この充電と放電と測定とを1サイクルとして20サイクルまで繰り返した。
その結果、図6に示すように、放電可能時間は、20分から60分に回復した。その後、20サイクル繰り返しても放電可能時間は55分である。これより、本発明の充電方法は、機能回復されて、放電可能時間がほぼ維持することができる。
Next, as a charging method of the present invention, the charging / discharging device performs a function recovery operation and charging up to a full charge using a lead storage battery having a reduced dischargeable time, and continuously as in the evaluation method of (1). The battery was discharged and the dischargeable time was measured. This charging, discharging, and measurement were repeated as one cycle up to 20 cycles.
As a result, as shown in FIG. 6, the dischargeable time was recovered from 20 minutes to 60 minutes. Thereafter, the dischargeable time is 55 minutes even after 20 cycles. As a result, the charging method of the present invention can recover the function and substantially maintain the dischargeable time.

次に、本発明も実施形態における充放電装置1において、鉛蓄電池10aと鉛蓄電池10bである2台の鉛蓄電池を同時に充電する方法について説明する。
図7は、本発明の実施形態における充放電装置1において、鉛蓄電池10aと鉛蓄電池10bである2台の鉛蓄電池を同時に充電する方法を説明するタイムチャートである。図7(a)は、横軸が時間(分)を示し、縦軸が鉛蓄電池10aの充電電流と放電電流とを示すタイムチャートである。図7(b)は、横軸が時間(分)を示し、縦軸が鉛蓄電池10bの充電電流と放電電流とを示すタイムチャートである。
Next, in the charging / discharging device 1 according to the embodiment of the present invention, a method for simultaneously charging two lead storage batteries that are the lead storage battery 10a and the lead storage battery 10b will be described.
FIG. 7 is a time chart for explaining a method of simultaneously charging two lead storage batteries, which are the lead storage battery 10a and the lead storage battery 10b, in the charge / discharge device 1 according to the embodiment of the present invention. FIG. 7A is a time chart in which the horizontal axis indicates time (minutes) and the vertical axis indicates the charging current and discharging current of the lead storage battery 10a. FIG. 7B is a time chart in which the horizontal axis indicates time (minutes) and the vertical axis indicates the charging current and discharging current of the lead storage battery 10b.

図7(a)に示すように、充放電装置1は、鉛蓄電池10aと鉛蓄電池10bとの各々に4分間の充電(30秒後に機能回復可否判定)を行う。また、充放電装置1は、鉛蓄電池10aと鉛蓄電池10bとの各々に定電流5A(0.18C)で4分間充電し、その後、4分間待機する。ただし、充放電装置1は、鉛蓄電池10aと鉛蓄電池10bとの各々の充電のタイミングを4分間ずらす。   As shown to Fig.7 (a), the charging / discharging apparatus 1 performs charge for 4 minutes to each of the lead storage battery 10a and the lead storage battery 10b (determination of function recovery possibility after 30 seconds). The charging / discharging device 1 charges the lead storage battery 10a and the lead storage battery 10b with a constant current 5A (0.18C) for 4 minutes, and then waits for 4 minutes. However, the charging / discharging device 1 shifts the timing of charging each of the lead storage battery 10a and the lead storage battery 10b by 4 minutes.

充放電装置1は、鉛蓄電池10aと鉛蓄電池10bとの各々に、4分間の充電と待機とを5回と、1分間の放電と、4分間の待機とを1サイクルとして、5サイクル繰り返す。   The charging / discharging device 1 repeats 5 cycles, each of the lead storage battery 10a and the lead storage battery 10b, with 4 minutes of charging and standby 5 times, 1 minute of discharge and 4 minutes of standby as one cycle.

次に、充放電装置1は、鉛蓄電池10aと鉛蓄電池10bとの各々に、18V、5Aで4分間の充電を行い、満充電に達したかどうか(充電電流2A以下)の判定を行う。充放電装置1は、鉛蓄電池10aと鉛蓄電池10bとの各々が満充電に達していないと判定した場合、判定した鉛蓄電池を4分間待機する。
また、充放電装置1は、鉛蓄電池10aと鉛蓄電池10bとの各々に、上述した4分間の充電と待機とを1サイクルとして、最大25サイクル繰り返す。ただし、サイクルの途中で、充電電流が2A以下に低下した場合は、充放電装置1は、満充電に達したと判定して、充電動作を停止する。
一方、充放電装置1は、鉛蓄電池10aと鉛蓄電池10bとの各々が満充電に達していると判定した場合、充電動作を停止する。
Next, the charging / discharging device 1 charges each of the lead storage battery 10a and the lead storage battery 10b at 18V, 5A for 4 minutes, and determines whether or not full charge has been reached (charging current 2A or less). When determining that each of the lead storage battery 10a and the lead storage battery 10b has not reached full charge, the charging / discharging device 1 waits for 4 minutes for the determined lead storage battery.
Moreover, the charging / discharging apparatus 1 repeats a maximum of 25 cycles for each of the lead storage battery 10a and the lead storage battery 10b with the above-described charging for 4 minutes and standby as one cycle. However, in the middle of the cycle, when the charging current decreases to 2 A or less, the charging / discharging device 1 determines that full charging has been reached and stops the charging operation.
On the other hand, the charging / discharging device 1 stops the charging operation when it is determined that each of the lead storage battery 10a and the lead storage battery 10b has reached full charge.

以上のように、充放電装置1は、充電と放電と待機とを組み合せ、鉛蓄電池10aと鉛蓄電池10bとの各々のタイミングを4分間ずらす。これにより、充放電装置1は、片方の鉛蓄電池が充放電中に、もう片方の鉛蓄電池を待機状態にすることができる。よって、充放電装置1は、2台の鉛蓄電池を予め決められた時間内に機能回復動作と充電動作とを行うことができる。   As described above, the charging / discharging device 1 combines charging, discharging, and standby, and shifts the timing of each of the lead storage battery 10a and the lead storage battery 10b by 4 minutes. Thereby, the charging / discharging device 1 can put the other lead storage battery in a standby state while the other lead storage battery is charging and discharging. Therefore, the charging / discharging device 1 can perform the function recovery operation and the charging operation for the two lead storage batteries within a predetermined time.

上述したように、本実施形態によれば、充放電装置1は、分単位の大電流放電を行ことで鉛蓄電池の電極上の活物質の深部から活物質を取り出し、つまり、電極からより多くの活物質を溶かし出し、放電することができる。
また、上述したように、本実施形態によれば、充放電装置1は、分単位の大電流放電後、すぐに分単位の充電を行うことを繰り返すことで、活物質の溶出によって生成したPb2+をPbに還元する。これにより、充放電装置1は、電極上の活物質の深部から活物質を溶解し、すぐに電着させることを繰り返し、電極を活性化させることができる。
As described above, according to the present embodiment, the charging / discharging device 1 takes out the active material from the deep part of the active material on the electrode of the lead storage battery by performing a large current discharge in minutes, that is, more from the electrode. The active material can be dissolved and discharged.
In addition, as described above, according to the present embodiment, the charging / discharging device 1 repeats charging in units of minutes immediately after a large current discharge in units of minutes, thereby generating Pb generated by elution of the active material. 2+ is reduced to Pb. Thereby, the charging / discharging device 1 can activate the electrode by repeatedly dissolving the active material from the deep part of the active material on the electrode and electrodepositing immediately.

また、充放電装置1は、分単位の大電流放電と分単位の充電とを繰り返す際、充電と放電との間に分単位の待機時間、つまり還元反応に化学反応時間を設けた。これにより、鉛蓄電池のサルフェーションを防止し、長寿命化を実現できる。また、鉛蓄電池が新品であれば、劣化を抑制することができる。また、既に使用された鉛蓄電池であっても、サルフェーションを除去し機能回復が可能になる。
また、分単位の大電流放電と分単位の充電とを繰り返す際、充電と放電との間に分単位の待機時間を設けたことで、充放電装置1は、1台の充放電装置で2台の鉛蓄電池を交互に充放電を行うとともに、予め決められた時間内に充放電を行うことができる。
In addition, when the charge / discharge device 1 repeats the high current discharge in minutes and the charge in minutes, a standby time in minutes, that is, a chemical reaction time is provided for the reduction reaction between the charge and discharge. As a result, sulfation of the lead storage battery can be prevented and a longer life can be realized. Moreover, if a lead acid battery is a new article, deterioration can be suppressed. Moreover, even if it is the lead acid battery already used, a function recovery is attained by removing sulfation.
Moreover, when repeating the high current discharge of a minute unit and charge of a minute unit, the charging / discharging apparatus 1 is 2 by one charging / discharging apparatus by providing the standby time of a minute unit between charge and discharge. While charging and discharging the lead storage batteries alternately, charging and discharging can be performed within a predetermined time.

以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。   The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and includes designs and the like that do not depart from the gist of the present invention.

1…充放電装置本体、2…電源スイッチ、3…充電入/切スイッチ、4…出力端子、5…充電操作部、6…放電操作部、7…待機操作部、8…表示部、9…電源コード、10…鉛蓄電池、11…制御基板、12…定電流直流電源、13…充電スイッチング回路、14…充電用リレー、15…電子負荷装置、16…放電スイッチング回路、17…放電用リレー   DESCRIPTION OF SYMBOLS 1 ... Charging / discharging apparatus main body, 2 ... Power switch, 3 ... Charge on / off switch, 4 ... Output terminal, 5 ... Charge operation part, 6 ... Discharge operation part, 7 ... Standby operation part, 8 ... Display part, 9 ... Power cord, 10 ... lead storage battery, 11 ... control board, 12 ... constant current DC power supply, 13 ... charge switching circuit, 14 ... charge relay, 15 ... electronic load device, 16 ... discharge switching circuit, 17 ... discharge relay

Claims (5)

鉛蓄電池の容量を回復するための機能回復動作と、前記鉛蓄電池を満充電するための充電動作を行う鉛蓄電池の充放電装置であって、
前記鉛蓄電池を充電する充電部と、
前記鉛蓄電池を放電する放電部と、
前記充電部と前記放電部とを制御する制御部と、
を備え、
前記制御部は、前記機能回復動作として、前記鉛蓄電池の容量に応じた電流で分単位の充電を行った後、前記充電を停止し、前記鉛蓄電池の容量に応じた分単位の待機状態とする操作を繰り返し複数回行い、続いて、前記鉛蓄電池の容量に応じた電流で分単位の放電を行った後、前記放電を停止し、前記鉛蓄電池の容量に応じた分単位の待機状態とするプロセスを1サイクルとして、該サイクルを複数回繰り返し行い、
次いで前記制御部は、充電動作として、充電電流を検出しながら前記鉛蓄電池の容量に応じた前記機能回復動作時の充電電流と同じ電流で分単位の定電流充電を行った後、前記鉛蓄電池の容量に応じた分単位の待機状態とする処理を1サイクルとして複数サイクル繰り返し、先の定電流充電時に鉛蓄電池の端子電圧が満充電電圧に達すると満充電電圧で定電圧充電を行い、検出している充電電流が一定値以下になると充電終了と判断して充電終了とする鉛蓄電池の充放電装置。
A function recovery operation for recovering the capacity of the lead storage battery, and a charge / discharge device for the lead storage battery that performs a charging operation for fully charging the lead storage battery,
A charging unit for charging the lead storage battery;
A discharge part for discharging the lead storage battery;
A control unit for controlling the charging unit and the discharging unit;
With
The control unit, as the function recovery operation, performs charging in minutes with a current corresponding to the capacity of the lead storage battery, then stops the charging, and waits in minutes according to the capacity of the lead storage battery; The operation is repeated a plurality of times, and then, after discharging in minutes with a current corresponding to the capacity of the lead storage battery, the discharge is stopped, and a standby state in minutes according to the capacity of the lead storage battery The process to be performed is one cycle, the cycle is repeated several times,
Next, the control unit performs constant current charging in minutes with the same current as the charging current at the time of the function recovery operation according to the capacity of the lead storage battery while detecting the charging current as a charging operation, and then the lead storage battery The process of setting the standby state in units of minutes according to the capacity of the battery is repeated multiple times as one cycle, and when the terminal voltage of the lead storage battery reaches the full charge voltage during the previous constant current charge, constant voltage charge is performed at the full charge voltage and detected A lead-acid battery charging / discharging device that determines that charging is complete when charging current that is being performed falls below a certain value .
前記制御部は前記充電電流が2Aを超える場合は満充電に達していないと判断し、前記充電電流が2A以下となった場合に満充電と判断して充電終了とする請求項1に記載の鉛蓄電池の充放電装置。   2. The control unit according to claim 1, wherein when the charging current exceeds 2 A, the control unit determines that full charging has not been reached, and when the charging current becomes 2 A or less, determines that the charging is full and ends charging. Lead-acid battery charging / discharging device. 前記充電の電流は、0.07C以上0.25C以下であり、前記放電の電流は、0.14C以上0.4C以下であり、分単位の充電時間と放電時間との各々は、少なくとも1分以上である請求項1又は請求項2に記載の鉛蓄電池の充放電装置。   The charging current is 0.07C or more and 0.25C or less, the discharging current is 0.14C or more and 0.4C or less, and each of the charging time and discharging time in minutes is at least 1 minute. It is the above, The charging / discharging apparatus of the lead storage battery of Claim 1 or Claim 2. 分単位の待機状態は、少なくとも1分以上である請求項1から請求項3のいずれか一項に記載の鉛蓄電池の充放電装置。   The charge / discharge device for a lead storage battery according to any one of claims 1 to 3, wherein the standby state in units of minutes is at least 1 minute or more. 2つの鉛蓄電池が接続された鉛蓄電池の充放電装置であって、
前記制御部は、一方の鉛蓄電池の待機状態の時に、他方の鉛蓄電池の放電又は充電を行うように制御する請求項1から請求項4のいずれか一項に記載の鉛蓄電池の充放電装置。
A lead-acid battery charging / discharging device to which two lead-acid batteries are connected,
5. The lead-acid battery charging / discharging device according to claim 1, wherein the control unit controls the other lead-acid battery to be discharged or charged when the one lead-acid battery is in a standby state. 6. .
JP2014054093A 2014-03-17 2014-03-17 Lead-acid battery charging / discharging device Active JP6362252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014054093A JP6362252B2 (en) 2014-03-17 2014-03-17 Lead-acid battery charging / discharging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014054093A JP6362252B2 (en) 2014-03-17 2014-03-17 Lead-acid battery charging / discharging device

Publications (2)

Publication Number Publication Date
JP2015176829A JP2015176829A (en) 2015-10-05
JP6362252B2 true JP6362252B2 (en) 2018-07-25

Family

ID=54255824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014054093A Active JP6362252B2 (en) 2014-03-17 2014-03-17 Lead-acid battery charging / discharging device

Country Status (1)

Country Link
JP (1) JP6362252B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107845838B (en) * 2017-09-20 2020-08-21 捷开通讯(深圳)有限公司 Electronic equipment, battery charging and discharging method thereof and device with storage function
CN110212256B (en) * 2019-04-23 2020-10-23 天能电池集团股份有限公司 Repairing and matching method for returned storage batteries
US11424492B2 (en) 2019-10-31 2022-08-23 Sion Power Corporation System and method for operating a rechargeable electrochemical cell or battery
CN110797487A (en) * 2019-11-18 2020-02-14 安徽永恒动力科技有限公司 Charging and discharging device of lead-acid storage battery

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3428895B2 (en) * 1998-04-20 2003-07-22 日本電信電話株式会社 Charging method of alkaline aqueous secondary battery for backup
DE60019128T2 (en) * 1999-07-19 2006-02-09 Accelrate Power Systems Inc., Vancouver QUICK BATTERY CHARGE PROCESS AND DEVICE
JP2002305038A (en) * 2001-04-05 2002-10-18 Japan Storage Battery Co Ltd Defect determining method of lead-acid battery and charging method of lead-acid battery
JP2003189498A (en) * 2001-12-14 2003-07-04 Sogo Keikaku Kenkyusho:Kk Charging method and charger of secondary battery
JP3723795B2 (en) * 2002-10-08 2005-12-07 武次 西田 Recycling method for lead acid battery
JP2005327737A (en) * 2005-06-20 2005-11-24 Takeji Nishida Method for regenerating storage battery
JP3816946B1 (en) * 2006-02-07 2006-08-30 東洋商事株式会社 Sulfation removal equipment
JP2007242332A (en) * 2006-03-07 2007-09-20 Matsushita Electric Ind Co Ltd Method and apparatus of suppressing deterioration of lead-acid battery, and lead-acid battery provided with this apparatus
JP2009016324A (en) * 2007-07-03 2009-01-22 Mase Shunzo Regenerating method for lead storage battery and its device
US8148938B2 (en) * 2009-05-28 2012-04-03 Panasonic Corporation Lead storage battery charging control method, charging control circuit, power source device, and lead storage battery
RU2437190C2 (en) * 2009-08-07 2011-12-20 Геннадий Дмитриевич Платонов Storage battery restoration method and device for its implementation
JP5636535B2 (en) * 2010-11-12 2014-12-10 フコクインダストリー株式会社 Charging / discharging device and method for regenerating lead-acid battery using the charging / discharging device

Also Published As

Publication number Publication date
JP2015176829A (en) 2015-10-05

Similar Documents

Publication Publication Date Title
JP7067566B2 (en) Battery monitoring device, computer program and battery monitoring method
JP6362252B2 (en) Lead-acid battery charging / discharging device
EP2567445B1 (en) Bipolar overvoltage battery pulser and method
US9337684B2 (en) Battery charging device and method
CN109154637B (en) Method and device for operating an energy storage cell, battery module and vehicle
JP7145865B2 (en) Rechargeable battery short-circuit prediction device and rechargeable battery short-circuit prediction method
JP2010252474A (en) Method of charging secondary battery
JP6298895B2 (en) Lead-acid battery regeneration device
KR101003881B1 (en) Battery recovery system
JP2011159545A (en) Charge/discharge control device of lithium ion secondary battery
JP6517092B2 (en) Battery charger, battery diagnostic device using the same, and battery regenerator
JP2000270491A (en) Lithium ion battery charging method and lithium ion battery charger
KR101004762B1 (en) A bettery restoration unit and restoration method
JP6717388B2 (en) Relay device
JP2015118060A (en) State-of-charge estimation apparatus and state-of-charge estimation method
JP6520017B2 (en) Charge rate calculation device
JP2001118611A (en) Regeneration method of lead accumulator battery by electric treatment
KR20110124038A (en) Battery recovery system
CN104091971A (en) Storage battery desulphurization device and method
KR20150053182A (en) Battery charger
JP2014241656A (en) Charging start control method of secondary battery, and charging device
JP2003189498A (en) Charging method and charger of secondary battery
JP3455979B2 (en) Method and apparatus for detecting short between electrodes of secondary battery
JP6928830B2 (en) Power management device and power management system
JP6219767B2 (en) Control system for lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180625

R150 Certificate of patent or registration of utility model

Ref document number: 6362252

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250