JP2009016324A - Regenerating method for lead storage battery and its device - Google Patents

Regenerating method for lead storage battery and its device Download PDF

Info

Publication number
JP2009016324A
JP2009016324A JP2007201312A JP2007201312A JP2009016324A JP 2009016324 A JP2009016324 A JP 2009016324A JP 2007201312 A JP2007201312 A JP 2007201312A JP 2007201312 A JP2007201312 A JP 2007201312A JP 2009016324 A JP2009016324 A JP 2009016324A
Authority
JP
Japan
Prior art keywords
lead
current
charging
battery
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007201312A
Other languages
Japanese (ja)
Inventor
Akiya Kozawa
昭弥 小沢
Katsuyuki Sekiya
勝幸 関谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKIYA KK
Original Assignee
SEKIYA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKIYA KK filed Critical SEKIYA KK
Priority to JP2007201312A priority Critical patent/JP2009016324A/en
Publication of JP2009016324A publication Critical patent/JP2009016324A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method capable of regenerating a deteriorated lead storage battery for a short period and maintaining its performance. <P>SOLUTION: In a regenerating method for a lead storage battery and its device consisting of large current discharging-charging repeated processes, polyvinyl alcohol or polyacrylic acid is added to the deteriorated lead storage battery, the lead storage battery is discharged by the large current of 2C or more, preferably 3C or more for 1 to 60 seconds, and then, 50 times or more of charging and discharging cycles for charging a battery are automatically repeated until terminal voltage of the single battery becomes 2.25 to 2.6 V. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は鉛蓄電池の再生方法およびその装置に関し、特に、電解液中に有機ポリマーを添加して大電流放電を反復する鉛蓄電池の再生方法およびその装置に関する。  The present invention relates to a method and apparatus for regenerating a lead storage battery, and more particularly to a method and apparatus for regenerating a lead storage battery in which an organic polymer is added to an electrolytic solution to repeat large current discharge.

鉛蓄電池は充放電の繰り返しに伴い、負極の電極活物質が電気化学反応に伴い、活物質の再結晶化が進行する結果、これらの粒子が成長し、電気的導通が断たれたり活物質の表面積が減少し、電池の容量が減少したり内部抵抗が増大する。従来、この劣化した電極を活性化する目的で、本発明者等はポリビニルアルコール(PVA)等を電解液中に添加する方法を発明している(特許文献1,2参照)。これらの方法では特性の回復した電池は1年以上の長期間にわたりその特性が持続する長所がある反面、鉛蓄電池を充分に活性化するためには充放電を何回も繰返す必要があり、速効性に乏しかった。また本発明者等は、ポリビニルアルコール等を電解液に添加し、電池特性が劣化した鉛蓄電池にパルス電流を直流に重畳して充電する充電方法を発明した(特許文献3,4参照)。しかしながら、この方法でも電池容量の回復は限定的であった。さらに本発明者等は、ポリビニルアルコール等を電解液中に添加して大電流で長時間放電を行うことにより、電池の容量を回復する方法を発明した((特許文献5参照)。然しながら、この方法でも特性は徐々に回復するが回復の度合いがゆるやかであった。
特開2000−149981号公開公報 特開2001−313064号公開公報 特開2000−323188号公開公報 特開2005−116493号公開公報 特開2004−356076号公開公報
As lead-acid batteries are repeatedly charged and discharged, the negative electrode active material undergoes an electrochemical reaction, and as a result of the recrystallization of the active material, these particles grow and the electrical continuity is interrupted. The surface area decreases, the battery capacity decreases, and the internal resistance increases. Conventionally, the inventors have invented a method of adding polyvinyl alcohol (PVA) or the like to an electrolyte solution for the purpose of activating the deteriorated electrode (see Patent Documents 1 and 2). While these methods have the advantage that the characteristics of the batteries are restored over a long period of one year or longer, in order to fully activate the lead-acid battery, it is necessary to repeat charging and discharging several times. It was scarce. Further, the inventors have invented a charging method in which polyvinyl alcohol or the like is added to the electrolytic solution and a lead storage battery having deteriorated battery characteristics is charged with a pulse current superimposed on a direct current (see Patent Documents 3 and 4). However, even with this method, the recovery of battery capacity was limited. Furthermore, the present inventors have invented a method for recovering the capacity of the battery by adding polyvinyl alcohol or the like to the electrolytic solution and discharging for a long time with a large current (see Patent Document 5). Even with the method, the characteristics gradually recovered, but the degree of recovery was moderate.
JP 2000-149981 A JP 2001-313064 A JP 2000-323188 A JP 2005-116493 A JP 2004-356076 A

本発明の第一の目的は劣化した鉛蓄電池の容量を極めて短時間で増大させ、劣化前に近い容量に回復させることにある。本発明の第二の目的は鉛蓄電池の充放電サイクル寿命を長期間維持させることにある。  The first object of the present invention is to increase the capacity of a deteriorated lead-acid battery in an extremely short time and restore it to a capacity close to that before deterioration. The second object of the present invention is to maintain the charge / discharge cycle life of the lead-acid battery for a long time.

問題を解決するための手段Means to solve the problem

本発明は、正極の活物質が主として過酸化鉛よりなり、負極の活物質が主として金属鉛よりなり、電解液が希硫酸よりなる鉛蓄電池の再生方法であって、該電解液100重量部に対し、ポリビニルアルコール、ポリアクリル酸塩の少なくとも一つを0.005ないし1重量部添加し、2C以上、好ましくは3C以上、の電流で1ないし60秒間、好ましくは2ないし30秒間、該鉛蓄電池を放電し、その後単電池の端子電圧が2.25ないし2.6Vとなるまで充電する充放電サイクルを50回以上、好ましくは100回以上、自動的に反復する大電流放電−充電反復処理による鉛蓄電池の再生方法である。また本発明は、正極の活物質が主として過酸化鉛よりなり、負極の活物質が主として金属鉛よりなり、電解液が希硫酸よりなる鉛蓄電池の再生方法であって、該電解液100重量部に対し、ポリビニルアルコール、ポリアクリル酸塩の少なくとも一つを0.005ないし1重量部添加し、0.005ないし0.3C、好ましくは0.03ないし0.1C、の電流で該鉛蓄電池を40時間以上、好ましくは60ないし240時間、充電する前処理工程としての第一工程と、2C以上、好ましくは3C以上、の電流で1ないし60秒間、好ましくは2ないし30秒間、該鉛蓄電池を放電し、その後0.1ないし1Cで単電池の端子電圧が2.25ないし2.6Vとなるまで充電する充放電サイクルを50回以上、好ましくは100回以上、自動的に反復する大電流放電−充電反復処理による第二工程からなる鉛蓄電池の再生方法であり、また前記第一工程の充電電流に充放電パルスを重畳する鉛蓄電池の再生方法である。また本発明は、鉛蓄電池の再生装置であって、該蓄電池に対して2C以上、好ましくは3C以上、の電流で1ないし60秒間、好ましくは2ないし20秒間、該鉛蓄電池を放電し、その後単電池の端子電圧が2.25ないし2.6Vとなるまで充電する充放電サイクルを所定回数自動的に反復する大電流放電−充電反復電源よりなる鉛蓄電池の再生装置である。また本発明は、鉛蓄電池の再生装置であって、該蓄電池に対して0.005ないし0.3C、好ましくは0.03ないし0.1C、の電流を供給する充電電源よりなる第一手段と、該蓄電池に対して2C以上、好ましくは3C以上、の電流で1ないし60秒間、好ましくは2ないし20秒間、該鉛蓄電池を放電し、その後0.1ないし1Cで単電池の端子電圧が2.25ないし2.6Vとなるまで充電する充放電サイクルを所定回数自動的に反復する大電流放電−充電反復電源よりなる第二手段とからなることを特徴とする鉛蓄電池の再生装置であり、また前記第一手段の充電電流に充放電パルスが重畳される鉛蓄電池の再生装置であり、さらにこれらの再生装置において、該第一手段および該第二手段に加えて、更に0.3ないし5C、好ましくは1ないし3Cの電流で放電し、単電池の端子電圧が所定の値になるまでの放電電気量またはその時間を測定する回路よりなる第三手段を有する鉛蓄電池の再生装置であり、さらに前記第一手段、第二手段および第三手段に加えて、更に満充電する充電電源よりなる第四手段を有する鉛蓄電池の再生装置である。The present invention relates to a method for regenerating a lead-acid battery in which the active material of the positive electrode is mainly composed of lead peroxide, the active material of the negative electrode is mainly composed of metallic lead, and the electrolytic solution is composed of dilute sulfuric acid. On the other hand, at least one of polyvinyl alcohol and polyacrylic acid salt is added in an amount of 0.005 to 1 part by weight, and the lead-acid battery at a current of 2C or more, preferably 3C or more, for 1 to 60 seconds, preferably 2 to 30 seconds. By a large current discharge-charge repetitive process that is automatically repeated 50 times or more, preferably 100 times or more, until the terminal voltage of the unit cell reaches 2.25 to 2.6 V. It is a regeneration method of a lead storage battery. The present invention also relates to a method for regenerating a lead storage battery in which the active material of the positive electrode is mainly composed of lead peroxide, the active material of the negative electrode is mainly composed of metallic lead, and the electrolytic solution is composed of dilute sulfuric acid, and 100 parts by weight of the electrolytic solution In contrast, at least one of polyvinyl alcohol and polyacrylate is added in an amount of 0.005 to 1 part by weight, and the lead-acid battery is formed at a current of 0.005 to 0.3C, preferably 0.03 to 0.1C. 40 hours or more, preferably 60 to 240 hours, the first step as a pretreatment step for charging, and the lead storage battery at a current of 2C or more, preferably 3C or more, for 1 to 60 seconds, preferably 2 to 30 seconds. 50 times or more, preferably 100 times or more, automatically charging / discharging the battery until the terminal voltage of the cell reaches 2.25 to 2.6 V at 0.1 to 1 C. Repeating high current discharge - a method for regenerating lead battery comprising a second step by the charging iteration, also a lead-acid battery of the reproducing method of superimposing the charge and discharge pulses to the charging current of the first step. The present invention also relates to a regenerative apparatus for a lead storage battery, wherein the lead storage battery is discharged at a current of 2C or more, preferably 3C or more to the storage battery for 1 to 60 seconds, preferably 2 to 20 seconds. This is a regenerative device for a lead-acid battery comprising a large current discharge-charge repetitive power source that automatically repeats a charge / discharge cycle for charging until the terminal voltage of the unit cell becomes 2.25 to 2.6V a predetermined number of times. Further, the present invention is a regenerative apparatus for a lead storage battery, comprising: a first means comprising a charging power source for supplying a current of 0.005 to 0.3 C, preferably 0.03 to 0.1 C to the storage battery; The lead acid battery is discharged for 1 to 60 seconds, preferably 2 to 20 seconds, with a current of 2C or more, preferably 3C or more, and then the terminal voltage of the unit cell is 2 to 0.1 to 1C. A regenerative apparatus for a lead storage battery comprising: a second means comprising a large current discharge-charging repetitive power source that automatically repeats a predetermined number of charge / discharge cycles for charging until .25 to 2.6 V; Also, there are lead-acid battery regenerators in which charge / discharge pulses are superimposed on the charging current of the first means, and in these regenerators, in addition to the first means and the second means, further 0.3 to 5C Good Or a regenerative apparatus for a lead-acid battery comprising a third means comprising a circuit for measuring the amount of discharged electricity or the time until the terminal voltage of the unit cell reaches a predetermined value after discharging with a current of 1 to 3C, In addition to the first means, the second means, and the third means, there is provided a regenerative apparatus for a lead-acid battery having a fourth means comprising a charging power source that is further fully charged.

なお、ここでCとは電池の定格容量を1時間で充電または放電するに相当する電流の大きさを表し、nC=充放電電流(A)÷定格容量(AH)で表されるnの値が小さいほど小電流での充放電を意味する。  Here, C represents the magnitude of current corresponding to charging or discharging the rated capacity of the battery in one hour, and nC = value of n expressed by charge / discharge current (A) ÷ rated capacity (AH). A smaller value means charge / discharge with a smaller current.

発明の効果The invention's effect

即ち、本発明は、劣化した鉛蓄電池の電解液にポリビニルアルコール等の有機ポリマーを添加して大電流放電と充電のサイクルを自動的に数十回ないし数百回反復するいわゆる大電流放電−充電反復処理をすることにより、電極活物質の大部分が短時間で活性化され、且つその活性が長期間維持されることを見出したことに基づくものであり、更にその前処理として小電流で長時間充電することによりサルフェーションを解消しておくことが有効であり、またその小電流での長時間充電の際に充放電パルスを重畳させることが一層有効であることを見出したことに基づくものである。  That is, the present invention is a so-called high current discharge-charge in which an organic polymer such as polyvinyl alcohol is added to an electrolyte solution of a deteriorated lead storage battery to automatically repeat a large current discharge and charge cycle several tens to several hundreds of times. It is based on the fact that, by repeating the treatment, most of the electrode active material is activated in a short time and the activity is maintained for a long time. It is based on the finding that it is effective to eliminate sulfation by charging for a long time, and that it is more effective to superimpose charge / discharge pulses during long-time charging with a small current. is there.

本発明の大電流放電−充電反復処理では、2C以上、好ましくは3C以上、の放電率で1ないし60秒間、好ましくは2ないし20秒間、放電し、その後端子電圧が所定の値になるまで充電し、この充放電サイクルを50回以上、好ましくは100回以上、更に好ましくは200ないし400回、自動的に反復することにより、大電流放電の際の電池の内部抵抗を著しく低下させるものである。放電電流が2C未満の場合、および放電時間が1秒未満の短時間の場合では電池の内部抵抗を低下させる効果が不充分であり、60秒を超える長時間の放電では、かえって電池の劣化を引き起こす。充放電の反復のサイクル数については、50回以上で内部抵抗の低下が顕著になり、100回以上では一層内部抵抗が低下し、200ないし500回でほぼ飽和する。大電流放電後の充電は、満充電に近い状態、即ち単電池の端子電圧が2.25V以上になるまで行うことが次の大電流放電を正常に行なうために望ましく、また、過充電による電池の劣化を避けるために単電池の端子電圧は2.6V以下に留めることが望ましい。これらの現象のメカニズムの詳細は明らかではないが、有機ポリマーが存在する電解液中では大電流放電に伴なう急激な電極反応により、電解液中でのイオンの拡散が阻害され、電極と電解液との界面に高い過電圧が発生するので、多数の結晶核が生成し、結晶の微細化が進むものと推測される。この大電流放電の効果は1回の場合には顕著ではないが、所定の端子電圧にまで再充電した後、これを反復すると次第に効果が大きくなる。  In the large current discharge-charge repetitive processing of the present invention, the battery is discharged at a discharge rate of 2C or more, preferably 3C or more for 1 to 60 seconds, preferably 2 to 20 seconds, and then charged until the terminal voltage reaches a predetermined value. In addition, by automatically repeating this charge / discharge cycle 50 times or more, preferably 100 times or more, more preferably 200 to 400 times, the internal resistance of the battery during large current discharge is significantly reduced. . When the discharge current is less than 2C and when the discharge time is shorter than 1 second, the effect of reducing the internal resistance of the battery is insufficient, and when the discharge is longer than 60 seconds, the battery deteriorates. cause. Regarding the number of charge / discharge cycles, the internal resistance is significantly reduced when the number of cycles is 50 or more, the internal resistance is further decreased when the number is 100 or more, and is almost saturated at 200 to 500 times. It is desirable that the charging after the large current discharge is performed in a state close to a full charge, that is, until the terminal voltage of the unit cell becomes 2.25 V or more in order to perform the next large current discharge normally. In order to avoid deterioration of the cell, it is desirable to keep the terminal voltage of the unit cell at 2.6 V or less. Although the details of the mechanism of these phenomena are not clear, the diffusion of ions in the electrolyte is hindered by the rapid electrode reaction accompanying the large current discharge in the electrolyte containing the organic polymer. Since a high overvoltage is generated at the interface with the liquid, it is presumed that a large number of crystal nuclei are generated and the crystal is further refined. Although the effect of this large current discharge is not remarkable in the case of one time, the effect is gradually increased by repeating this after recharging to a predetermined terminal voltage.

本発明で電解液に添加する有機ポリマーの量は、電解液100重量部に対し、ポリビニルアルコール、ポリアクリル酸塩の少なくとも一つを0.005ないし1重量部とするのが好ましく、0.005重量部未満では効果が小さく、1重量部を超えると電解液の粘度が上昇して発泡等の現象を生じて好ましくない。  In the present invention, the amount of the organic polymer added to the electrolytic solution is preferably 0.005 to 1 part by weight of at least one of polyvinyl alcohol and polyacrylate with respect to 100 parts by weight of the electrolytic solution. If the amount is less than parts by weight, the effect is small, and if the amount exceeds 1 part by weight, the viscosity of the electrolytic solution increases to cause a phenomenon such as foaming.

本発明の大電流放電−充電反復処理は、自動車のエンジン始動時のスターターモーターの運転操作に一見類似するが、大電流放電が必要な自動車のエンジン始動時でも1Cないし1.5C程度の放電率で、その放電時間は数秒間であり、放電される電気量としては電池の公称容量の0.1%以下に過ぎない。これに対し、本発明では電極活物質の多くの割合を消費させるために、大電流すなわち2C以上、好ましくは3C以上、の高放電率で1回あたり当該電池の公称容量の0.1ないし5%程度の電気量を放電させ、これを数十回ないし数百回累積するものである。更に自動車エンジンの始動ではその操作は手動であり、その回数も1回が原則であるのに対し、本発明では短時間で電池性能の再生を行うために数十回ないし百回以上の充放電サイクルを自動的に反復させる方法が必須であり、この多数回の反復による放電電気量の累積が電池性能の迅速な再生に極めて大きく寄与している。更に本発明では、充放電サイクルが極めて短時間で行われるので、数十回ないし数百回の充放電サイクルを1時間ないし5時間程度の短時間で行うことができ、実用性の高い再生方法である。  The high current discharge-charge repetitive processing of the present invention is similar to the operation of the starter motor at the start of the automobile engine, but the discharge rate is about 1 C to 1.5 C even at the start of the automobile engine that requires a large current discharge. The discharge time is a few seconds, and the amount of electricity discharged is only 0.1% or less of the nominal capacity of the battery. On the other hand, in the present invention, in order to consume a large proportion of the electrode active material, the nominal capacity of the battery is 0.1 to 5 per time at a high current, that is, a high discharge rate of 2C or more, preferably 3C or more. % Of electricity is discharged and accumulated several tens of times to several hundred times. Further, when starting an automobile engine, the operation is manual, and the number of times is basically one. In contrast, in the present invention, in order to regenerate the battery performance in a short time, charging and discharging several dozen times or more than one hundred times. A method of automatically repeating the cycle is essential, and the accumulation of the discharge electricity amount due to the many repetitions greatly contributes to the rapid regeneration of the battery performance. Furthermore, in the present invention, since the charging / discharging cycle is performed in a very short time, the charging / discharging cycle of several tens to several hundreds can be performed in a short time of about 1 hour to 5 hours, and a highly practical regeneration method. It is.

本発明において、前処理工程としての第一工程において電解液にポリビニルアルコール等の有機ポリマーを添加して充放電パルスを含む小電流で長時間充電することによりサルフェーションを効果的に解消し、第二工程での大電流放電と充電の反復処理により、電極活物質の活性化が一層促進されてその大部分が活性化される。そのメカニズムの詳細は明らかではないが、第一工程では、サルフェーションの解消により、電極反応に関与する電極活物質の量が増大し、第二工程では、大電流放電により、電極に生成する硫酸鉛の結晶の微細化が進行し、充放電を繰返すことでその微細化が一層促進されるものと推定する。  In the present invention, sulfation is effectively eliminated by adding an organic polymer such as polyvinyl alcohol to the electrolytic solution in the first step as the pretreatment step and charging for a long time with a small current including a charge / discharge pulse. The active process of the electrode active material is further promoted by the repeated treatment of large current discharge and charge in the process, and most of them are activated. Although the details of the mechanism are not clear, in the first step, the amount of electrode active material involved in the electrode reaction increases due to elimination of sulfation, and in the second step, lead sulfate produced on the electrode by large current discharge It is presumed that the refining of the crystal proceeds further and the refining is further promoted by repeating charge and discharge.

第一工程での有機ポリマーの効果は、主として負極の水素過電圧の上昇効果により結晶性の硫酸鉛が活性鉛に再生することによりサルフェーションを解消するものである。前処理工程ではこの有機ポリマーを電解液中に含む鉛蓄電池を充電するに際し、充放電パルスを含む充電電流を使用することにより、直流電流によって充電する場合に比べ、サルフェーションがより速やかに解消する。  The effect of the organic polymer in the first step is to eliminate sulfation by regenerating crystalline lead sulfate into active lead mainly by the effect of increasing the hydrogen overvoltage of the negative electrode. In the pretreatment step, when charging the lead storage battery containing the organic polymer in the electrolyte, sulfation is eliminated more quickly by using a charging current including a charging / discharging pulse than when charging by a direct current.

第一工程の充電電流の大きさは、0.005ないし0.3C、好ましくは0.03ないし0.1C、であり、0.005Cより小さい場合はサルフェーションの解消が遅すぎ、0.3Cを超える場合は端子電圧の上昇が大きすぎて過充電となり、逆に電池を劣化させる。0.03C以上ではサルフェーションが効率良く解消され、0.1C以下では過充電の危険性が少ない。充電時間については、充電電流の大きさとの兼合いでサルフェーションが解消するまでの時間を選択して行えば良く、通常40時間以上が望ましく、サルフェーションの解消をより長時間かけて充分に行う意味で60時間以上が更に望ましく、実用上の見地から240時間以内で行うのが良い。  The magnitude of the charging current in the first step is 0.005 to 0.3C, preferably 0.03 to 0.1C. If it exceeds, the rise of the terminal voltage will be too large, resulting in overcharge, and conversely will deteriorate the battery. If it is 0.03C or more, sulfation is efficiently eliminated, and if it is 0.1C or less, the risk of overcharging is small. Regarding the charging time, it is sufficient to select the time until the sulfation is eliminated in consideration of the magnitude of the charging current. Usually, 40 hours or more is desirable, and the sulfation is sufficiently eliminated over a longer period of time. 60 hours or more is more desirable, and it is better to carry out within 240 hours from a practical point of view.

本発明で用いるパルス電流は、電極表面付近での鉛イオンの拡散を上回る大きさであることが望ましく、電池1セル当り、端子電圧に0.01V以上、好ましくは0.1V以上の電圧変化をもたらす大きさであることが望ましい。またそのパルス巾は10ナノ秒ないし10ミリ秒程度のものが実用上好ましい。パルス巾とパルスの間隔との関係は、パルス電流によって一旦低下した電極表面付近の鉛イオンの濃度が拡散によって充分な濃度に回復するに充分な時間があることが望ましく、それらはパルス電流の大きさや重畳する直流成分の値によって最適な条件を適宜選択すれば良いが、一般的にはパルス間隔はパルス巾の3倍以上、より好ましくは5倍以上が望ましい。一般に、パルスを発生させる電源装置は高価であるので、充電に要する電気量の全てをパルス電流で行うよりも、パルスを直流または商用電源を整流した脈流に重畳させて用いるのが経済的に望ましい。本発明で使用するパルス波形としては、特許文献3,4に示した各種の例を用いることができる。  The pulse current used in the present invention is desirably larger than the diffusion of lead ions in the vicinity of the electrode surface, and the terminal voltage per cell is 0.01 V or more, preferably 0.1 V or more. Desirable size is desired. The pulse width is preferably about 10 nanoseconds to 10 milliseconds. The relationship between the pulse width and the pulse interval is preferably such that there is sufficient time for the concentration of lead ions near the electrode surface once lowered by the pulse current to recover to a sufficient concentration by diffusion. The optimum condition may be appropriately selected depending on the value of the DC component to be superimposed, but in general, the pulse interval is preferably 3 times or more, more preferably 5 times or more of the pulse width. Generally, since a power supply device that generates a pulse is expensive, it is economical to use a pulse superimposed on a pulsating current obtained by rectifying a direct current or a commercial power supply rather than performing all of the amount of electricity required for charging with a pulse current. desirable. As the pulse waveform used in the present invention, various examples shown in Patent Documents 3 and 4 can be used.

本発明の再生装置では、本発明の第一工程を実施するための第一手段、第二工程を実施するための第二手段と、これらの処理が行われた後、電池性能の再生が行われたか否かを確認するためにこれをエンジン始動時に近似した条件として、1ないし3Cの放電電流で単電池の端子電圧(CCV=Closed Circuit Voltage)が1.5ボルト程度まで低下するまでの時間を測定する回路からなる第三手段を備え、劣化した鉛電池の再生が正常に行われたことを確認するのが望ましい。  In the reproducing apparatus of the present invention, the first means for carrying out the first step of the present invention, the second means for carrying out the second step, and after these processes are performed, the battery performance is reproduced. In order to confirm whether or not the battery has been disconnected, the time until the terminal voltage of the single cell (CCV = Closed Circuit Voltage) drops to about 1.5 volts with a discharge current of 1 to 3 C is approximated when starting the engine. It is desirable to provide a third means comprising a circuit for measuring the above and to confirm that the deteriorated lead battery has been normally regenerated.

更に本発明の再生装置では、第一、第二、第三手段による処理の後、処理した電池を満充電の状態とするため、0.1ないし5C、好ましくは1C程度の電流を供給できる充電電源からなる第四手段を設けることが望ましい。  Furthermore, in the playback device of the present invention, after the processing by the first, second and third means, the charged battery can be supplied with a current of 0.1 to 5C, preferably about 1C in order to put the treated battery into a fully charged state. It is desirable to provide a fourth means comprising a power source.

劣化した定格容量40Ah、12Vの鉛蓄電池を用い、その電解液100重量部中にポリビニルアルコール0.1重量部を加えて溶解した。この電池を0.05Cの充電電流で、パルス巾1ミリ秒、周期100ミリ秒、波高値(P−P)3Vの矩形波状の充放電パルスを重畳し、72時間充電し、サルフェーションを解消した。この電池について、150A−6秒間放電と、10A充電で端子電圧13.5Vになるまでの充電の充放電サイクルを100回反復し、更に100回反復した。電池の150A−6秒間放電の終止電圧は初回が9.95Vであったのに対し、100後では10.15V、200回後では10.45Vとなった。  Using a deteriorated rated capacity 40Ah, 12V lead acid battery, 0.1 parts by weight of polyvinyl alcohol was added to 100 parts by weight of the electrolyte and dissolved. This battery was charged with a charge current of 0.05 C, a pulse width of 1 millisecond, a period of 100 milliseconds, a crest value (PP) of 3 V and a rectangular wave-shaped charge / discharge pulse superimposed, and charged for 72 hours to eliminate sulfation. . About this battery, the charging / discharging cycle of 150A-6 second discharge until it became terminal voltage 13.5V by 10A charge was repeated 100 times, and was further repeated 100 times. The final discharge voltage of the battery for 150 A-6 seconds was 9.95 V for the first time, 10.50 V after 100, and 10.45 V after 200 times.

発明の効果The invention's effect

以上の説明から明らかな通り、本発明の方法によれば、大電流放電の反復と有機添加物との相乗効果により、陰極の硫酸鉛の結晶が微細化され、電池特性が著しく回復されるものである。  As is apparent from the above description, according to the method of the present invention, the lead sulfate crystals at the cathode are refined and the battery characteristics are remarkably recovered by the synergistic effect of the repetition of the large current discharge and the organic additive. It is.

Claims (8)

正極の活物質が主として過酸化鉛よりなり、負極の活物質が主として金属鉛よりなり、電解液が希硫酸よりなる鉛蓄電池の再生方法であって、該電解液100重量部に対し、ポリビニルアルコール、ポリアクリル酸塩の少なくとも一つを0.005ないし1重量部添加し、2C以上、好ましくは3C以上、の電流で1ないし60秒間、好ましくは2ないし30秒間、該鉛蓄電池を放電し、その後単電池の端子電圧が2.25ないし2.6Vとなるまで充電する充放電サイクルを50回以上、好ましくは100回以上、自動的に反復する大電流放電−充電反復処理を特徴とする鉛蓄電池の再生方法。A method for regenerating a lead-acid battery in which the active material of the positive electrode is mainly composed of lead peroxide, the active material of the negative electrode is mainly composed of metallic lead, and the electrolytic solution is dilute sulfuric acid. Polyvinyl alcohol with respect to 100 parts by weight of the electrolytic solution 0.005 to 1 part by weight of at least one polyacrylate is added, and the lead acid battery is discharged at a current of 2C or more, preferably 3C or more for 1 to 60 seconds, preferably 2 to 30 seconds, Lead characterized by repeated large-current discharge-charge processing that automatically repeats the charge / discharge cycle for charging until the terminal voltage of the unit cell reaches 2.25 to 2.6 V, more than 50 times, preferably more than 100 times. Storage battery regeneration method. 正極の活物質が主として過酸化鉛よりなり、負極の活物質が主として金属鉛よりなり、電解液が希硫酸よりなる鉛蓄電池の再生方法であって、該電解液100重量部に対し、ポリビニルアルコール、ポリアクリル酸塩の少なくとも一つを0.005ないし1重量部添加し、0.005ないし0.3C、好ましくは0.03ないし0.1C、の電流で該鉛蓄電池を40時間以上、好ましくは60ないし240時間、充電する前処理工程としての第一工程と、2C以上、好ましくは3C以上、の電流で1ないし60秒間、好ましくは2ないし30秒間、該鉛蓄電池を放電し、その後0.1ないし1Cで単電池の端子電圧が2.25ないし2.6Vとなるまで充電する充放電サイクルを50回以上、好ましくは100回以上、自動的に反復する大電流放電−充電反復処理による第二工程とからなることを特徴とする鉛蓄電池の再生方法。A method for regenerating a lead-acid battery in which the active material of the positive electrode is mainly composed of lead peroxide, the active material of the negative electrode is mainly composed of metallic lead, and the electrolytic solution is dilute sulfuric acid. Polyvinyl alcohol with respect to 100 parts by weight of the electrolytic solution 0.005 to 1 part by weight of at least one polyacrylate is added, and the lead-acid battery is preferably used for 40 hours or more at a current of 0.005 to 0.3 C, preferably 0.03 to 0.1 C. For 60 to 240 hours, discharging the lead acid battery for 1 to 60 seconds, preferably 2 to 30 seconds with a current of 2C or more, preferably 3C or more, as a pretreatment step for charging, and then 0 A large battery that automatically repeats the charging / discharging cycle of 1 to 1C until the terminal voltage of the unit cell becomes 2.25 to 2.6 V, 50 times or more, preferably 100 times or more. Discharge - lead-acid battery reproducing method characterized by comprising the second step by the charging iteration. 請求項2において、第一工程の充電電流に充放電パルスを重畳する鉛蓄電池の再生方法。The method for regenerating a lead-acid battery according to claim 2, wherein a charge / discharge pulse is superimposed on the charge current in the first step. 鉛蓄電池の再生装置であって、該蓄電池に対して2C以上、好ましくは3C以上、の電流で1ないし60秒間、好ましくは2ないし20秒間、該鉛蓄電池を放電し、その後単電池の端子電圧が2.25ないし2.6Vとなるまで充電する充放電サイクルを所定回数自動的に反復する大電流放電−充電反復電源よりなることを特徴とする鉛蓄電池の再生装置。A regenerative apparatus for a lead-acid battery, wherein the lead-acid battery is discharged at a current of 2C or more, preferably 3C or more to the battery for 1 to 60 seconds, preferably 2 to 20 seconds, and then the terminal voltage of the unit cell A regenerative apparatus for a lead-acid battery comprising a large-current discharge-charge repetitive power source that automatically repeats a predetermined number of charge / discharge cycles until the voltage reaches 2.25 to 2.6V. 鉛蓄電池の再生装置であって、該蓄電池に対して0.005ないし0.3C、好ましくは0.03ないし0.1C、の電流を供給する充電電源よりなる第一手段と、該蓄電池に対して2C以上、好ましくは3C以上、の電流で1ないし60秒間、好ましくは2ないし20秒間、該鉛蓄電池を放電し、その後0.1ないし1Cで単電池の端子電圧が2.25ないし2.6Vとなるまで充電する充放電サイクルを所定回数自動的に反復する大電流放電−充電反復電源よりなる第二手段とからなることを特徴とする鉛蓄電池の再生装置。A regenerative apparatus for a lead storage battery, comprising: a first means comprising a charging power source for supplying a current of 0.005 to 0.3 C, preferably 0.03 to 0.1 C to the storage battery; The lead-acid battery is discharged at a current of 2C or more, preferably 3C or more for 1 to 60 seconds, preferably 2 to 20 seconds, and then the terminal voltage of the unit cell is 2.25 to 2.0.1 at 0.1 to 1C. A regenerative apparatus for a lead-acid battery comprising: a second means comprising a large-current discharge-charge repetitive power source that automatically repeats a charge / discharge cycle for charging up to 6V a predetermined number of times. 請求項5において、第一手段の充電電流に充放電パルスが重畳される鉛蓄電池の再生装置。6. The regenerative apparatus for a lead storage battery according to claim 5, wherein a charging / discharging pulse is superimposed on the charging current of the first means. 請求項5および6において、該第一手段および該第二手段に加えて、更に0.3ないし5C、好ましくは1ないし3Cの電流で放電し、単電池の端子電圧が所定の値になるまでの放電電気量またはその時間を測定する回路よりなる第三手段を有する鉛蓄電池の再生装置。In Claims 5 and 6, in addition to the first means and the second means, the battery is further discharged with a current of 0.3 to 5C, preferably 1 to 3C until the terminal voltage of the unit cell reaches a predetermined value. A regenerative apparatus for a lead-acid battery comprising a third means comprising a circuit for measuring the amount of discharged electricity or the time of discharge. 請求項7において、該第一手段、該第二手段および該第三手段に加えて、更に満充電する充電電源よりなる第四手段を有する鉛蓄電池の再生装置。8. The regenerative apparatus for a lead storage battery according to claim 7, further comprising a fourth means comprising a charging power source for full charge in addition to the first means, the second means and the third means.
JP2007201312A 2007-07-03 2007-07-03 Regenerating method for lead storage battery and its device Pending JP2009016324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007201312A JP2009016324A (en) 2007-07-03 2007-07-03 Regenerating method for lead storage battery and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007201312A JP2009016324A (en) 2007-07-03 2007-07-03 Regenerating method for lead storage battery and its device

Publications (1)

Publication Number Publication Date
JP2009016324A true JP2009016324A (en) 2009-01-22

Family

ID=40356953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007201312A Pending JP2009016324A (en) 2007-07-03 2007-07-03 Regenerating method for lead storage battery and its device

Country Status (1)

Country Link
JP (1) JP2009016324A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012099247A (en) * 2010-10-29 2012-05-24 Takeji Nishida Regeneration method of lead storage battery
JP2014187003A (en) * 2013-01-11 2014-10-02 Semiconductor Energy Lab Co Ltd Electronic device
JP2014187002A (en) * 2013-01-14 2014-10-02 Semiconductor Energy Lab Co Ltd Electrochemical device
JP2015176829A (en) * 2014-03-17 2015-10-05 株式会社ハウステック Lead acid battery charging/discharging device
CN111048850A (en) * 2019-12-10 2020-04-21 安徽理士电源技术有限公司 High-efficiency lead-acid storage battery activation method
CN114188531A (en) * 2021-10-21 2022-03-15 超威电源集团有限公司 Battery cathode powder and preparation method and application thereof
CN115986898A (en) * 2021-10-14 2023-04-18 宁德时代新能源科技股份有限公司 Charging device, charging control method, electric energy management system, and storage medium

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012099247A (en) * 2010-10-29 2012-05-24 Takeji Nishida Regeneration method of lead storage battery
JP2014187003A (en) * 2013-01-11 2014-10-02 Semiconductor Energy Lab Co Ltd Electronic device
JP2014187002A (en) * 2013-01-14 2014-10-02 Semiconductor Energy Lab Co Ltd Electrochemical device
JP2015176829A (en) * 2014-03-17 2015-10-05 株式会社ハウステック Lead acid battery charging/discharging device
CN111048850A (en) * 2019-12-10 2020-04-21 安徽理士电源技术有限公司 High-efficiency lead-acid storage battery activation method
CN115986898A (en) * 2021-10-14 2023-04-18 宁德时代新能源科技股份有限公司 Charging device, charging control method, electric energy management system, and storage medium
CN115986898B (en) * 2021-10-14 2024-03-12 宁德时代新能源科技股份有限公司 Charging device, charging control method, power management system, and storage medium
CN114188531A (en) * 2021-10-21 2022-03-15 超威电源集团有限公司 Battery cathode powder and preparation method and application thereof
CN114188531B (en) * 2021-10-21 2023-10-27 超威电源集团有限公司 Battery negative electrode powder and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP2009016324A (en) Regenerating method for lead storage battery and its device
US20120112703A1 (en) System and Method for Managing a Battery
WO2011138038A2 (en) Bipolar overvoltage battery pulser and method
JP2005327737A (en) Method for regenerating storage battery
JP6298895B2 (en) Lead-acid battery regeneration device
US20080143299A1 (en) Battery maintenance
WO2006057083A1 (en) Used lead battery regenerating/new lead battery capacity increasing method
JP2001313064A (en) Lead storage battery and its additive agent
JP2004134139A (en) Recycling treatment method of storage battery
JP2001118611A (en) Regeneration method of lead accumulator battery by electric treatment
JP6774700B2 (en) Lead-acid battery regeneration device
CN101083346A (en) Lead acid accumulator recovery technique
CN101394010A (en) Lead accumulator recovery method
WO2004105161A2 (en) Lead-acid battery having an organic polymer additive and process of charging thereof
JP6465390B2 (en) I / O recovery method and control system
CN104091971A (en) Storage battery desulphurization device and method
JP4068268B2 (en) Lead-acid battery charging method
JP2003189498A (en) Charging method and charger of secondary battery
JP2005116493A (en) Charging method of lead storage battery
CN112701370A (en) Method for activating capacity of lithium iron phosphate gradient battery
JP2011071001A (en) Regeneration method for lead-acid battery and lead film removing device used for the same
CN1312805C (en) Super recovery technique for lead acid battery
JP2010062007A (en) Method of regenerating lead-acid battery
JP2012064552A (en) Lead acid battery charging method
JP5618386B2 (en) Nickel metal hydride battery and capacity recovery method for nickel metal hydride battery