JP6135685B2 - エンジンの冷却装置 - Google Patents

エンジンの冷却装置 Download PDF

Info

Publication number
JP6135685B2
JP6135685B2 JP2015012032A JP2015012032A JP6135685B2 JP 6135685 B2 JP6135685 B2 JP 6135685B2 JP 2015012032 A JP2015012032 A JP 2015012032A JP 2015012032 A JP2015012032 A JP 2015012032A JP 6135685 B2 JP6135685 B2 JP 6135685B2
Authority
JP
Japan
Prior art keywords
flow path
temperature
cooling water
path
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015012032A
Other languages
English (en)
Other versions
JP2016138453A (ja
Inventor
智弘 小口
智弘 小口
春樹 三角
春樹 三角
進児 若本
進児 若本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2015012032A priority Critical patent/JP6135685B2/ja
Publication of JP2016138453A publication Critical patent/JP2016138453A/ja
Application granted granted Critical
Publication of JP6135685B2 publication Critical patent/JP6135685B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

本発明は、エンジンの冷却装置に関する。
従来、エンジンの暖機を促進するために、暖機時に冷却水の循環を制限するようにしたエンジンの冷却装置が知られている(例えば特許文献1を参照)。
特許文献1に記載のエンジンの冷却装置は、シリンダヘッドの燃焼室近傍を通過する燃焼室側ウォータジャケット、および、この燃焼室側ウォータジャケットに接続されてヒータコアを通過するヒータ側冷却水流路を含む第1の冷却水循環経路と、シリンダヘッドの排気通路近傍を通過する排気側ウォータジャケット、および、この排気側ウォータジャケットに接続されてヒータコアを通過する排気側冷却水流路を含む第2の冷却水循環経路と、エンジンの運転状態に応じて、冷却水が流れる循環経路を第1の冷却水循環経路または第2の冷却水循環経路の一方に切り替える流路切替弁とを備えている。
特許文献1に記載の冷却装置においては、流路切替弁の流路切替動作により、エンジンが暖機運転中である場合には、第2の冷却水循環経路に冷却水が流れる状態となり、エンジンが暖機完了状態にある場合には、第1の冷却水循環経路に冷却水が流れる状態となる。
このような流路切替が行われることにより、エンジンの暖機運転中にヒータコアを速やかに暖機して、車室内を速やかに温めることができる。
特開2009−47001号公報
しかしながら、特許文献1に記載の冷却装置においては、ヒータコアの暖機を促進するために、エンジンの暖機運転中に燃焼室側ウォータジャケットに冷却水を流さないので、シリンダヘッドの燃焼室周りに冷却不足が生じる虞がある。また、ヒータコアの暖機を促進するには、排気側ウォータジャケットから冷却水に熱を与えるだけでは熱量が不十分である虞がある。
本発明は、上記の事情に鑑みて成されたものであり、ヒータコアの暖機を促進しつつ、シリンダヘッドにおける燃焼室周りの冷却不足を防止することができるエンジンの冷却装置を提供することを目的とする。
上記の課題を解決するために、本発明は、シリンダヘッドのウォータジャケットのうち、当該シリンダヘッドの排気ポート側の部分を通過する排気側ウォータジャケットである排気側流路、および、当該排気側流路に接続されて空調装置のヒータコアを通過するヒータ側流路を含み、冷却水が循環する第1の循環経路と、前記シリンダヘッドのウォータジャケットのうち、当該シリンダヘッドの排気ポート側以外の部分を通過するメインウォータジャケットであるメイン流路、および、当該メイン流路に接続される前記シリンダヘッド外側の外部流路を含み、冷却水が循環する第2の循環経路と、エンジンの温度を検出する温度検出手段と、前記第1の循環経路に設けられ、当該第1の循環経路の冷却水を循環させる第1のポンプと、前記第2の循環経路に設けられ、当該第2の循環経路の冷却水を循環させる第2のポンプと、前記メイン流路と前記外部流路の接続および接続解除と、前記メイン流路と前記排気側流路の接続および接続解除とを行う流路切替弁と、前記温度検出手段の検出結果に基づいて、前記流路切替弁の動作を制御する制御部とを備え、前記排気側ウォータジャケットと前記メインウォータジャケットとは、隔壁で隔てられて設けられており、前記メイン流路は、前記排気側流路に接続されることで、前記第1の循環経路に組み込まれ、前記排気側流路およびヒータ側流路と共に冷却水が循環する経路を構成し、前記制御部は、エンジンの暖機中に、(i)前記温度検出手段で検出された温度が第1の温度範囲にあるときには、前記メイン流路と前記外部流路、前記メイン流路と前記排気側流路を各々接続せず、(ii)前記温度検出手段で検出された温度が前記第1の温度範囲より高い第2の温度範囲にあるときには、前記メイン流路と前記外部流路を接続せずに、前記メイン流路と前記排気側流路を接続し、(iii)前記温度検出手段で検出された温度が前記第2の温度範囲より高い第3の温度範囲にあるときには、前記メイン流路と前記外部流路を接続する制御を行うことを特徴とする、エンジンの冷却装置を提供する。
本発明によれば、メイン流路が組み込まれていない状態の第1の循環経路のみに冷却水が流れる段階(i)と、メイン流路が組み込まれた状態の第1の循環経路、および、第2の循環経路に冷却水が流れる段階(iii)との間に、メイン流路が組み込まれた状態の第1の循環経路のみに冷却水が流れる段階(ii)が設けられているため、ヒータコアの暖機を促進しつつ、シリンダヘッドにおける燃焼室周りの冷却不足を防止することができる。
つまり、排気ポートには高温の排気ガスが流れるため、排気側流路を流れる冷却水は、メイン流路を流れる冷却水よりも速やかに温められ、より高温に温められる。よって、エンジン暖機中(上記(i)〜(iii)の各制御時)には、排気側流路を流れた冷却水が、ヒータ側流路を流れるため、ヒータコアには、シリンダヘッドの排気側部分の熱が与えられ、ヒータコアの昇温が促進される。
そして、暖機の初期段階ではシリンダヘッドにおける排気側部分以外の部分(燃焼室周りの部分を含む)はまだ低温状態であるため、メイン流路と排気側流路を接続しない制御(i)が行われる。この状態では、メイン流路内の低温の冷却水はヒータコアに供給されないため、ヒータコアの温度低下が抑制される。
暖機が進むと、シリンダヘッドにおける排気側部分以外の部分の温度が上昇しているため、メイン流路と排気側流路を接続する制御(ii)が行われる。これにより、メイン流路が第1の循環経路に組み込まれ、排気側流路およびメイン流路を冷却水が循環することにより、ヒータコアには、シリンダヘッド全体(排気側部分およびそれ以外の部分)から熱が与えられる。従って、ヒータコアの暖機を促進することができる。しかも、冷却水がメイン流路を流れてシリンダヘッドにおける排気側部分以外の部分の熱を奪うので、当該部分の冷却が促進され、これにより、暖機後半時にシリンダヘッドにおける燃焼室周りが冷却不足となることが抑制される。
さらに暖機が進むと、外部流路に設けられる装置(例えば補機)の温度が十分に上昇しているので、第1の循環経路および第2の循環経路の双方で冷却水を循環させる制御(iii)が行われる。これにより、ヒータコアの暖機を促進しつつ、外部流路に設けられる装置を冷却することができる。
すなわち、制御(ii)がなければシリンダヘッドの燃焼室周りに冷却不足が生じる虞や、ヒータコアの暖機が十分に促進されない虞があるが、制御(ii)により冷却水をシリンダヘッド全体に流通させることで、ヒータコアの昇温を促進させる一方で、燃焼室周りが冷却不足となることを抑制できる。
なお、(iii)の段階においては、第1の循環経路と第2の循環経路が接続されていない状態(第1の循環経路の冷却水と第2の循環経路の冷却水が互いに混じり合わない状態)であってもよいし、或いは、第1の循環経路と第2の循環経路が接続された状態(第1の循環経路の冷却水と第2の循環経路の冷却水が互いに混じり合う状態)であってもよい。
本発明においては、前記外部流路を流れる冷却水の流量を調節する流量調節弁をさらに備え、前記流量調節弁は、前記流路切替弁により前記メイン流路と前記外部流路が接続された当初の所定期間は流量を少量に制限し、その後流量を所定量まで次第に多くすることが好ましい。
この構成によれば、メイン流路と外部流路を接続する際に、外部流路内の低温の冷却水がメイン流路に徐々に流入するので、燃焼室周りの急激な温度低下を抑制することができる。
本発明においては、前記第2の循環経路は、前記外部流路に接続されてラジエータを通過するラジエータ側流路をさらに含み、前記流路切替弁は、前記ラジエータ側流路と前記外部流路の接続および接続解除をさらに行い、前記制御部は、前記温度検出手段で検出された温度が前記第3の温度範囲より高い第4の温度範囲にあるときに、前記ラジエータ側流路を前記外部流路に接続することが好ましい。
この構成によれば、ラジエータによって冷却水を冷却することができる。
本発明においては、前記外部流路を流れる冷却水の流量および前記ラジエータ側流路を流れる冷却水の流量を調節する流量調節弁と、エンジン負荷を検出するエンジン負荷検出手段とをさらに備え、前記制御部は、前記温度検出手段および前記エンジン負荷検出手段の検出結果に基づいて前記流量調節弁の動作をさらに制御し、前記温度検出手段で検出された温度が前記第4の温度範囲にあるときに、前記エンジン負荷検出手段で検出されたエンジン負荷が大きいほど、前記外部流路を流れる冷却水の流量を小さくするとともに、前記ラジエータ側流路を流れる冷却水の流量を大きくする制御を行うことが好ましい。
この構成によれば、エンジン負荷が大きいときほど、ラジエータを流れる冷却水の流量が大きくなるので、例えば登坂時のようにエンジン負荷が大きくなるときに、エンジン本体、および、外部流路に設けられた装置の冷却機能を高めて、これらを適切に作動させることができる。
本発明においては、前記制御部は、前記温度検出手段および前記エンジン負荷検出手段の検出結果に基づいて前記第1のポンプの動作をさらに制御し、前記温度が前記第4の温度範囲にあるときに、前記エンジン負荷検出手段で検出されたエンジン負荷が大きいほど、前記第1のポンプの吐出量を多くする制御を行うことが好ましい。
この構成によれば、エンジン負荷が大きいときほど、ラジエータを流れる冷却水の流量が多くなるので、例えば登坂時のようにエンジン負荷が大きくなるときに、エンジン本体、および、外部流路に設けられた装置に対する冷却機能を高めて、これらを適切に温度調節することができる。
本発明においては、前記流路切替弁は、前記排気側流路、前記外部流路、および前記ラジエータ側流路に対応する弁のみを個別に有することが好ましい。
この構成によれば、排気側流路に対応する弁、外部流路に対応する弁、およびラジエータ側流路に対応する弁を開閉することにより、エンジンの冷却装置を上記(i)〜(iii)の各段階およびラジエータで冷却水を冷却する段階に移行させることができる。また、流路切替弁は、メイン流路に対応する弁を有していないので、その分、流路切替弁を簡単に構成することができる。
本発明においては、前記ヒータ側流路は、前記シリンダヘッドに供給される吸気の量を調節するスロットルボディをさらに通過することが好ましい。
この構成によれば、スロットルボディを速やかに暖機することができるため、エンジンの冷間始動時にスロットルボディが凍結しているような場合であっても、スロットルボディを速やかに解凍することができる。
本発明においては、前記流路切替弁は、前記第1の循環経路と前記第2の循環経路の接続および接続解除をさらに行い、前記制御部は、前記温度検出手段で検出された温度が前記第3の温度範囲のうち低温側の温度範囲にあるときに、前記第1の循環経路と前記第2の循環経路を接続しない制御を行い、前記温度検出手段で検出された温度が前記第3の温度範囲のうち高温側の温度範囲にあるときに、前記第1の循環経路と前記第2の循環経路を接続する制御を行うことが好ましい。
この構成によれば、ヒータコアの暖機促進および外部流路に設けられた装置の冷却をより確実に行うことができる。すなわち、温度検出手段で検出された温度が第3の温度範囲のうち低温側の温度範囲にあるときには、外部流路に設けられた装置の温度が上昇しているため、第2の循環経路で冷却水を循環させる制御を行うことにより、外部流路に設けられた装置を冷却する。このとき、外部流路内の低温の冷却水は、メイン流路内に流入することによってシリンダヘッドの熱を吸収し、温度が上昇する。また、第2の循環経路には接続されていない、つまり第2の循環経路から独立した第1の循環経路において冷却水を循環させる制御を行うことにより、外部流路内の低温の冷却水がヒータ側流路に流入することを防止しつつ、ヒータコアを暖機することができる。
温度検出手段で検出された温度が第3の温度範囲のうち高温側の温度範囲にあるときには、第2の循環経路と第1の循環経路を接続し、これら循環経路全体で冷却水を循環させる制御が行われる。第2の循環経路と第1の循環経路を接続する段階で、既に外部流路内の冷却水の温度は上昇しているため、外部流路からヒータ側流路に冷却水が流入したときのヒータコアの温度低下は抑制される。よって、ヒータコアの温度低下を抑制しつつ、外部流路に設けられた装置を冷却することができる。
本発明においては、前記第1のポンプは、電動ポンプであることが好ましい。
この構成によれば、電動ポンプを採用することにより、エンジンの回転数に依存することなく、冷却水を必要な時に必要な量のみ循環させることができ、冷却水の流量を適切に調節することができる。また、電動ポンプは、エンジンの駆動力を伝達するタイミングチェーンを介さずに駆動することができるため、部品点数を削減することができる。
本発明においては、前記外部流路は、補機を通過する流路であることが好ましい。
この構成によれば、補機を適切に冷却することができる。
以上説明したように、本発明によれば、ヒータコアの暖機を促進しつつ、シリンダヘッドにおける燃焼室周りの冷却不足を防止することができる。
本発明の実施形態に係るエンジンの冷却装置の全体構成を示すブロック図であり、冷却水の温度がT0未満のときに、冷却装置全体で冷却水の流れを停止させている状態(水停止状態)を示す図である。 (a)は、図1に示す制御状態におけるロータリバルブの周壁の展開図であり、(b)は、ロータリバルブを囲うハウジングに設けられた開口部の位置を示す図である。 本発明の実施形態に係るエンジンの冷却装置の全体構成を示すブロック図であり、燃焼室壁温がT0以上かつT1未満のときの制御状態(制御状態A)を示す図である。 本発明の実施形態に係るエンジンの冷却装置の全体構成を示すブロック図であり、燃焼室壁温がT1以上かつT2未満のときの制御状態(制御状態B)を示す図である。 図4に示す制御状態におけるロータリバルブの周壁の展開図である。 本発明の実施形態に係るエンジンの冷却装置の全体構成を示すブロック図であり、燃焼室壁温がT2以上かつT3未満のときの制御状態(制御状態C)を示す図である。 図6に示す制御状態におけるロータリバルブの周壁の展開図である。 本発明の実施形態に係るエンジンの冷却装置の全体構成を示すブロック図であり、燃焼室壁温がT3以上かつT4未満のときの制御状態(制御状態D)を示す図である。 図8に示す制御状態におけるロータリバルブの周壁の展開図である。 本発明の実施形態に係るエンジンの冷却装置の全体構成を示すブロック図であり、燃焼室壁温がT4以上で、かつエンジン負荷が所定値未満のときの制御状態(制御状態E)を示す図である。 図10に示す作動状態におけるロータリバルブの周壁の展開図である。 本発明の実施形態に係るエンジンの冷却装置の全体構成を示すブロック図であり、燃焼室壁温がT4以上で、かつエンジン負荷が所定値以上のときの制御状態(制御状態F)を示す図である。 図12に示す作動状態におけるロータリバルブの周壁の展開図である。 本発明の実施形態におけるECUによる制御動作を示すフローチャートである。 本発明の実施形態におけるECUによる制御動作を示すフローチャートである。
以下、添付図面を参照しながら本発明の好ましい実施形態について詳述する。
図1に示されるように、本実施形態におけるエンジン5は、シリンダブロック5Bと、シリンダブロック5Bの上側に設けられたシリンダヘッド5Aとを有している。
図1は、シリンダヘッド5Aを上方から見たものとして表し、シリンダブロック5Bを吸気側から見たものとして表している。
なお、図1,3,4,6,8、10,12において、冷却水の流路に矢印が記載されている場合には、その流路に冷却水が流れていることを表し、流路に矢印が記載されていない場合には、その流路に冷却水が流れていないことを表している。
シリンダヘッド5Aおよびシリンダブロック5Bの内部には、ピストン(図示略)がそれぞれ嵌挿された複数の気筒#1〜#4が形成されている。具体的には、図1の左から順に第1気筒#1,第2気筒#2,第3気筒#3,第4気筒#4が形成されている。エンジン5は、4つの気筒#1〜#4がクランク軸方向に直列に並ぶ直列4気筒エンジンである。シリンダヘッド5Aにおける第4気筒#4側の端部に、後述のロータリバルブ装置2が設けられている。エンジン5は、車両前部に設けられたエンジンルーム内に配置されている。
ピストンの上方には燃焼室が形成されている。シリンダヘッド5Aには、燃焼室に向かって開口する吸気ポートおよび排気ポート(いずれも図示略)が形成されている。吸気ポートは、図1において気筒#1〜#4の下側に位置しており、排気ポートは、図1において気筒#1〜#4の上側に位置している。吸気ポートは、各気筒内に吸気を導入するためのものである。排気ポートは、各気筒内から排気を排出するためのものである。
また、シリンダヘッド5Aには、排気側ウォータジャケットおよびメインウォータジャケットが形成されている。排気側ウォータジャケットは、シリンダヘッド5Aの排気ポート側の部分を第1気筒#1側から第4気筒#4側まで気筒列方向に通過する。メインウォータジャケットは、シリンダヘッド5Aの排気ポート側の部分以外の部分、つまり燃焼室の周囲の部分および吸気ポート側の部分を第1気筒#1側から第4気筒#4側まで気筒列方向に通過する。
排気側ウォータジャケットは、後述の排気側流路22(図1参照)に相当する。メインウォータジャケットは、後述のメイン流路23(図1参照)に相当する。排気側ウォータジャケット(排気側流路22)とメインウォータジャケット(メイン流路23)の間には隔壁28が設けられ、この隔壁28を介して排気側ウォータジャケットとメインウォータジャケットとは相互に分離して形成されている。
シリンダブロック5Bは、気筒#1〜#4の周囲に設けられたメインウォータジャケットを有している。メインウォータジャケットは、シリンダブロック5Bを第1気筒#1側から第4気筒#4側を回って第1気筒#1側まで一巡するように通過する。シリンダブロック5Bのウォータジャケットは、後述のブロック側流路25(図1参照)に相当する。
次に、エンジン5の冷却装置1について詳細に説明する。
図1に示されるように、冷却装置1は、ヒータ用循環経路40と、補機用循環経路41と、水温センサ7,8,24と、アクセル開度センサ30と、クランク角センサ32と、吸気温センサ38と、ヒータ側ポンプ4と、補機側ポンプ3と、ロータリバルブ装置2と、ECU31(Electronic Control Unit)とを備えている。
ヒータ側ポンプ4は、電子制御式の電動ポンプである。ヒータ側ポンプ4は、本発明における「第1のポンプ」に相当する。ヒータ側ポンプ4は、吸込口と吐出口を一つずつ有している。吸込口には、後述のヒータ側流路15の下流端部が接続されている。吐出口には、下流側で2つに分岐する図外の分岐管が接続されている。分岐管における分岐した一方側の端部に後述の連絡流路26(図1参照)の上流端部が接続され、他方側の端部に後述のETB側流路19(図1参照)の上流端部が接続されている。
補機側ポンプ3は、機械式ポンプであり、エンジンの駆動力を受けて作動する。補機側ポンプ3は、本発明における「第2のポンプ」に相当する。
本実施形態における補機は、EGR(Exhaust Gas Recirculation)クーラ9、オイルクーラ10、EGRバルブ11、ATF(Automatic Transmission Fluid)ウォーマ12、電子制御スロットルボディ(以下、「ETB」と称する)13、およびラジエータ14である。
<ヒータ用循環経路40の構成>
ヒータ用循環経路40(図1参照)は、冷却水が循環する経路であり、排気側流路22、ヒータ側流路15、ETB側流路19、および連絡流路26を有している。ヒータ用循環経路40は、本発明における「第1の循環経路」に相当する。
排気側流路22は、シリンダヘッド5Aの排気ポート側5aの部分を通過する通路である。排気側流路22の一端部は、ブロック側流路25に接続されており、より具体的にはブロック側流路25におけるロータリバルブ装置2とは反対側の部分に接続されている。排気側流路22の他端部は、ロータリバルブ装置2に接続されている。
ヒータ側流路15は、空調装置のヒータコア6を通過する流路である。ヒータ側流路15の上流端部は、排気側流路22の中途部、より具体的には排気側流路22におけるロータリバルブ装置2とは反対側の部分に接続されている。ヒータ側流路15におけるヒータコア6の下流側には、冷却水の温度を検出する水温センサ7が設けられている。
ETB側流路19は、ETB13を通過する流路である。ETB側流路19の下流端部は、ヒータ側流路15におけるヒータコア6とヒータ側ポンプ4の間の区間に接続されている。
連絡流路26は、ヒータ側ポンプ4の吐出口と排気側流路22とを連絡する流路である。連絡流路26の下流端部は、排気側流路22におけるロータリバルブ装置2付近の部分に接続されている。
<ロータリバルブ装置2の構成>
ロータリバルブ装置2は、図2(b)に示されるように、円筒状のロータリバルブ2aと、ロータリバルブ2aを収容する直方体状のハウジング2bと、ロータリバルブ2aを回転駆動する電子制御式の電動モータ(図示略)とを有している。ロータリバルブ2aは、ハウジング2b内で周方向(軸周り方向)に回転可能となっている。
図2(b)に示されるように、ハウジング2bは、開口部H1,H2,H3と、図外の開口部(以下、「図外開口部」と称する)とを有している。開口部H1は、ハウジング2bにおけるエンジン5側の面(図2(b)における左側の面)に形成されている。開口部H2は、ハウジング2bにおける上面(図2(b)における上側の面)に形成されている。開口部H3は、ハウジング2bにおける下側の面(図2(b)における下側の面)に形成されている。これら開口部H1,H2,H3は、冷却水が通過する穴である。
開口部H1とロータリバルブ2aとの間には、開口部H1の内周縁からロータリバルブ2aに向かって延びる円筒状のリップ部2cが設けられている。リップ部2cの開口部H1側の端部は、開口部H1の内周縁に固定されている。リップ部2cは、ロータリバルブ2aとは別体となっており、ロータリバルブ2aには固定されていない。リップ部2cのロータリバルブ2a側の端面は、ロータリバルブ2aの外周面に沿った形状となっている。これにより、リップ部2cのロータリバルブ2a側の端面は、ロータリバルブ2aの外周面に摺接可能となっている。
開口部H2とロータリバルブ2aの間にも、リップ部2cと同様のリップ部2dが設けられている。また、開口部H3とロータリバルブ2aの間にも、リップ部2cと同様のリップ部2eが設けられている。
図2(a)に示されるように、ロータリバルブ2aは、その周壁に切欠孔K1,K2,K3を有している。また、ロータリバルブ2aの軸方向端部には、開口部36(図2(b)参照)が形成されている。
図2(a)は、ロータリバルブ2aの周面上の位置を、ロータリバルブ2aの軸心周りの角度0°〜360°で表した、ロータリバルブ2aの展開図である。図2(a)における上下方向を、ロータリバルブ2aの軸方向とし、図2(a)における左右方向を、ロータリバルブ2aの周方向とする。開口部H1,H2,H3と切欠孔K1,K2,K3との位置関係を示すために、図2(a)には、開口部H1,H2,H3を二点鎖線で示している。図2(a)に示されるように、開口部H1の中心は基準位置0°に常時あるものとする。
図2(a)に示されるように、切欠孔K1,K2,K3は、この順に、ロータリバルブ2aの軸方向一端側から他端側に並んでいる。
ロータリバルブ2aは、回転するにつれて切欠孔K1,K2,K3の位置が周方向(図2(a)の左右方向)に変化する。
切欠孔K1は、ロータリバルブ2aの周方向に延びる長方形状をなしており、図2(a)に示される或る時点(冷却装置1全体において冷却水の流れを停止させるとき)では、30°付近から315°付近に亘って延在している。
切欠孔K2は、ロータリバルブ2aの周方向に延びて長手方向一端側(図2(a)における左側端部)が凹状に窪んだ長方形状の主部K2cと、主部K2cの長手方向他端部(図2(a)における右側端部)に連続して設けられて三角形状に窄まる窄まり部K2bと、窄まり部K2bの先端から突出する突起部K2aとを有する。図2(a)に示される或る時点では、切欠孔K2は、230°付近から45°付近に亘って延在している。切欠孔K2の主部K2aの幅(ロータリバルブ2aの軸方向に沿った長さ)は、切欠孔K1の幅よりも大きい。
切欠孔K3は、ロータリバルブ2aの周方向に延びて長手方向一端側が凹状に窪んだ長方形状の主部K3cと、主部K3cの長手方向他端部に連続して設けられて三角形状に窄まる窄まり部K3bと、窄まり部K3bの先端から突出する突起部K3aとを有している。主部K3cの周方向の長さは、切欠孔K2における主部K2cの周方向長さよりも短くなっており、図2(a)に示される或る時点では、15°付近から140°付近に亘って延在している。切欠孔K3の主部K3cの幅は、切欠孔K2の主部K2cの幅に等しく、切欠孔K1の幅よりも大きい。
開口部H1は、ロータリバルブ2aの回転に応じて切欠孔K1と重なり合うことが可能な位置に設けられており、図2(a)に示される0°を中心とした位置に設けられている。開口部H1の直径は、切欠孔K1の幅よりも若干大きい。開口部H1は、排気側流路22におけるロータリバルブ装置2側の端部に接続されている。
開口部H2は、ロータリバルブ2aの回転に応じて切欠孔K2と重なり合うことが可能な位置に設けられており、図2(a)に示される90°を中心とした位置に設けられている。開口部H2の直径は、切欠孔K2の幅よりも若干大きい。開口部H2は、後述の補機側流路35における上流側流路34に接続されている。
開口部H3は、ロータリバルブ2aの回転に応じて切欠孔K3と重なり合うことが可能な位置に設けられており、図2(a)に示される270°を中心とした位置に設けられている。開口部H3の直径は、切欠孔K3の幅よりも若干大きい。開口部H3は、後述のラジエータ側流路33の上流端部に接続されている。
このロータリバルブ装置2においては、切欠孔K1と開口部H1が重なり合ったときに、排気側流路22とロータリバルブ2a内が連通し、切欠孔K1と開口部H1が重なり合っていないときには、排気側流路22とロータリバルブ2a内が連通しない(遮断される)。また、これらが重なり合っている面積(連通面積)が、ロータリバルブ2aの回転に応じて変化する。つまり、切欠孔K1と開口部H1によって、流量調節弁が構成されている。以下の説明では、切欠孔K1と開口部H1によって構成される流量調節弁を流量調節弁V1と称する。
同様に、切欠孔K2と開口部H2によって、流量調節弁が構成されている。また、切欠孔K3と開口部H3によって、流量調節弁が構成されている。以下の説明では、切欠孔K2と開口部H2によって構成される流量調節弁を流量調節弁V2と称し、切欠孔K3と開口部H3によって構成される流量調節弁を流量調節弁V3と称する。
ロータリバルブ2aの軸方向端部の開口部36(図2(b)参照)と、ハウジング2bにおける開口部36に対向する内壁面との間には隙間が設けられている。ハウジング2bに形成された上記の図外開口部は、この隙間や切欠孔K1〜K3を通じて、ロータリバルブ2aの内部と常時連通している。この常時連通している部分を、図1において連通部37として図示する。
このロータリバルブ装置2において、流量調節弁V1,V2,V3が全て閉じている場合には、ロータリバルブ装置2を通じて冷却水は流れない(図1、3参照)。つまり、ロータリバルブ装置2内で冷却水が流れない。
流量調節弁V1のみが開いている場合には、冷却水はロータリバルブ装置2を通じて排気側流路22とメイン流路23の間で流れる(図4参照)。つまり、ロータリバルブ装置2内に、排気側流路22とメイン流路23流路とを繋ぐ流路が形成される。
流量調節弁V2のみが開いている場合には、冷却水はロータリバルブ装置2を通じて補機側流路35とメイン流路23の間で流れる(図6参照)。つまり、ロータリバルブ装置2内に、補機側流路35とメイン流路23流路とを繋ぐ流路が形成される。
流量調節弁V1,V2のみが開いている場合には、冷却水はロータリバルブ装置2を通じて排気側流路22、メイン流路23、および補機側流路35の間で流れる(図8参照)。つまり、ロータリバルブ装置2内に、排気側流路22と、メイン流路23と、補機側流路35とを繋ぐ流路が形成される。
流量調節弁V1,V2,V3の全てが開いている場合には、冷却水はロータリバルブ装置2を通じて排気側流路22、メイン流路23、補機側流路35、およびラジエータ側流路33の間で流れる(図10,12参照)。つまり、ロータリバルブ装置2内に、排気側流路22と、メイン流路23と、補機側流路35と、ラジエータ側流路33とを繋ぐ流路が形成される。
つまり、流量調節弁V1,V2,V3により、流路切替弁が構成される。
ヒータ用循環経路40に冷却水を流すためには、ヒータ側ポンプ4が作動していればよく、流量調節弁V1,V2,V3の開弁は必要としない(図3,4,6,8,10,12参照)。つまり、ヒータ側ポンプ4が作動していれば、流量調節弁V1,V2,V3が開いるか否かに拘わらず、ヒータ用循環経路40において冷却水が循環する。
<補機用循環経路41の構成>
補機用循環経路41(図1参照)は、冷却水が循環する経路であり、ブロック側流路25、メイン流路23、上流側流路34、オイルクーラ側流路20、EGRバルブ側流路21、EGRクーラ側流路17、リターン流路16、ロータリバルブ装置2内の流路、およびラジエータ側流路33を有している。補機用循環経路41は、本発明における「第2の循環経路」に相当する。
オイルクーラ側流路20、EGRバルブ側流路21、EGRクーラ側流路17、およびリターン流路16により、補機側流路35が構成されている。補機側流路35は、本発明における「外部流路」に相当する。
ブロック側流路25は、シリンダブロック5Bを通過する流路である。ブロック側流路25の上流端部は、補機側ポンプ3の吐出口に接続されている。
メイン流路23は、シリンダヘッド5Aの排気ポート側部分以外の部分、つまり燃焼室の周囲の部分および吸気ポート側の部分を通過する流路である。メイン流路23におけるロータリバルブ装置2とは反対側の端部は、ブロック側流路25に接続されている。
上流側流路34は、ロータリバルブ装置2の開口部H4(流量調節弁V2)から流出した冷却水を、オイルクーラ側流路20、EGRバルブ側流路21、およびEGRクーラ側流路17に導くための流路である。上流側流路34の上流端部は、開口部H2に接続されている。上流側流路34の下流端部は、オイルクーラ側流路20、EGRバルブ側流路21、およびEGRクーラ側流路17の上流端部に接続されている。上流側流路34には、冷却水の温度を検出する水温センサ8が設けられている。
オイルクーラ側流路20の下流端部は、リターン流路16に接続されている。オイルクーラ側流路20には、オイルクーラ10が設けられている。
EGRバルブ側流路21の下流端部は、リターン流路16に接続されている。EGRバルブ側流路21には、EGRバルブ11およびATFウォーマ12が設けられている。
ラジエータ側流路33の上流端部は、ロータリバルブ装置2の開口部H3(流量調節弁V3)に接続されている。ラジエータ側流路33の下流端部は、リターン流路16に接続されている。ラジエータ側流路33には、ラジエータ14が設けられている。
リターン流路16は、オイルクーラ側流路10、EGRバルブ側流路21、ラジエータ側流路33、およびEGRクーラ側流路20から流出した冷却水を補機側ポンプ3に戻すための流路である。リターン流路16の上流部または中流部に、オイルクーラ側流路10、EGRバルブ側流路21、ラジエータ側流路33、およびEGRクーラ側流路20の下流端部が接続されている。リターン流路16の下流端部は、補機側ポンプ3の吸込口に接続されている。
補機用循環経路41において冷却水を循環させるためには、補機側ポンプ3が作動している状態において、流量調節弁V2または流量調節弁V3の少なくとも一方が開弁している必要がある(図6,8,10,12参照)。
水温センサ24は、メイン流路23に設けられており、メイン流路23を流れる冷却水の温度を検出する。水温センサ7は、ヒータ側流路15におけるヒータコア6の下流側に設けられており、ヒータコア6から流出した冷却水の温度を検出する。水温センサ8は、上流側流路34に設けられており、ロータリバルブ装置2から流出した冷却水の温度を検出する。アクセル開度センサ30は、運転者によるアクセルペダルの踏込量をアクセル開度として検出する。クランク角センサ32は、クランクシャフトの回転角度を検出する。吸気温センサ38は、エンジン5に流入する吸入空気の温度を検出する。
水温センサ8、アクセル開度センサ30、クランク角センサ32、および吸気温センサ38は、本発明の「温度検出手段」に相当する。また、アクセル開度センサ30は、本発明の「エンジン負荷検出手段」に相当する。
<ECU31の構成>
ECU31は、CPU、RAM、ROM等により構成されている。ECU31は、水温センサ24、アクセル開度センサ30、およびクランク角センサ32から受けた検出値を示す信号に基づいて、ロータリバルブ装置2およびヒータ側ポンプ4の動作を制御するための制御信号を生成し、その制御信号をロータリバルブ装置2およびヒータ側ポンプ4に送信する。ECU31は、本発明の「温度検出手段」、「エンジン負荷検出手段」および「制御部」に相当する。
なお、水温センサ7,8の検出値は、ECU31によってロータリバルブ装置2およびヒータ側ポンプ4が制御されている間、ヒータコア6やエンジン5が適切に温度調節されているかどうかを判断するために用いられる。以下の説明では、水温センサ7,8の検出値を用いたロータリバルブ装置2およびヒータ側ポンプ4の制御動作の説明は省略する。
次に、ECU31によるロータリバルブ装置2およびヒータ側ポンプ4の制御動作について、図14、15のフローチャートを参照しつつ説明する。
図14に示されるように、まず、ECU31は、水温センサ24、アクセル開度センサ30、クランク角センサ32、および吸気温センサ38から、検出値を示す信号を入力する(ステップS1)。
次いで、ECU31は、アクセル開度センサ30が検出したアクセル開度に基づいて、エンジンで発生したエンジン負荷(エンジンで発生する駆動トルク)を算出する(ステップS2)。
次いで、ECU31は、クランク角センサ32が検出したクランク角に基づいて、エンジン回転数を算出する(ステップS3)。
次いで、ECU31は、冷却水温度、エンジン負荷、エンジン回転数、および吸入空気温度に基づいて、エンジン5のシリンダヘッド5A側の燃焼室の壁面温度(以下、「燃焼室壁温」と称する)を算出する(ステップS4)。この燃焼室壁温は、本発明における「エンジンの温度」に相当する。
次いで、ECU31は、燃焼室壁温がレベル0の温度範囲にあるかどうかを判断する(ステップS5)。レベル0の温度範囲は、冷間状態に相当する温度T0未満の温度であり、本発明における「第1の温度範囲」に含まれる。
ECU31は、ステップS5でYESの判断をした場合には、流量調節弁V1〜V3の開度を全閉状態とし、ヒータ側ポンプ4を停止状態とする制御を行う(ステップS6)。
ステップS6の制御が行われることにより、図2(a)に示されるように、ロータリバルブ装置2において、開口部H1と切欠孔K1は重なり合わず、開口部H2と切欠孔K2も重なり合わず、開口部H3と切欠孔K3も重なり合わない状態となる。これにより、図1に示されるように、冷却装置1のいずれの流路においても冷却水は流れないので、エンジン5の暖機が促進される。以下、ステップS6の制御状態を、「水停止状態」と称する。ECU31は、ステップS6の処理を実行した後、ステップS1にリターンする。
ECU31は、ステップS5でNOの判断をした場合には、燃焼室壁温がレベル1の温度範囲にあるかどうかを判断する(ステップS7)。レベル1の温度範囲は、温度T0以上かつT1未満の温度範囲(暖機中)であり、本発明における「第1の温度範囲」に含まれる。
ECU31は、ステップS7でYESの判断をした場合には、流量調節弁V1〜V3の開度を全閉状態とし、ヒータ側ポンプ4を作動させる制御を行う(ステップS8)。ヒータ側ポンプ4は、冷却水をヒータ側流路15側から連絡流路26およびETB側流路19側へ流す向きに作動する。
ステップS8の制御が行われることにより、図3に示されるように、排気側流路22、ヒータ側流路15、連絡流路26、およびETB側流路19に冷却水が流れる。すなわち、これら排気側流路22、ヒータ側流路15、連絡流路26、およびETB側流路19から構成されるヒータ用循環経路40において冷却水が循環する。以下、ステップS8の制御状態を、「制御状態A」と称する。ECU31は、ステップS8の処理を実行した後、ステップS1にリターンする。
ECU31は、ステップS7でNOの判断をした場合には、燃焼室壁温がレベル2の温度範囲にあるかどうかを判断する(ステップS9)。レベル2の温度範囲は、温度T1以上かつT2未満の温度範囲(暖機中)であり、本発明における「第2の温度範囲」に相当する。
ECU31は、ステップS9でYESの判断をした場合には、流量調節弁V1の開度を全開状態とし、流量調節弁V2,V3の開度を全閉状態とし、ヒータ側ポンプ4を作動させる制御を行う(ステップS10)。
具体的には、ロータリバルブ2aがハウジング2b内で回転することにより、図5に示されるように、ロータリバルブ装置2において、開口部H1と切欠孔K1が重なり合い、開口部H2と切欠孔K2は重なり合わず、開口部H3と切欠孔K3も重なり合わない状態となる。これにより、図4に示されるように、メイン流路23と排気側流路22が接続される。メイン流路23は、排気側流路22に接続されることにより、ヒータ側循環経路40に組み込まれ、排気側流路22およびヒータ側流路15と共に冷却水が循環する経路を構成する。
つまり、排気側流路22、ロータリバルブ装置2内の流路(流量調節弁V1と連通部37とを結ぶ流路)、メイン流路23、ブロック側流路25におけるロータリバルブ装置2とは反対側の部分、ヒータ側流路15、連絡流路26、およびETB側流路19によって循環経路が構成され、この循環経路全体において冷却水が循環する。以下、ステップS10の制御状態を、「制御状態B」と称する。ECU31は、ステップS10の処理を実行した後、ステップS1にリターンする。
ECU31は、ステップS9でNOの判断をした場合には、燃焼室壁温がレベル3の温度範囲にあるかどうかを判断する(ステップS11)。レベル3の温度範囲は、温度T2以上かつT3未満の温度範囲(暖機中)であり、本発明における「第3の温度範囲」に含まれる。
ECU31は、ステップS11でYESの判断をした場合には、流量調節弁V1,V3を全閉状態とし、流量調節弁V2の開度を小開度とし、ヒータ側ポンプ4を作動させる制御を行う(ステップS12)。
具体的には、図7に示されるように、ECU31は、ロータリバルブ2aを、各切欠孔K1,K2,K3が図7における左側から右側へ進むように回転させる(以下、「右回転」と称する)。ロータリバルブ2aが回転することにより、図7に示されるように、ロータリバルブ装置2において、開口部H1と切欠孔K1が重なり合わず(流量調節弁V1が全閉状態)、開口部H2と、切欠孔K2の突起部K2aおよび窄まり部K2bとが重なり合い(流量調節弁V2が小開度状態)、開口部H3と切欠孔K3とが重なり合わない状態(流量調節弁V3が全閉状態)となる。
流量調節弁V2が開弁することにより、図6に示されるように、メイン流路23と補機側流路35が接続される。そして、補機側ポンプ3の圧送力により、メイン流路23、ロータリバルブ装置2内の流路(連通部37と流量調節弁V2とを結ぶ流路)、補機側流路35、およびブロック側流路25を経由して冷却水が循環する。つまり、冷却水が補機用循環経路41を循環する。
流量調節弁V1が閉弁することにより、ロータリバルブ装置2において、排気側流路22とメイン流路23の間の流路が遮断されるため、ヒータ用循環経路40と補機用循環経路41の間で冷却水は流れない。つまり、ヒータ用循環経路40とヒータ用循環経路40は、冷却水が混じり合わない互いに独立した循環経路となり、それぞれの循環経路において冷却水が別々に循環する。
また、流量調節弁V2が小開度状態となることにより、流量調節弁V2の開弁時に、補機側流路35内、つまり、オイルクーラ側流路20、EGRバルブ側流路21、EGRクーラ側流路17、およびリターン流路16内の低温の冷却水が短時間のうちに大量にメイン流路23に流入することが防止される。
また、ステップS12において、開口部H2に切欠孔K2の突起部K2aから重なり始める(図7参照)。従って、メイン流路23と補機側流路35が接続された当初の所定期間は流量が少量に制限される。その後、開口部H2と、切欠孔K2の突起部K2aおよび窄まり部K2bとが重なり合う状態となるまで、流量が次第に多くなっていく。従って、メイン流路23と補機側流路35を接続する際に、補機側流路35内の低温の冷却水がメイン流路23に徐々に流入するので、燃焼室周りの急激な温度低下を抑制することができる。以下、ステップS12の制御状態を、「制御状態C」と称する。
ECU31は、ステップS11でNOの判断をした場合には、図15に示されるように、燃焼室壁温がレベル4の温度範囲にあるかどうかを判断する(ステップS13)。レベル4の温度範囲は、温度T3以上かつT4未満の温度範囲(暖機中)であり、本発明における「第3の温度範囲」に含まれる。温度T4は、エンジンが暖機中か否かの判断基準となる温度である。つまり、燃焼室壁温がT4未満であればエンジンは暖機中であり、T4以上であればエンジンは暖機完了状態にある。
ECU31は、ステップS13でYESの判断をした場合には、ロータリバルブ装置2において、流量調節弁V1の開度を全開状態とし、流量調節弁V3の開度を全閉状態とし、流量調節弁V2の開度を大開度(全開状態よりは開度が少し小さい状態)とし、ヒータ側ポンプ4を作動させる制御を行う(ステップS14)。
具体的には、ECU31は、ロータリバルブ2aを右回転させる(図9参照)。ロータリバルブ2aが右回転することにより、図9に示されるように、ロータリバルブ装置2において、開口部H1と切欠孔K1が重なり合い(流量調節弁V1が全開状態)、開口部H2と、切欠孔K2の窄まり部K2bおよび主部K2cとが重なり合い(流量調節弁V2が大開度状態)、開口部H3と切欠孔K3は重なり合わない状態(流量調節弁V3が全閉状態)となる。
流量調節弁V2の開度が大きくなることにより、ロータリバルブ装置2から補機側流路35へ流出する冷却水の量が増加する。
流量調節弁V1,V2が開弁することにより、図8に示されるように、排気側流路22とメイン流路23と補機側流路35とが接続されるため、ヒータ用循環経路40と補機用循環経路41(ラジエータ側流路33を含まない)で冷却水が流れる。
具体的には、排気側流路22において、制御状態Cとは冷却水の流れ方向が反対向きとなり、排気側流路22、メイン流路23、ロータリバルブ装置2内の流路(流量調節弁V1と連通流路37と流量調節弁V2とを結ぶ流路)、補機側流路35、およびブロック側流路25によって、補機用循環経路41が構成される。
また、ロータリバルブ装置2内の流路(流量調節弁V1と流量調節弁V2とを結ぶ流路)、補機側流路35、ブロック側流路25におけるロータリバルブ装置2とは反対側の部分、排気側流路22におけるロータリバルブ装置2とは反対側の部分、ヒータ側流路15、およびETB側流路19により、ヒータ用循環経路40が構成される。つまり、ヒータ用循環経路40と補機用循環経路41が接続され、ヒータ用循環経路40および補機用循環経路41の全体で冷却水が循環する。以下、ステップS14の制御状態を、「制御状態D」と称する。
ECU31は、ステップS13でNOの判断をした場合には、エンジン負荷が所定の閾値未満であるかどうかを判断する(ステップS15)。その閾値は、エンジン5が高負荷状態であるか否かの判断基準となる値である。つまり、エンジン負荷がその閾値未満であれば、エンジン5は低負荷または中負荷状態であり、エンジン負荷がその閾値以上であれば、エンジン5は高負荷状態である。なお、ステップS13でNOと判断された場合には、燃焼室壁温はT4以上である。T4以上の温度範囲は、本発明における「第4の温度範囲」に相当する。
ECU31は、ステップS15でYESの判断をした場合には、流量調節弁V1,V2を全開状態とし、流量調節弁V3を中開度状態とし、ヒータ側ポンプ4を作動させる制御を行う(ステップS16)。
具体的には、ECU31は、ロータリバルブ2aを右回転させる(図11参照)。ロータリバルブ2aが右回転することにより、図11に示されるように、ロータリバルブ装置2において、開口部H1と切欠孔K1が重なり合い(流量調節弁V1が全開状態)、開口部H2と、切欠孔K2の主部K2cとが重なり合い(流量調節弁V2が全開状態)、開口部H3と、切欠孔K3の突起部K3a、窄まり部K3bおよび主部K3cとが重なり合う状態(流量調節弁V3が中開度状態)となる。
流量調節弁V2の開度が大きくなることにより、ロータリバルブ装置2から補機側流路35へ流出する冷却水の量が増加する。
流量調節弁V1,V2,V3が開弁することにより、排気側流路22とメイン流路23と補機側流路35とラジエータ側流路33とが接続されるため、図10に示されるように、ヒータ用循環経路40と補機用循環経路41(ラジエータ側流路33を含む)の間で冷却水が流れる。つまり、ヒータ用循環経路40および補機用循環経路41の全体で冷却水が循環する。
流量調節弁V3が中開度状態となることにより、ラジエータ側流路33内の低温の冷却水が短時間のうちに大量にメイン流路23に流入することが防止される。
また、ステップS16において、開口部H3に切欠孔K3の突起部K3aから重なり始める。従って、メイン流路23とラジエータ側流路33とが接続された当初の所定期間は流量が少量に制限される。その後、開口部H3と、切欠孔K3の突起部K3aおよび窄まり部K3bとが重なり合う状態となるまで、流量が次第に多くなっていく。従って、メイン流路23とラジエータ側流路33を接続する際に、ラジエータ側流路33内の低温の冷却水がメイン流路23に徐々に流入するので、燃焼室周りの急激な温度低下を抑制することができる。以下、ステップS16の制御状態を、「制御状態E」と称する。
ECU31は、ステップS15でNOの判断をした場合には、流量調節弁V1,V3の開度を全開状態とし、流量調節弁V2の開度を小開度とし、ヒータ側ポンプ4を作動させる制御を行う(ステップS17)。
具体的には、ECU31は、ロータリバルブ2aを右回転させる(図13参照)。ロータリバルブ2aが右回転することにより、図13に示されるように、ロータリバルブ装置2において、開口部H1と切欠孔K1が重なり合い(流量調節弁V1が全開状態)、開口部H2と、切欠孔K2の主部K2cの一端部(凹部側)とが重なり合い(流量調節弁V2が小開状態)、開口部H3と、切欠孔K3の主部K3cとが重なり合う状態(流量調節弁V3が全開状態)となる。
流量調節弁V2の開度が小さくなることにより、ロータリバルブ装置2から補機側流路35へ流出する冷却水の量が減少する。
流量調節弁V3の開度が大きくなることにより、ロータリバルブ装置2からラジエータ側流路33へ流出する冷却水の量が増加する。つまり、ラジエータ14を通過する冷却水の量が増加し、ラジエータ14による冷却能力が増大する。以下、ステップS17の制御状態を、「制御状態F」と称する。
以上説明したように、本実施形態によれば、メイン流路23が組み込まれていない状態のヒータ用循環経路40のみに冷却水が流れる制御状態Aと、メイン流路23が組み込まれた状態のヒータ側循環経路40、および、補機側循環経路41に冷却水が流れる制御状態Cとの間に、メイン流路23が組み込まれた状態のヒータ用循環経路40のみに冷却水が流れる制御状態Bが設けられているため、ヒータコア6の暖機を促進しつつ、シリンダヘッド5Aにおける燃焼室周りの冷却不足を防止することができる。
つまり、排気ポートには高温の排気ガスが流れるため、排気側流路を流れる冷却水は、メイン流路を流れる冷却水よりも速やかに温められ、より高温に温められる。よって、エンジン暖機中(制御状態A〜Dの各段階)には、排気側流路22を流れた冷却水が、ヒータ側流路15を流れるため、ヒータコア6の昇温が促進される。
そして、暖機の初期段階ではシリンダヘッド5Aにおける排気側部分以外の部分5b(燃焼室周りの部分および吸気側部分)はまだ低温状態であるため、メイン流路23と排気側流路22を接続しない制御(制御状態A)が行われる。この状態では、メイン流路23内の低温の冷却水はヒータコア6に供給されないため、ヒータコア6の温度低下が抑制される。
暖機が進むと、シリンダヘッド5Aにおける排気側部分以外の部分5bの温度が上昇しているため、メイン流路23と排気側流路22を接続する制御(制御状態B)が行われる。これにより、メイン流路23がヒータ用循環経路40に組み込まれる。排気側流路22およびメイン流路23を冷却水が循環することにより、ヒータコア6には、シリンダヘッド5A全体(排気側部分5aおよびそれ以外の部分5b)から熱が与えられる。従って、ヒータコア6の暖機を促進することができる。しかも、冷却水がメイン流路23を流れてシリンダヘッド5Aにおける排気側部分以外の部分5bの熱を奪うので、当該部分5bの冷却が促進され、これにより、暖機後半時にシリンダヘッド5Aにおける燃焼室周りが冷却不足となることが抑制される。
さらに暖機が進んだ段階では、補機9,10の温度が十分に上昇しているので、ヒータ用循環経路40および補機用循環経路41の双方で冷却水を循環させる制御(制御状態C)が行われる。これにより、ヒータコア6の暖機を促進しつつ、補機9,10を冷却することができる。
すなわち、制御状態Bがなければシリンダヘッド5Aの燃焼室周りに冷却不足が生じる虞や、ヒータコアの暖機が十分に促進されない虞があるが、制御状態Bにより冷却水をシリンダヘッド5A全体に流通させることで、ヒータコア6の昇温を促進させる一方で、燃焼室周りが冷却不足となることを抑制できる。
また、上記実施形態によれば、流量調節弁V2,V3は、メイン流路23と補機側流路35が接続された当初の所定期間は流量を少量に制限し、その後流量を所定量まで次第に多くするので、補機側流路35内の低温の冷却水がメイン流路23に徐々に流入する。従って、燃焼室周りの急激な温度低下を抑制することができる。
また、燃焼室壁温がT4以上となったとき(暖機完了状態)に、ラジエータ側流路33を補機側流路35に接続するので、暖機完了後にラジエータ14によって冷却水を冷却することができる。
また、燃焼室壁温がT4以上となったときに、アクセル開度が大きいほど、補機側流路35を流れる冷却水の流量を小さくするとともに、ラジエータ側流路33を流れる冷却水の流量を大きくする制御を行うので、例えば登坂時のようにエンジン負荷が大きくなるときに、エンジン5および補機9,10の冷却機能を高めて、これらを適切に作動させることができる。
また、ロータリバルブ装置2は、排気側流路22、補機側流路35、およびラジエータ側流路33に対応する流量調節弁V1,V2,V3を個別に有しているので、排気側流路22に対応する流量調節弁V1、補機側流路35に対応する流量調節弁V2、およびラジエータ側流路33に対応する流量調節弁V3を開閉することにより、エンジン5の冷却装置1を水停止状態〜制御状態Fの各段階に移行させることができる。また、ロータリバルブ装置2は、メイン流路23に対応する弁を有していないので、その分、ロータリバルブ装置2を簡単に構成することができる。
また、ヒータ側流路15は、シリンダヘッド5Aに供給される吸気の量を調節するETB13を通過するので、ETB13を速やかに暖機することができる。これにより、エンジン5の冷間始動時にETB13が凍結しているような場合であっても、ETB13を速やかに解凍することができる。
また、制御状態Cを設けることにより、ヒータコア6の暖機促進および補機9,10の冷却をより確実に行うことができる。
また、ヒータ側ポンプ4は電動ポンプであるので、エンジン回転数に依存することなく、冷却水を必要な時に必要な量のみ循環させることができ、冷却水の流量を適切に調節することができる。また、電動ポンプは、エンジン5の駆動力を伝達するタイミングチェーンを介さずに駆動することができるため、部品点数を削減することができる。
なお、上記実施形態において、ECU31は、燃焼室壁温がT4以上となったときに、アクセル開度が大きいほど、ヒータ側ポンプ4の吐出量を多くする制御をさらに行ってもよい。この制御を行うことにより、エンジン負荷が大きいときほど、ラジエータ14を流れる冷却水の流量が多くなるので、例えば登坂時のようにエンジン負荷が大きくなるときに、エンジン5および補機9,10に対する冷却機能をさらに高めることができる。
また、上記実施形態においては、ヒータ側ポンプ4は、ヒータ側流路15側から連絡流路26側およびETB流路19側に冷却水を流しているが、これに限られない。ヒータ側ポンプ4は、連絡流路26側およびETB流路19側からヒータ側流路15側に冷却水を流してもよい。この場合には、ヒータ用循環経路40における冷却水の流れの向きが逆転する。
また、上記実施形態においては、1つのロータリバルブ装置2が流路切替弁としての機能と、流量調節弁としての機能とを有しているが、これに限られない。例えば、流路切替弁のみの機能を有するバルブ装置と、流量調節弁としての機能のみを有するバルブ装置とを別々に設けてもよい。
また、上記実施形態においては、メイン流路23には、ロータリバルブ装置2を介して補機側流路35が接続されているが、これに限られない。メイン流路23には、補機以外の装置(冷却水を用いた冷却或いは暖機を必要とするもの)を通過する流路が、ロータリバルブ装置2を介して接続されてもよい。
1 エンジンの冷却装置
2 ロータリバルブ装置(流路切替弁、流量調節弁)
3 補機側ポンプ(第2のポンプ)
4 ヒータ側ポンプ(第1のポンプ)
5 エンジン
5A シリンダヘッド
5B シリンダブロック
5a シリンダヘッドの排気ポート側部分
5b シリンダヘッドの排気ポート側部分以外の部分
6 ヒータコア
9 EGRクーラ
10 オイルクーラ
11 EGRバルブ
12 ATFウォーマ
14 ラジエータ
15 ヒータ側流路
16 リターン流路
17 EGRクーラ側流路
19 ETB側流路
20 オイルクーラ側流路
21 EGRバルブ側流路
22 排気側流路
23 メイン流路
24 水温センサ(温度検出手段)
25 ブロック側流路
26 連絡流路
28 隔壁
30 アクセル開度センサ(エンジン負荷検出手段、温度検出手段)
31 ECU(制御部、温度検出手段、エンジン負荷検出手段)
32 クランク角センサ(温度検出手段)
33 ラジエータ側流路
34 上流側流路
35 補機側流路(外部流路)
37 連通部
38 吸気温センサ(温度検出手段)
40 ヒータ用循環経路(第1の循環経路)
41 補機用循環経路(第2の循環経路)
H1,H2,H3 開口部
K1,K2,K3 切欠孔
V1,V2,V3 流量調節弁

Claims (10)

  1. シリンダヘッドのウォータジャケットのうち、当該シリンダヘッドの排気ポート側の部分を通過する排気側ウォータジャケットである排気側流路、および、当該排気側流路に接続されて空調装置のヒータコアを通過するヒータ側流路を含み、冷却水が循環する第1の循環経路と、
    前記シリンダヘッドのウォータジャケットのうち、当該シリンダヘッドの排気ポート側以外の部分を通過するメインウォータジャケットであるメイン流路、および、当該メイン流路に接続される前記シリンダヘッド外側の外部流路を含み、冷却水が循環する第2の循環経路と、
    エンジンの温度を検出する温度検出手段と、
    前記第1の循環経路に設けられ、当該第1の循環経路の冷却水を循環させる第1のポンプと、
    前記第2の循環経路に設けられ、当該第2の循環経路の冷却水を循環させる第2のポンプと、
    前記メイン流路と前記外部流路の接続および接続解除と、前記メイン流路と前記排気側流路の接続および接続解除とを行う流路切替弁と、
    前記温度検出手段の検出結果に基づいて、前記流路切替弁の動作を制御する制御部とを備え、
    前記排気側ウォータジャケットと前記メインウォータジャケットとは、隔壁で隔てられて設けられており、
    前記メイン流路は、前記排気側流路に接続されることで、前記第1の循環経路に組み込まれ、前記排気側流路およびヒータ側流路と共に冷却水が循環する経路を構成し、
    前記制御部は、エンジンの暖機中に、(i)前記温度検出手段で検出された温度が第1の温度範囲にあるときには、前記メイン流路と前記外部流路、前記メイン流路と前記排気側流路を各々接続せず、(ii)前記温度検出手段で検出された温度が前記第1の温度範囲より高い第2の温度範囲にあるときには、前記メイン流路と前記外部流路を接続せずに、前記メイン流路と前記排気側流路を接続し、(iii)前記温度検出手段で検出された温度が前記第2の温度範囲より高い第3の温度範囲にあるときには、前記メイン流路と前記外部流路を接続する制御を行うことを特徴とする、エンジンの冷却装置。
  2. 前記外部流路を流れる冷却水の流量を調節する流量調節弁をさらに備え、
    前記流量調節弁は、前記流路切替弁により前記メイン流路と前記外部流路が接続された当初の所定期間は流量を少量に制限し、その後流量を所定量まで次第に多くすることを特徴とする、請求項1に記載のエンジンの冷却装置。
  3. 前記第2の循環経路は、前記外部流路に接続されてラジエータを通過するラジエータ側流路をさらに含み、
    前記流路切替弁は、前記ラジエータ側流路と前記外部流路の接続および接続解除をさらに行い、
    前記制御部は、前記温度検出手段で検出された温度が前記第3の温度範囲より高い第4の温度範囲にあるときに、前記ラジエータ側流路を前記外部流路に接続することを特徴とする、請求項1または2に記載のエンジンの冷却装置。
  4. 前記外部流路を流れる冷却水の流量および前記ラジエータ側流路を流れる冷却水の流量を調節する流量調節弁と、
    エンジン負荷を検出するエンジン負荷検出手段とをさらに備え、
    前記制御部は、前記温度検出手段および前記エンジン負荷検出手段の検出結果に基づいて前記流量調節弁の動作をさらに制御し、前記温度検出手段で検出された温度が前記第4の温度範囲にあるときに、前記エンジン負荷検出手段で検出されたエンジン負荷が大きいほど、前記外部流路を流れる冷却水の流量を小さくするとともに、前記ラジエータ側流路を流れる冷却水の流量を大きくする制御を行うことを特徴とする、請求項3に記載のエンジンの冷却装置。
  5. 前記制御部は、前記温度検出手段および前記エンジン負荷検出手段の検出結果に基づいて前記第1のポンプの動作をさらに制御し、前記温度が前記第4の温度範囲にあるときに、前記エンジン負荷検出手段で検出されたエンジン負荷が大きいほど、前記第1のポンプの吐出量を多くする制御を行うことを特徴とする、請求項4に記載のエンジンの冷却装置。
  6. 前記流路切替弁は、前記排気側流路、前記外部流路、および前記ラジエータ側流路に対応する弁のみを個別に有することを特徴とする、請求項3乃至5のいずれかに記載のエンジンの冷却装置。
  7. 前記ヒータ側流路は、前記シリンダヘッドに供給される吸気の量を調節するスロットルボディをさらに通過することを特徴とする、請求項1乃至6のいずれかに記載のエンジンの冷却装置。
  8. 前記流路切替弁は、前記第1の循環経路と前記第2の循環経路の接続および接続解除をさらに行い、
    前記制御部は、前記温度検出手段で検出された温度が前記第3の温度範囲のうち低温側の温度範囲にあるときに、前記第1の循環経路と前記第2の循環経路を接続しない制御を行い、前記温度検出手段で検出された温度が前記第3の温度範囲のうち高温側の温度範囲にあるときに、前記第1の循環経路と前記第2の循環経路を接続する制御を行うことを特徴とする、請求項1乃至7のいずれかに記載のエンジンの冷却装置。
  9. 前記第1のポンプは、電動ポンプであることを特徴とする、請求項1乃至8のいずれかに記載のエンジンの冷却装置。
  10. 前記外部流路は、補機を通過する流路であることを特徴とする、請求項1乃至9のいずれかに記載のエンジンの冷却装置。
JP2015012032A 2015-01-26 2015-01-26 エンジンの冷却装置 Active JP6135685B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015012032A JP6135685B2 (ja) 2015-01-26 2015-01-26 エンジンの冷却装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015012032A JP6135685B2 (ja) 2015-01-26 2015-01-26 エンジンの冷却装置

Publications (2)

Publication Number Publication Date
JP2016138453A JP2016138453A (ja) 2016-08-04
JP6135685B2 true JP6135685B2 (ja) 2017-05-31

Family

ID=56558310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015012032A Active JP6135685B2 (ja) 2015-01-26 2015-01-26 エンジンの冷却装置

Country Status (1)

Country Link
JP (1) JP6135685B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7344663B2 (ja) * 2019-03-27 2023-09-14 株式会社山田製作所 制御バルブ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3185581B2 (ja) * 1995-02-09 2001-07-11 トヨタ自動車株式会社 内燃機関の冷却装置
JP2006046139A (ja) * 2004-08-03 2006-02-16 Toyota Motor Corp シリンダヘッド
JP4372799B2 (ja) * 2007-02-19 2009-11-25 トヨタ自動車株式会社 内燃機関の制御システム
JP4845803B2 (ja) * 2007-05-01 2011-12-28 トヨタ自動車株式会社 内燃機関の冷却装置
JP2009041509A (ja) * 2007-08-10 2009-02-26 Mazda Motor Corp エンジンの冷却装置
JP6096492B2 (ja) * 2012-12-10 2017-03-15 富士重工業株式会社 エンジンの冷却装置

Also Published As

Publication number Publication date
JP2016138453A (ja) 2016-08-04

Similar Documents

Publication Publication Date Title
JP6135684B2 (ja) エンジンの冷却装置
EP3109430B1 (en) Internal combustion engine with cooling apparatus
US10371041B2 (en) Cooling device for internal combustion engine of vehicle and control method thereof
JP6265195B2 (ja) 内燃機関の制御装置
US10738730B2 (en) Cooling device for engine
WO2017056904A1 (ja) 冷却制御装置
WO2018225337A1 (ja) 内燃機関の冷却装置及び冷却方法
JP6137206B2 (ja) エンジンの冷却装置
JP6135685B2 (ja) エンジンの冷却装置
JP5381851B2 (ja) 冷媒流通制御装置および車両の冷却装置
US11028763B2 (en) Engine cooling device
KR102383362B1 (ko) 변속기 오일 온도 제어 시스템
JP6102959B2 (ja) エンジンの冷却装置
JP2016210298A (ja) 内燃機関の冷却装置
JP2017067014A (ja) 冷却制御装置
JP6582831B2 (ja) 冷却制御装置
JP2014231824A (ja) エンジン冷却装置
JP2019027313A (ja) 内燃機関の制御装置
JP2011202634A (ja) 内燃機関の冷却装置
JP2016151215A (ja) 内燃機関の冷却装置
JP2014231825A (ja) エンジン冷却装置
JP2020056356A (ja) 車両の制御装置
JP2012102625A (ja) 内燃機関の冷却システム
JP2023002175A (ja) 冷却システム
JP2019031915A (ja) エンジンの冷却装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170410

R150 Certificate of patent or registration of utility model

Ref document number: 6135685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150