JP2009046708A - Silver powder - Google Patents

Silver powder Download PDF

Info

Publication number
JP2009046708A
JP2009046708A JP2007211721A JP2007211721A JP2009046708A JP 2009046708 A JP2009046708 A JP 2009046708A JP 2007211721 A JP2007211721 A JP 2007211721A JP 2007211721 A JP2007211721 A JP 2007211721A JP 2009046708 A JP2009046708 A JP 2009046708A
Authority
JP
Japan
Prior art keywords
silver powder
silver
hollow
powder particles
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007211721A
Other languages
Japanese (ja)
Inventor
Shintaro Wachi
慎太郎 和地
Masahiro Miwa
昌宏 三輪
Yasunari Wakimori
康成 脇森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2007211721A priority Critical patent/JP2009046708A/en
Publication of JP2009046708A publication Critical patent/JP2009046708A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new silver powder different from the conventional silver powder. <P>SOLUTION: The silver powder contains hollow silver powder grains in which the inside of each grain is a hollow part. Since the silver powder contains hollow silver powder grains, for example, in the case electrically conductive paste is produced, the amount (mass) of the silver powder for obtaining required electrical conductivity can be reduced, and the production cost of the conductive paste can be suppressed. Further, the inside of each grain has a hollow part (void part), thus the grains are easy to be deformed compared with solid grains. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、特殊形状の銀粉粒子からなる銀粉に関する。   The present invention relates to a silver powder comprising silver powder particles having a special shape.

銀粉は、導電性ペースト、焼結助剤、プラズマディスプレイ用電極材料などの原料として広く利用されている。   Silver powder is widely used as a raw material for conductive pastes, sintering aids, electrode materials for plasma displays, and the like.

一般的な銀粉の製造方法としては、硝酸銀水溶液に水酸化ナトリウム又は炭酸ナトリウムを添加して酸化銀又は炭酸銀を生成させ、該酸化銀又は該炭酸銀をヒドラジン等の還元剤で還元する方法が挙げられ、このようにして得られる銀粉は粒状品(形状は球形若しくはそれに準じた形状)を呈するのが通常である。   As a general method for producing silver powder, there is a method in which sodium hydroxide or sodium carbonate is added to a silver nitrate aqueous solution to produce silver oxide or silver carbonate, and the silver oxide or silver carbonate is reduced with a reducing agent such as hydrazine. The silver powder obtained in this way usually has a granular shape (the shape is spherical or a shape similar to it).

銀粉粒子の形状としては、このような粒状のほか、樹枝状、板状、フレーク状、不定形状などが知られており、銀粉粒子の形状によって特性が異なるため、従来から、銀粉粒子の形状に着目した発明が多数開示されている。   As the shape of the silver powder particles, in addition to such granular shapes, dendritic shapes, plate shapes, flake shapes, irregular shapes, etc. are known, and the characteristics differ depending on the shape of the silver powder particles. A number of the inventions that have focused attention are disclosed.

例えば特許文献1には、平均粒径1μm以下の積層構造を有する銀粉、並びに、この積層構造を有する銀粉を単層状に粉砕して作られるフレーク状銀粉が開示されている。
特許文献2には、スクリーン印刷などで電気回路を形成する厚膜プロセス用金属ペースト材料および導電性塗料用に使用する銀粉として、平均粒径が0.5μm〜50μmの微細な鱗片状銀粉末が開示されている。
特許文献3には、六角板状結晶銀粒子からなる銀粉が開示されている。
For example, Patent Document 1 discloses silver powder having a laminated structure with an average particle size of 1 μm or less, and flaky silver powder produced by pulverizing silver powder having this laminated structure into a single layer.
Patent Document 2 discloses a fine scaly silver powder having an average particle size of 0.5 μm to 50 μm as a metal paste material for a thick film process for forming an electric circuit by screen printing or the like and a silver powder used for a conductive paint. It is disclosed.
Patent Document 3 discloses silver powder made of hexagonal plate-like crystal silver particles.

特許文献4には、チップ部品、PDP等の微細な配線又は薄層で平滑な塗膜を形成するための導電ペースト用として、高分散性球状銀粉末が開示されている。
特許文献5には、湿式還元法で製造された銀に、粒子同士を機械的に衝突させる表面平滑化処理を施してなる銀粉が開示されている。
特許文献6には、球状でも薄板状でもない多数の突起を有する不定形な形状の銀粒子からなる銀粉が開示されている。
特許文献7には、平均厚みが50nm以下の極薄板状銀粒子からなる銀粉が開示されている。
特許文献8には、無電解湿式プロセスにより得られるデンドライト状の銀粉が開示されている。
Patent Document 4 discloses a highly dispersible spherical silver powder for use in a conductive paste for forming a fine coating such as a chip component or PDP or a thin layer and a smooth coating.
Patent Document 5 discloses a silver powder obtained by subjecting silver produced by a wet reduction method to a surface smoothing treatment in which particles are mechanically collided with each other.
Patent Document 6 discloses a silver powder composed of irregularly shaped silver particles having a large number of protrusions that are neither spherical nor thin.
Patent Document 7 discloses silver powder composed of ultrathin plate-like silver particles having an average thickness of 50 nm or less.
Patent Document 8 discloses dendritic silver powder obtained by an electroless wet process.

特開平6−235006号公報JP-A-6-235006 特開平10−183209号公報JP-A-10-183209 特開平11−106806号公報JP-A-11-106806 特開2001−107101号公報JP 2001-107101 A 特開2002−80901号公報JP 2002-80901 A 特開2004−124160号公報JP 2004-124160 A 特開2004−183010号公報JP 2004-183010 A 特開2005−146387号公報JP 2005-146387 A

本発明は、新たに得られた特殊形状の銀粉粒子からなる銀粉を提供せんとするものである。   The present invention is intended to provide a silver powder composed of newly obtained silver powder particles having a special shape.

本発明は、粒子内部が中空部である銀粉粒子(本発明では「中空銀粉粒子」と称する)を含有する銀粉を提案するものである。
ここで、「含有」するとは、中空銀粉粒子の機能を妨げない範囲で、中空銀粉粒子以外の粒子を含有することを許容する意を包含するものである。中空銀粉粒子の含有割合を特別に限定するものではないが、中空銀粉粒子が銀粉中の50個数%以上、特に70個数%以上、中でも特に90個数%以上(100個数%含む)を占めるのが好ましい。言い換えれば、本発明の銀粉は、中空銀粉粒子からなる銀粉(但し、中空銀粉粒子の機能を妨げない範囲で、中空銀粉粒子以外の銀粉粒子を含有してもよい。)と表現することも可能である。
The present invention proposes a silver powder containing silver powder particles whose inside is a hollow part (referred to as “hollow silver powder particles” in the present invention).
Here, “containing” includes the meaning of allowing particles other than the hollow silver powder particles to be contained within a range not impeding the function of the hollow silver powder particles. Although the content ratio of the hollow silver powder particles is not particularly limited, the hollow silver powder particles account for 50% by number or more, particularly 70% by number or more, particularly 90% by number or more (including 100% by number) in the silver powder. preferable. In other words, the silver powder of the present invention can also be expressed as silver powder composed of hollow silver powder particles (however, it may contain silver powder particles other than the hollow silver powder particles as long as the function of the hollow silver powder particles is not hindered). It is.

本発明の銀粉は、中空銀粉粒子を含有するがゆえに、例えば導電ペーストを作製する場合、中実な銀粉粒子からなる銀粉に比べて、所望の導電性を得るための銀粉量(質量)が少なくて済み、導電ペーストの製造コストを抑えることができる。さらに、粒子内部に中空部(空洞部)を有するから、中実な粒子に比べて変形させ易いという特性を有しており、例えばフレーク状粒子に容易に加工することができる。   Since the silver powder of the present invention contains hollow silver powder particles, for example, when producing a conductive paste, the amount (mass) of silver powder for obtaining desired conductivity is smaller than that of solid silver powder particles. The manufacturing cost of the conductive paste can be reduced. Furthermore, since it has a hollow part (cavity part) inside the particle, it has the property of being easily deformed as compared with a solid particle, and can be easily processed into, for example, flaky particles.

発明を実施するための形態BEST MODE FOR CARRYING OUT THE INVENTION

以下、本発明の実施形態について詳述するが、本発明の範囲が以下の実施形態に限定されるものではない。
なお、本明細書において、「X〜Y」(X,Yは任意の数字)と記載した場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意も包含する。
Hereinafter, although the embodiment of the present invention is described in detail, the scope of the present invention is not limited to the following embodiment.
In the present specification, when “X to Y” (X and Y are arbitrary numbers) is described, it means “preferably greater than X” or “within the meaning of“ X to Y ”unless otherwise specified” or “ The term “preferably smaller than Y” is also included.

本実施形態に係る銀粉(以下「本銀粉」という)は、中空銀粉粒子(以下「本銀粉粒子」ともいう)を含有する銀粉である。   The silver powder (hereinafter referred to as “the present silver powder”) according to the present embodiment is a silver powder containing hollow silver powder particles (hereinafter also referred to as “the present silver powder particles”).

本銀粉は、上記の如く中空銀粉粒子を含有する銀粉であり、中空銀粉粒子でない銀粉粒子、すなわち粒子内部が中実である銀粉粒子を含んでいてもよいが、中空銀粉粒子の比率、例えば、銀粉をシリコーン樹脂に混合して硬化させた樹脂体の断面を切断し、この断面をSEM(Scanning Electron Microscope、走査型電子顕微鏡、1000倍)で観察した際、1視野における全銀粉粒子の全断面積合計に対する、1視野における全中空銀粉粒子の断面積合計の割合(全中空銀粉粒子合計断面積/全銀粉粒子合計断面積)が5〜35%、特に10〜30%、中でも特に15〜25%であるのが好ましい。全中空銀粉粒子合計断面積/全銀粉粒子合計断面積が5%以上であれば、中空銀粉粒子の効果、例えば所望の導電性を得るための銀粉量(質量)が少なくて済むという効果を享受することができる。その一方、30%を超えてもよいが、35%を超える銀粉を作製することは困難である。   The present silver powder is a silver powder containing hollow silver powder particles as described above, and may contain silver powder particles that are not hollow silver powder particles, that is, silver powder particles that are solid inside, but the ratio of the hollow silver powder particles, for example, When a cross section of a resin body obtained by mixing silver powder into a silicone resin and curing is cut, and this cross section is observed with a SEM (Scanning Electron Microscope, scanning electron microscope, 1000 times), all the silver powder particles are completely cut in one field of view. The ratio of the total cross-sectional area of all hollow silver powder particles in one field of view to the total area (total hollow silver powder particle total cross-sectional area / total silver powder particle total cross-sectional area) is 5 to 35%, particularly 10 to 30%, especially 15 to 25. % Is preferred. If the total cross-sectional area of all the hollow silver powder particles / the total cross-sectional area of the total silver powder particles is 5% or more, the effect of the hollow silver powder particles, for example, the effect that the amount (mass) of silver powder for obtaining desired conductivity can be reduced. can do. On the other hand, although it may exceed 30%, it is difficult to produce silver powder exceeding 35%.

本銀粉粒子は、例えばFIB/SEM断面加工観察装置(FIB:Focus Ion Beam:収束イオンビーム法:絞ったイオンビームで表面をスパッタリング(削り取り)して微細な加工を可能にする装置)によって、得られた銀粉粒子の縦断面を観察すると、図2及び図3に示すように、粒子内部に中空部(空洞部)を有するものである。この中空部(空洞部)は、気泡等とは明らかに区別することができる。
本銀粉粒子の中空部は、図2及び図3に示されるように、中空部と外部とを連通する穴を有していてもよい。中空部(空洞部)が閉塞していると、本銀粉粒子を加熱した際に、中空部の内圧が高まって本銀粉粒子が破裂する可能性があるが、外部と連通する穴を備えていればそのような破裂を抑制することができる。
The silver powder particles can be obtained by, for example, a FIB / SEM cross-section processing observation apparatus (FIB: Focused Ion Beam method: an apparatus that enables fine processing by sputtering the surface with a focused ion beam). When the longitudinal section of the obtained silver powder particles is observed, as shown in FIGS. 2 and 3, the particles have hollow portions (hollow portions). This hollow portion (hollow portion) can be clearly distinguished from bubbles and the like.
As shown in FIGS. 2 and 3, the hollow part of the present silver powder particles may have a hole that communicates the hollow part with the outside. If the hollow part (cavity part) is closed, when the silver powder particles are heated, the internal pressure of the hollow part may increase and the silver powder particles may rupture. Such a burst can be suppressed.

中空部(空洞部)の大きさに関して言えば、例えば、銀粉をシリコーン樹脂に混合して硬化させた樹脂体の断面を切断し、この断面をSEM(Scanning Electron Microscope、走査型電子顕微鏡、1000倍)で観察した際、1視野における全中空銀粉粒子の断面積合計に対する、1視野における中空部の断面積合計の割合(中空部合計断面積/全断面積)が5〜50%、特に10〜35%、中でも特に15〜25%であるのが好ましい。中空部合計断面積/全断面積が5%以上であれば、中空銀粉粒子の効果、例えば所望の導電性を得るための銀粉量(質量)が少なくて済むという効果を享受することができる。その一方、50%を超えてもよいが、50%を超える銀粉を作製することは困難である。   Speaking of the size of the hollow part (hollow part), for example, a cross section of a resin body in which silver powder is mixed with a silicone resin and cured is cut, and this cross section is SEM (Scanning Electron Microscope, scanning electron microscope, 1000 times) ), The ratio of the total cross-sectional area of the hollow part in one visual field to the total cross-sectional area of all the hollow silver powder particles in one visual field (total cross-sectional area of the hollow part / total cross-sectional area) is 5 to 50%, particularly 10 It is preferably 35%, especially 15 to 25%. If the total cross-sectional area of the hollow part / total cross-sectional area is 5% or more, the effect of the hollow silver powder particles, for example, the effect that the amount (mass) of silver powder for obtaining desired conductivity is small can be enjoyed. On the other hand, although it may exceed 50%, it is difficult to produce silver powder exceeding 50%.

本銀粉の粒度分布に関しては、レーザー回折散乱式粒度分布測定装置で測定される中心粒径(D50)が1μm〜50μmであるのが好ましく、より好ましくは1μm〜40μm、中でも3μm〜30μmであるのが特に好ましい。
D10は、1μm〜16μmであるのが好ましく、より好ましくは4μm〜12μm、中でも6μm〜10μmであるのが特に好ましい。
D90は、10μm〜40μmであるのが好ましく、より好ましくは15μm〜35μm、中でも20μm〜35μmであるのが特に好ましい。
Dmaxは、20μm〜80μmであるのが好ましく、より好ましくは30μm〜75μm、中でも40μm〜75μmであるのが特に好ましい。
CV(変動係数)が10〜70であるのが好ましく、より好ましくは20〜60、中でも30〜50であるのが特に好ましい。
Regarding the particle size distribution of the present silver powder, the center particle size (D50) measured with a laser diffraction / scattering particle size distribution measuring device is preferably 1 μm to 50 μm, more preferably 1 μm to 40 μm, and more preferably 3 μm to 30 μm. Is particularly preferred.
D10 is preferably 1 μm to 16 μm, more preferably 4 μm to 12 μm, and particularly preferably 6 μm to 10 μm.
D90 is preferably 10 μm to 40 μm, more preferably 15 μm to 35 μm, and particularly preferably 20 μm to 35 μm.
Dmax is preferably 20 μm to 80 μm, more preferably 30 μm to 75 μm, and particularly preferably 40 μm to 75 μm.
The CV (coefficient of variation) is preferably 10 to 70, more preferably 20 to 60, and particularly preferably 30 to 50.

本銀粉粒子は、中空銀粉粒子を含有するがゆえに、嵩密度が小さいという特徴を有しており、AD(嵩密度)としては0.5〜2.0g/cm、特に0.7〜1.4g/cmであるのが好ましい。
また、TD(タップ充填密度)としては1.0〜3.0g/cm、特に1.5〜2.5g/cmであるのが好ましい。
Since the present silver powder particles contain hollow silver powder particles, they have a feature that the bulk density is small, and AD (bulk density) is 0.5 to 2.0 g / cm 3 , particularly 0.7 to 1. It is preferably 4 g / cm 3 .
As the TD (tap bulk density) 1.0 to 3.0 g / cm 3, is preferably particularly 1.5~2.5g / cm 3.

本銀粉粒子は、熱機械分析装置(TMA)を用いて400℃から600℃に加熱した際の体積収縮率(400℃から600℃の間の体積収縮率の差)が2〜20%であるのが好ましく、特に4〜15%、中でも特に6〜10%であるのが好ましい。   The present silver powder particles have a volume shrinkage (difference in volume shrinkage between 400 ° C. and 600 ° C.) of 2 to 20% when heated from 400 ° C. to 600 ° C. using a thermomechanical analyzer (TMA). And is particularly preferably 4 to 15%, particularly preferably 6 to 10%.

また、本銀粉粒子の体積固有抵抗値は2.0×10-5〜6.0×10-5mΩ・cmであるのが好ましく、特に2.5×10-5〜5.5×10-5mΩ・cm、中でも特に4.0×10-5〜5.5×10-5mΩ・cmであるのが好ましい。 Further, the volume resistivity value of the present silver powder particles is preferably 2.0 × 10 −5 to 6.0 × 10 −5 mΩ · cm, particularly 2.5 × 10 −5 to 5.5 × 10 −. It is preferably 5 mΩ · cm, particularly 4.0 × 10 −5 to 5.5 × 10 −5 mΩ · cm.

(用途)
本銀粉は、例えば導電性ペースト、焼結助剤、プラズマディスプレイ用電極材料など、各種電子部品の電極や回路形成に用いることができる。特に、本銀粉から導電ペーストを作製すると、中空銀粉粒子を含有するがゆえに、所望の導電性を得るための銀粉量が少なくて済み、製造コストを抑えることができるから、導電ペーストを作製するのに利用するのが好ましい。
また、本銀粉は、中空銀粉粒子を含有するものであるから、中空部が収縮し難い温度領域で使われる用途に用いるのが好ましい。その意味で、例えば樹脂硬化型ペースト材料などの原料に用いるのが特に好ましい。
(Use)
This silver powder can be used for forming electrodes and circuits of various electronic components such as conductive pastes, sintering aids, and electrode materials for plasma displays. In particular, when a conductive paste is prepared from the present silver powder, the amount of silver powder for obtaining desired conductivity can be reduced because it contains hollow silver powder particles, and the manufacturing cost can be reduced. It is preferable to use it.
Moreover, since this silver powder contains hollow silver powder particle | grains, it is preferable to use for the use used in the temperature range where a hollow part does not shrink easily. In that sense, it is particularly preferable to use it as a raw material such as a resin curable paste material.

(製造方法)
本銀粉は、銀と置換し得る金属、中でも好ましくは銅粉、その中でも好ましくは電解銅粉(デンドライト状)を元粉とし、この元粉を水に分散させ、キレート化剤を添加した後、水に可溶な銀塩を加えて置換反応させ、元粉の金属を銀に置換させることにより製造することができる。
(Production method)
The present silver powder is a metal that can be replaced with silver, preferably copper powder, preferably electrolytic copper powder (dendritic) among them as a base powder, after dispersing this base powder in water and adding a chelating agent, It can be produced by adding a silver salt soluble in water to cause a substitution reaction and substituting the metal of the original powder with silver.

元粉は、必要に応じて、置換反応前に表面酸化物(酸化皮膜)を除去する処理を行なうのがよい。例えば、元粉を水に投入して攪拌混合した後、ヒドラジン等の還元剤を加えて攪拌混合して反応させればよい。この際、加えた還元剤を十分に洗浄して元粉から除去するのが好ましい。   If necessary, the base powder is preferably subjected to a treatment for removing the surface oxide (oxide film) before the substitution reaction. For example, the raw powder may be charged into water and mixed with stirring, and then a reducing agent such as hydrazine may be added and mixed with stirring to react. At this time, it is preferable to thoroughly wash the added reducing agent and remove it from the base powder.

キレート化剤としては、例えばエチレンジアミン四酢酸塩(以下「EDTA」という)、トリエチレンジアミン、ジエチレントリアミン五酢酸、イミノ二酢酸から選ばれた1種又は2種以上のものを挙げることができるが、中でもEDTAを用いるのが好ましい。   Examples of the chelating agent include one or more selected from ethylenediaminetetraacetate (hereinafter referred to as “EDTA”), triethylenediamine, diethylenetriaminepentaacetic acid, and iminodiacetic acid. Is preferably used.

銀塩を加える際、溶液のpH、すなわち置換反応させる際の溶液のpHは3〜4に調整するのが好ましい。
銀塩としては、水に可溶な銀塩、すなわちAgイオン供給源としては、硝酸銀、過塩素酸銀、酢酸銀、シュウ酸銀、塩素酸銀、6フッ化リン酸銀、4フッ化ホウ酸銀、6フッ化ヒ酸銀、硫酸銀から選ばれた1種又は2種以上を挙げることができる。
When adding a silver salt, it is preferable to adjust the pH of the solution, that is, the pH of the solution at the time of the substitution reaction to 3 to 4.
Silver salts soluble in water, that is, Ag ion sources include silver nitrate, silver perchlorate, silver acetate, silver oxalate, silver chlorate, silver hexafluorophosphate, and boron tetrafluoride. One or more selected from acid silver, silver hexafluoroarsenate, and silver sulfate can be mentioned.

銀塩の添加量は、理論当量以上、例えば銅を元粉として用いる場合、銅1モルに対して銀2モル以上、特に2.1モル以上となるように添加するのが好ましい。2モルより少ないと、置換が不十分となり銀粉粒子中に銅が多く残留する。但し、2.5モル以上入れても不経済である。   The addition amount of the silver salt is preferably the theoretical equivalent or more, for example, when copper is used as the base powder, the silver salt is added so as to be 2 mol or more, particularly 2.1 mol or more with respect to 1 mol of copper. When the amount is less than 2 mol, the substitution is insufficient and a large amount of copper remains in the silver powder particles. However, it is not economical to add 2.5 mol or more.

銀塩は、攪拌しながらゆっくりと時間をかけて加えるのが好ましい。一度に多量に加えると、銀塩が大過剰となり、元粉と置換反応しない銀イオンが多量に生じ、銀が単独で析出するようになる。但し、あまり長時間になると、元粉が酸化して酸化皮膜を形成するため、適度な時間、例えば30分〜120分かけて銀塩濃度が0.1〜10g/Lとなるように調整するのが好ましい。   The silver salt is preferably added slowly over time with stirring. When a large amount is added at once, the silver salt becomes excessively large, a large amount of silver ions that do not undergo a substitution reaction with the original powder is generated, and silver is precipitated alone. However, if the time is too long, the base powder is oxidized to form an oxide film, so that the silver salt concentration is adjusted to 0.1 to 10 g / L over an appropriate time, for example, 30 minutes to 120 minutes. Is preferred.

置換反応終了の目安としては、得られた銀粉粒子の銀の含有率が99質量%以上(元粉金属の含有量1質量%未満)、好ましくは銀の含有率が99.8質量%以上(元粉金属の含有量0.2質量%未満)、さらに好ましくは銀の含有率が99.9質量%以上(元粉金属の含有量0.1質量%未満)に達した時点で終了させるのが好ましい。
銀粉粒子における銀の含有率は、銀塩の添加量、反応時間、反応速度、キレート化剤の添加量などによって調整することができる。
置換反応終了後は、銀粉粒子を十分に洗浄し、乾燥させるのが好ましい。
なお、得られた粒子の銀の含有率が99質量%以上(元粉金属の含有量1質量%未満)であれば、得られた粒子を銀粉粒子と認めることができる。
本銀粉を上記のように製造する場合、元粉金属を完全置換することは難しいが、元粉金属の含有割合は0.01質量%〜1質量%、特に0.01質量%〜0.5質量%、中でも特に0.01質量%〜0.3質量%であるのが好ましい。
As a measure of completion of the substitution reaction, the silver content of the obtained silver powder particles is 99% by mass or more (the content of the original powder metal is less than 1% by mass), preferably the silver content is 99.8% by mass or more ( The content of the base powder metal is less than 0.2% by mass), more preferably, when the silver content reaches 99.9% by mass or more (the content of the base powder metal is less than 0.1% by mass). Is preferred.
The silver content in the silver powder particles can be adjusted by the amount of silver salt added, the reaction time, the reaction rate, the amount of chelating agent added, and the like.
After completion of the substitution reaction, the silver powder particles are preferably thoroughly washed and dried.
In addition, if the content rate of silver of the obtained particle | grains is 99 mass% or more (content of the original powder metal is less than 1 mass%), the obtained particle | grains can be recognized as a silver powder particle.
When the present silver powder is produced as described above, it is difficult to completely replace the original powder metal, but the content ratio of the original powder metal is 0.01% by mass to 1% by mass, particularly 0.01% by mass to 0.5%. It is preferable that it is mass%, especially 0.01 mass%-0.3 mass% especially.

以下、本発明の実施例について説明するが、本発明が以下の実施例に限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to the following examples.

<中空部比率、中空銀粉粒子比率>
銀粉1gをシリコーン樹脂2gに混合して硬化させた樹脂体の断面を切断し、この断面をSEM(Scanning Electron Microscope、走査型電子顕微鏡、1000倍)で撮影し、得られたSEM写真を画像解析ソフト((株)マウンテック社製「MAC−VIEW」)で解析し、1視野における銀粉粒子の全断面積合計に対する、1視野における中空部の断面積合計の割合(中空部合計断面積/全断面積)を測定した。表1には、「中空部比率」として示した。この際、中空部が確認できない粒子は無視した。
<Hollow part ratio, hollow silver powder particle ratio>
A cross section of a cured resin body obtained by mixing 1 g of silver powder with 2 g of a silicone resin is cut, the cross section is photographed with an SEM (Scanning Electron Microscope, scanning electron microscope, 1000 times), and the obtained SEM photograph is subjected to image analysis. Analysis by software ("MAC-VIEW" manufactured by Mountec Co., Ltd.) The ratio of the total cross-sectional area of the hollow part in one field of view to the total cross-sectional area of silver powder particles in one field of view (total cross-sectional area of hollow part / total interruption) Area). In Table 1, it was shown as “hollow part ratio”. At this time, particles in which the hollow portion could not be confirmed were ignored.

また、同SEM写真を同画像解析ソフトを用いて、1視野における全銀粉粒子の全断面積合計に対する、1視野における全中空銀粉粒子の断面積合計の割合(全中空銀粉粒子合計断面積/全銀粉粒子合計断面積)を測定した。表1には、「中空銀粉粒子比率」として示した。   Moreover, the ratio of the total cross-sectional area of all the hollow silver powder particles in one visual field to the total cross-sectional area of all silver powder particles in one visual field using the same image analysis software (the total cross-sectional area of all hollow silver powder particles / total Silver powder particle total cross-sectional area) was measured. In Table 1, it was shown as “hollow silver powder particle ratio”.

<粒度測定>
測定サンプル(銅粉)を少量ビーカーに取り、3%トリトンX溶液(関東化学製)を2、3滴添加し、粉末になじませてから、0.1%SNディスパーサント41溶液(サンノプコ製)50mLを添加し、その後、超音波分散器TIPφ20(日本精機製作所製、OUTPUT:8、TUNING:5)を用いて5分間分散処理して測定用サンプルを調製した。
この測定用サンプルを、レーザー回折散乱式粒度分布測定装置MT3300 (日機装製)を用いて、体積累積基準D10、D90、D50、Dmax、CV(変動係数)を測定した。
<Particle size measurement>
Take a measurement sample (copper powder) in a small amount of beaker, add a few drops of 3% Triton X solution (manufactured by Kanto Chemical Co., Ltd.), and blend with the powder. Then 0.1% SN Dispersant 41 solution (manufactured by San Nopco) 50 mL was added, and then a measurement sample was prepared by dispersing for 5 minutes using an ultrasonic disperser TIPφ20 (Nippon Seiki Seisakusho, OUTPUT: 8, TUNING: 5).
This sample for measurement was measured for volume accumulation standards D10, D90, D50, Dmax, and CV (coefficient of variation) using a laser diffraction / scattering particle size distribution analyzer MT3300 (manufactured by Nikkiso).

<体積固有抵抗値の測定方法>
抵抗率測定は、試料15gを筒状容器に入れプレス圧40×106Pa(408kgf/cm2)で圧縮成形した測定サンプルを形成し、ロレスタAP及びロレスタPD−41型(いずれも三菱化学(株)社製)により測定を行った。
<Measurement method of volume resistivity>
The resistivity measurement was performed by forming a measurement sample in which 15 g of a sample was put in a cylindrical container and compression-molded with a press pressure of 40 × 10 6 Pa (408 kgf / cm 2 ), and Loresta AP and Loresta PD-41 types (both Mitsubishi Chemical Corporation) The measurement was carried out.

<体積収縮率の測定方法>
熱機械分析装置(TMA)を用いて体積収縮率を測定した。測定条件としては、空気を150mL/minで流通させ、温度範囲20〜870℃、昇温速度10℃/minでサンプルを加熱し、得られたTAMのチャートから、400℃から600℃に加熱した時の体積収縮率(400℃から600℃の間の体積収縮率の差)を算出した。
<Measurement method of volumetric shrinkage>
Volume shrinkage was measured using a thermomechanical analyzer (TMA). As measurement conditions, air was circulated at 150 mL / min, the sample was heated at a temperature range of 20 to 870 ° C., and a heating rate of 10 ° C./min, and was heated from 400 ° C. to 600 ° C. from the obtained TAM chart. The volumetric shrinkage ratio (the difference in volumetric shrinkage ratio between 400 ° C. and 600 ° C.) was calculated.

(実施例1)
デンドライト状電解銅粉(図1参照、純度99%以上、D50:15.88μm)300gを、50℃に保温した3000mlの純水に投入し、5分間攪拌混合してスラリーとした。次いで、還元剤である100%ヒドラジンを27.6g投入し、30分間攪拌を維持して還元処理を行なった。その後、ブフナロートにて固液分離し、1.8Lの純水で洗浄した後、メタノールを0.5mL添加処理して前処理済銅粉を得た。
Example 1
300 g of dendritic electrolytic copper powder (see FIG. 1, purity 99% or more, D50: 15.88 μm) was put into 3000 ml of pure water kept at 50 ° C. and stirred for 5 minutes to obtain a slurry. Next, 27.6 g of 100% hydrazine as a reducing agent was added, and the reduction treatment was performed while maintaining stirring for 30 minutes. Then, after solid-liquid separation with a buchner funnel and washing with 1.8 L of pure water, 0.5 mL of methanol was added to obtain a pretreated copper powder.

次に、3000mLの純水を40℃に加熱させ、上記得られた全ての前処理済銅粉を投入し、5分間攪拌混合してスラリーとした。次いで、EDTAを127.8g投入して10分間攪拌した後、予め用意しておいた硝酸銀溶液4.2L(硝酸銀1680g)を2時間かけて攪拌しながら滴下して置換反応を進めた後、5分間攪拌を止めて静置してエージング処理を行なった。その後、ブフナロートにて固液分離し、3000mLの純水で洗浄した後、メタノール500mL添加処理後、続いてアセトン500mLで脱水処理を行い、得られたケーキをステンレス製バットに移し変えて100℃の雰囲気で5時間乾燥させて銀粉粒子を得た。   Next, 3000 mL of pure water was heated to 40 ° C., and all of the pretreated copper powder obtained above were added and stirred for 5 minutes to form a slurry. Next, 127.8 g of EDTA was added and stirred for 10 minutes. Then, 4.2 L (1680 g of silver nitrate) prepared in advance was added dropwise with stirring over 2 hours, and the substitution reaction proceeded. Stirring was stopped for a minute and the mixture was allowed to stand for aging treatment. Then, after solid-liquid separation with a buchner funnel and washing with 3000 mL of pure water, 500 mL of methanol was added, followed by dehydration with 500 mL of acetone, and the resulting cake was transferred to a stainless steel vat at 100 ° C. Silver powder particles were obtained by drying in an atmosphere for 5 hours.

得られた銀粉粒子をSEM観察(2000倍)及びFIB/SEM断面加工観察(5000倍)したところ、いずれの粒子も、粒子内部に空洞部を有すると共に、この空洞部と外部とを連通する孔を備えていた(図2、図3)。
また、D50は15.54μm、Cu含有率は0.13質量%(銀:99.87質量%)、体積固有抵抗値は4.0×10-5mΩ・cmであった。
When the obtained silver powder particles were observed by SEM (2000 times) and FIB / SEM cross-section processing observation (5000 times), each particle had a cavity inside the particle and a hole communicating this cavity with the outside. (FIGS. 2 and 3).
Further, D50 was 15.54 μm, the Cu content was 0.13 mass% (silver: 99.87 mass%), and the volume resistivity value was 4.0 × 10 −5 mΩ · cm.

(実施例2)
硝酸銀溶液の滴下時間を30分間に変更した以外、実施例1と同様にして銀粉粒子を得た。
得られた銀粉粒子をSEM観察(2000倍)及びFIB/SEM断面加工観察(5000倍)したところ、いずれの粒子も、粒子内部に空洞部を有すると共に、この空洞部と外部とを連通する孔を備えていた。
また、D50は14.93μm、Cu含有率は0.13質量%(銀:99.87質量%)、体積固有抵抗値は5.1×10-5mΩ・cmであった。
(Example 2)
Silver powder particles were obtained in the same manner as in Example 1 except that the dropping time of the silver nitrate solution was changed to 30 minutes.
When the obtained silver powder particles were observed by SEM (2000 times) and FIB / SEM cross-section processing observation (5000 times), each particle had a cavity inside the particle and a hole communicating this cavity with the outside. It was equipped with.
Further, D50 was 14.93 μm, the Cu content was 0.13 mass% (silver: 99.87 mass%), and the volume resistivity value was 5.1 × 10 −5 mΩ · cm.

(実施例3)
硝酸銀溶液の滴下時間を60分間に変更した以外、実施例1と同様にして銀粉粒子を得た。
得られた銀粉粒子をSEM観察(2000倍)及びFIB/SEM断面加工観察(5000倍)したところ、いずれの粒子も、粒子内部に空洞部を有すると共に、この空洞部と外部とを連通する孔を備えていた。
また、D50は19.47μm、Cu含有率は0.13質量%(銀:99.87質量%)、体積固有抵抗値は4.0×10-5mΩ・cmであった。
(Example 3)
Silver powder particles were obtained in the same manner as in Example 1 except that the dropping time of the silver nitrate solution was changed to 60 minutes.
When the obtained silver powder particles were observed by SEM (2000 times) and FIB / SEM cross-section processing observation (5000 times), each particle had a cavity inside the particle and a hole communicating this cavity with the outside. It was equipped with.
Further, D50 was 19.47 μm, the Cu content was 0.13 mass% (silver: 99.87 mass%), and the volume resistivity value was 4.0 × 10 −5 mΩ · cm.

(考察)
本実施例のように、電解銅粉(デンドライト状)を元粉として銀の置換反応を長時間実施することにより、図2及び図3に示されるように、粒子内部が中空部となった中空銀粉粒子が得られることが分った。また、この中空銀粉粒子の多く(少なくとも50個%以上)は、図2及び図3に示されるように、中空部と外部とを連通する穴を有していることが確認された。
また、図4に示されるように、本実施例の銀粉は、TMAのチャートをみると、250℃付近(±10℃)で一旦膨張し、その後400℃付近(±10℃)からゆっくりと収縮することが確認された。
(Discussion)
As shown in FIG. 2 and FIG. 3, by carrying out a silver substitution reaction for a long time using electrolytic copper powder (dendritic form) as a base powder as in this example, the inside of the particle became a hollow part. It was found that silver powder particles were obtained. Further, it was confirmed that many of the hollow silver powder particles (at least 50% or more) have holes that connect the hollow portion and the outside, as shown in FIGS.
Also, as shown in FIG. 4, the silver powder of this example, when viewed from the TMA chart, once expands around 250 ° C. (± 10 ° C.), and then slowly contracts from around 400 ° C. (± 10 ° C.). Confirmed to do.

実施例1で使用した元粉粒子のSEM観察像(倍率2000倍)である。It is a SEM observation image (magnification 2000 times) of the original powder particle used in Example 1. 実施例1で得られた銀粉粒子のSEM観察像(倍率2000倍)である。It is a SEM observation image (magnification 2000 times) of the silver dust particles obtained in Example 1. 実施例1で得られた銀粉粒子のFIB/SEM断面加工観察(倍率5000倍)である。It is FIB / SEM cross-section processing observation (5000-times multiplication factor) of the silver-powder particle obtained in Example 1. FIG. 実施例1で得られた銀粉のTMAのチャートである。2 is a TMA chart of silver powder obtained in Example 1. FIG.

Claims (7)

粒子内部が中空部である中空銀粉粒子を含有する銀粉。   Silver powder containing hollow silver powder particles in which the inside of the particle is a hollow part. 粒子内部が中空部であり、且つ該中空部と外部とを連通する穴を有する中空銀粉粒子を含有する銀粉。   A silver powder containing hollow silver powder particles in which the inside of the particle is a hollow part and has a hole communicating the hollow part and the outside. 銀粉をシリコーン樹脂に混合して硬化させた樹脂体の断面を切断し、この断面をSEM(Scanning Electron Microscope、走査型電子顕微鏡、1000倍)で観察した際、1視野における全中空銀粉粒子の断面積合計に対する、1視野における中空部の断面積合計の割合(中空部合計断面積/全断面積)が5〜50%であることを特徴とする請求項1又は2に記載の銀粉。   When a cross section of a resin body obtained by mixing silver powder with a silicone resin and curing is cut, and this cross section is observed with an SEM (Scanning Electron Microscope, scanning electron microscope, 1000 times), all hollow silver powder particles in one field of view are broken. 3. The silver powder according to claim 1, wherein the ratio of the total cross-sectional area of the hollow part in one field of view to the total area (hollow part total cross-sectional area / total cross-sectional area) is 5 to 50%. 銀粉をシリコーン樹脂に混合して硬化させた樹脂体の断面を切断し、この断面をSEM(Scanning Electron Microscope、走査型電子顕微鏡、1000倍)で観察した際、1視野における全銀粉粒子の全断面積合計に対する、1視野における全中空銀粉粒子の断面積合計の割合(全中空銀粉粒子合計断面積/全銀粉粒子合計断面積)が5〜35%であることを特徴とする請求項1乃至3の何れかに記載の銀粉。   When a cross section of a resin body obtained by mixing silver powder into a silicone resin and curing is cut, and this cross section is observed with a SEM (Scanning Electron Microscope, scanning electron microscope, 1000 times), all the silver powder particles are completely cut in one field of view. The ratio of the total cross-sectional area of all hollow silver powder particles in one field of view to the total area (total hollow silver powder particle total cross-sectional area / total silver powder particle total cross-sectional area) is 5 to 35%. The silver powder in any one of. レーザー回折散乱式粒度分布測定装置で測定される中心粒径(D50)が1μm〜50μmであることを特徴とする請求項1乃至4の何れかに記載の銀粉。   The silver powder according to any one of claims 1 to 4, wherein the center particle size (D50) measured by a laser diffraction / scattering particle size distribution analyzer is 1 to 50 µm. 400℃から600℃に加熱した時の体積収縮率(400℃から600℃の間の体積収縮率の差)が2〜20%であることを特徴とする請求項1乃至5の何れかに記載の銀粉。   6. The volume shrinkage when heated from 400 ° C. to 600 ° C. (difference in volume shrinkage between 400 ° C. and 600 ° C.) is 2 to 20%. Silver powder. 請求項1乃至6の何れかに記載の銀粉を含んだ導電性ペースト。   The electroconductive paste containing the silver powder in any one of Claims 1 thru | or 6.
JP2007211721A 2007-08-15 2007-08-15 Silver powder Pending JP2009046708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007211721A JP2009046708A (en) 2007-08-15 2007-08-15 Silver powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007211721A JP2009046708A (en) 2007-08-15 2007-08-15 Silver powder

Publications (1)

Publication Number Publication Date
JP2009046708A true JP2009046708A (en) 2009-03-05

Family

ID=40499195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007211721A Pending JP2009046708A (en) 2007-08-15 2007-08-15 Silver powder

Country Status (1)

Country Link
JP (1) JP2009046708A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012251208A (en) * 2011-06-02 2012-12-20 Sumitomo Metal Mining Co Ltd Silver powder and method for producing the same
WO2013122244A1 (en) * 2012-02-13 2013-08-22 Dowaエレクトロニクス株式会社 Spherical silver powder and method for producing same
CN104299677A (en) * 2013-07-16 2015-01-21 三星电机株式会社 Conductive paste composition for external electrode and multilayer ceramic electronic component including the same
JP2015155576A (en) * 2015-04-24 2015-08-27 住友金属鉱山株式会社 Silver powder
JP2015206102A (en) * 2014-04-23 2015-11-19 株式会社ノリタケカンパニーリミテド Platinum hollow nanoparticle, catalyst carrying the particle, and method for producing the catalyst
JP2015232180A (en) * 2012-02-13 2015-12-24 Dowaエレクトロニクス株式会社 Spherical silver powder and method for producing the same
EP2827341A4 (en) * 2012-10-30 2016-03-30 Kaken Tech Co Ltd Conductive paste and die bonding method
JP2019108564A (en) * 2017-12-15 2019-07-04 Dowaエレクトロニクス株式会社 Spherical silver powder

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012251208A (en) * 2011-06-02 2012-12-20 Sumitomo Metal Mining Co Ltd Silver powder and method for producing the same
CN104136151B (en) * 2012-02-13 2016-08-31 同和电子科技有限公司 Spherical silver powder and production method thereof
WO2013122244A1 (en) * 2012-02-13 2013-08-22 Dowaエレクトロニクス株式会社 Spherical silver powder and method for producing same
JP2013189704A (en) * 2012-02-13 2013-09-26 Dowa Electronics Materials Co Ltd Spherical silver powder and method for producing the same
CN104136151A (en) * 2012-02-13 2014-11-05 同和电子科技有限公司 Spherical silver powder and method for producing same
US11424049B2 (en) 2012-02-13 2022-08-23 Dowa Electronics Materials Co., Ltd. Spherical silver powder and method for producing same
KR102073531B1 (en) * 2012-02-13 2020-02-04 도와 일렉트로닉스 가부시키가이샤 Spherical silver powder and method for producing same
KR102014055B1 (en) 2012-02-13 2019-08-23 도와 일렉트로닉스 가부시키가이샤 Spherical silver powder and method for producing same
KR20190075150A (en) * 2012-02-13 2019-06-28 도와 일렉트로닉스 가부시키가이샤 Spherical silver powder and method for producing same
EP2796231A4 (en) * 2012-02-13 2015-12-16 Dowa Electronics Materials Co Spherical silver powder and method for producing same
JP2015232180A (en) * 2012-02-13 2015-12-24 Dowaエレクトロニクス株式会社 Spherical silver powder and method for producing the same
KR20190075149A (en) * 2012-02-13 2019-06-28 도와 일렉트로닉스 가부시키가이샤 Spherical silver powder and method for producing same
EP2827341A4 (en) * 2012-10-30 2016-03-30 Kaken Tech Co Ltd Conductive paste and die bonding method
US9818718B2 (en) 2012-10-30 2017-11-14 Kaken Tech Co., Ltd. Conductive paste and die bonding method
US10615144B2 (en) 2012-10-30 2020-04-07 Kaken Tech Co., Ltd. Conductive paste and die bonding method
US9343232B2 (en) 2013-07-16 2016-05-17 Samsung Electro-Mechanics Co., Ltd. Conductive paste composition for external electrode and multilayer ceramic electronic component including the same
JP2015023268A (en) * 2013-07-16 2015-02-02 サムソン エレクトロ−メカニックス カンパニーリミテッド. Conductive paste composition for external electrode and multilayer ceramic electronic component including the same
CN104299677A (en) * 2013-07-16 2015-01-21 三星电机株式会社 Conductive paste composition for external electrode and multilayer ceramic electronic component including the same
JP2015206102A (en) * 2014-04-23 2015-11-19 株式会社ノリタケカンパニーリミテド Platinum hollow nanoparticle, catalyst carrying the particle, and method for producing the catalyst
JP2015155576A (en) * 2015-04-24 2015-08-27 住友金属鉱山株式会社 Silver powder
JP2019108564A (en) * 2017-12-15 2019-07-04 Dowaエレクトロニクス株式会社 Spherical silver powder

Similar Documents

Publication Publication Date Title
JP2009046708A (en) Silver powder
JP4660701B2 (en) Silver-coated copper powder, method for producing the same, and conductive paste
JP4868716B2 (en) Flake copper powder and conductive paste
TWI570196B (en) Silver-clad copper powder
JP2012153967A (en) Conductive powder, and conductive paste
JP6130209B2 (en) Conductive film
JP5631841B2 (en) Silver coated copper powder
CN108367927A (en) The coating graphite particle of silver, the coating graphite mixed powder of silver and its manufacturing method and electrocondution slurry
US6632265B1 (en) Nickel powder, method for preparation thereof and conductive paste
WO2018181482A1 (en) Copper particles and manufacturing method therefor
JP6165399B1 (en) Silver coated copper powder
JP6278969B2 (en) Silver coated copper powder
WO2006118182A1 (en) Tin powder, process for producing tin powder, and tin powder-containing elctrically conductive paste
JP5453598B2 (en) Silver-coated copper powder and conductive paste
JP4100244B2 (en) Nickel powder and method for producing the same
JP2017039991A (en) Silver-coated copper powder, method for producing the same, and conductive paste using the same
JP6194166B2 (en) Method for producing silver-coated copper alloy powder
JP2008121051A (en) Method for producing silver powder
JP5756694B2 (en) Flat metal particles
JP4881013B2 (en) Conductive powder, conductive paste and electrical circuit
JP2012140661A (en) Flat copper particle
JP2014159646A (en) Silver-coated copper powder
JP6914999B2 (en) Surface treatment copper powder
JP5711435B2 (en) Copper powder
JP4583147B2 (en) Conductive composite powder and method for producing the same