JP6119704B2 - Raw material for phosphosilicate fertilizer and method for producing the same - Google Patents

Raw material for phosphosilicate fertilizer and method for producing the same Download PDF

Info

Publication number
JP6119704B2
JP6119704B2 JP2014185757A JP2014185757A JP6119704B2 JP 6119704 B2 JP6119704 B2 JP 6119704B2 JP 2014185757 A JP2014185757 A JP 2014185757A JP 2014185757 A JP2014185757 A JP 2014185757A JP 6119704 B2 JP6119704 B2 JP 6119704B2
Authority
JP
Japan
Prior art keywords
slag
mass
fertilizer
hot metal
soluble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014185757A
Other languages
Japanese (ja)
Other versions
JP2016056075A (en
Inventor
八尾 泰子
泰子 八尾
孝彦 前田
孝彦 前田
渡辺 圭児
圭児 渡辺
陽太郎 井上
陽太郎 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014185757A priority Critical patent/JP6119704B2/en
Publication of JP2016056075A publication Critical patent/JP2016056075A/en
Application granted granted Critical
Publication of JP6119704B2 publication Critical patent/JP6119704B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Fertilizers (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

本発明は、高炉溶銑の溶銑予備処理で回収されるスラグからなる燐酸珪酸肥料用原料およびその製造方法に関するものである。   The present invention relates to a raw material for phosphosilicate fertilizer made of slag recovered by hot metal pretreatment of blast furnace hot metal and a method for producing the same.

高炉で溶製される溶銑には、鉄鉱石起因の燐が含有されている。燐は、鋼材にとっては有害成分であり、製鋼工程で脱燐処理が行われている。脱燐処理では、溶銑あるいは溶鋼中の燐は、酸素ガスや酸化鉄などの酸素源によって酸化され、石灰CaOを主成分とするスラグ中に固定されて、鉄鋼スラグとして系外に除去される。   The hot metal melted in the blast furnace contains phosphorus derived from iron ore. Phosphorus is a harmful component for steel, and is dephosphorized in the steel making process. In the dephosphorization process, phosphorus in molten iron or molten steel is oxidized by an oxygen source such as oxygen gas or iron oxide, fixed in slag mainly composed of lime CaO, and removed from the system as steel slag.

近年、燐鉱石の枯渇や、中国、米国などによる燐鉱石の囲い込みのため、燐資源が高騰している。そのため、鉄鋼プロセスにおいて発生する製鋼スラグ中の燐が貴重な燐資源として見直されている。また、燐酸は、植物にとって開花や結実に必須な成分であり、肥料として有益な効果を有している。   In recent years, phosphorus resources have soared due to the depletion of phosphate ore and the inclusion of phosphate ore by China and the United States. Therefore, phosphorus in steelmaking slag generated in the steel process has been reviewed as a valuable phosphorus resource. Phosphoric acid is an essential component for flowering and fruiting for plants, and has a beneficial effect as a fertilizer.

また、溶銑中の珪素も、燐同様、脱珪処理で酸化され、スラグ中に固定される。珪酸も、水田の土壌保全や老朽化水田の土壌改良材として有効である。また、珪酸の、植物体を強化し、病害虫にかかり難くする作用も注目されており、水稲だけではなくキュウリなどにも珪酸が使用されている。   Similarly to phosphorus, silicon in the hot metal is oxidized by desiliconization and fixed in the slag. Silicic acid is also effective for soil conservation in paddy fields and soil improvement materials for aging paddy fields. In addition, silicic acid is also attracting attention because it strengthens the plant body and makes it difficult to be affected by pests, and silicic acid is used not only for paddy rice but also for cucumbers and the like.

このように、溶銑中の珪素と燐の酸化物を含有するスラグは、植物にとって重要な成分を含有しており、スラグを原料とした肥料およびその製造方法が提案されている。   As described above, slag containing silicon and phosphorus oxide in hot metal contains components important for plants, and a fertilizer using slag as a raw material and a method for producing the same have been proposed.

特許文献1では、珪素を含有する溶銑を脱珪、脱燐処理することによって得られるスラグを珪酸質肥料として使う技術が開示されている。   Patent Document 1 discloses a technique in which slag obtained by desiliconizing and dephosphorizing a hot metal containing silicon is used as a siliceous fertilizer.

特許文献2では、脱燐処理で生じる脱燐スラグを活用した珪酸燐酸肥料用原料およびその製造方法が開示されている。   Patent Document 2 discloses a raw material for silicate phosphate fertilizer utilizing dephosphorization slag generated by dephosphorization treatment and a method for producing the same.

特許第4091745号Patent No.4091745 特許第5105322号Patent No. 5105322

しかしながら、高炉から出銑される溶銑中の燐濃度は0.1mass%程度であるため、従来の一般的な予備脱燐処理で製造される脱燐スラグや、溶銑の脱炭精錬で製造される転炉スラグなどの製鋼スラグ中の燐酸濃度は、高々1〜2mass%、多くても 5mass%未満と低く留まっている。   However, since the phosphorus concentration in the hot metal discharged from the blast furnace is about 0.1 mass%, the dephosphorization slag produced by the conventional general preliminary dephosphorization treatment and the conversion produced by the decarburization refining of the hot metal are performed. The concentration of phosphoric acid in steelmaking slag such as furnace slag remains low at 1 to 2 mass% at most and less than 5 mass% at most.

特許文献1の溶解性燐酸(ク溶性燐酸)は5%未満であり、特許文献2のスラグ中のク溶性燐酸は、実施例では2.86〜4.01%である。これは、通常の脱燐処理や脱炭処理では、製鋼スラグ中の燐酸濃度を5%以上に濃縮できないことを示している。このままでは、製鋼スラグを燐酸資源、例えば燐酸質肥料原料として利用できる見込みはほとんどない。そのため、これらの製鋼スラグは、路盤材などの土木用材料として使用されているのが現状であり、スラグ中の燐は肥料用原料として有効に利用されていない。   The soluble phosphoric acid (C-soluble phosphoric acid) of Patent Document 1 is less than 5%, and the C-soluble phosphoric acid in the slag of Patent Document 2 is 2.86 to 4.01% in Examples. This indicates that the phosphoric acid concentration in the steelmaking slag cannot be concentrated to 5% or more by ordinary dephosphorization treatment or decarburization treatment. As it is, there is little prospect that steelmaking slag can be used as a phosphate resource, for example, a phosphate fertilizer raw material. Therefore, these steelmaking slags are currently used as civil engineering materials such as roadbed materials, and phosphorus in slag is not effectively used as a fertilizer raw material.

本発明は、かかる事情に鑑みなされたもので、肥料効果の高い燐酸珪酸肥料用原料およびその製造方法を提供することを目的とする。   This invention is made | formed in view of this situation, and it aims at providing the raw material for phosphosilicate fertilizer with a high fertilizer effect, and its manufacturing method.

本発明者らは、上記課題を解決するため検討を行い、以下の知見を得た。
まず、特許文献2に記載の珪酸燐酸肥料用原料が肥料としての効果が不充分である点について検討した。特許文献2では、実施例レベルで、ク溶性燐酸が4%、Al2O3が5%である。ク溶性燐酸が5%未満と低い上に、Al2O3が5%と高いため、土壌に溶け出したAl2O3が燐酸Alとしてク溶性燐酸中の燐(P)を固定してしまう。すなわち、肥料から溶け出した燐酸がアルミニウムと結合して溶けにくい化合物をつくり、植物に吸収されにくくなる。その結果、ク溶性燐酸の肥料としての効果を弱めてしまうことがわかった。
さらに、可溶性珪酸に加えて、特許文献1、2では言及していない中性溶解性珪酸について、肥料効果の点から検討した。得られたスラグが燐酸質肥料および珪酸質肥料として有効な肥料効果を保持するためには、可溶性珪酸、好ましくは中性溶解性珪酸の所定の濃度が存在することがわかった。
これらの検討結果を踏まえて、珪酸と燐酸をそれぞれスラグ中に濃化させることができる高炉溶銑の溶銑予備処理方法、特に脱珪処理と脱燐処理を同一の転炉型容器内で実施する高炉溶銑の溶銑予備処理方法に着目し、そこで回収されるスラグの燐酸溶解性ならびに珪酸溶解性について鋭意研究した。その結果、スラグの処理条件、処理方法を適正化することにより、燐酸、珪酸をスラグ中に効率よく濃縮でき、燐のみではなく珪酸含有量の高いスラグを製造することができることを、そして、このようにして製造されるスラグを燐酸珪酸肥料用原料として用いることで、肥料効果が高くなることを見出した。
The present inventors have studied to solve the above problems, and obtained the following knowledge.
First, the point that the raw material for silicate phosphoric acid fertilizer described in Patent Document 2 is insufficient as a fertilizer was examined. In Patent Literature 2, the soluble phosphoric acid is 4% and Al 2 O 3 is 5% at the example level. On click-soluble phosphoric acid and low less than 5%, since Al 2 O 3 and a high 5%, Al 2 O 3 was dissolved into the soil will secure the phosphorus (P) of the click-soluble in phosphoric acid as a phosphoric acid Al . That is, phosphoric acid dissolved from the fertilizer combines with aluminum to form a compound that is difficult to dissolve, making it difficult for plants to absorb it. As a result, it was found that the effect of the soluble phosphoric acid as a fertilizer is weakened.
Furthermore, in addition to soluble silicic acid, neutral soluble silicic acid not mentioned in Patent Documents 1 and 2 was examined from the viewpoint of fertilizer effect. In order for the obtained slag to retain an effective fertilizer effect as a phosphate fertilizer and siliceous fertilizer, it has been found that there is a predetermined concentration of soluble silicic acid, preferably neutral soluble silicic acid.
Based on these examination results, hot metal pretreatment method of blast furnace hot metal that can concentrate silicic acid and phosphoric acid in slag respectively, especially blast furnace that performs desiliconization treatment and dephosphorization treatment in the same converter type vessel Focusing on the hot metal pre-treatment method of hot metal, we conducted extensive research on the solubility of phosphoric acid and silicic acid in the slag recovered there. As a result, by optimizing slag treatment conditions and treatment methods, phosphoric acid and silicic acid can be efficiently concentrated in the slag, and not only phosphorus but also a slag having a high silicic acid content can be produced. It was found that the fertilizer effect is enhanced by using the slag thus produced as a raw material for phosphosilicate fertilizer.

本発明は上記知見に基づくものであり、特徴は以下の通りである。
[1]高炉溶銑の溶銑予備処理で回収されるスラグからなる燐酸珪酸肥料用原料であって、塩基度(CaO/SiO2)が0.8〜1.5であり、ク溶性燐酸を5mass%以上、可溶性珪酸を20〜30mass%、可溶性石灰を30mass%未満、Al2O3を4.5mass%以下含有するスラグからなることを特徴とする燐酸珪酸肥料用原料。
[2]前記スラグは、脱珪処理と脱燐処理を同一の転炉型容器内で実施する高炉溶銑の溶銑予備処理で回収されるスラグであることを特徴とする上記[1]に記載の燐酸珪酸肥料用原料。
[3]前記スラグは、中性溶解性珪酸を8.0mass%以上含有することを特徴とする上記[1]または[2]に記載の燐酸珪酸肥料用原料。
[4]高炉溶銑の溶銑予備処理で回収されるスラグからなる燐酸珪酸肥料用原料の製造方法であって、高炉から出銑した溶銑を、脱燐スラグを収容した転炉型容器内に装入し、次いで前記転炉型容器内の溶銑および脱燐スラグを、前記転炉型容器とは別の転炉型容器内に装入し、スラグの塩基度を0.8以上1.5以下、溶銑温度を1240℃以上1400℃以下で脱珪処理を終了し、脱珪処理後のスラグを回収して、塩基度(CaO/SiO2)が0.8以上1.5以下であり、ク溶性燐酸が5mass%以上、可溶性珪酸が20〜30mass%、可溶性石灰が30mass%未満、Al2O3が4.5mass%以下を含有するスラグを得ることを特徴とする燐酸珪酸肥料用原料の製造方法。
[5]脱珪処理と脱燐処理を同一の転炉型容器内で実施する高炉溶銑の溶銑予備処理で回収されるスラグからなる燐酸珪酸肥料用原料の製造方法であって、高炉から出銑した溶銑を、脱燐スラグを収容した転炉型容器内に装入し、次いで、前記転炉型容器内で、スラグの塩基度を0.8以上1.5以下、溶銑温度を1240℃以上1400℃以下で脱珪処理を終了し、脱珪処理後のスラグを回収して、塩基度(CaO/SiO2)が0.8以上1.5以下であり、ク溶性燐酸が5mass%以上、可溶性珪酸が20〜30mass%、可溶性石灰が30mass%未満、Al2O3が4.5mass%以下を含有するスラグを得ることを特徴とする燐酸珪酸肥料用原料の製造方法。
「6」さらに、燐が付着しているスラグもしくは地金を、脱燐スラグを収容した転炉型容器内に装入することを特徴とする上記[4]または[5]に記載の燐酸珪酸肥料用原料の製造方法。
[7]前記転炉型容器内に収容した脱燐スラグは、脱燐処理後のスラグの30mass%以上を転炉型容器内に残留させた残留スラグであることを特徴とする上記[4]〜[6]のいずれかに記載の燐酸珪酸肥料用原料の製造方法。
The present invention is based on the above findings, and features are as follows.
[1] Raw material for phosphosilicate fertilizer consisting of slag recovered by hot metal pretreatment of blast furnace hot metal, basicity (CaO / SiO 2 ) is 0.8 to 1.5, soluble phosphonic acid is 5 mass% or more, soluble silicate the 20~30mass%, less soluble lime 30 mass%, phosphoric silicate fertilizer raw material characterized by comprising a Al 2 O 3 from the slag containing less 4.5mass%.
[2] The slag according to [1], wherein the slag is slag recovered by hot metal pretreatment of blast furnace hot metal in which desiliconization treatment and dephosphorization treatment are performed in the same converter type vessel. Raw material for phosphosilicate fertilizer.
[3] The raw material for phosphosilicate fertilizer according to [1] or [2] above, wherein the slag contains 8.0 mass% or more of neutral soluble silicic acid.
[4] A method for producing a raw material for phosphosilicate fertilizer consisting of slag recovered by hot metal pretreatment of blast furnace hot metal, and the hot metal discharged from the blast furnace is charged into a converter type vessel containing dephosphorized slag Then, the hot metal and dephosphorization slag in the converter type vessel are charged into a converter type vessel different from the converter type vessel, and the basicity of the slag is 0.8 to 1.5 and the hot metal temperature is 1240. Desiliconization treatment is completed at ℃ -1400 ℃, slag after desiliconization is recovered, basicity (CaO / SiO 2 ) is 0.8 or more and 1.5 or less, soluble phosphoric acid is 5 mass% or more, soluble silicic acid There 20~30mass%, soluble lime is less than 30mass%, Al 2 O 3 are provided methods for producing the phosphate silicate fertilizer raw material, characterized in that to obtain a slag containing less 4.5mass%.
[5] A method for producing a raw material for phosphosilicate fertilizer comprising slag recovered by hot metal pretreatment of blast furnace hot metal in which desiliconization treatment and dephosphorization treatment are carried out in the same converter type vessel, The molten iron was charged into a converter type vessel containing dephosphorization slag, and then the basicity of the slag was 0.8 to 1.5 and the hot metal temperature was 1240 ° C to 1400 ° C in the converter type vessel. Finish the desiliconization process, collect the slag after the desiliconization process, the basicity (CaO / SiO 2 ) is 0.8 or more and 1.5 or less, the soluble phosphoric acid is 5 mass% or more, the soluble silicic acid is 20 to 30 mass%, A method for producing a raw material for a phosphoric acid silicate fertilizer, characterized in that a slag containing less than 30 mass% soluble lime and 4.5 mass% or less Al 2 O 3 is obtained.
[6] Phosphoric silicic acid as described in [4] or [5] above, wherein slag or metal in which phosphorus is adhered is further charged into a converter type vessel containing dephosphorized slag. Manufacturing method of fertilizer raw material.
[7] The dephosphorization slag accommodated in the converter type vessel is a residual slag in which 30 mass% or more of the slag after the dephosphorization treatment is left in the converter type vessel [4] The manufacturing method of the raw material for phosphosilicate fertilizers in any one of-[6].

本発明によれば、肥料効果の高い燐酸珪酸肥料用原料が得られる。また、燐酸珪酸肥料用原料として得られるスラグは多孔質であるために、肥料成分の溶解性をさらに向上させる。   According to the present invention, a raw material for phosphosilicate fertilizer having a high fertilizer effect can be obtained. Moreover, since the slag obtained as a raw material for phosphosilicate fertilizer is porous, the solubility of the fertilizer component is further improved.

予備処理スラグを有効利用でき、しかも溶銑予備処理で回収したスラグをそのまま利用できるため、極めて安価に製造することできる。   Since the pretreatment slag can be used effectively and the slag collected by the hot metal pretreatment can be used as it is, it can be manufactured at a very low cost.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の燐酸珪酸肥料用原料は、高炉溶銑の溶銑予備処理で回収されるスラグからなる。好ましくは、脱珪処理と脱燐処理を同一の転炉型容器内で実施する高炉溶銑の溶銑予備処理で回収されるスラグからなる。このような高炉溶銑の溶銑予備処理で回収されるスラグであれば、燐酸、珪酸をスラグ中に効率よく濃縮することができる。   The raw material for a phosphosilicate fertilizer of the present invention comprises slag recovered by hot metal pretreatment of blast furnace hot metal. Preferably, it consists of slag collected by hot metal pretreatment of blast furnace hot metal in which desiliconization treatment and dephosphorization treatment are carried out in the same converter type vessel. If it is slag collect | recovered by the hot metal preliminary treatment of such blast furnace hot metal, phosphoric acid and silicic acid can be efficiently concentrated in slag.

スラグは、塩基度(CaO/SiO2)(CaO、SiO2はmass%)が0.8以上1.5以下であり、ク溶性燐酸を5mass%以上、可溶性珪酸を20〜30mass%、可溶性石灰を30mass%未満、Al2O3を4.5mass%以下含有する。 Slag has a basicity (CaO / SiO 2 ) (CaO, SiO 2 is mass%) of 0.8 or more and 1.5 or less, soluble soluble phosphoric acid is 5 mass% or more, soluble silicic acid is 20-30 mass%, soluble lime is less than 30 mass% , Al 2 O 3 is contained in an amount of 4.5 mass% or less.

ここで、本発明において可溶性珪酸並びに可溶性石灰(CaO)とは0.5molの塩酸溶液に可溶な珪酸並びに石灰(CaO)の量を指す。またク溶性燐酸とは2%クエン酸溶液(pH2)可溶分の燐酸を指す。なお、分析法は肥料分析法(農林水産省農業環境技術研究所法)に従う。   Here, in this invention, soluble silicic acid and soluble lime (CaO) refer to the quantity of silicic acid and lime (CaO) soluble in 0.5 mol hydrochloric acid solution. The soluble phosphoric acid refers to phosphoric acid soluble in a 2% citric acid solution (pH 2). The analysis method follows the fertilizer analysis method (Ministry of Agriculture, Forestry and Fisheries, Agricultural Environment Technology Laboratory Method).

燐酸珪酸肥料用原料となるスラグは、塩基度(CaO/SiO2)が0.8以上1.5以下である。この塩基度の範囲では、燐酸、珪酸ともに溶解性の優れたシリコカーノタイト(5CaO・P・SiO)が主構成化合物として生成する。塩基度(CaO/SiO2)が0.8未満では珪酸が多量体を形成して、燐酸、珪酸ともに溶解性が低下する。一方、1.5超えでは、珪酸含有量が低下して珪酸供給が不十分になる。また、このスラグを製造する脱珪処理において、0.8未満では炉内に残留された脱燐処理後のスラグから復燐してしまうので、スラグに燐を濃縮することができず、1.5超えではスラグの流動性が低下するためにスラグを分離できないという問題もある。 The slag used as the raw material for phosphosilicate fertilizer has a basicity (CaO / SiO 2 ) of 0.8 or more and 1.5 or less. Within this basicity range, silicocarnotite (5CaO.P 2 O 5 .SiO 2 ) having excellent solubility in both phosphoric acid and silicic acid is produced as the main constituent compound. When the basicity (CaO / SiO 2 ) is less than 0.8, silicic acid forms a multimer, and the solubility of both phosphoric acid and silicic acid decreases. On the other hand, if it exceeds 1.5, the silicic acid content decreases and the silicic acid supply becomes insufficient. Also, in the desiliconization process for producing this slag, if it is less than 0.8, it is recovered from the slag after the dephosphorization process remaining in the furnace, so that phosphorus cannot be concentrated in the slag. There is also a problem that the slag cannot be separated because the fluidity of the slag is lowered.

燐酸珪酸肥料用原料となるスラグは、ク溶性燐酸を5mass%以上、可溶性珪酸を20〜30mass%、可溶性石灰を30mass%未満、Al2O3を4.5mass%以下含有する。好ましくは、中性溶解性珪酸を8.0mass%以上含有する。 Slag used as a raw material for phosphosilicate fertilizer contains 5 mass% or more of soluble phosphoric acid, 20 to 30 mass% of soluble silicate, less than 30 mass% of soluble lime, and 4.5 mass% or less of Al 2 O 3 . Preferably, 8.0 mass% or more of neutral soluble silicic acid is contained.

ク溶性燐酸は、燐酸による肥料効果を得ることができる。この効果を充分に得るために、ク溶性燐酸が5mass%以上とする。   The soluble phosphoric acid can obtain a fertilizer effect by phosphoric acid. In order to obtain this effect sufficiently, the soluble phosphoric acid is made 5 mass% or more.

可溶性珪酸は、珪酸による肥料効果を得ることができる。20mass%以上とすることで作物の必要量に適した珪酸を供給することができる。一方、30mass%を超えると珪酸が多量体を形成して珪酸の溶解性が低下し、肥料効果が得られなくなる。よって、上限は30mass%とする。   Soluble silicic acid can obtain the fertilizer effect by silicic acid. By setting it to 20 mass% or more, silicic acid suitable for the required amount of crops can be supplied. On the other hand, when it exceeds 30 mass%, silicic acid forms a multimer, the solubility of silicic acid falls, and a fertilizer effect cannot be acquired. Therefore, the upper limit is 30 mass%.

可溶性石灰は土壌の酸性化を改良し土壌微生物を活性化して作物への栄養供給を促進する効果がある。しかし、過剰に存在すると土壌のpHが上昇しすぎてしまう。よって、30mass%未満とする。   Soluble lime has the effect of improving soil acidification, activating soil microorganisms and promoting nutrient supply to crops. However, if it exists in excess, the pH of the soil will rise too much. Therefore, it is less than 30 mass%.

Al2O3は珪酸の溶出性を阻害するとともに、土壌中の燐酸を固定して植物が利用できない形態にする。すなわち、Al2O3が燐酸Alとしてク溶性燐酸中の燐(P)を固定してしまい、ク溶性燐酸の肥料としての効果を弱めてしまう。このように、スラグに含まれるAl2O3は植物にとって無用な成分であり、スラグ中のAl2O3含有量が多いと肥料の有効成分が相対的に少なくなるので、極力少ない方がよい。Al2O3含有量が4.5mass%を超えると、これらの問題が顕在化するので、Al2O3含有量は4.5mass%以下、好ましくは4.0mass%以下とする。 Al 2 O 3 inhibits silicic acid elution and fixes phosphoric acid in the soil so that it cannot be used by plants. That is, Al 2 O 3 fixes phosphorus (P) in the soluble phosphoric acid as Al phosphate, and weakens the effect of the soluble phosphoric acid as a fertilizer. In this way, Al 2 O 3 contained in slag is an unnecessary component for plants, and if the content of Al 2 O 3 in slag is large, the effective component of fertilizer is relatively reduced, so it is better to reduce it as much as possible. . When the Al 2 O 3 content exceeds 4.5 mass%, these problems become apparent. Therefore, the Al 2 O 3 content is set to 4.5 mass% or less, preferably 4.0 mass% or less.

中性溶解性珪酸とは、陽イオン交換樹脂を用いてpH7の中性で溶出する珪酸量を定量する水-弱酸性陽イオン交換樹脂抽出法で求めた可給態珪酸含有量をいい、中性溶解性珪酸濃度が高いほど、珪酸質肥料として有効であるといわれている。肥料成分表示としては、通常0.5mol塩酸溶液という強酸性の環境下での溶解性を測定する肥料公定分析法に基づいた可溶性珪酸用いられるが、実際の多くの土壌はpH7程度の中性環境下であるために、植物に利用されやすい珪酸の形態としてpH7付近での珪酸の溶解性が重要である。   Neutral soluble silicic acid refers to the available silicic acid content determined by the water-weakly acidic cation exchange resin extraction method, which uses a cation exchange resin to quantify the amount of silicic acid eluted at neutral pH 7. It is said that the higher the soluble soluble silicic acid concentration, the more effective the siliceous fertilizer. As a fertilizer component label, soluble silicic acid based on the official analysis method of fertilizer that measures the solubility in a strongly acidic environment, usually 0.5 mol hydrochloric acid solution, is used, but many actual soils are in a neutral environment of about pH 7 Therefore, the solubility of silicic acid at around pH 7 is important as a form of silicic acid that is easily used by plants.

以上の点から、中性溶解性珪酸を8.0mass%以上含有することが好ましい。   From the above points, it is preferable to contain neutral soluble silicic acid in an amount of 8.0 mass% or more.

また、作物の生育にはク溶性燐酸よりクエン酸二アンモニウム溶液に溶解する可溶性燐酸が有効であり、ク溶性燐酸のうち可溶性燐酸の割合が高い方が望ましい。   In addition, soluble phosphoric acid dissolved in a diammonium citrate solution is more effective for growing crops than soluble phosphoric acid, and it is desirable that the soluble phosphoric acid has a higher proportion of soluble phosphoric acid.

以上のように、ク溶性燐酸を5mass%以上、可溶性珪酸を20〜30mass%、可溶性石灰を30mass%未満、Al2O3を4.5mass%以下含有することで、肥料として優れた溶解特性を有することになる。 As mentioned above, it has excellent dissolution characteristics as a fertilizer by containing 5 mass% or more of soluble phosphoric acid, 20 to 30 mass% of soluble silicic acid, less than 30 mass% of soluble lime, and 4.5 mass% or less of Al 2 O 3 It will be.

スラグに含まれる他の成分の中で肥料として有効な成分もある。MgO(苦土)、MnO(酸化マンガン)は肥料保証成分であるが、スラグに含有されるMgO、MnOのほとんどがク溶性であり植物にとって有効である。MgO、MnOともに含有量が少ないと植物の吸収障害が生じるが、一方において含有量が過剰の場合、十分に吸収されずに含有量に見合う効果が得られないだけでなく、却って過剰吸収による障害を生じることがある。このため通常の植物の燐酸とMgO、MnOの吸収割合から、MgOは1〜5mass%、MnOは1〜9mass%程度の含有量とすることが好ましい。   Some of the other ingredients contained in slag are effective as fertilizers. MgO (matter) and MnO (manganese oxide) are fertilizer guarantee components, but most of MgO and MnO contained in the slag are soluble in slag and effective for plants. If both MgO and MnO are low in content, plant absorption damage will occur. On the other hand, if the content is excessive, not only will it not be sufficiently absorbed and an effect commensurate with the content will not be obtained. May occur. For this reason, it is preferable to make MgO into the content of about 1-5 mass% and MnO about 1-9 mass% from the absorption ratio of the phosphoric acid of normal plant, MgO, and MnO.

次に、本発明の燐酸珪酸肥料用原料の製造方法について、説明する。
本発明の燐酸珪酸肥料用原料は、高炉溶銑の溶銑予備処理で回収されるスラグからなる。とくに脱珪処理と脱燐処理を同一の転炉型容器内で実施する溶銑予備処理で回収するスラグが好適である。
Next, the manufacturing method of the raw material for phosphosilicate fertilizer of this invention is demonstrated.
The raw material for a phosphosilicate fertilizer of the present invention comprises slag recovered by hot metal pretreatment of blast furnace hot metal. In particular, slag recovered by hot metal preliminary treatment in which desiliconization treatment and dephosphorization treatment are performed in the same converter type vessel is suitable.

まずは、高炉から出銑した溶銑を、脱燐スラグを収容した転炉型容器内に装入する。好ましくは、併せて、燐が付着しているスラグもしくは地金も転炉型容器内に装入する。次いで、前記転炉型容器内の溶銑および脱燐スラグを、前記転炉型容器とは別の転炉型容器内に装入し、スラグの塩基度を0.8以上1.5以下、溶銑温度を1240℃以上1400℃以下で脱珪処理を終了し、脱珪処理後のスラグを回収する。脱珪処理と脱燐処理を同一の転炉型容器内で実施する溶銑予備処理で回収するスラグを用いる場合は、高炉から出銑した溶銑を、脱燐スラグを収容した転炉型容器内に装入し、この転炉型容器内で、スラグの塩基度を0.8以上1.5以下、温度を1240℃以上1400℃以下で脱珪処理を終了し、脱珪処理後のスラグを回収する。このような脱珪処理で生成したスラグは、珪酸含有量が高い。また、この塩基度の低いスラグに炉内に収容した脱燐スラグや地金の燐を濃縮させて回収することにより、ク溶性燐酸を5mass%以上、かつ可溶性珪酸を20〜30mass%とすることができる。   First, the hot metal discharged from the blast furnace is charged into a converter type vessel containing dephosphorization slag. Preferably, in addition, slag or metal which is attached with phosphorus is also charged into the converter type vessel. Next, the hot metal and dephosphorization slag in the converter type vessel are charged into a converter type vessel different from the converter type vessel, and the basicity of the slag is 0.8 to 1.5 and the hot metal temperature is 1240 ° C. The desiliconization process is finished at 1400 ° C. or lower, and the slag after the desiliconization process is recovered. When using slag recovered in the hot metal preliminary process in which desiliconization and dephosphorization processes are carried out in the same converter type vessel, the hot metal discharged from the blast furnace is placed in the converter type vessel containing the dephosphorized slag. In the converter type vessel, the desiliconization treatment is completed at a basicity of slag of 0.8 to 1.5 and a temperature of 1240 ° C to 1400 ° C, and the slag after desiliconization is recovered. The slag produced by such desiliconization treatment has a high silicic acid content. In addition, dephosphorization slag and bullion phosphorus contained in the furnace are concentrated and recovered in the slag with low basicity, so that the soluble phosphoric acid is 5 mass% or more and the soluble silicic acid is 20 to 30 mass%. Can do.

燐が付着しているスラグもしくは地金を、脱燐スラグを収容した転炉型容器内に装入しても、脱珪処理時に、前記脱燐スラグから溶銑に燐が戻ること(復燐)は防止されるため、付着している燐をスラグに濃縮できることがわかった。よって、好ましくは、燐が付着しているスラグもしくは地金を、脱燐スラグを収容した転炉型容器内に装入することとする。なお、燐が付着している割合は特に限定しない。   Phosphorus returns from the dephosphorization slag to the hot metal during desiliconization treatment even if the slag or metal in which phosphorus is attached is charged into the converter type vessel containing the dephosphorization slag (phosphorus) It was found that the attached phosphorus can be concentrated in the slag. Therefore, it is preferable that the slag or metal in which phosphorus is attached is charged into the converter type container containing the dephosphorized slag. Note that the proportion of phosphorus attached is not particularly limited.

本発明では、まず、脱燐スラグを転炉型容器内に収容する。なお、前チャージの脱燐スラグがそのまま残留している状態でもよい。この脱燐スラグは、通常、珪酸25mass%、燐酸3mass%程度を含有し、さらにカルシウム、鉄なども含有している。   In the present invention, first, dephosphorization slag is accommodated in a converter type vessel. Note that a state in which the pre-charge dephosphorization slag remains as it is may be used. This dephosphorization slag usually contains about 25 mass% of silicic acid and about 3 mass% of phosphoric acid, and further contains calcium, iron and the like.

次いで脱珪処理を行い、脱珪処理終了時の塩基度を0.8以上1.5以下に調整する。塩基度が0.8未満では、脱燐スラグから復燐して、スラグに燐を濃縮することができない。従って、脱珪処理終了時のスラグの塩基度は0.8以上、好ましくは1.0以上とする。また、この段階での塩基度が1.5より高くなるとスラグの流動性が低下するため、次の中間排滓量が少なくなったり排滓量の制御が難しかったりする問題がある。よって、1.5以下、好ましくは1.2以下とする。なお、塩基度調節には、生石灰や石灰石、ドロマイトなどの石灰系媒溶材の他、脱炭スラグや脱燐スラグ、取鍋スラグなどから選ばれる製鋼スラグを媒溶材として用いることができる。   Next, desiliconization treatment is performed, and the basicity at the end of the desiliconization treatment is adjusted to 0.8 or more and 1.5 or less. When the basicity is less than 0.8, it is not possible to recover phosphorus from the dephosphorized slag and concentrate phosphorus in the slag. Therefore, the basicity of the slag at the end of the desiliconization treatment is 0.8 or more, preferably 1.0 or more. Further, if the basicity at this stage is higher than 1.5, the fluidity of the slag is lowered, so that there is a problem that the amount of the next intermediate waste is decreased or the control of the waste amount is difficult. Therefore, it is 1.5 or less, preferably 1.2 or less. In addition, in order to adjust the basicity, steelmaking slag selected from decarburized slag, dephosphorized slag, ladle slag, and the like can be used as a medium material in addition to lime-based medium materials such as quick lime, limestone, and dolomite.

脱珪終了時の溶銑温度は、1240℃以上1400℃以下に、好ましくは1260℃以上1350℃以下に調節する。1400℃より高温になると炉内の脱燐スラグから復燐がおこり、スラグに燐を濃縮することができない。一方、1240℃未満では、スラグの流動が低下し、次の中間排滓量が少なくなったり排滓量の制御が難しかったりする問題がある。1350℃以下とすれば、次の脱燐処理を効率よく実施することができるため、溶銑予備処理を効率よく実施して肥料用原料を製造することができる。   The hot metal temperature at the end of desiliconization is adjusted to 1240 ° C. or higher and 1400 ° C. or lower, preferably 1260 ° C. or higher and 1350 ° C. or lower. When the temperature is higher than 1400 ° C, dephosphorization occurs from the dephosphorization slag in the furnace, and phosphorus cannot be concentrated in the slag. On the other hand, if it is less than 1240 ° C., there is a problem that the flow of slag is lowered, and the amount of the next intermediate waste is reduced or the control of the waste amount is difficult. If it is 1350 degrees C or less, since the next dephosphorization process can be implemented efficiently, a hot metal preliminary process can be implemented efficiently and a fertilizer raw material can be manufactured.

溶銑の脱珪処理と脱燐処理を同一の転炉型容器を用いて行なう場合、通常は、まず、1)高炉から出銑した溶銑を転炉型容器内に装入して、2)脱珪処理を行い、次いで、3)溶銑および予備処理後のスラグの一部を該容器内に残留させた中間排滓の処理を行ない、引き続き、4)容器内に残留された脱珪後の溶銑およびスラグに対して石灰系媒溶材を添加すると共に酸素を吹精することによって溶銑の脱燐処理を行い、5)出銑する。この工程を同一炉において繰り返し実施する。本発明では、上記工程の中で、4)の脱燐処理後、全てを排滓させずにスラグの30mass%以上を転炉型容器内に残留させ、この残留スラグを転炉型容器内に収容した脱燐スラグとして用いることが好ましい。   When performing desiliconization and dephosphorization of hot metal using the same converter-type vessel, usually, first, 1) the hot metal discharged from the blast furnace is charged into the converter-type vessel, and 2) degassed. Silica treatment was performed, and then 3) intermediate waste in which a part of the slag after hot metal and preliminary treatment was left in the vessel was processed, and then 4) hot metal after desiliconization remained in the vessel. The hot metal is dephosphorized by adding a lime-based solvent to the slag and blowing oxygen, and 5) slag. This process is repeated in the same furnace. In the present invention, after the dephosphorization process of 4) in the above process, 30 mass% or more of the slag is left in the converter type vessel without exhausting all, and this residual slag is put in the converter type vessel. It is preferable to use as the accommodated dephosphorization slag.

また、溶銑の燐濃度が0.030mass%以下になった時に脱燐処理は終了することが好ましい。脱燐処理後、前記転炉型容器内に、スラグの塩基度が1.2以上、好ましくは1.4以上とする脱燐処理後のスラグのうち、30mass%以上、好ましくは60mass%以上を残留させる。スラグの塩基度が1.2未満では次に続く脱珪処理における塩基度調整が不十分となる場合がある。残留させる量が多いほど脱珪処理の塩基度調整が行いやすく、炉内転炉型容器内に残留させたスラグの全量を新たな溶銑の脱珪処理に活用すれば、脱珪処理での塩基度調整に効果的で、かつ燐をスラグに濃縮させやすい。   Moreover, it is preferable that the dephosphorization process is completed when the phosphorus concentration of the hot metal becomes 0.030 mass% or less. After the dephosphorization treatment, 30 mass% or more, preferably 60 mass% or more of the slag after dephosphorization treatment in which the basicity of the slag is 1.2 or more, preferably 1.4 or more is left in the converter type vessel. If the basicity of the slag is less than 1.2, the basicity adjustment in the subsequent desiliconization process may be insufficient. The greater the amount left, the easier it is to adjust the basicity of the desiliconization treatment.If the entire amount of slag remaining in the in-furnace converter-type vessel is used for the desiliconization treatment of new hot metal, the base in the desiliconization treatment It is effective in adjusting the degree and easily concentrates phosphorus into slag.

脱珪処理後のスラグを回収するにあたっては、40mass%以上を炉外排出する中間排滓処理を行なうことが好ましい。前回の溶銑予備処理時に生成した脱燐処理後スラグを大量に炉内に残留させたまま新たな溶銑の脱珪処理を行なう溶銑の予備処理の場合、スラグから溶銑への復燐を防止するように脱珪処理するため、脱珪スラグ中の燐酸濃度が従来より高くなり、スラグの肥料用原料としての使用に適している。ただし、生成した脱珪処理後スラグのほとんどを排滓してしまうと、次工程の脱燐処理における石灰系媒溶材の使用量が増加し、またスラグ量が増加するとスラグ噴出などの脱燐処理の阻害要因となる。そこで脱珪処理後の排滓率は少なくとも40mass%以上、好ましくは60mass%以上とする。   In collecting the slag after the silicon removal treatment, it is preferable to perform an intermediate waste treatment for discharging 40 mass% or more out of the furnace. In the case of hot metal pretreatment where desiliconization of new hot metal is performed with a large amount of slag remaining in the furnace after dephosphorization generated during the previous hot metal pretreatment, so as to prevent dephosphorization from slag to hot metal. Therefore, the concentration of phosphoric acid in the desiliconized slag is higher than the conventional one, and it is suitable for use as a raw material for slag fertilizer. However, if most of the generated slag is removed after desiliconization, the amount of lime-based solvent used in the dephosphorization process in the next process will increase, and if the amount of slag increases, dephosphorization such as slag jetting will occur. It becomes an obstruction factor. Therefore, the rejection rate after the desiliconization treatment is at least 40 mass% or more, preferably 60 mass% or more.

その後、同じ前記容器にて脱燐処理を行なうが、このような方法を継続的に行なえば、燐が濃縮された塩基度の低い脱珪処理後スラグのみを回収することができる。   Thereafter, dephosphorization is performed in the same vessel. However, if such a method is continuously performed, only the slag after desiliconization with low basicity enriched in phosphorus can be recovered.

脱珪処理後のスラグの組成に着目すると、スラグ中のP2O5濃度(ク溶性燐酸)は何れの処理水準でも高く、5mass%以上にも濃縮されることが確認できた。また、復燐を防止しながら脱珪処理を行い、かつ脱珪処理終了時の塩基度を0.8〜1.5と低塩基度に調節することから、スラグ中のSiO2濃度(可溶性珪酸)も比較的高位の20〜30mass%まで濃縮され、さらに可溶性石灰(CaO)も30mass%未満であった。 Paying attention to the composition of the slag after the desiliconization treatment, it was confirmed that the P 2 O 5 concentration (soluble phosphonic acid) in the slag was high at any treatment level and was concentrated to 5 mass% or more. In addition, since desiliconization is performed while preventing dephosphorization, and the basicity at the end of the desiliconization is adjusted to a low basicity of 0.8 to 1.5, the SiO 2 concentration (soluble silicic acid) in the slag is relatively low. It was concentrated to a high level of 20-30 mass%, and soluble lime (CaO) was also less than 30 mass%.

以上より得られたスラグを溶銑保持容器から取り出し、冷却して固化させる。冷却・固化は、溶銑保持容器から取り出す際に行ってもよいし、容器に収納した後、その容器から取り出す際に行ってもよい。冷却固化の方法としては、融体又は過冷却液体温度領域を冷却する場合には、例えば、生成した溶銑脱燐スラグに高圧空気を吹きつけて飛散させ、冷却するとともに粒状化する方法(風砕法)、溶銑脱燐スラグに高圧水を吹きつけて飛散させ、冷却するとともに粒状化する方法(水砕法)、厚鋼板上に生成した溶銑脱燐スラグを流出させ、厚鋼板による強制冷却と空気への放熱により冷却する方法、などの方法を採ることができる。また、徐冷する場合には、スラグを滓ポットに受け、その後、スラグ処理場に排滓する。このような冷却固化を経て燐酸珪酸肥料用原料が得られる。   The slag obtained as described above is taken out of the hot metal holding container and cooled to solidify. Cooling and solidification may be performed when taking out from the hot metal holding container, or may be carried out when taking out from the container after being stored in the container. As a method of cooling and solidifying, when cooling the melt or supercooled liquid temperature region, for example, the generated hot metal dephosphorization slag is blown and sprayed with high-pressure air to cool and granulate (winding method) ), Spraying high-pressure water on hot metal dephosphorization slag, allowing it to disperse, cooling and granulating (hydrocracking method), letting hot metal dephosphorization slag generated on thick steel plate flow out, forced cooling by thick steel plate and air It is possible to adopt a method such as cooling by heat radiation. In the case of slow cooling, the slag is received in a soot pot and then discharged to a slag treatment plant. A raw material for phosphosilicate fertilizer is obtained through such cooling and solidification.

以上のようにして製造される燐酸珪酸肥料用原料は、粒度が適当であればそのまま燐酸珪酸肥料用原料とすることができるが、冷却固化後の形状が塊状等の場合には、破砕(粉砕)処理及び/又は整粒(篩い分けなどにより粒度調整)を行い燐酸珪酸肥料とする。また、場合によっては他の添加成分を配合して燐酸珪酸肥料としてもよい。   The raw material for phosphosilicate fertilizer manufactured as described above can be used as it is as a raw material for phosphosilicate fertilizer as long as the particle size is appropriate. However, when the shape after cooling and solidification is a lump or the like, crushing (pulverization) ) Treatment and / or sizing (particle size adjustment by sieving, etc.) to obtain a phosphosilicate fertilizer. Moreover, it is good also as a phosphosilicate fertilizer by mix | blending another additive component depending on the case.

燐酸珪酸肥料用原料の破砕(粉砕)方法に特別な制限はなく、どのような方法を採用してもよい。例えば、ジョークラッシャー、ロッドミル、フレッドミル、インペラブレーカーなどの粉砕機を用いて粉砕処理することができる。また、整粒は任意の篩い分け装置などを用いて行えばよく、燐酸珪酸肥料用原料を粉砕処理した後、整粒を行ってもよい。   There is no particular restriction on the method of crushing (pulverizing) the raw material for phosphosilicate fertilizer, and any method may be adopted. For example, it can be pulverized using a pulverizer such as a jaw crusher, a rod mill, a fred mill, or an impeller breaker. Further, the sizing may be performed using an arbitrary sieving device or the like, and the sizing may be performed after pulverizing the raw material for phosphosilicate fertilizer.

また、破砕処理及び/又は整粒された燐酸珪酸肥料原料は、適当なバインダーを用いた造粒工程を経て燐酸珪酸肥料用とすることが好ましく、このようにして造粒された燐酸珪酸肥料用は、施肥時の飛散、雨水による流出、地面の通水性や通気性の阻害といった問題を生じにくい。また、形状が規則的で且つ球状に近く、角張っていないため、取扱い性も良好である。   In addition, the phosphosilicate fertilizer raw material that has been crushed and / or sized is preferably used for a phosphosilicate fertilizer through a granulation step using a suitable binder. Is less prone to problems such as scattering during fertilization, runoff due to rainwater, obstruction of water permeability and air permeability of the ground. Further, since the shape is regular and nearly spherical and not angular, the handleability is also good.

造粒方法に特別な制限はなく、一般的な造粒方法を採用することができるが、例えば、上記粉砕処理によって得られた粉砕物とバインダーとを混合機で混合し、適量の水を加えながら造粒機で造粒し、しかる後、乾燥するという方法を採ることができる。   There is no particular limitation on the granulation method, and a general granulation method can be adopted. For example, the pulverized product obtained by the above pulverization treatment and a binder are mixed with a mixer, and an appropriate amount of water is added. However, it can be granulated with a granulator and then dried.

造粒機としては、一般的に使用されるもの、例えば、回転皿型造粒機、回転円筒型造粒機等を用いることができ、造粒後に所定の粒度範囲に入らないものは直接又は粉砕などの処理をした後に再度混合機に戻し、原料の一部として再利用する連続造粒方法を採ることが好ましい。   As the granulator, a commonly used one, for example, a rotary dish granulator, a rotary cylindrical granulator, etc. can be used, and those that do not fall within a predetermined particle size range after granulation are directly or It is preferable to adopt a continuous granulation method in which after the treatment such as pulverization, the mixture is returned to the mixer again and reused as a part of the raw material.

容量300トンの転炉型精錬炉を用いて、本発明に係る脱珪処理と脱燐処理を同一の転炉型容器内で実施する溶銑予備処理を実施し、スラグを回収した。溶銑予備処理は、高炉から出銑した溶銑を、脱燐処理が終了したスラグを収容した転炉型容器内に装入し、次いで、転炉型容器内で、所定のスラグの塩基度、所定の溶銑温度で脱珪処理を行い、脱珪処理後のスラグを燐酸珪酸肥料用原料として回収した。脱燐処理終了時の塩基度、脱燐処理後のスラグの転炉型容器内への残留率、脱珪処理時の塩基度、温度を表1に示す。
実施例1〜3では、脱燐処理後スラグの全量を炉内に残留させて次の溶銑の予備処理を行なった。
実施例3では、燐が付着している地金(CaO33mass%、P2O55.8mass %、SiO29mass%、Al2O33mass%、T-Fe45mass %)を、高炉から出銑した溶銑に加えて、脱燐スラグを収容した転炉型容器内に装入した例である。
比較例1は前回の溶銑の脱燐処理後スラグを全量排出した例である。
比較例2は脱珪処理時のスラグ塩基度が0.47と低いため、脱珪処理後に復燐を招いたと考えられる例である。
比較例3は脱珪処理後の温度が1400℃より高くなってしまったために復燐を招いたと考えられる例である。
比較例4はスラグ中のAl2O3含有量が高い例である。
比較例5は、通常一般的に実施されている溶銑予備処理である脱燐処理で行った例である(表1には記載せず)。
Using a converter-type refining furnace having a capacity of 300 tons, a hot metal preliminary treatment was carried out in which the desiliconization treatment and the dephosphorization treatment according to the present invention were carried out in the same converter-type vessel, and slag was recovered. In the hot metal preliminary treatment, the hot metal discharged from the blast furnace is charged into a converter type vessel containing the slag after the dephosphorization treatment, and then the basicity of the predetermined slag is determined in the converter type vessel. The desiliconization treatment was performed at a hot metal temperature of, and the slag after the desiliconization treatment was recovered as a raw material for phosphosilicate fertilizer. Table 1 shows the basicity at the end of the dephosphorization process, the residual ratio of the slag after the dephosphorization process in the converter type vessel, the basicity at the desiliconization process, and the temperature.
In Examples 1 to 3, the entire amount of slag was left in the furnace after the dephosphorization treatment, and the next hot metal pretreatment was performed.
In Example 3, bullion phosphorus is attached (CaO33mass%, P 2 O 5 5.8mass%, SiO 2 9mass%, Al 2 O 3 3mass%, T-Fe45mass%) were tapped from a blast furnace hot metal In addition to the above, it is an example of charging in a converter type container containing dephosphorization slag.
Comparative Example 1 is an example in which the entire amount of slag was discharged after the previous hot metal dephosphorization treatment.
Comparative Example 2 is an example in which rephosphorization was caused after the desiliconization treatment because the slag basicity during the desiliconization treatment was as low as 0.47.
Comparative Example 3 is an example in which rephosphorization was caused because the temperature after desiliconization was higher than 1400 ° C.
Comparative Example 4 is an example in which the content of Al 2 O 3 in the slag is high.
Comparative Example 5 is an example performed by a dephosphorization process that is a hot metal preliminary process that is generally performed (not shown in Table 1).

Figure 0006119704
Figure 0006119704

以上により得られたスラグに対して、分析を行い、スラグ組成、ク溶性燐酸含有量、可溶性燐酸含有量、可溶性珪酸含有量、中性溶解性燐酸量、可溶性石灰含有量を測定した。分析方法は以下の通りである。   The slag obtained as described above was analyzed, and the slag composition, the soluble phosphoric acid content, the soluble phosphoric acid content, the soluble silicic acid content, the neutral soluble phosphoric acid content, and the soluble lime content were measured. The analysis method is as follows.

スラグ組成はガラスビード−蛍光X線分析法で測定した。   The slag composition was measured by glass bead-fluorescence X-ray analysis.

ク溶性燐酸含有量は肥料分析法に基づき、所定量のスラグを容器にとり、所定量のクエン酸溶液(pH2)を加え、振り混ぜながら、所定温度で所定時間作用させたのち、速やかに常温に戻し水を加えて直ちに乾燥ろ紙でろ過し、液中の燐酸量を測定して求めた(農林水産省農業環境技術研究所法1992年度版)。   The soluble phosphoric acid content is based on the fertilizer analysis method. Take a predetermined amount of slag in a container, add a predetermined amount of citric acid solution (pH 2), shake it and let it act at a predetermined temperature for a predetermined time. It was obtained by adding back water and immediately filtering with dry filter paper and measuring the amount of phosphoric acid in the liquid (Ministry of Agriculture, Forestry and Fisheries, National Institute of Agricultural Environment Technology, 1992 version).

可溶性燐酸含有量は、肥料分析法に基づき、所定量のスラグを容器にとり、所定量のクエン酸二アンモニウム溶液(pH7.0)を加え、振り混ぜながら、所定温度で所定時間作用させたのち、水を加えて冷却し直ちに乾燥ろ紙でろ過し、液中の燐酸量を測定して求めた(農林水産省農業環境技術研究所法1992年度版)。   The soluble phosphoric acid content is based on the fertilizer analysis method. After taking a predetermined amount of slag into a container, adding a predetermined amount of diammonium citrate solution (pH 7.0), shaking and mixing, let it act for a predetermined time, It was determined by adding water, cooling, immediately filtering with dry filter paper, and measuring the amount of phosphoric acid in the liquid (Ministry of Agriculture, Forestry and Fisheries, National Institute of Agricultural Environment Technology, 1992 version).

可溶性珪酸含有量は、肥料分析法に基づき、所定量のスラグを容器にとり、所定量の0.5mol塩酸溶液を加え、振り混ぜながら、所定温度で所定時間作用させたのち、速やかに常温に戻し水を加えて直ちに乾燥ろ紙でろ過し、液中の珪酸量を測定して求めた(農林水産省農業環境技術研究所法1992年度版)。   The soluble silicic acid content is determined based on the fertilizer analysis method, taking a predetermined amount of slag into a container, adding a predetermined amount of 0.5 mol hydrochloric acid solution, allowing it to act at a predetermined temperature for a predetermined time while shaking, and then quickly returning to normal temperature. And immediately filtered with dry filter paper, and the amount of silicic acid in the liquid was measured and determined (Ministry of Agriculture, Forestry and Fisheries, National Institute of Agricultural Environment Technology, 1992 version).

中性溶解性珪酸量は、所定量のスラグを容器にとり、所定量の蒸留水と陽イオン交換樹脂(Amberlite IRC-76、pK6.1、H型)を加え、振り混ぜながら、所定温度で所定時間作用させたのち、乾燥ろ紙でろ過し、液中の珪酸量を測定して求めた(Kato and Owa, Soil Sci. Plant Nutr. 43 351 (1997))。   The amount of neutral soluble silicic acid is determined at a specified temperature by adding a specified amount of distilled water and a cation exchange resin (Amberlite IRC-76, pK6.1, H type) to a container, shaking and mixing. After acting for a while, the solution was filtered with dry filter paper, and the amount of silicic acid in the liquid was measured (Kato and Owa, Soil Sci. Plant Nutr. 43 351 (1997)).

可溶性石灰含有量は肥料分析法に基づき、所定量のスラグを容器にとり、所定量の0.5mol塩酸溶液を加え、所定時間煮沸させたのち、冷却して水を加えて直ちに乾燥ろ紙でろ過し、液中のカルシウム量を測定して求めた(農林水産省農業環境技術研究所法1992年度版)。   Soluble lime content is based on the fertilizer analysis method, take a predetermined amount of slag in a container, add a predetermined amount of 0.5 mol hydrochloric acid solution, boil for a predetermined time, cool, add water and immediately filter with dry filter paper, It was determined by measuring the amount of calcium in the liquid (Ministry of Agriculture, Forestry and Fisheries, Agricultural Environmental Technology Research Institute Act 1992 version).

Figure 0006119704
Figure 0006119704

表1、表2によれば、塩基度0.8〜1.5で、ク溶性燐酸含有量5mass%以上、可溶性珪酸含有量20mass%以上30mass%以下、可溶性石灰含有量30mass%未満であった。これらのスラグの燐酸質肥料としての特性は、ク溶性燐酸5mass%以上と従来のスラグ(比較例5)に比べて格段に高く、可溶性燐酸も高い。さらに、スラグの珪酸質肥料としての特性は、可溶性珪酸20〜30mass%、可溶性石灰30mass%未満と優れており、珪酸質肥料としての効果を示す中性溶解性珪酸も従来の肥料以上含有することがわかった。   According to Tables 1 and 2, the basicity was 0.8 to 1.5, the soluble phosphoric acid content was 5 mass% or more, the soluble silicic acid content was 20 mass% or more and 30 mass% or less, and the soluble lime content was less than 30 mass%. The characteristics of these slags as phosphate fertilizers are 5 mass% or more of soluble phosphonic acid, which is much higher than conventional slag (Comparative Example 5), and soluble phosphoric acid is also high. Furthermore, the characteristics of slag as siliceous fertilizer is excellent with soluble silicic acid 20-30mass%, soluble lime less than 30mass%, and neutral soluble silicic acid showing the effect as siliceous fertilizer should also contain more than conventional fertilizer I understood.

表2に示すスラグのうち、実施例3、比較例5のスラグ(燐酸珪酸肥料用原料)を用いて、珪酸及び燐酸の植物による吸収量を、コマツナの栽培試験及び水稲の幼植物栽培試験で評価した。コマツナ栽培試験は、各試験区(ポット)に土壌1.5kgを入れ、これに上記肥料用原料をク溶性燐酸添加量が300mgとなるように添加した。比較のため、肥料を添加しない試験区(ポット)を用意した。また、窒素(N)及びカリ(KO)を、それぞれ試薬として各試験区当たり500mg添加した。実験は3連で実施し、25粒播種して25日後のコマツナ地上部の乾燥重量と燐酸の吸収量を測定した。水稲幼植物栽培試験は、各試験区(ポット)に土壌400gを入れ、これに上記肥料用原料をク溶性燐酸添加量が100mgとなるように添加した。比較のため、肥料を添加しない試験区(ポット)を用意した。また、窒素(N)及びカリ(KO)を、それぞれ試薬として各試験区当たり100mg添加した。実験は3連で実施し、50粒播種して16日後の水稲地上部の乾燥重量と形酸の吸収量を測定した。 Of the slags shown in Table 2, using the slag of Example 3 and Comparative Example 5 (phosphoric silicate fertilizer raw material), the amount of silicic acid and phosphoric acid absorbed by the plant was measured in the Komatsuna cultivation test and the paddy rice seedling cultivation test. evaluated. In the Komatsuna cultivation test, 1.5 kg of soil was put in each test section (pot), and the fertilizer raw material was added thereto so that the amount of added soluble phosphoric acid was 300 mg. For comparison, a test section (pot) to which no fertilizer was added was prepared. Further, 500 mg of nitrogen (N) and potassium (K 2 O) were added as a reagent for each test section. The experiment was carried out in triplicate, and the dry weight of the above-ground part of Komatsuna and the absorption amount of phosphoric acid were measured 25 days after seeding 25 grains. In the paddy rice seedling cultivation test, 400 g of soil was put in each test section (pot), and the fertilizer raw material was added thereto so that the amount of added soluble phosphoric acid was 100 mg. For comparison, a test section (pot) to which no fertilizer was added was prepared. Further, 100 mg of nitrogen (N) and potassium (K 2 O) were added as a reagent for each test section. The experiment was carried out in triplicate, and 50 seeds of seeds were sowed and the dry weight of the above-ground part of paddy rice and the absorbed amount of form acid were measured.

得られた結果を表3に示す。   The results obtained are shown in Table 3.

Figure 0006119704
Figure 0006119704

表3より、スラグを使ったコマツナの栽培試験の結果では、実施例3のスラグを施用したポットの植物体の乾燥重量は比較例5のスラグを施用したポットよりも重く、燐酸吸収量も多いことから、実施例3では燐酸質肥料効果が高いスラグが得られていたことが確認された。   From the results of the cultivation test of Komatsuna using slag, the dry weight of the plant body of the pot to which the slag of Example 3 was applied is heavier than the pot to which the slag of Comparative Example 5 was applied, and the amount of phosphoric acid absorbed was higher. From this, it was confirmed in Example 3 that a slag having a high phosphate fertilizer effect was obtained.

さらに、スラグを使った水稲幼植物栽培試験の結果でも、実施例3のスラグを施用したポットの植物体の乾燥重量は比較例5のスラグを施用したポットよりも重く、珪酸吸収量も多いことから、実施例3では珪酸質肥料効果が高いスラグが得られていたことが確認された。   Furthermore, even in the results of the paddy rice seedling cultivation test using slag, the dry weight of the plant body of the pot to which the slag of Example 3 was applied is heavier than that of the pot to which the slag of Comparative Example 5 was applied, and the silicic acid absorption amount was also large. From Example 3, it was confirmed that slag having a high silicic acid fertilizer effect was obtained.

このように脱珪処理後スラグの肥料効果が高いのは、スラグ組成や構成化合物の違いに加え、JIS R 5201(空気透過法)に準拠して測定したスラグの比表面積が実施例3では1036cm2/gと比較例5の848cm2/gに比べて大きいことも、溶解性を向上させている。 As described above, the fertilizer effect of slag after desiliconization treatment is high, in addition to the difference in slag composition and constituent compounds, the specific surface area of slag measured according to JIS R 5201 (air permeation method) is 1036 cm in Example 3. The fact that 2 / g is larger than 848 cm 2 / g of Comparative Example 5 also improves the solubility.

以上より、本発明の燐酸珪酸肥料用原料であるスラグは、燐酸質肥料としても珪酸質肥料としても効果があることが、コマツナならびに水稲の栽培試験で証明された。   From the above, it was proved by the cultivation test of Komatsuna and paddy rice that slag, which is a raw material for phosphosilicate fertilizer of the present invention, is effective as both a phosphate fertilizer and a siliceous fertilizer.

Claims (6)

高炉溶銑の溶銑予備処理で回収されるスラグからなる燐酸珪酸肥料用原料であって、
塩基度(CaO/SiO2)が0.8〜1.5であり、ク溶性燐酸を5mass%以上、可溶性珪酸を20〜30mass%、可溶性石灰を30mass%未満、Al2O3を4.5mass%以下、T-Feを21.4mass%以下含有するスラグからなることを特徴とする燐酸珪酸肥料用原料。
A raw material for phosphosilicate fertilizer consisting of slag recovered by hot metal pretreatment of blast furnace hot metal,
Basicity (CaO / SiO 2) is 0.8 to 1.5, click-soluble phosphoric acid 5 mass% or more, the soluble silicate 20~30Mass%, less soluble lime 30mass%, Al 2 O 3 the 4.5Mass% or less, T- A raw material for phosphosilicate fertilizer, characterized by comprising slag containing 21.4 mass% or less of Fe .
前記スラグは、中性溶解性珪酸を8.0mass%以上含有することを特徴とする請求項に記載の燐酸珪酸肥料用原料。 The raw material for phosphosilicate fertilizer according to claim 1 , wherein the slag contains 8.0 mass% or more of neutral soluble silicic acid. 高炉溶銑の溶銑予備処理で回収されるスラグからなる燐酸珪酸肥料用原料の製造方法であって、
高炉から出銑した溶銑を、脱燐スラグを収容した転炉型容器内に装入し、
次いで、前記転炉型容器内の溶銑および脱燐スラグを、前記転炉型容器とは別の転炉型容器内に装入し、スラグの塩基度を0.8以上1.5以下、溶銑温度を1240℃以上1400℃以下で脱珪処理を終了し、
脱珪処理後のスラグを回収して、塩基度(CaO/SiO2)が0.8以上1.5以下であり、ク溶性燐酸が5mass%以上、可溶性珪酸が20〜30mass%、可溶性石灰が30mass%未満、Al2O3が4.5mass%以下を含有するスラグを得ることを特徴とする燐酸珪酸肥料用原料の製造方法。
A method for producing a raw material for phosphosilicate fertilizer consisting of slag recovered by hot metal pretreatment of blast furnace hot metal,
The hot metal discharged from the blast furnace is charged into a converter type vessel containing dephosphorization slag,
Next, the hot metal and dephosphorization slag in the converter type vessel are charged into a converter type vessel different from the converter type vessel, and the basicity of the slag is 0.8 to 1.5 and the hot metal temperature is 1240 ° C. Desiliconization treatment is completed at 1400 ° C or lower.
The slag after the desiliconization treatment is recovered and the basicity (CaO / SiO 2 ) is 0.8 or more and 1.5 or less, the soluble phosphoric acid is 5 mass% or more, the soluble silicic acid is 20 to 30 mass%, the soluble lime is less than 30 mass%, al 2 O 3 are provided methods for producing the phosphate silicate fertilizer raw material, characterized in that to obtain a slag containing less 4.5mass%.
請求項1または2に記載の燐酸珪酸肥料用原料の製造方法であり、脱珪処理と脱燐処理を同一の転炉型容器内で実施する高炉溶銑の溶銑予備処理で回収されるスラグからなる燐酸珪酸肥料用原料の製造方法であって、
高炉から出銑した溶銑を、脱燐スラグを収容した転炉型容器内に装入し、
次いで、前記転炉型容器内で、スラグの塩基度を0.8以上1.5以下、溶銑温度を1240℃以上1400℃以下で脱珪処理を終了し、
脱珪処理後のスラグを回収して、塩基度(CaO/SiO2)が0.8以上1.5以下であり、ク溶性燐酸が5mass%以上、可溶性珪酸が20〜30mass%、可溶性石灰が30mass%未満、Al2O3が4.5mass%以下、T-Feを21.4mass%以下を含有するスラグを得ることを特徴とする燐酸珪酸肥料用原料の製造方法。
It is a manufacturing method of the raw material for phosphosilicate fertilizers of Claim 1 or 2, Comprising: It consists of slag collect | recovered by the hot metal pretreatment of the blast furnace hot metal which implements a desiliconization process and a dephosphorization process in the same converter type | mold container. A method for producing a raw material for phosphosilicate fertilizer,
The hot metal discharged from the blast furnace is charged into a converter type vessel containing dephosphorization slag,
Next, in the converter type vessel, the slag basicity is 0.8 or more and 1.5 or less, the hot metal temperature is 1240 ° C. or more and 1400 ° C. or less, and the desiliconization treatment is finished.
The slag after the desiliconization treatment is recovered and the basicity (CaO / SiO 2 ) is 0.8 or more and 1.5 or less, the soluble phosphoric acid is 5 mass% or more, the soluble silicic acid is 20 to 30 mass%, the soluble lime is less than 30 mass%, A method for producing a raw material for a phosphosilicate fertilizer, characterized by obtaining a slag containing Al 2 O 3 of 4.5 mass% or less and T-Fe of 21.4 mass% or less .
さらに、燐が付着しているスラグもしくは地金を、脱燐スラグを収容した転炉型容器内に装入することを特徴とする請求項またはに記載の燐酸珪酸肥料用原料の製造方法。 Furthermore, the manufacturing method of the raw material for phosphosilicate fertilizers of Claim 3 or 4 which inserts the slag or bullion with which phosphorus adheres in the converter type | mold container which accommodated the dephosphorization slag. . 前記転炉型容器内に収容した脱燐スラグは、脱燐処理後のスラグの30mass%以上を転炉型容器内に残留させた残留スラグであることを特徴とする請求項のいずれか一項に記載の燐酸珪酸肥料用原料の製造方法。 Dephosphorization slag accommodated in the converter type vessel, any of claims 3-5, characterized in that a residual slag leaving a more 30 mass% of the slag after the dephosphorization in the converter type vessel A method for producing a raw material for phosphosilicate fertilizer according to claim 1.
JP2014185757A 2014-09-12 2014-09-12 Raw material for phosphosilicate fertilizer and method for producing the same Active JP6119704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014185757A JP6119704B2 (en) 2014-09-12 2014-09-12 Raw material for phosphosilicate fertilizer and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014185757A JP6119704B2 (en) 2014-09-12 2014-09-12 Raw material for phosphosilicate fertilizer and method for producing the same

Publications (2)

Publication Number Publication Date
JP2016056075A JP2016056075A (en) 2016-04-21
JP6119704B2 true JP6119704B2 (en) 2017-04-26

Family

ID=55757358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014185757A Active JP6119704B2 (en) 2014-09-12 2014-09-12 Raw material for phosphosilicate fertilizer and method for producing the same

Country Status (1)

Country Link
JP (1) JP6119704B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7263612B1 (en) * 2022-12-22 2023-04-24 デンカ株式会社 Artificial culture medium for mushroom cultivation, medium for mushroom cultivation, artificial mushroom cultivation method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4246782B2 (en) * 2000-01-14 2009-04-02 新日本製鐵株式会社 Manufacturing method of siliceous fertilizer
JP2004137136A (en) * 2001-10-31 2004-05-13 Jfe Steel Kk Raw material for silicate phosphate fertilizer, and its manufacturing method
JP4202254B2 (en) * 2001-10-31 2008-12-24 Jfeスチール株式会社 Production method of raw material for siliceous fertilizer
JP2004161544A (en) * 2002-11-13 2004-06-10 Jfe Steel Kk Method of manufacturing raw material for phosphate fertilizer
JP5105322B2 (en) * 2003-04-28 2012-12-26 Jfeスチール株式会社 Silica phosphate fertilizer raw material and method for producing the same
JP2005060846A (en) * 2004-09-27 2005-03-10 Jfe Steel Kk Method for producing raw material for fertilizer
JP4913023B2 (en) * 2007-11-28 2012-04-11 新日本製鐵株式会社 Slag manufacturing method

Also Published As

Publication number Publication date
JP2016056075A (en) 2016-04-21

Similar Documents

Publication Publication Date Title
CN110079330B (en) Composition for producing soil conditioner, and soil conditioning method
JP4246782B2 (en) Manufacturing method of siliceous fertilizer
JP2014177381A (en) Manufacturing method of slag phosphate fertilizer
KR102182277B1 (en) Steel making slag for fertilizer raw material, method for manufacturing steel slag for fertilizer raw material, fertilizer production method and fertilization method
WO2012016394A1 (en) Silicon-calcium-magnesium-sulfur fertilizer and its preparation method
JP4091745B2 (en) Manufacturing method of siliceous fertilizer
JP5463507B2 (en) PK compound fertilizer used as raw fertilizer for wheat cultivation
CN109180224A (en) A method of faintly acid liquid fertilizer is produced using converter slag
JP4040542B2 (en) Silicic fertilizer
JP6119704B2 (en) Raw material for phosphosilicate fertilizer and method for producing the same
JP2019172548A (en) High phosphorus-containing slag, manufacturing method of slag-based fertilizer, and phosphate fertilizer
KR102189122B1 (en) Steel making slag for fertilizer raw material, method for manufacturing steel slag for fertilizer raw material, fertilizer production method and fertilization method
JPS60127286A (en) Manufacture of slow release fused potassium magnesium silicate fertilizer
JP5105322B2 (en) Silica phosphate fertilizer raw material and method for producing the same
JP2004137136A (en) Raw material for silicate phosphate fertilizer, and its manufacturing method
JPS61155283A (en) Manufacture of fertilizer from slag
JP2018043896A (en) Silicate fertilizer and production method thereof
JP2006306696A (en) Raw material for siliceous fertilizer and method of manufacturing the same
JP6006654B2 (en) Method for producing siliceous fertilizer
WO2017018248A1 (en) Steelmaking slag-coated seed and production method therefor
CN112521220A (en) Metallurgical slag-based soil conditioner special for bamboo shoots and preparation method thereof
CN115885810A (en) Artificial soil and preparation method thereof
JP2013155273A (en) Soil improvement material and soil improvement method
JP2021160957A (en) Steel slag for fertilizer raw material, fertilizer, and method of applying fertilizer
KR20050042021A (en) Raw material for silicate fertilizer and method for production thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170313

R150 Certificate of patent or registration of utility model

Ref document number: 6119704

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250