JP5105322B2 - Silica phosphate fertilizer raw material and method for producing the same - Google Patents

Silica phosphate fertilizer raw material and method for producing the same Download PDF

Info

Publication number
JP5105322B2
JP5105322B2 JP2004055588A JP2004055588A JP5105322B2 JP 5105322 B2 JP5105322 B2 JP 5105322B2 JP 2004055588 A JP2004055588 A JP 2004055588A JP 2004055588 A JP2004055588 A JP 2004055588A JP 5105322 B2 JP5105322 B2 JP 5105322B2
Authority
JP
Japan
Prior art keywords
slag
raw material
silicic acid
phosphate fertilizer
hot metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004055588A
Other languages
Japanese (ja)
Other versions
JP2004345940A (en
Inventor
泰子 八尾
達人 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004055588A priority Critical patent/JP5105322B2/en
Publication of JP2004345940A publication Critical patent/JP2004345940A/en
Application granted granted Critical
Publication of JP5105322B2 publication Critical patent/JP5105322B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Fertilizers (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

本発明は、珪酸燐酸肥料用原料及びその製造方法に関するものである。   The present invention relates to a raw material for silicate phosphate fertilizer and a method for producing the same.

珪酸質肥料は主に水稲に対する珪酸の補給を目的とした肥料であり、一般に可溶性珪酸を10mass%以上含んでおり、水田の土壌保全や老朽水田の土壌改質剤として大量に使用されている。また、近年では珪酸質肥料が植物体を強化し、病虫害にかかり難くする作用が注目されており、水稲のみならず、キュウリ等の野菜にも使用されるようになってきた。
珪酸質肥料は天然資源である珪灰石からも製造されるが、現在では多くの珪酸質肥料が高炉スラグを原料として製造されている。
Silicic fertilizer is a fertilizer mainly for the purpose of replenishing silicic acid to paddy rice, and generally contains 10 mass% or more of soluble silicic acid, and is used in large quantities as a soil conditioner for paddy fields and a soil conditioner for old paddy fields. In recent years, silicic fertilizers have attracted attention for their effects of strengthening plants and making them less susceptible to pest damage, and they have come to be used not only for paddy rice but also for vegetables such as cucumber.
Silicate fertilizers are also produced from wollastonite, which is a natural resource, but at present many siliceous fertilizers are produced using blast furnace slag as a raw material.

近年、農業労働力の不足などから珪酸資材の水田等への施肥が不十分であるという問題や、現在使用されている珪酸質肥料の溶解特性が植物の吸収に適していないという問題が指摘されている。また、水田だけでなく、稲わらの投入量が減少している畑でも珪酸不足の問題が大きくなっている。このようなことから、珪酸の溶解特性が優れ、施肥量が少なくて済む肥料の開発が望まれており、特許文献1には高炉スラグに酸などの溶出促進剤を添加・反応させて可溶性珪酸量を増大させた珪酸質肥料が提案されている。また、この提案によれば、酸のなかでも燐酸が最も効果が大きく、しかも肥効成分としても働くので最も好適であるとしている。
また、特許文献2には、溶銑予備処理によって生じる主として転炉スラグを活用した珪酸質肥料及びその製造方法が提案されている。
In recent years, it has been pointed out that there is a problem that fertilization of paddy fields with silicic acid materials is insufficient due to a shortage of agricultural labor, etc. ing. In addition to paddy fields, the problem of silicic acid deficiency is growing not only in fields where rice straw inputs are decreasing. Therefore, it is desired to develop a fertilizer that has excellent dissolution characteristics of silicic acid and requires a small amount of fertilization. Patent Document 1 discloses soluble silicic acid by adding and reacting an elution promoter such as acid to blast furnace slag. Silicate fertilizers with increased amounts have been proposed. Further, according to this proposal, phosphoric acid is the most effective among the acids, and it is most suitable because it works as a fertilizing component.
Patent Document 2 proposes a siliceous fertilizer mainly utilizing converter slag generated by hot metal pretreatment and a method for producing the same.

特開2000−264768号公報JP 2000-264768 A 特開2001−261471号公報JP 2001-261471 A

しかし、上記特許文献1の技術は高炉スラグを燐酸と反応させるものであるため、スラグとは別に添加剤としての燐酸を用意する必要があるとともに、スラグと燐酸との反応工程が必要であり、このため原材料やエネルギー等の面で製造コストが高いという問題がある。   However, since the technology of Patent Document 1 is to react blast furnace slag with phosphoric acid, it is necessary to prepare phosphoric acid as an additive separately from slag, and a reaction step between slag and phosphoric acid is necessary. For this reason, there is a problem that the manufacturing cost is high in terms of raw materials and energy.

また、上記特許文献2の技術では、利用するスラグの塩基度が1.5〜3.0と高いため、珪酸の溶解性には優れるもののアルカリ分を多く含有する肥料となる。したがって、この珪酸質肥料を使用した場合には、土壌に対して珪酸とともに多量のアルカリ資材も投入されることになる。わが国の農地は元々酸性土壌が多く、このため上記のようなアルカリ分の多い珪酸質肥料を使用することは土壌改良の目的にも沿うものであった。しかしながら、昨今、珪酸質肥料を初めとする肥料の施用量の増加に伴い酸性土壌の問題は減少しており、このため従来使用されてきたようなアルカリ分の多い珪酸質肥料に代わって、アルカリ分の少ない肥料が求められている。また、最近では、ハウス野菜の畑などにおける珪酸不足が深刻な問題になりつつあるが、このような畑でのアルカリ分の高い珪酸質資材の使用は土壌pHを上昇させることになるため、そのような資材の使用は難しい。したがって、上記特許文献2の珪酸肥料は以上のような要求に十分応え得るものではない。また、近年、農業従事者の高齢化や減少に伴い農作業の省力化が求められており、肥料についても珪酸と燐酸を同一資材で投入して施肥作業できるようなものが望まれている。   Moreover, in the technique of the said patent document 2, since the basicity of the slag to utilize is as high as 1.5-3.0, it becomes a fertilizer containing many alkalis although it is excellent in the solubility of a silicic acid. Accordingly, when this siliceous fertilizer is used, a large amount of alkaline material is also introduced into the soil together with silicic acid. Japan's farmland originally has a lot of acidic soil, so the use of silicic fertilizers with high alkalinity as described above was in line with the purpose of soil improvement. Recently, however, the problem of acidic soil has decreased with the increase in the amount of fertilizers including siliceous fertilizers. For this reason, instead of silicic fertilizers with a high alkali content like those conventionally used, Fertilizers with less minutes are needed. Recently, silicic acid deficiency is becoming a serious problem in house vegetable fields, but the use of siliceous materials with high alkalinity in such fields increases the soil pH. It is difficult to use such materials. Therefore, the silicic acid fertilizer of the said patent document 2 cannot fully respond to the above requirements. Further, in recent years, with the aging and decrease in the number of farmers, there has been a demand for labor saving in farm work, and it is desired that fertilizer can be fertilized by adding silicic acid and phosphoric acid with the same material.

したがって、本発明の目的は、珪酸の溶解性が優れるとともにアルカリ分が少なく、また肥効成分となる適量の燐酸を含み、しかも安価に製造することができる珪酸燐酸肥料用原料及びその製造方法を提供することにある。
また、本発明の他の目的は、作物の珪酸と燐酸の吸収量に対応した最適な組成を有し、作物に必要な珪酸と燐酸を同時に施肥することが可能な珪酸燐酸肥料用原料を提供することにある。
また、本発明の他の目的は、上記珪酸燐酸肥料用原料から得られる珪酸燐酸肥料及びその製造方法を提供することにある。
Accordingly, an object of the present invention is to provide a raw material for silicate phosphate fertilizer and a method for producing the same, which has an excellent solubility in silicic acid, has a low alkali content, contains an appropriate amount of phosphoric acid as a fertilizing ingredient, and can be produced at low cost. It is to provide.
In addition, another object of the present invention is to provide a raw material for a silicate phosphate fertilizer having an optimum composition corresponding to the amount of silicic acid and phosphoric acid absorbed by a crop and capable of simultaneously fertilizing the silicic acid and phosphoric acid necessary for the crop. There is to do.
Another object of the present invention is to provide a silicate phosphate fertilizer obtained from the raw material for silicate phosphate fertilizer and a method for producing the same.

本発明者らは肥料の組成及び製造コストの面で上記の要求にかなう珪酸燐酸肥料用原料について検討を重ね、その結果、高炉溶銑の溶銑予備処理工程で回収される特定の塩基度を有するスラグが原料として極めて好適であり、特殊な処理を加えることなくそのまま珪酸燐酸肥料用原料として利用でき、しかも肥料として優れた特性を有することを見い出した。また、そのようなスラグによれば、植物による珪酸と燐酸の吸収量に適合した好適な組成の肥料用原料を容易に得ることができることも判った。   The present inventors have repeatedly studied raw materials for silicic acid phosphate fertilizer that meet the above requirements in terms of fertilizer composition and production cost, and as a result, slag having specific basicity recovered in the hot metal pretreatment process of blast furnace hot metal. Has been found to be extremely suitable as a raw material, can be used as it is as a raw material for silicate fertilizer without any special treatment, and has excellent properties as a fertilizer. It has also been found that such slag can easily provide a fertilizer raw material having a suitable composition suitable for the amount of silicic acid and phosphoric acid absorbed by plants.

本発明はこのような知見に基づきなされたもので、その特徴は以下の通りである。
[1]高炉溶銑の溶銑予備処理における脱燐処理工程で回収される溶銑脱燐スラグであって、溶銑中の珪素の酸化物である珪酸と燐の酸化物である燐酸とを含み、塩基度(CaO/SiO)が1.0以上、1.4以下で、且つ可溶性珪酸を10mass%以上含有し、ク溶性燐酸を2mass%以上含有するスラグからなることを特徴とする珪酸燐酸肥料用原料。
The present invention has been made based on such findings, and the features thereof are as follows.
[1] Hot metal dephosphorization slag recovered in the dephosphorization process in the hot metal pretreatment of blast furnace hot metal, including silicic acid which is an oxide of silicon and phosphoric acid which is an oxide of phosphorus, in the basicity (CaO / SiO 2 ) 1.0 or more and 1.4 or less, 10% by mass or more of soluble silicic acid, and 2% by mass or more of soluble phosphonic acid, and a raw material for silicic acid phosphate fertilizer .

[2]上記[1]の珪酸燐酸肥料用原料において、スラグ中のク溶性燐酸(C−P)と可溶性珪酸(S−SiO)の質量比[C−P/S−SiO]が0.1〜0.8であることを特徴とする珪酸燐酸肥料用原料。
[3]上記[1]又は[2]の珪酸燐酸肥料用原料において、スラグ中の可溶性CaOの含有量が30mass%以下であることを特徴とする珪酸燐酸肥料用原料。
[4]上記[1]〜[3]のいずれかの珪酸燐酸肥料用原料において、スラグが実質的にフッ素を含まないスラグであることを特徴とする珪酸燐酸肥料用原料。
[2] In the raw material for silicic acid phosphoric acid fertilizer of [1 ] above, a mass ratio [C—P 2 O 5 / S of slag soluble phosphoric acid (C—P 2 O 5 ) and soluble silicic acid (S—SiO 2 ) in slag silicic acid fertilizer raw material, characterized in that -SiO 2] is 0.1 to 0.8.
[3] The raw material for silicate phosphate fertilizer according to [1] or [2], wherein the content of soluble CaO in the slag is 30 mass% or less.
[4] The silicate phosphate fertilizer raw material according to any one of [1] to [3 ] above, wherein the slag is slag substantially free of fluorine.

[5]上記[1]〜[4]のいずれかの珪酸燐酸肥料用原料からなる又は該珪酸燐酸肥料用原料を主原料としたことを特徴とする珪酸燐酸肥料。
[6]上記[5]の珪酸燐酸肥料において、珪酸燐酸肥料用原料が破砕処理及び/又は整粒されたものであることを特徴とする珪酸燐酸肥料。
[7]上記[5]又は[6]の珪酸燐酸肥料において、珪酸燐酸肥料用原料にバインダーを添加して造粒することにより得られた造粒物であることを特徴とする珪酸燐酸肥料。
[8]高炉溶銑の溶銑予備処理における脱燐処理工程において、溶銑にCaO源と酸素源を添加して溶銑中の珪素の酸化反応と溶銑の脱燐反応を生じさせ、該反応で生成した珪酸と燐酸を含む溶銑脱燐スラグを回収して固化させることにより、珪酸と燐酸を含み、塩基度(CaO/SiO)が1.0以上、1.4以下で、且つ可溶性珪酸を10mass%以上含有し、ク溶性燐酸を2mass%以上含有するスラグを得ることを特徴とする珪酸燐酸肥料用原料の製造方法。
[5] A silicate phosphate fertilizer comprising the material for silicate phosphate fertilizer according to any one of [1] to [4 ] above, or using the material for silicate phosphate fertilizer as a main material.
[6] The silicate phosphate fertilizer according to [5 ] above, wherein the silicate phosphate fertilizer raw material is crushed and / or sized.
[7] A silicate phosphate fertilizer according to the above [5] or [6] , wherein the silicate phosphate fertilizer is a granulated product obtained by adding a binder to a silicate phosphate fertilizer raw material and granulating.
[8] In the dephosphorization process in the hot metal pretreatment of the blast furnace hot metal, a CaO source and an oxygen source are added to the hot metal to cause an oxidation reaction of silicon in the hot metal and a dephosphorization reaction of the hot metal. By recovering and solidifying the hot metal dephosphorization slag containing phosphoric acid, it contains silicic acid and phosphoric acid, the basicity (CaO / SiO 2 ) is 1.0 or more and 1.4 or less, and the soluble silicic acid is 10 mass% or more. The manufacturing method of the raw material for silicic acid phosphoric acid fertilizers characterized by obtaining the slag containing 2 mass% or more of soluble phosphonic acid .

[9]上記[8]の製造方法において、溶銑予備処理における脱燐処理工程において溶銑にCaO源を添加するとともに、その添加量を調整することで回収するスラグの塩基度(CaO/SiO)を調整することを特徴とする珪酸燐酸肥料用原料の製造方法。
[10]上記[8]又は[9]の製造方法で得られた珪酸燐酸肥料用原料を用いて珪酸燐酸肥料を製造することを特徴とする珪酸燐酸肥料の製造方法。
[11]上記[10]の製造方法において、珪酸燐酸肥料用原料を破砕処理及び/又は整粒する工程を有することを特徴とする珪酸燐酸肥料の製造方法。
[12]上記[10]又は[11]の製造方法において、珪酸燐酸肥料用原料にバインダーを添加して造粒する工程を有することを特徴とする珪酸燐酸肥料の製造方法。
[9] In the production method of [8] , the basicity of the slag recovered by adding a CaO source to the hot metal in the dephosphorization process in the hot metal pretreatment and adjusting the addition amount (CaO / SiO 2 ) The manufacturing method of the raw material for silicic acid phosphoric acid fertilizer characterized by adjusting this.
[10] A method for producing a silicate phosphate fertilizer, comprising producing a silicate phosphate fertilizer using the raw material for a silicate phosphate fertilizer obtained by the production method of [8] or [9 ] above.
[11] The method for producing silicate phosphate fertilizer according to [10] , further comprising a step of crushing and / or sizing the raw material for silicate phosphate fertilizer.
[12] The method for producing silicate phosphate fertilizer according to the above [10] or [11] , further comprising a step of granulating by adding a binder to the raw material for silicate phosphate fertilizer.

本発明の珪酸燐酸肥料用原料は、珪酸の溶解性が優れ且つ肥効成分となる適量の燐酸を含むため優れた肥料特性を有するとともに、アルカリ分が少ないため、酸性土壌が減少しつつあるわが国の農地に非常に好適且つ有用な肥料を得ることができる。しかも溶銑予備処理で回収したスラグをそのまま利用できるため、極めて安価に製造することできる。
また、請求項3に係る珪酸燐酸肥料用原料は、作物の珪酸と燐酸の吸収量に対応した最適な組成を有するため、農地に対して作物に必要とされる珪酸と燐酸を同時に投入することができ、施肥の省力化を図ることができる。
また、本発明の製造方法によれば、このような優れた特性を有する珪酸燐酸肥料用原料を安定的に且つ安価に製造することができる。
The raw material for silicic acid phosphoric acid fertilizer of the present invention has excellent fertilizer characteristics because it contains an appropriate amount of phosphoric acid that is excellent in solubility of silicic acid and is a fertilizer component, and has low alkalinity, so that acid soil is decreasing in Japan It is possible to obtain a fertilizer that is very suitable and useful for the farmland. Moreover, since the slag collected in the hot metal preliminary treatment can be used as it is, it can be manufactured at a very low cost.
In addition, since the raw material for silicic acid phosphoric acid fertilizer according to claim 3 has an optimal composition corresponding to the amount of silicic acid and phosphoric acid absorbed by the crop, the silicic acid and phosphoric acid required for the crop are simultaneously added to the farmland. It is possible to save labor for fertilization.
Further, according to the production method of the present invention, the raw material for silicate phosphate fertilizer having such excellent characteristics can be produced stably and inexpensively.

以下、本発明の珪酸燐酸肥料用原料及びその製造方法の詳細と好ましい実施形態について説明するとともに、その珪酸燐酸肥料用原料から得られる珪酸燐酸肥料及びその製造方法についても説明する。
本発明の珪酸燐酸肥料用原料は、高炉溶銑の溶銑予備処理工程で回収されるスラグであって、溶銑中の珪素の酸化物である珪酸と燐の酸化物である燐酸とを含み、且つ可溶性珪酸を10mass%以上含有するスラグからなるものである。ここで、本発明において可溶性珪酸並びに可溶性CaO(石灰)とは0.5molの塩酸溶液に可溶な珪酸並びにCaO(石灰)を指し、またク溶性燐酸とは2%クエン酸溶液(pH2)可溶分の燐酸を指す。なお、分析法は肥料分析法(農林水産省農業環境技術研究所法)に従う。
Hereinafter, the details and preferred embodiments of the raw material for silicate phosphate fertilizer and the production method thereof according to the present invention will be described, and the silicate phosphate fertilizer obtained from the raw material for silicate phosphate fertilizer and the production method thereof will also be described.
The raw material for silicic acid phosphate fertilizer of the present invention is slag recovered in the hot metal pretreatment process of the blast furnace hot metal, and includes silicic acid which is an oxide of silicon in the hot metal and phosphoric acid which is an oxide of phosphorus, and is soluble. It consists of slag containing 10 mass% or more of silicic acid. Here, in the present invention, soluble silicic acid and soluble CaO (lime) refer to silicic acid and CaO (lime) soluble in 0.5 mol hydrochloric acid solution, and soluble phosphoric acid is 2% citric acid solution (pH 2) possible. It refers to the phosphoric acid in solution. The analysis method follows the fertilizer analysis method (Ministry of Agriculture, Forestry and Fisheries, Agricultural Environment Technology Laboratory Method).

上記のようなスラグとしては、特に高炉溶銑の脱燐処理工程で回収される溶銑脱燐スラグが好ましい。この溶銑脱燐スラグは、通常可溶性珪酸を10mass%以上含有するとともに、適量の燐酸(通常、ク溶性燐酸:2mass%以上)を含有し、さらにカルシウム、鉄分(通常、T.Fe:1.5mass%以上)なども含有している。このため燐酸が珪酸の多量体を切断してク溶性燐酸珪酸化合物、例えば、シリコカーノタイト(5CaO・P・SiO)やナーゲルシュミタイト(7CaO・P・2SiO)が生成して珪酸の溶解特性を高めるとともに、燐酸、カルシウム、マグネシウム、マンガン、鉄分が肥効成分として働き、珪酸燐酸肥料として優れた効果を発揮する。また、スラグに従来技術のような特別な処理を加えなくても、溶銑予備処理工程で回収されるスラグをそのまま珪酸燐酸肥料用原料とすることができるため、低コストで製造できる。 As the slag as described above, hot metal dephosphorization slag recovered in the dephosphorization process of the blast furnace hot metal is particularly preferable. This hot metal dephosphorization slag usually contains 10 mass% or more of soluble silicic acid, and contains an appropriate amount of phosphoric acid (usually soluble phosphoric acid: 2 mass% or more), and further contains calcium and iron (usually T.Fe: 1.5 mass). % Or more). For this reason, phosphoric acid cuts a multimer of silicic acid, so that a soluble phosphosilicate compound such as silicocarnotite (5CaO · P 2 O 5 · SiO 2 ) or Nagelschmitite (7CaO · P 2 O 5 · 2SiO 2 ) is obtained. It produces and enhances the solubility characteristics of silicic acid, and phosphoric acid, calcium, magnesium, manganese, and iron act as fertilizing components, and exhibits excellent effects as a silicic acid phosphoric acid fertilizer. Moreover, since the slag collect | recovered at a hot metal preliminary treatment process can be made into the raw material for silicate phosphoric acid fertilizers as it is, even if it does not add a special process like a prior art to slag, it can manufacture at low cost.

珪酸燐酸肥料用原料となるスラグは、可溶性珪酸を10mass%以上、好ましくは20mass%以上含有するものを用いる。また、このスラグは珪酸の溶解特性を高め且つ燐酸による肥効を得るためク溶性燐酸を2mass%以上、好ましくは3mass%以上含有することが望ましい。通常、溶銑脱燐スラグは珪酸及び燐酸を含有し、且つ珪酸の可溶率及び燐酸のク溶率ともに70%以上あるため、可溶性珪酸を10mass%以上、ク溶性燐酸を2mass%以上含有し、肥料として優れた溶解特性を有している。   The slag used as a raw material for silicic acid phosphoric acid fertilizer uses what contains soluble silicic acid 10 mass% or more, preferably 20 mass% or more. Further, it is desirable that this slag contains 2 mass% or more, preferably 3 mass% or more of soluble phosphonic acid in order to enhance the dissolution characteristics of silicic acid and obtain the fertilization effect by phosphoric acid. Usually, the hot metal dephosphorization slag contains silicic acid and phosphoric acid, and both the solubility of silicic acid and the solubility of phosphoric acid are 70% or more. Therefore, the soluble silicic acid is contained by 10 mass% or more, and the soluble silica is contained by 2 mass% or more. It has excellent dissolution properties as a fertilizer.

上述のように珪酸燐酸肥料用原料となるスラグは可溶性珪酸の含有量が高いことが好ましいが、本発明者らによる検討の結果、可溶性珪酸の含有量を高め、且つアルカリ分の溶解量を抑制する上で、スラグ(特に、溶銑脱燐スラグ)の塩基度(CaO/SiO)に最適な条件が存在することが判った(以下、「塩基度」と記載した場合にはCaO/SiO(質量比)を意味するものとする)。 As described above, it is preferable that the slag used as a raw material for silicate phosphate fertilizer has a high content of soluble silicic acid. However, as a result of studies by the present inventors, the content of soluble silicic acid is increased and the amount of dissolved alkali is suppressed. Therefore, it was found that there is an optimum condition for the basicity (CaO / SiO 2 ) of slag (particularly hot metal dephosphorization slag) (hereinafter referred to as CaO / SiO 2 when “basicity” is described). (Mass ratio)).

図1のX(●:塩酸可溶性)は高炉溶銑の脱燐処理工程で回収された種々の塩基度を有するスラグについて、塩基度と珪酸可溶率(=(可溶性珪酸量/全珪酸量)×100)との関係を調べた結果である。また、図2のX(●:塩酸可溶性)は図1の結果をスラグ中の可溶性珪酸含有量で整理して示したものである。これによれば、全体としてスラグ塩基度が高くなると珪酸可溶率が高くなる。これは、スラグ中の石灰分が珪酸ネットワークを切断して珪酸の溶解性を増すためであり、スラグ塩基度1.0で約80%、スラグ塩基度1.3でほぼ100%の珪酸溶解率が得られている。一方、スラグ塩基度が高くなるとスラグに含有される全珪酸量が減少するため、可溶性珪酸含有量は減少する傾向があるが、スラグ塩基度が0.7以上の範囲では、可溶性珪酸を10mass%以上含有させることが可能である。さらに、スラグ塩基度を0.9〜1.5の範囲に調整することで、可溶性珪酸の含有量が20mass%を超え、珪酸燐酸肥料としてより有用なものとなる。 In FIG. 1, X 1 (●: hydrochloric acid soluble) is the basicity and silicic acid solubility (= (soluble silicic acid amount / total silicic acid amount)) of slag having various basicities recovered in the dephosphorization process of the blast furnace hot metal. It is the result of investigating the relationship with x100). Further, X 2 (●: hydrochloric acid soluble) in FIG. 2 shows the results of FIG. 1 sorted by the soluble silicic acid content in the slag. According to this, the silicic acid solubility increases as the slag basicity increases as a whole. This is because the lime content in the slag cuts the silicic acid network to increase the solubility of the silicic acid. The silicic acid dissolution rate is about 80% when the slag basicity is 1.0 and almost 100% when the slag basicity is 1.3. Is obtained. On the other hand, when the slag basicity increases, the total silicic acid content contained in the slag decreases, so that the soluble silicic acid content tends to decrease. However, when the slag basicity is 0.7 or more, the soluble silicic acid content is 10 mass%. It can be contained above. Furthermore, by adjusting the slag basicity to a range of 0.9 to 1.5, the content of soluble silicic acid exceeds 20 mass%, and the silicate phosphate fertilizer becomes more useful.

スラグ塩基度と珪酸可溶率及び可溶性珪酸含有量との関係は図1及び図2に示すとおりであり、スラグ塩基度が1.0未満でも所望の珪酸可溶率と可溶性珪酸含有量が確保できる塩基度の範囲はあるが、溶銑脱燐スラグが得られる溶銑脱燐工程での脱燐効率の観点からは、スラグ塩基度が1.0未満では十分な脱燐効率が得られず、その結果、ク溶性燐酸含有量が低下してしまう。したがって、以上述べたような珪酸の溶解性、可溶性珪酸含有量及びク溶性燐酸含有量の観点から、本発明ではスラグ塩基度の下限を1.0とする。   The relationship between slag basicity, silicic acid solubility and soluble silicic acid content is as shown in FIG. 1 and FIG. 2, and the desired silicic acid solubility and soluble silicic acid content are ensured even when the slag basicity is less than 1.0. Although there is a range of basicity that can be obtained, from the viewpoint of dephosphorization efficiency in the hot metal dephosphorization process in which hot metal dephosphorization slag is obtained, if the slag basicity is less than 1.0, sufficient dephosphorization efficiency cannot be obtained. As a result, the soluble phosphoric acid content is reduced. Therefore, in the present invention, the lower limit of slag basicity is set to 1.0 from the viewpoint of the solubility of silicic acid, the content of soluble silicic acid and the content of soluble phosphoric acid.

一方、可溶性珪酸は0.5mol塩酸溶液という強酸性の環境下での溶解性を測定する肥料公定分析法に基づいた評価方法であるが、実際の多くの土壌はpH7程度の中性環境下であるために、植物に利用されやすい珪酸の形態として、上述した可溶性珪酸の含有量に加えて、pH7付近での珪酸の溶解性も重要である。   On the other hand, soluble silicic acid is an evaluation method based on the official analysis method of fertilizer that measures the solubility in a strongly acidic environment of 0.5 mol hydrochloric acid solution, but many actual soils are in a neutral environment of about pH 7. Therefore, as a form of silicic acid that can be easily used by plants, the solubility of silicic acid near pH 7 is also important in addition to the content of soluble silicic acid described above.

図1のY(○:燐酸緩衝液溶解性)は、高炉溶銑の脱燐処理工程で回収された種々の塩基度を有するスラグについて、塩基度と燐酸緩衝液中珪酸溶解率(=(燐酸緩衝液中可溶性珪酸量/全珪酸量)×100)との関係を調べた結果である。また、図2のY(○:燐酸緩衝液溶解性)は図1の結果をスラグ中の燐酸緩衝液中可溶性珪酸量で整理して示したものである。これによれば0.02M燐酸緩衝液(pH7)中での珪酸溶解率は、塩基度が大きくなるに従って増加し、珪酸は中性領域でも溶解するようになる。 Y 1 (◯: phosphate buffer solubility) in FIG. 1 shows basicity and solubility of silicic acid in phosphate buffer (= (phosphoric acid) for slag having various basicities recovered in the dephosphorization process of blast furnace hot metal. It is the result of investigating the relationship between soluble silicic acid amount in buffer solution / total silicic acid amount) × 100). Further, the Y 2 Fig 2 (○: phosphate buffer solubility) shows organize with phosphate buffer in the soluble silicate content in the slag results in Figure 1. According to this, the solubility of silicic acid in 0.02M phosphate buffer (pH 7) increases as the basicity increases, and silicic acid is dissolved even in the neutral region.

しかしながら、塩基度が高くなって珪酸が溶解しやすくなると、これに伴ってアルカリ分も溶解しやすくなることが判った。図3は、高炉溶銑の脱燐処理工程で回収された種々の塩基度を有するスラグを0.02M燐酸緩衝液(pH7)中で溶解させた場合において、スラグ塩基度と溶解後の燐酸緩衝液pHとの関係を調べた結果を示したものである。この調査の結果、pH7の燐酸緩衝液で珪酸燐酸肥料を溶解した後の溶液pHは、塩基度1.5以上のスラグを溶解させた場合に急激に上昇し、pH8.0を超えることが明らかになった。このことから、さきに述べたように酸性土壌があまり多くなく、アルカリ分の投入を控える必要がある現状の農業においては、塩基度1.5以上のスラグは肥料用原料として適していないことになる。このため本発明ではスラグ塩基度を1.5未満とするものであり、これによってアルカリ分の少ない肥料を得ることができる。また、図3の結果からして、スラグ塩基度のより好ましい上限は1.4、特に好ましくは1.3である。   However, it has been found that when the basicity is increased and the silicic acid is easily dissolved, the alkali is easily dissolved. FIG. 3 shows slag basicity and phosphate buffer solution after dissolution when slag having various basicities recovered in the dephosphorization process of blast furnace hot metal was dissolved in 0.02M phosphate buffer solution (pH 7). The result of having investigated the relationship with pH is shown. As a result of this investigation, it is clear that the solution pH after dissolving silicate phosphate fertilizer with pH 7 phosphate buffer increases rapidly when slag having a basicity of 1.5 or more is dissolved and exceeds pH 8.0. Became. For this reason, as mentioned earlier, there is not much acid soil, and in current agriculture where it is necessary to refrain from adding alkali, slag with a basicity of 1.5 or more is not suitable as a fertilizer raw material. Become. For this reason, in this invention, slag basicity shall be less than 1.5, and the fertilizer with few alkali contents can be obtained by this. From the results of FIG. 3, the upper limit of the slag basicity is more preferably 1.4, particularly preferably 1.3.

次に、珪酸燐酸肥料用原料中における珪酸と燐酸の含有割合について説明する。一般に、珪酸質肥料の施用量は、窒素、燐酸、加里など他の肥料の施用量に比べて多い。これは、珪酸質肥料が用いられるのは、水稲などのように珪酸吸収量が大きい作物が多いためである。ここで、作物の肥料成分吸収量に基づく一般的な肥料設計では、珪酸質肥料は可溶性珪酸(S−SiO)として1kg/a〜8kg/a程度を施用するのに対して、燐酸肥料はク溶性燐酸(C−P)として0.8kg/a程度の施用で十分である。したがって、同一肥料中に含有されるク溶性燐酸(C−P)と可溶性珪酸(S−SiO)の質量比[C−P/S−SiO]を0.1〜0.8の範囲に調整することで、燐酸と珪酸を同一肥料で投入することができ、省力化農業に適した肥料とすることができる。このため本発明の珪酸燐酸肥料用原料は、スラグ中のク溶性燐酸(C−P)と可溶性珪酸(S−SiO)との質量比[C−P/S−SiO]を0.1〜0.8の範囲に調整することが好ましい。このような質量比[C−P/S−SiO]に調整するには、塩基度を1.0以上、1.5未満の範囲においてなるべく高めにし、溶銑の脱燐効率を高めることが有効である。 Next, the content ratio of silicic acid and phosphoric acid in the raw material for silicic acid phosphoric acid fertilizer will be described. In general, the amount of siliceous fertilizer applied is higher than that of other fertilizers such as nitrogen, phosphoric acid and potassium. This is because silicic fertilizer is used because there are many crops with large silicic acid absorption such as paddy rice. Here, in a general fertilizer design based on the amount of fertilizer components absorbed by crops, siliceous fertilizers apply about 1 kg / a to 8 kg / a as soluble silicic acid (S-SiO 2 ), whereas phosphate fertilizers Application of about 0.8 kg / a is sufficient as soluble phosphoric acid (C—P 2 O 5 ). Therefore, the mass ratio [C—P 2 O 5 / S—SiO 2 ] of soluble phosphonic acid (C—P 2 O 5 ) and soluble silicic acid (S—SiO 2 ) contained in the same fertilizer is 0.1 to By adjusting to the range of 0.8, phosphoric acid and silicic acid can be input with the same fertilizer, and a fertilizer suitable for labor-saving agriculture can be obtained. Silicic acid fertilizer raw material Thus the present invention, the weight ratio of the click-soluble phosphate in the slag and (C-P 2 O 5) soluble silicate (S-SiO 2) [C -P 2 O 5 / S-SiO 2 ] is preferably adjusted to a range of 0.1 to 0.8. In order to adjust to such a mass ratio [C—P 2 O 5 / S—SiO 2 ], the basicity is increased as much as possible in the range of 1.0 or more and less than 1.5 to increase the dephosphorization efficiency of the hot metal. It is effective.

上記のような作物の肥料成分吸収量に基づく肥料中成分の好適な割合からして、肥料用原料が可溶性珪酸を10mass%含有する場合には、ク溶性燐酸は1〜8mass%含有すればよく、また、可溶性珪酸を20mass%含有する場合には、ク溶性燐酸は2〜16mass%含有すればよいことになる。ク溶性燐酸の含有量が1mass%未満であると燐酸不足による障害が出る可能性があり、一方、16mass%を超えると過剰施用になり、施用量に見合う効果が期待できない。   From the suitable ratio of the fertilizer components based on the amount of fertilizer components absorbed by the crops as described above, when the fertilizer raw material contains 10 mass% of soluble silicic acid, it is sufficient to contain 1-8 mass% of soluble phosphoric acid. In addition, when 20 mass% of soluble silicic acid is contained, 2 to 16 mass% of soluble phosphoric acid may be contained. When the content of the soluble phosphoric acid is less than 1 mass%, there may be a failure due to lack of phosphoric acid. On the other hand, when the content exceeds 16 mass%, excessive application occurs and an effect commensurate with the application rate cannot be expected.

また、スラグ塩基度が1.0以上、好ましくは1.1以上のものは冷却時に粉化(崩壊)しやすく、肥料にする際の粉砕処理を軽減又は省略できるという利点がある。これはスラグ成分中の2CaO・SiO(ダイカルシウムシリケート)が冷却の際に変態によって体積膨張し、これによりスラグが粉化するためである。したがって、この点においても、本発明の肥料用原料は肥料化の製造コストが少なくて済む利点がある。 In addition, those having a slag basicity of 1.0 or more, preferably 1.1 or more, are easy to be pulverized (collapsed) during cooling, and have the advantage that the pulverization treatment for fertilizer can be reduced or omitted. This is because 2CaO.SiO 2 (dicalcium silicate) in the slag component undergoes volume expansion due to transformation during cooling, thereby slag is pulverized. Therefore, also in this respect, the fertilizer raw material of the present invention has an advantage that the production cost for fertilizer can be reduced.

図4は、スラグ塩基度と冷却時の粉化性(粉化指数)との関係を示したもので、粉化指数とは、冷却後のスラグを65mmの篩を通したときの5mm以下の粒の割合(mass%)を示している。図4によれば、スラグ塩基度が1.0以上、特に1.1以上の範囲において高い粉化指数が得られている。一方、スラグ塩基度が1.0未満では2CaO・SiO以外の化合物の生成量が多くなり、2CaO・SiOの割合が減少するため粉化性は低下する。 FIG. 4 shows the relationship between the slag basicity and the pulverization property (pulverization index) during cooling. The pulverization index is 5 mm or less when the slag after cooling is passed through a 65 mm sieve. The ratio of grains (mass%) is shown. According to FIG. 4, a high pulverization index is obtained when the slag basicity is 1.0 or more, particularly 1.1 or more. On the other hand, when the slag basicity is less than 1.0, the amount of compounds other than 2CaO · SiO 2 is increased, and the proportion of 2CaO · SiO 2 is decreased, so that the powdering property is lowered.

次に、スラグ中に含まれる他の成分に関する好ましい条件について説明する。
従来一般に行われている脱燐処理ではCaOの滓化を促進するため脱燐剤の一部としてCaF(ホタル石)が添加されているが、このCaFの添加によりスラグ中のフッ素濃度が高まると1mass%のFに対して約11mass%のPがアパタイトとして固定されることになり、ク溶性(クエン酸可溶性)の燐酸濃度が低下し、珪酸燐酸肥料としての役割を果たせなくなるという問題がある。このため溶銑脱燐スラグはF含有量が可能な限り少ないことが望ましく、好ましくは実質的にFを含まない(すなわち、不可避的不純物として含まれるFを除き、脱燐剤に由来するFを含まない)ことが望ましい。溶銑脱燐スラグが実質的にFを含まない場合、不溶性化合物であるフッ素アパタイト(Ca(POF)が少なく且つリン酸カルシウム、シリコカーノタイト(5CaO・P・SiO)又はナーゲルシュミタイト(7CaO・P・2SiO)が増加するので、ク溶性燐酸の割合が高まることになる。
Next, the preferable conditions regarding the other component contained in slag are demonstrated.
In the conventional dephosphorization treatment, CaF 2 (fluorite) is added as a part of the dephosphorization agent in order to promote the hatching of CaO, but the addition of CaF 2 reduces the fluorine concentration in the slag. When increased, about 11 mass% of P 2 O 5 is fixed as apatite with respect to 1 mass% of F, so that the concentration of phosphoric acid soluble in citric acid (soluble in citric acid) is lowered and can no longer serve as a silicate phosphate fertilizer. There is a problem. Therefore, it is desirable that the hot metal dephosphorization slag has as little F content as possible, and preferably contains substantially no F (that is, contains F derived from the dephosphorization agent except for F contained as an inevitable impurity). Is not desirable). When the hot metal dephosphorization slag does not substantially contain F, the amount of insoluble compound fluorapatite (Ca 5 (PO 4 ) 3 F) is small and calcium phosphate, silicocarnotite (5CaO · P 2 O 5 · SiO 2 ) or Since Nagelschmitite (7CaO · P 2 O 5 · 2SiO 2 ) increases, the ratio of soluble phosphoric acid increases.

したがって、溶銑脱燐スラグが得られる脱燐処理では、CaFを実質的に含まないCaOを主体とした脱燐剤(但し、不可避的不純物として少量のFが含まれることは妨げない)のみを使用することが好ましく、これにより得られる脱燐スラグは珪酸とともに燐酸を含有し、且つ実質的にFを含有しないことにより燐酸の溶解特性が極めて優れたものとなる。
なお、以上述べたFに関する好ましい条件は、溶銑脱燐スラグ以外のスラグを用いる場合も同様である。
脱燐処理において脱燐剤として添加されるCaOは、アルカリ分としての肥料成分である。しかし、先に述べたように昨今ではアルカリ分の少ない珪酸質肥料が求められているため、可溶性CaO含有量を少なくすることが求められている。したがって、珪酸の溶解性を向上させる可溶性CaO量は30mass%以下とすることが好ましい。一方、可溶性CaO量の下限は、スラグ中のSiO含有量とスラグ塩基度との関係からして10mass%程度となる。
Therefore, in the dephosphorization treatment for obtaining hot metal dephosphorization slag, only a dephosphorization agent mainly composed of CaO substantially free of CaF 2 (however, it does not prevent a small amount of F from being included as an unavoidable impurity). Preferably, the dephosphorization slag obtained thereby contains phosphoric acid together with silicic acid, and is substantially free of F, so that the solubility of phosphoric acid is extremely excellent.
In addition, the preferable conditions regarding F mentioned above are the same also when using slag other than hot metal dephosphorization slag.
CaO added as a dephosphorizing agent in the dephosphorization treatment is a fertilizer component as an alkali component. However, as described above, since silicic fertilizers with a low alkali content are demanded recently, it is demanded to reduce the content of soluble CaO. Therefore, the amount of soluble CaO that improves the solubility of silicic acid is preferably 30 mass% or less. On the other hand, the lower limit of the soluble CaO amount is about 10 mass% based on the relationship between the SiO 2 content in the slag and the slag basicity.

スラグに含まれるAlは植物にとって無用な成分であり、スラグ中のAl含有量が多いと肥料の有効成分が相対的に少なくなる。また、Alは珪酸の溶出性を阻害するとともに、土壌中の燐酸を固定して植物が利用できない形態にするおそれがあるので、極力少ない方がよい。Al含有量が10mass%を超えると、それらの問題が顕在化するおそれがあるので、Al含有量は10mass%以下、好ましくは5mass%以下とすることが望ましい。 Al 2 O 3 contained in the slag is an unnecessary component for plants, and when the content of Al 2 O 3 in the slag is large, the effective component of the fertilizer is relatively reduced. Further, Al 2 O 3 inhibits silicic acid elution, and may fix phosphoric acid in the soil so that it cannot be used by plants. If the Al 2 O 3 content exceeds 10 mass%, these problems may be manifested. Therefore, the Al 2 O 3 content is desirably 10 mass% or less, preferably 5 mass% or less.

スラグに含まれる他の成分の中で肥料として有効な成分もある。MgO(苦土)、MnO(マンガン)は肥料保証成分であるが、スラグに含有されるMgO、MnOのほとんどがク溶性であり植物にとって有効である。MgO、MnOともに含有量が少ないと植物の吸収障害が生じるが、一方において含有量が過剰の場合、十分に吸収されずに含有量に見合う効果が得られないだけでなく、却って過剰吸収による障害を生じることがある。このため通常の植物の燐酸とMgO、MnOの吸収割合から、MgOは1〜5mass%、MnOは1〜7mass%程度の含有量とすることが望ましい。   Some of the other ingredients contained in slag are effective as fertilizers. MgO (matter) and MnO (manganese) are fertilizer guarantee components, but most of MgO and MnO contained in slag are soluble in slag and effective for plants. If both MgO and MnO are low in content, plant absorption damage will occur. On the other hand, if the content is excessive, not only will it not be sufficiently absorbed and an effect commensurate with the content will not be obtained. May occur. For this reason, it is desirable that MgO has a content of about 1 to 5 mass% and MnO has a content of about 1 to 7 mass% based on the absorption ratio of phosphoric acid, MgO, and MnO in ordinary plants.

以上述べた本発明の珪酸燐酸肥料用原料は、そのままで或いは破砕(粉砕)処理及び/又は整粒(粒度調整)を施した上で珪酸燐酸肥料とすることができる。また、上記珪酸燐酸肥料用原料、特に破砕処理及び/又は整粒された珪酸燐酸肥料用原料は、適当なバインダーを用いた造粒工程を経て珪酸燐酸肥料とすることが好ましく、このような珪酸燐酸肥料は施肥の時の飛散、雨水による流出、地面の通水性や通気性の阻害といった問題が生じにくい。また、形状が規則的で且つ球状に近く、角張っていないため、取り扱い性も良好である。
また、本発明の珪酸燐酸肥料用原料に他の添加成分を配合し、珪酸燐酸肥料としてもよい。
The raw material for silicate phosphate fertilizer of the present invention described above can be used as it is or after being crushed (pulverized) and / or sized (particle size adjustment). Further, the raw material for silicic acid phosphoric acid fertilizer, in particular, the raw material for silicic acid phosphoric acid fertilizer that has been crushed and / or sized is preferably converted into a silicic acid phosphoric acid fertilizer through a granulating step using an appropriate binder. Phosphate fertilizers are less prone to problems such as scattering during fertilization, runoff due to rainwater, obstruction of water permeability and air permeability of the ground. In addition, since the shape is regular, nearly spherical, and not angular, the handleability is also good.
Moreover, it is good also as a silicate phosphate fertilizer by mix | blending another additive component with the raw material for silicate phosphate fertilizer of this invention.

本発明の珪酸燐酸肥料用原料が溶銑脱燐スラグからなる場合について、その好ましい製造方法を説明する。
溶銑脱燐スラグは高炉溶銑の脱燐処理で生成するスラグであり、この脱燐処理は、溶銑に対して脱燐剤として石灰源と酸素源を添加して行われる。石灰源としては通常は生石灰が用いられるが、これに限定されるものではない。また、酸素源としては、気体酸素源(酸素ガス又は酸素含有ガス)及び/又は固体酸素源(例えば、鉄鉱石、ミルスケール等の酸化鉄)が用いられる。また、先に述べたように脱燐剤としてはCaFを実質的に含まないものを用いることが好ましい。
この脱燐処理では、処理前の溶銑中の燐濃度、処理後の目標燐濃度、上述した好ましいスラグ塩基度に応じて脱燐剤の添加量が決定される。
A preferred production method for the case where the raw material for silicate phosphate fertilizer of the present invention comprises hot metal dephosphorization slag will be described.
Hot metal dephosphorization slag is slag produced by dephosphorization treatment of blast furnace hot metal, and this dephosphorization treatment is performed by adding a lime source and an oxygen source as a dephosphorizing agent to the hot metal. As the lime source, quick lime is usually used, but is not limited thereto. Further, as the oxygen source, a gaseous oxygen source (oxygen gas or oxygen-containing gas) and / or a solid oxygen source (for example, iron oxide such as iron ore or mill scale) are used. Further, as described above, it is preferable to use a dephosphorizing agent that does not substantially contain CaF 2 .
In this dephosphorization treatment, the addition amount of the dephosphorization agent is determined in accordance with the phosphorus concentration in the hot metal before the treatment, the target phosphorus concentration after the treatment, and the above-described preferable slag basicity.

脱燐処理を行う容器に特別な制約はないが、通常は溶銑鍋等の取鍋型容器、トピードカー、転炉型容器等を用いて行われる。脱燐処理は前工程(例えば、脱珪工程)で生じたスラグを分離した溶銑に対してなされる。
また、酸素源の供給方法に特別な制約はなく、気体酸素の場合には送酸ランスによる上吹きや溶銑中へのインジェクション、或いは底吹きなどの任意の方法で送酸を行うことができ、また、固体酸素源の場合には浸漬ランスによるインジェクションや上置き装入などの任意の方法で溶銑中への供給を行うことができる。なお、気体酸素を供給する場合、脱燐処理を転炉型容器や溶銑鍋などを用いて実施する場合には送酸ランスによる上吹きが、また、トーピードを用いて実施する場合には浸漬ランスによる溶銑中へのインジェクションが一般的である。
There is no particular restriction on the container for performing the dephosphorization treatment, but it is usually performed using a ladle type container such as a hot metal ladle, a topped car, a converter type container or the like. The dephosphorization treatment is performed on the hot metal from which the slag generated in the previous step (for example, the desiliconization step) is separated.
In addition, there is no special restriction on the method of supplying the oxygen source, and in the case of gaseous oxygen, the oxygen can be fed by any method such as top blowing with a feeding lance, injection into hot metal, or bottom blowing. In the case of a solid oxygen source, the hot metal can be supplied into the hot metal by an arbitrary method such as injection with a dipping lance or charging on top. When supplying gaseous oxygen, when dephosphorization is performed using a converter-type vessel or hot metal ladle, top blowing with an acid lance is used. When performing dephosphorization using a torpedo, an immersion lance is used. Injection into hot metal by using is generally used.

また、石灰源の供給方法にも特別な制約はなく、浸漬ランスによる溶銑中へのインジェクションや上置き装入などの任意の方法で溶銑中への供給を行うことができる。浸漬ランスによる溶銑中へのインジェクションは、上述した固体酸素源とともに行ってもよい。また、脱燐効率を高めるために石灰源を溶銑の浴面上方からキャリアガスを用いて浴面に投射する(吹き付ける)こともできる。このキャリアガスとしては、窒素や不活性ガス或いは先に述べた気体酸素を用いることができる。   Moreover, there is no special restriction | limiting also in the supply method of a lime source, and supply to hot metal can be performed by arbitrary methods, such as injection into hot metal with an immersion lance, and the top-up charging. The injection into the hot metal by the immersion lance may be performed together with the solid oxygen source described above. In order to increase the dephosphorization efficiency, a lime source can be projected (sprayed) onto the bath surface from above the hot metal bath surface using a carrier gas. As this carrier gas, nitrogen, inert gas, or gaseous oxygen described above can be used.

また、石灰源と酸素源を供給する浴面又は浴中の位置は任意であるが、脱燐効率を高めるために石灰源と酸素源を浴面又は浴中の同一位置に供給することもできる。また、同様の目的で脱燐剤の一部又は全部に石灰源と酸素源を一体化したFeO−CaO系脱燐剤を使用することができる。
脱燐処理は転炉型容器を用いて行った方が特に大きな効果(脱燐効率)が得られる。これは、転炉型容器は取鍋やトーピードに較べてフリーボードが大きいために撹拌動力を大きくすることができ、これにより迅速な滓化とPの物質移動が生じるためである。通常、転炉型容器で行われる脱燐精錬では、送酸ランス等から酸素を吹錬する。
Further, the bath surface for supplying the lime source and the oxygen source or the position in the bath is arbitrary, but the lime source and the oxygen source can be supplied to the same surface in the bath surface or bath for improving the dephosphorization efficiency. . For the same purpose, a FeO—CaO-based dephosphorizing agent in which a lime source and an oxygen source are integrated in part or all of the dephosphorizing agent can be used.
When the dephosphorization treatment is performed using a converter type vessel, a particularly great effect (dephosphorization efficiency) is obtained. This is because the converter type vessel has a larger freeboard than a ladle or torpedo, so that the agitation power can be increased, thereby causing rapid hatching and P mass transfer. Usually, in dephosphorization refining performed in a converter type vessel, oxygen is blown from an acid lance or the like.

また、脱燐反応効率をさらに向上させるためには溶銑をガス撹拌することが好ましい。このガス撹拌は、例えばインジェクションランスや底吹きノズルなどを通じて窒素ガスやアルゴンガスなどの不活性ガスを溶銑中に吹き込むことにより行われる。このような撹拌ガスの供給量としては、十分な浴撹拌性を得るために0.02Nm/min/溶銑ton以上とし、また、浴の撹拌が強すぎると生成したFeOを溶銑中のCが還元する速度が大きくなり過ぎるためのため0.3Nm/min/溶銑ton以下とすることが好ましい。
脱燐処理における脱燐処理効率を高めるためには、処理前の溶銑中Si濃度がなるべく低い方が好ましく、またこれによりスラグ量も少なくなるため、燐酸濃度の高い脱燐スラグを得ることができる。
In order to further improve the dephosphorization reaction efficiency, it is preferable to gas stir the hot metal. This gas agitation is performed, for example, by blowing an inert gas such as nitrogen gas or argon gas into the hot metal through an injection lance or a bottom blowing nozzle. The amount of stirring gas supplied is 0.02 Nm 3 / min / molten ton or more in order to obtain sufficient bath agitation, and if the agitation of the bath is too strong, the generated FeO is converted to C in the molten iron. Since the rate of reduction becomes too high, it is preferable to set it to 0.3 Nm 3 / min / molten ton or less.
In order to increase the dephosphorization efficiency in the dephosphorization treatment, it is preferable that the Si concentration in the hot metal before the treatment is as low as possible, and this also reduces the amount of slag, so that dephosphorization slag with a high phosphoric acid concentration can be obtained. .

このようにして溶銑は脱燐処理され、溶銑上には珪酸燐酸肥料組成の脱燐スラグが生成する。脱燐処理終了後、溶銑脱燐スラグを溶銑保持容器から取り出し、冷却して固化させる。冷却・固化は、溶銑保持容器から取り出す際に行ってもよいし、容器に収納した後、その容器から取り出す際に行ってもよい。
冷却固化の方法としては、融体又は過冷却液体温度領域を冷却する場合には、例えば、生成した溶銑脱燐スラグに高圧空気を吹きつけて飛散させ、冷却するとともに粒状化する方法(風砕法)、溶銑脱燐スラグに高圧水を吹きつけて飛散させ、冷却するとともに粒状化する方法(水砕法)、厚鋼板上に生成した溶銑脱燐スラグを流出させ、厚鋼板による強制冷却と空気への放熱により冷却する方法、などの方法を採ることができる。また、徐冷する場合には、スラグを滓ポットに受け、その後、スラグ処理場に排滓する。
このような冷却固化を経て珪酸燐酸肥料用原料である溶銑脱燐スラグが得られる。
In this way, the hot metal is dephosphorized, and dephosphorization slag having a silicate phosphate fertilizer composition is formed on the hot metal. After completion of the dephosphorization treatment, the hot metal dephosphorization slag is taken out of the hot metal holding container and cooled to solidify. Cooling and solidification may be performed when taking out from the hot metal holding container, or may be carried out when taking out from the container after being stored in the container.
As a method of cooling and solidifying, when cooling the melt or supercooled liquid temperature region, for example, the generated hot metal dephosphorization slag is blown and sprayed with high-pressure air to cool and granulate (winding method) ), Spraying high-pressure water on hot metal dephosphorization slag, allowing it to disperse, cooling and granulating (hydrocracking method), letting hot metal dephosphorization slag generated on thick steel plate flow out, forced cooling by thick steel plate and air It is possible to adopt a method such as cooling by heat radiation. In the case of slow cooling, the slag is received in a soot pot and then discharged to a slag treatment plant.
Through such cooling and solidification, hot metal dephosphorization slag, which is a raw material for silicate phosphate fertilizer, is obtained.

以上のようにして製造される珪酸燐酸肥料用原料は、粒度が適当であればそのまま珪酸燐酸肥料とすることができるが、冷却固化後の形状が塊状等の場合には、破砕(粉砕)処理及び/又は整粒(篩い分けなどにより粒度調整)を行い珪酸燐酸肥料とする。また、場合によっては他の添加成分を配合して珪酸燐酸肥料としてもよい。
珪酸燐酸肥料用原料の破砕(粉砕)方法に特別な制限はなく、どのような方法を採用してもよい。例えば、ジョークラッシャー、ロッドミル、フレッドミル、インペラブレーカーなどの粉砕機を用いて粉砕処理することができる。また、整粒は任意の篩い分け装置などを用いて行えばよく、珪酸燐酸肥料用原料を粉砕処理した後、整粒を行ってもよい。
The raw material for silicic acid phosphoric acid fertilizer manufactured as described above can be used as it is as long as the particle size is appropriate, but when the shape after cooling and solidification is a lump or the like, crushing (pulverization) treatment And / or sizing (particle size adjustment by sieving, etc.) to obtain a silicate phosphate fertilizer. In some cases, other additive components may be blended to form a silicate phosphate fertilizer.
There is no special restriction | limiting in the crushing (crushing) method of the raw material for silicate phosphoric acid fertilizers, What kind of method may be employ | adopted. For example, it can be pulverized using a pulverizer such as a jaw crusher, a rod mill, a fred mill, or an impeller breaker. In addition, the sizing may be performed using an arbitrary sieving device or the like, and the sizing may be performed after pulverizing the raw material for silicate phosphate fertilizer.

また、破砕処理及び/又は整粒された珪酸燐酸肥料用原料は、適当なバインダーを用いた造粒工程を経て珪酸燐酸肥料とすることが好ましく、このようにして造粒された珪酸燐酸肥料は、施肥時の飛散、雨水による流出、地面の通水性や通気性の阻害といった問題を生じにくい。また、形状が規則的で且つ球状に近く、角張っていないため、取扱い性も良好である。   Moreover, it is preferable that the raw material for silicic acid phosphoric acid fertilizer crushed and / or sized is subjected to a granulating step using an appropriate binder to obtain a silicic acid phosphoric acid fertilizer. It is difficult to cause problems such as scattering at the time of fertilization, runoff due to rainwater, obstruction of water permeability and air permeability of the ground. Further, since the shape is regular and nearly spherical and not angular, the handleability is also good.

造粒方法に特別な制限はなく、一般的な造粒方法を採用することができるが、例えば、上記粉砕処理によって得られた粉砕物とバインダーとを混合機で混合し、適量の水を加えながら造粒機で造粒し、しかる後、乾燥するという方法を採ることができる。
造粒機としては、一般的に使用されるもの、例えば、回転皿型造粒機、回転円筒型造粒機等を用いることができ、造粒後に所定の粒度範囲に入らないものは直接又は粉砕などの処理をした後に再度混合機に戻し、原料の一部として再利用する連続造粒方法を採ることが好ましい。
There is no particular limitation on the granulation method, and a general granulation method can be adopted. For example, the pulverized product obtained by the above pulverization treatment and a binder are mixed with a mixer, and an appropriate amount of water is added. However, it can be granulated with a granulator and then dried.
As the granulator, a commonly used one, for example, a rotary dish granulator, a rotary cylindrical granulator, etc. can be used, and those that do not fall within a predetermined particle size range after granulation are directly or It is preferable to adopt a continuous granulation method in which after the treatment such as pulverization, the mixture is returned to the mixer again and reused as a part of the raw material.

図5は、珪酸燐酸肥料用原料の造粒工程の一例を示すもので、上記粉砕処理によって得られた粉砕物(珪酸燐酸肥料用原料)1がショベルローダー等によりホッパー2に装入され、計量された粉砕物1がホッパー2からコンベア3を介してドラム式回転型造粒機4に供給される。このドラム式回転型造粒機4には容器6に貯留されたバインダー5も所定量供給され、ドラム式回転型造粒機4が回転することにより粉砕物1とバインダー5とが混合されて造粒される。その後、造粒物はドライヤー7で乾燥され、エレベーター8により篩い装置9に供給されて篩い分けされ、さらにクーラー10で冷却されて造粒肥料となる。なお、クーラー10で冷却後に篩い分けして造粒肥料とすることも可能である。   FIG. 5 shows an example of the granulation process of the raw material for silicate phosphate fertilizer. The pulverized material (silicate phosphate fertilizer raw material) 1 obtained by the above pulverization process is charged into the hopper 2 by a shovel loader or the like and weighed. The pulverized product 1 is supplied from the hopper 2 to the drum type rotary granulator 4 via the conveyor 3. A predetermined amount of the binder 5 stored in the container 6 is also supplied to the drum-type rotary granulator 4, and the pulverized material 1 and the binder 5 are mixed and formed by rotating the drum-type rotary granulator 4. Grained. Thereafter, the granulated product is dried by a dryer 7, supplied to a sieving device 9 by an elevator 8 and sieved, and further cooled by a cooler 10 to become a granulated fertilizer. It is also possible to obtain a granulated fertilizer by sieving after cooling with the cooler 10.

図6は、珪酸燐酸肥料用原料の造粒工程の他の例を示すもので、上記粉砕処理によって得られた粉砕物1がホッパー12に装入され、計量された粉砕物1がホッパー12からミキサー15に装入される。また、容器14に貯留されたバインダー13も所定量ミキサー15に装入される。そして、ミキサー15において粉砕物1とバインダー13とが混合され、この混合物が皿形造粒機16に供給され、この皿形造粒機16において造粒される。皿形造粒機16で造粒された造粒物はベルトコンベヤー17に載せられ、後は図5の工程と同様、ドライヤー7で乾燥され、エレベーター8により篩い装置9に供給されて篩い分けされ、さらにクーラー10で冷却されて造粒肥料となる。   FIG. 6 shows another example of the granulating step of the raw material for silicate phosphate fertilizer. The pulverized product 1 obtained by the pulverization process is charged into the hopper 12, and the measured pulverized product 1 is fed from the hopper 12. The mixer 15 is charged. A predetermined amount of the binder 13 stored in the container 14 is also charged into the mixer 15. Then, the pulverized product 1 and the binder 13 are mixed in the mixer 15, and the mixture is supplied to the dish-shaped granulator 16 and granulated in the dish-shaped granulator 16. The granulated product granulated by the dish-shaped granulator 16 is placed on the belt conveyor 17 and then dried by the dryer 7 and supplied to the sieving device 9 by the elevator 8 as in the process of FIG. Further, it is cooled by the cooler 10 to become a granulated fertilizer.

造粒工程で用いるバインダーにも特別な制限はなく、例えば、リン酸、粘土、ベントナイト、ポリビニルアルコール、カルボキシメチルセルロース、ポリアクリル酸、糖蜜、リグニン、硫酸マグネシウム、デンプン等の中から選ばれる1種以上を単独で又は混合して用いることができるが、造粒性と施肥後における肥料粒子の崩壊性の面で、デンプン、硫酸マグネシウム、リグニンが適しており、これらの中から選ばれる1種以上をバインダーの主成分として用いることが好ましい。   There is no particular limitation on the binder used in the granulation process, for example, one or more selected from phosphoric acid, clay, bentonite, polyvinyl alcohol, carboxymethylcellulose, polyacrylic acid, molasses, lignin, magnesium sulfate, starch and the like. Can be used alone or in combination, but in terms of granulation and fertilizer particle disintegration after fertilization, starch, magnesium sulfate, and lignin are suitable. It is preferably used as the main component of the binder.

珪酸燐酸肥料用原料を造粒して造粒物である肥料を製造する場合、バインダーに要求される特性としては、(1)優れた造粒性が得られること、(2)施肥後において肥料粒子(造粒物)が容易に崩壊して土壌中に分散できること、(3)製造中及び流通から施肥までの取り扱い中に粒子が崩壊しないような硬度を有すること、(4)バインダー成分が土壌を含めた環境に悪影響を与えないこと、などが挙げられ、上記デンプン、硫酸マグネシウム、リグニンはこれらの特性をすべて満足している。また、そのなかでもデンプンを用いた場合には、造粒された肥料粒子の硬度が特に高く、また、デンプンは雨や土壌中の水分で溶解して適度な速度で肥料粒子を崩壊させるため、特に好ましい。また、デンプンは水分を加えることにより糊化し、その後乾燥させることにより固化するので、造粒性にも優れており、さらに、土中微生物等により分解されるので、植物や環境に悪影響を及ぼすこともない。   When producing fertilizer that is a granulated product by granulating raw materials for silicate phosphate fertilizer, the properties required for the binder are (1) excellent granulation property, (2) fertilizer after fertilization Particles (granulated material) can easily disintegrate and disperse in the soil, (3) Hardness that prevents particles from collapsing during manufacturing and handling from distribution to fertilization, (4) Binder component is soil The starch, magnesium sulfate, and lignin satisfy all of these characteristics. Also, among them, when starch is used, the hardness of the granulated fertilizer particles is particularly high, and since starch dissolves with rain and moisture in the soil and disintegrates the fertilizer particles at an appropriate rate, Particularly preferred. In addition, starch is gelatinized by adding water and then solidified by drying, so it has excellent granulation properties, and it is degraded by microorganisms in the soil, which has an adverse effect on plants and the environment. Nor.

バインダーとして使用されるデンプンは、トウモロコシ、タピオカ、小麦、馬鈴薯、コメ等を原料としたものが挙げられる。これらのデンプンは、原料によって構成成分であるアミロース(d−グルコースが長い直鎖状に結合したもの)とアミロペクチン(d−グルコースが枝分かれ状に結合したもの)の割合が異なり、モチ米やモチトウモロコシ等ではアミロペクチンの割合が多い。さらに、デンプンの種類としては、そのままの生デンプンでも、熱や酸、アルカリ、塩、酵素等で処理した加工デンプンでもよい。これらのデンプンは、その種類に関わらず、糊化する性質を有しているものが造粒バインダーとして適している。   Examples of the starch used as the binder include corn, tapioca, wheat, potato, rice and the like. These starches have different ratios of amylose (d-glucose linked in a long straight chain) and amylopectin (d-glucose linked in a branched form) depending on the raw material, and glutinous rice and corn Etc., the ratio of amylopectin is large. Furthermore, as a kind of starch, it may be raw raw starch or modified starch treated with heat, acid, alkali, salt, enzyme or the like. Regardless of the type of these starches, those having a gelatinizing property are suitable as granulating binders.

このようにして造粒された珪酸燐酸肥料の平均粒径は0.5〜6mmが好ましい。平均粒径が0.5mm未満では施肥する時に風に吹き飛ばされたりして取り扱い性が悪くなり、一方、6mmを超えると均一に散布することが困難になる。より好ましい粒径は1〜5mmである。   The average particle diameter of the silicic acid phosphate fertilizer thus granulated is preferably 0.5 to 6 mm. If the average particle size is less than 0.5 mm, it is blown away by wind when fertilizing, and the handleability is deteriorated. On the other hand, if it exceeds 6 mm, it is difficult to spray uniformly. A more preferable particle size is 1 to 5 mm.

Si濃度が0.15mass%の溶銑に対して溶銑鍋を用いて脱燐処理を実施し、珪酸燐酸肥料用原料である脱燐スラグを製造した。この脱燐処理では浸漬ノズルを用いて脱燐剤(生石灰)を浴中にインジェクションするとともに、送酸ランスにより酸素の上吹を行った。また、上記インジェクションのキャリアガスにより浴の撹拌を行った。   Dephosphorization treatment was performed on the hot metal having a Si concentration of 0.15 mass% using a hot metal ladle to produce dephosphorized slag as a raw material for silicate phosphate fertilizer. In this dephosphorization treatment, a dephosphorizing agent (quick lime) was injected into the bath using an immersion nozzle, and oxygen was blown up by an acid lance. The bath was stirred with the carrier gas for the injection.

脱燐処理後、生成したスラグを珪酸燐酸肥料用原料として回収した。これらのスラグの組成を表1及び表2に示すが、実施例及び参考例の珪酸燐酸肥料用原料はいずれも燐酸を含み、塩基度(CaO/SiO)が1.0以上、1.5未満で且つ可溶性珪酸含有量が10mass%以上となっている。 After the dephosphorization treatment, the produced slag was recovered as a raw material for silicate phosphate fertilizer. The compositions of these slags are shown in Tables 1 and 2, but the raw materials for silicate phosphate fertilizers of Examples and Reference Examples both contain phosphoric acid, and the basicity (CaO / SiO 2 ) is 1.0 or more, 1.5 The soluble silicic acid content is less than 10 mass%.

Figure 0005105322
Figure 0005105322

Figure 0005105322
Figure 0005105322

次に、表1及び表2に示すスラグのうち比較例1(塩基度0.49)、実施例1(塩基度1.07)、参考例1(塩基度1.49)の各スラグ(肥料用原料)を用い、珪酸及び燐酸の植物による吸収量を水稲の幼植物栽培実験で評価した。各スラグの粉砕物である肥料に、試薬で燐酸(P)を加え、質量比[C−P/S−SiO]が0.8になるように調整した。各試験区(ポット)に土壌と珪砂500gを入れ、これに上記肥料を可溶性珪酸添加量が100mgとなるように添加した。比較のため、肥料を添加しない試験区(ポット)を用意した。また、窒素(N)及びカリ(KO)を、それぞれ試薬として各試験区当たり80mg添加した。実験は5連で実施し、作物には水稲を用い、播種して22日後の水稲の乾燥重量と珪酸と燐酸の吸収量を測定した。 Next, among slag shown in Table 1 and Table 2, each slag (fertilizer) of Comparative Example 1 (basicity 0.49), Example 1 (basicity 1.07), Reference Example 1 (basicity 1.49) The amount of silicic acid and phosphoric acid absorbed by plants was evaluated in a rice plant seedling cultivation experiment. Phosphoric acid (P 2 O 5 ) was added to the fertilizer, which is a pulverized product of each slag, and the mass ratio [C—P 2 O 5 / S—SiO 2 ] was adjusted to 0.8. In each test section (pot), 500 g of soil and silica sand were added, and the fertilizer was added thereto so that the amount of soluble silicic acid added was 100 mg. For comparison, a test section (pot) to which no fertilizer was added was prepared. Moreover, 80 mg of nitrogen (N) and potassium (K 2 O) were added as a reagent for each test section. The experiment was carried out in a series of five. Rice was used as a crop, and the dry weight and the absorption of silicic acid and phosphoric acid were measured 22 days after sowing.

その結果を表3に示す。各肥料の質量比[C−P/S−SiO]を0.8に揃え、各試験区には同じ可溶性珪酸添加量となるように肥料を施用したが、塩基度0.49の肥料を用いた試験区では珪酸の吸収量が低く、施肥の効果が低いのに対して、塩基度1.07、塩基度1.49の肥料を用いた試験区では珪酸及び燐酸の吸収量が多く、施肥の効果が高いことが判る。 The results are shown in Table 3. The mass ratio [C—P 2 O 5 / S—SiO 2 ] of each fertilizer was adjusted to 0.8, and the fertilizer was applied to each test section so as to have the same soluble silicic acid addition amount. The amount of silicic acid absorbed was low in the test plots using fertilizers and the effect of fertilization was low, whereas the amount of silicic acid and phosphoric acid absorbed in the test plots using fertilizers with basicity of 1.07 and basicity of 1.49 It can be seen that the effect of fertilization is high.

Figure 0005105322
Figure 0005105322

溶銑脱燐スラグの塩基度と珪酸溶解性との関係を示すグラフGraph showing the relationship between the basicity of hot metal dephosphorization slag and the solubility of silicic acid 溶銑脱燐スラグの塩基度と可溶性珪酸含有量との関係を示すグラフGraph showing the relationship between the basicity of hot metal dephosphorization slag and the content of soluble silicic acid 溶銑脱燐スラグの塩基度とスラグを燐酸緩衝液に溶解した後の溶液pHとの関係を示すグラフGraph showing the relationship between the basicity of hot metal dephosphorized slag and the pH of the solution after the slag is dissolved in the phosphate buffer 回収されたスラグの塩基度と冷却時の粉化性との関係を示すグラフA graph showing the relationship between the basicity of recovered slag and powdering properties during cooling 本発明の珪酸燐酸肥料用原料の造粒工程の一例を示す説明図である。It is explanatory drawing which shows an example of the granulation process of the raw material for silicate phosphate fertilizer of this invention. 本発明の珪酸燐酸肥料用原料の造粒工程の他の例を示す説明図である。It is explanatory drawing which shows the other example of the granulation process of the raw material for silicate phosphoric acid fertilizers of this invention.

符号の説明Explanation of symbols

1…粉砕物、2…ホッパー、3…コンベア、4…ドラム式回転型造粒機、5…バインダー、6…容器、7…ドライヤー、8…エレベーター、9…篩い装置、10…クーラー、12…ホッパー、13…バインダー、14…容器、15…ミキサー、16…皿形造粒機、17…ベルトコンベヤー   DESCRIPTION OF SYMBOLS 1 ... Ground material, 2 ... Hopper, 3 ... Conveyor, 4 ... Drum type rotary granulator, 5 ... Binder, 6 ... Container, 7 ... Dryer, 8 ... Elevator, 9 ... Sieve device, 10 ... Cooler, 12 ... Hopper, 13 ... binder, 14 ... container, 15 ... mixer, 16 ... dish granulator, 17 ... belt conveyor

Claims (12)

高炉溶銑の溶銑予備処理における脱燐処理工程で回収される溶銑脱燐スラグであって、溶銑中の珪素の酸化物である珪酸と燐の酸化物である燐酸とを含み、塩基度(CaO/SiO)が1.0以上、1.4以下で、且つ可溶性珪酸を10mass%以上含有し、ク溶性燐酸を2mass%以上含有するスラグからなることを特徴とする珪酸燐酸肥料用原料。 A hot metal dephosphorization slag recovered in a dephosphorization process in a hot metal pretreatment of blast furnace hot metal, which contains silicic acid which is an oxide of silicon and phosphoric acid which is an oxide of phosphorus in the hot metal, and has a basicity (CaO / A raw material for silicic acid phosphoric acid fertilizer, comprising SiO 2 ) of 1.0 or more and 1.4 or less, and containing slag containing 10 mass% or more of soluble silicic acid and 2 mass% or more of soluble phosphonic acid . スラグ中のク溶性燐酸(C−P)と可溶性珪酸(S−SiO)の質量比[C−P/S−SiO]が0.1〜0.8であることを特徴とする請求項に記載の珪酸燐酸肥料用原料。 The mass ratio [C—P 2 O 5 / S—SiO 2 ] of the soluble phosphoric acid (C—P 2 O 5 ) and the soluble silicic acid (S—SiO 2 ) in the slag is 0.1 to 0.8. silicic acid fertilizer material of claim 1, wherein the. スラグ中の可溶性CaOの含有量が30mass%以下であることを特徴とする請求項1又は2に記載の珪酸燐酸肥料用原料。 Content of soluble CaO in slag is 30 mass% or less, The raw material for silicic acid phosphoric acid fertilizers of Claim 1 or 2 characterized by the above-mentioned. スラグが実質的にフッ素を含まないスラグであることを特徴とする請求項1、2又は3に記載の珪酸燐酸肥料用原料。 The raw material for silicate phosphate fertilizer according to claim 1, 2 or 3 , wherein the slag is slag substantially free of fluorine. 請求項1、2、3又は4に記載の珪酸燐酸肥料用原料からなる又は該珪酸燐酸肥料用原料を主原料としたことを特徴とする珪酸燐酸肥料。 A silicate phosphate fertilizer comprising the silicate phosphate fertilizer raw material according to claim 1, 2, 3, or 4 as a main material. 珪酸燐酸肥料用原料が破砕処理及び/又は整粒されたものであることを特徴とする請求項に記載の珪酸燐酸肥料。 The silicate phosphate fertilizer according to claim 5 , wherein the raw material for silicate phosphate fertilizer is crushed and / or sized. 珪酸燐酸肥料用原料にバインダーを添加して造粒することにより得られた造粒物であることを特徴とする請求項5又は6に記載の珪酸燐酸肥料。 The silicate phosphate fertilizer according to claim 5 or 6 , which is a granulated product obtained by granulating a raw material for silicate phosphate fertilizer by adding a binder. 高炉溶銑の溶銑予備処理における脱燐処理工程において、溶銑にCaO源と酸素源を添加して溶銑中の珪素の酸化反応と溶銑の脱燐反応を生じさせ、該反応で生成した珪酸と燐酸を含む溶銑脱燐スラグを回収して固化させることにより、珪酸と燐酸を含み、塩基度(CaO/SiO)が1.0以上、1.4以下で、且つ可溶性珪酸を10mass%以上含有し、ク溶性燐酸を2mass%以上含有するスラグを得ることを特徴とする珪酸燐酸肥料用原料の製造方法。 In the dephosphorization process in the hot metal pretreatment of the blast furnace hot metal, a CaO source and an oxygen source are added to the hot metal to cause an oxidation reaction of silicon in the hot metal and a dephosphorization reaction of the hot metal, and the silicic acid and phosphoric acid produced by the reaction are added. By recovering and solidifying the molten iron dephosphorization slag containing, it contains silicic acid and phosphoric acid, the basicity (CaO / SiO 2 ) is 1.0 or more and 1.4 or less, and contains 10 mass% or more of soluble silicic acid , A method for producing a raw material for silicic acid phosphoric acid fertilizer, comprising obtaining slag containing 2 mass% or more of soluble phosphoric acid . 溶銑予備処理における脱燐処理工程において溶銑にCaO源を添加するとともに、その添加量を調整することで回収するスラグの塩基度(CaO/SiO)を調整することを特徴とする請求項に記載の珪酸燐酸肥料用原料の製造方法。 With the addition of CaO source to the molten iron in the dephosphorization step in hot metal pretreatment, to claim 8, wherein the adjusting the basicity of the slag to be recovered by adjusting the addition amount (CaO / SiO 2) The manufacturing method of the raw material for silicate phosphate fertilizer of description. 請求項8又は9の製造方法で得られた珪酸燐酸肥料用原料を用いて珪酸燐酸肥料を製造することを特徴とする珪酸燐酸肥料の製造方法。 A method for producing a silicate phosphate fertilizer, comprising producing a silicate phosphate fertilizer using the raw material for a silicate phosphate fertilizer obtained by the production method according to claim 8 or 9 . 珪酸燐酸肥料用原料を破砕処理及び/又は整粒する工程を有することを特徴とする請求項10に記載の珪酸燐酸肥料の製造方法。 The method for producing a silicate phosphate fertilizer according to claim 10 , further comprising a step of crushing and / or sizing the raw material for silicate phosphate fertilizer. 珪酸燐酸肥料用原料にバインダーを添加して造粒する工程を有することを特徴とする請求項10又は11に記載の珪酸燐酸肥料の製造方法。 The method for producing a silicate phosphate fertilizer according to claim 10 or 11 , further comprising a step of granulating the raw material for silicate phosphate fertilizer by adding a binder.
JP2004055588A 2003-04-28 2004-02-27 Silica phosphate fertilizer raw material and method for producing the same Expired - Lifetime JP5105322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004055588A JP5105322B2 (en) 2003-04-28 2004-02-27 Silica phosphate fertilizer raw material and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003124492 2003-04-28
JP2003124492 2003-04-28
JP2004055588A JP5105322B2 (en) 2003-04-28 2004-02-27 Silica phosphate fertilizer raw material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004345940A JP2004345940A (en) 2004-12-09
JP5105322B2 true JP5105322B2 (en) 2012-12-26

Family

ID=33543376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004055588A Expired - Lifetime JP5105322B2 (en) 2003-04-28 2004-02-27 Silica phosphate fertilizer raw material and method for producing the same

Country Status (1)

Country Link
JP (1) JP5105322B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11254992B2 (en) 2017-10-20 2022-02-22 Nippon Steel Corporation Method of dechromizing molten iron and method of manufacturing phosphate fertilizer raw material
JP7466119B1 (en) 2023-10-04 2024-04-12 ソブエクレー株式会社 Iron supplement for plant and animal growth

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6040064B2 (en) * 2013-03-15 2016-12-07 産業振興株式会社 Manufacturing method of mineral phosphophosphate fertilizer
JP6011556B2 (en) * 2014-01-30 2016-10-19 Jfeスチール株式会社 Method for producing phosphate fertilizer raw material
JP6290642B2 (en) * 2014-02-06 2018-03-07 産業振興株式会社 Powdered steelmaking slag fertilizer
JP6119704B2 (en) * 2014-09-12 2017-04-26 Jfeスチール株式会社 Raw material for phosphosilicate fertilizer and method for producing the same
JP7407533B2 (en) * 2018-07-20 2024-01-04 デンカ株式会社 Amorphous composition, molten hydrate, composition containing molten hydrate, and fertilizer
CN114538997B (en) * 2022-02-25 2023-03-14 大连环球矿产股份有限公司 Preparation method of composite silicate nitrogen fertilizer
JP7263612B1 (en) * 2022-12-22 2023-04-24 デンカ株式会社 Artificial culture medium for mushroom cultivation, medium for mushroom cultivation, artificial mushroom cultivation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11254992B2 (en) 2017-10-20 2022-02-22 Nippon Steel Corporation Method of dechromizing molten iron and method of manufacturing phosphate fertilizer raw material
JP7466119B1 (en) 2023-10-04 2024-04-12 ソブエクレー株式会社 Iron supplement for plant and animal growth

Also Published As

Publication number Publication date
JP2004345940A (en) 2004-12-09

Similar Documents

Publication Publication Date Title
AU2008312121B2 (en) Improvements in and relating to soil treatments
CN106699350A (en) High-slow release organic fertilizer for improving micro-ecological structure of soil and preparation method of high-slow release organic fertilizer
JP4211396B2 (en) Phosphate fertilizer raw material
JP5105322B2 (en) Silica phosphate fertilizer raw material and method for producing the same
CN101891521A (en) Silicon-calcium-magnesium-sulfur fertilizer and preparation process thereof
JP2004137136A (en) Raw material for silicate phosphate fertilizer, and its manufacturing method
AU2018282390B2 (en) Steelmaking slag for fertilizer raw material, method for producing steelmaking slag for fertilizer raw material, method for producing fertilizer, and fertilizer application method
US5085681A (en) Fertilizer materials based on metallurgical slags and methods of making the same
JP4040542B2 (en) Silicic fertilizer
US4248617A (en) Process for producing granular basic phosphate fertilizer
JP4202254B2 (en) Production method of raw material for siliceous fertilizer
US3303016A (en) Fertilizing metallurgical slag with nitrogen salts for aglomeration and powdering resistance
AU2018282388B2 (en) Steelmaking slag for fertilizer raw material, method for producing steelmaking slag for fertilizer raw material, method for producing fertilizer, and fertilizer application method
JP2006306696A (en) Raw material for siliceous fertilizer and method of manufacturing the same
US20240109817A1 (en) A process for the production of a unified granule of polyhalite and an n-fertilizer
JPH0867591A (en) Urea-based compound fertilizer and its production
WO2003037824A1 (en) Raw material for silicate phosphate fertilizer and method for production thereof
CN107417353A (en) A kind of slow-release compound fertilizer and preparation method thereof
CN1216832C (en) Method for producing borium and magnesium fertilizer by using boric sludge
JP6006654B2 (en) Method for producing siliceous fertilizer
JP6119704B2 (en) Raw material for phosphosilicate fertilizer and method for producing the same
JP4268300B2 (en) Rice fertilizer
JP2000154082A (en) Granular accelerator for humification of organic substance and soil amendment
JP2002047081A (en) Silicate-based fertilizer
JPH10167864A (en) Quick-acting and slow-release fertilizer and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120808

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120924

R150 Certificate of patent or registration of utility model

Ref document number: 5105322

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term