JP6097104B2 - Method for treating heavy metal-containing solution - Google Patents

Method for treating heavy metal-containing solution Download PDF

Info

Publication number
JP6097104B2
JP6097104B2 JP2013051728A JP2013051728A JP6097104B2 JP 6097104 B2 JP6097104 B2 JP 6097104B2 JP 2013051728 A JP2013051728 A JP 2013051728A JP 2013051728 A JP2013051728 A JP 2013051728A JP 6097104 B2 JP6097104 B2 JP 6097104B2
Authority
JP
Japan
Prior art keywords
exchange resin
ion exchange
heavy metal
packed tower
resin packed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013051728A
Other languages
Japanese (ja)
Other versions
JP2014176794A (en
Inventor
治雄 横田
治雄 横田
中村 彰
彰 中村
大江 太郎
太郎 大江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2013051728A priority Critical patent/JP6097104B2/en
Publication of JP2014176794A publication Critical patent/JP2014176794A/en
Application granted granted Critical
Publication of JP6097104B2 publication Critical patent/JP6097104B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Description

本発明は、重金属含有溶液から重金属を除去する技術に関する。   The present invention relates to a technique for removing heavy metals from a heavy metal-containing solution.

鉱物資源の枯渇、産業廃棄物処分場の逼迫等の状況から、リサイクル等を目的として、重金属含有溶液から重金属を分離する技術に期待が集まっている。カチオン交換樹脂やキレート樹脂等のイオン交換樹脂に重金属含有溶液を通液して、溶液中から重金属を分離するイオン交換樹脂法は、重金属分離方法の一つであり、例えば、希薄溶液からの分離等に適している。   Due to the depletion of mineral resources and the tightness of the industrial waste disposal site, there are high expectations for technology for separating heavy metals from solutions containing heavy metals for the purpose of recycling. The ion exchange resin method in which a heavy metal-containing solution is passed through an ion exchange resin such as a cation exchange resin or a chelate resin to separate heavy metal from the solution is one of heavy metal separation methods, for example, separation from a dilute solution. Suitable for etc.

また、イオン交換樹脂法を用いた重金属のリサイクル方法としては、目的とする重金属をイオン交換樹脂に吸着させ、次に硫酸等の酸でイオン交換樹脂に吸着した重金属を溶離して回収する方法が知られている。溶離(回収)液は必要に応じて、リサイクルしやすい性状にするための精製等が実施される。   In addition, as a method for recycling heavy metals using the ion exchange resin method, there is a method in which the target heavy metal is adsorbed on the ion exchange resin, and then the heavy metal adsorbed on the ion exchange resin is eluted and recovered with an acid such as sulfuric acid. Are known. The elution (recovery) solution is purified, if necessary, to make it easy to recycle.

特開2004−174418号公報JP 2004-174418 A 特開2006−137987号公報JP 2006-137987 A

ところで、イオン交換樹脂からの溶離液には、高純度の重金属が含まれていることが望ましい。高純度の重金属を含有させることにより、溶離液の価値が高まること、その後の純度を高めるための精製コストを安価、簡易にすることができる。例えば、重金属メッキ洗浄廃液からの重金属回収においては、Na形もしくはH形もしくは双方のイオン形が混合したカチオン交換樹脂、またはキレート樹脂等のイオン交換樹脂で重金属を吸着した後、酸でイオン交換樹脂に吸着した重金属を溶離して回収する。その溶離液に高純度の重金属が含まれており、メッキ成分以外の不純物がなければ、その溶離液をそのままメッキ原液として再利用できるため、費用・効率面等の点から望ましい。   By the way, it is desirable that the eluent from the ion exchange resin contains high-purity heavy metal. By containing a high-purity heavy metal, the value of the eluent can be increased, and the subsequent purification cost for increasing the purity can be made inexpensive and simple. For example, in heavy metal recovery from waste solution for washing heavy metal plating, after adsorbing heavy metal with ion exchange resin such as cation exchange resin mixed with Na form or H form or both ion forms, or chelate resin, ion exchange resin with acid The heavy metal adsorbed on is eluted and recovered. If the eluent contains high-purity heavy metal and there are no impurities other than plating components, the eluent can be reused as a plating stock solution, which is desirable from the viewpoint of cost and efficiency.

溶離液中の重金属を高純度とするためには、酸等でイオン交換樹脂に吸着した重金属を溶離する時点において、イオン交換樹脂に残留するNa形またはH形等の官能基の量をいかに減らせるか、言い換えれば、重金属含有溶液由来の重金属等の成分をイオン交換樹脂の官能基(イオン交換基)にいかに多く吸着させることができるかにある。イオン交換樹脂中に残存するNa形またはH形等の官能基の量が多いと、該官能基由来のNa、Hが、イオン交換樹脂から重金属が溶離する際に、重金属と共に溶離液に混入してしまうため、純度を低めてしまう場合がある。したがって、イオン交換樹脂の官能基が重金属等で飽和される状態になるまで、重金属含有溶液をイオン交換樹脂に通液させることが望ましい。   In order to increase the purity of heavy metals in the eluent, the amount of functional groups such as Na-form or H-form remaining in the ion-exchange resin can be reduced at the time of elution of the heavy metal adsorbed on the ion-exchange resin with acid. In other words, there is how much a component such as heavy metal derived from the heavy metal-containing solution can be adsorbed to the functional group (ion exchange group) of the ion exchange resin. If there is a large amount of functional group such as Na form or H form remaining in the ion exchange resin, Na and H derived from the functional group are mixed with the heavy metal in the eluent when the heavy metal is eluted from the ion exchange resin. Therefore, the purity may be lowered. Therefore, it is desirable to pass the heavy metal-containing solution through the ion exchange resin until the functional group of the ion exchange resin is saturated with heavy metal or the like.

しかし、イオン交換樹脂の官能基が重金属等で飽和された状態(以下、単にイオン交換樹脂の飽和状態と呼ぶ場合がある)を検知することは困難である。飽和状態を検知する指標としては、イオン交換樹脂から排出された処理水のpH変動が挙げられるが、飽和状態のイオン交換樹脂から排出された処理液のpH変動はごくわずかであるため、例えば市販のpH計では、処理液のpH変動を検知することが非常に困難で、イオン交換樹脂の飽和状態を検知することができない。これは、処理水のpH変動を処理水の金属濃度変動、Na濃度変動等に置き換えても、市販の金属濃度計やNa濃度計等では、処理水中の上記濃度変動を検知することは困難である。   However, it is difficult to detect a state in which the functional group of the ion exchange resin is saturated with a heavy metal or the like (hereinafter sometimes simply referred to as a saturated state of the ion exchange resin). As an index for detecting the saturated state, there is a pH variation of the treated water discharged from the ion exchange resin. However, since the pH variation of the treatment liquid discharged from the saturated ion exchange resin is very small, for example, commercially available In this pH meter, it is very difficult to detect the pH fluctuation of the treatment liquid, and the saturation state of the ion exchange resin cannot be detected. This is because it is difficult to detect the above concentration fluctuation in the treated water with a commercially available metal concentration meter or Na concentration meter even if the pH variation of the treated water is replaced with the metal concentration fluctuation, Na concentration fluctuation, etc. of the treated water. is there.

そこで、本発明の目的は、イオン交換樹脂の官能基が重金属等で飽和された状態を検知して、重金属含有溶液の通液停止時期を制御することができる重金属含有溶液の処理方法を提供することである。   Accordingly, an object of the present invention is to provide a method for treating a heavy metal-containing solution capable of detecting a state in which a functional group of an ion exchange resin is saturated with heavy metal or the like and controlling a liquid supply stop timing of the heavy metal-containing solution. That is.

本発明は、少なくとも2つのイオン交換樹脂充填塔を直列に接続した多段式イオン交換樹脂充填塔に重金属含有溶液を通液して、前記溶液から重金属を除去する重金属含有溶液の処理方法であって、前記溶液中の重金属濃度(mg当量/L)と第1段目のイオン交換樹脂充填塔に通液する前記溶液の通液速度(m/h)との積が3以上300以下の範囲となるように、前記多段式イオン交換樹脂充填塔に前記溶液を通液し、第2段目のイオン交換樹脂充填塔から排出される処理水のpHの変動に基づいて、前記第1段目のイオン交換樹脂充填塔のイオン交換樹脂が飽和されたと判断し、前記多段式イオン交換樹脂充填塔への前記溶液の通液を停止する重金属含有溶液の処理方法である。 The present invention is a method for treating a heavy metal-containing solution, wherein a heavy metal-containing solution is passed through a multistage ion-exchange resin packed tower in which at least two ion-exchange resin packed towers are connected in series to remove the heavy metal from the solution. The product of the heavy metal concentration (mg equivalent / L) in the solution and the solution flow rate (m / h) of the solution passing through the first-stage ion-exchange resin packed tower is in the range of 3 to 300. So that the solution is passed through the multistage ion exchange resin packed tower, and based on the change in pH of the treated water discharged from the second stage ion exchange resin packed tower , It is a processing method for a heavy metal-containing solution that determines that the ion exchange resin in the ion exchange resin packed tower is saturated and stops the flow of the solution through the multistage ion exchange resin packed tower.

また、前記重金属含有溶液の処理方法において、前記第1段目のイオン交換樹脂充填塔のイオン交換樹脂の充填量に対する前記2段目のイオン交換樹脂充填塔のイオン交換樹脂の充填量の比は0.8〜1.25の範囲であることが好ましい。   In the method for treating a heavy metal-containing solution, a ratio of an ion exchange resin filling amount of the second stage ion exchange resin packed tower to an ion exchange resin filling quantity of the first stage ion exchange resin packed tower is: A range of 0.8 to 1.25 is preferred.

また、前記重金属含有溶液の処理方法において、前記第1段目のイオン交換樹脂充填塔に通液する前記溶液の通液速度は、1m/h以上200m/h以下の範囲であることが好ましい。   Moreover, in the processing method of the said heavy metal containing solution, it is preferable that the flow rate of the said solution which flows through the said 1st stage ion exchange resin packed tower is the range of 1 m / h or more and 200 m / h or less.

また、前記重金属含有溶液の処理方法において、前記第1段目及び前記第2段目のイオン交換樹脂充填塔に充填されるイオン交換樹脂は、弱酸性カチオン交換樹脂であることが好ましい。   Moreover, in the processing method of the said heavy metal containing solution, it is preferable that the ion exchange resin with which the said 1st stage and said 2nd stage ion exchange resin packed column are weakly acidic cation exchange resins.

また、前記重金属含有溶液の処理方法において、前記第2段目のイオン交換樹脂充填塔から排出される処理水のpHの変動が、基準値から0.5以上変動した際、又は0.003pH/処理倍量以上となった際に、前記多段式イオン交換樹脂充填塔への前記溶液の通液を停止することが好ましい。   In the method for treating a heavy metal-containing solution, when the fluctuation in pH of the treated water discharged from the second stage ion exchange resin packed tower fluctuates by 0.5 or more from a reference value, or 0.003 pH / It is preferable to stop the flow of the solution through the multistage ion-exchange resin packed tower when the amount exceeds the treatment volume.

また、前記重金属含有溶液の処理方法において、前記溶液の通液停止後に、前記第1段目のイオン交換樹脂充填塔に酸溶液を通液して、前記第1段目のイオン交換樹脂充填塔から排出される処理液を回収することが好ましい。   Further, in the processing method for the heavy metal-containing solution, after the solution flow is stopped, the acid solution is passed through the first-stage ion exchange resin packed tower, and the first-stage ion exchange resin packed tower It is preferable to collect the treatment liquid discharged from the tank.

本発明によれば、イオン交換樹脂の官能基が重金属等で飽和された状態を検知して、重金属含有溶液の通液停止時期を制御することができる重金属含有溶液の処理方法を提供することである。   According to the present invention, by providing a method for treating a heavy metal-containing solution capable of detecting a state in which a functional group of an ion exchange resin is saturated with a heavy metal or the like and controlling a liquid supply stopping time of the heavy metal-containing solution. is there.

本実施形態に係る重金属含溶液の処理方法を実施するための処理装置の構成の一例を示す模式図である。It is a schematic diagram which shows an example of a structure of the processing apparatus for enforcing the processing method of the heavy metal containing solution which concerns on this embodiment. 実施例1〜3及び比較例1の通液工程における1段目及び2段目のイオン交換樹脂充填塔から排出される処理液のpHの推移を示す図である。It is a figure which shows transition of the pH of the process liquid discharged | emitted from the ion exchange resin packed tower of the 1st step | paragraph and the 2nd step | paragraph in the liquid passing process of Examples 1-3 and the comparative example 1. FIG. 実施例4の通液工程における1段目及び2段目のイオン交換樹脂充填塔から排出される処理液のpHの推移を示す図である。It is a figure which shows transition of the pH of the process liquid discharged | emitted from the ion exchange resin packed tower of the 1st step | paragraph and the 2nd step | paragraph in the liquid passing process of Example 4. FIG. 実施例5及び6の通液工程における1段目及び2段目のイオン交換樹脂充填塔から排出される処理液のpHの推移を示す図である。It is a figure which shows transition of the pH of the process liquid discharged | emitted from the ion exchange resin packed tower of the 1st step | paragraph and the 2nd step | paragraph in the liquid passing process of Example 5 and 6.

以下、本発明の実施の形態について説明する。なお、本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。   Embodiments of the present invention will be described below. This embodiment is an example for carrying out the present invention, and the present invention is not limited to this embodiment.

図1は、本実施形態に係る重金属含溶液の処理方法を実施するための処理装置の構成の一例を示す模式図である。図1に示す処理装置1は、貯留槽10、流入ライン12、供給ポンプ14、第1イオン交換樹脂充填塔16、第2イオン交換樹脂充填塔18、一次処理水排出第1ライン20、最終処理水排出ライン22、pH計24、を備えている。第1イオン交換樹脂充填塔16と第2イオン交換樹脂充填塔18は直列に接続されている。ここで、直列に接続されるとは、重金属含有溶液が1段目のイオン交換樹脂充填塔に流入し、1段目のイオン交換樹脂充填塔を通過して排出された溶液が2段目のイオン交換樹脂充填塔に流入する構成になっていることを言う。第1イオン交換樹脂充填塔16及び第2イオン交換樹脂充填塔18には、イオン交換樹脂が充填されている。   FIG. 1 is a schematic diagram showing an example of the configuration of a processing apparatus for carrying out the method for processing a heavy metal-containing solution according to the present embodiment. The processing apparatus 1 shown in FIG. 1 includes a storage tank 10, an inflow line 12, a supply pump 14, a first ion exchange resin packed tower 16, a second ion exchange resin packed tower 18, a primary treated water discharge first line 20, and a final process. A water discharge line 22 and a pH meter 24 are provided. The first ion exchange resin packed tower 16 and the second ion exchange resin packed tower 18 are connected in series. Here, being connected in series means that the heavy metal-containing solution flows into the first-stage ion exchange resin packed tower and the solution discharged through the first-stage ion exchange resin packed tower is the second stage. It means that it is configured to flow into the ion exchange resin packed tower. The first ion exchange resin packed tower 16 and the second ion exchange resin packed tower 18 are filled with an ion exchange resin.

供給ポンプ14は流入ライン12に設置されており、pH計24は最終処理水排出ライン22に設置されている。流入ライン12の一端は貯留槽10に接続され、他端は第1イオン交換樹脂充填塔16に接続される。一次処理水排出第1ライン20の一端は第1イオン交換樹脂充填塔16に接続され、他端は第2イオン交換樹脂充填塔18に接続されている。最終処理水排出ライン22の一端は第2イオン交換樹脂充填塔18に接続され、他端は系外に設けられる処理水槽等に接続されている。   The supply pump 14 is installed in the inflow line 12, and the pH meter 24 is installed in the final treated water discharge line 22. One end of the inflow line 12 is connected to the storage tank 10, and the other end is connected to the first ion exchange resin packed tower 16. One end of the primary treated water discharge first line 20 is connected to the first ion exchange resin packed tower 16, and the other end is connected to the second ion exchange resin packed tower 18. One end of the final treated water discharge line 22 is connected to the second ion exchange resin packed tower 18 and the other end is connected to a treated water tank or the like provided outside the system.

図1に示すように処理装置1は、さらに酸貯留槽26、酸添加ライン28、酸添加ポンプ30、溶離液回収ライン32、を備えている。酸添加ポンプ30は酸添加ライン28に設置されている。酸添加ライン28の一端は酸貯留槽26に接続され、他端は流入ライン12に接続されている。溶離液回収ライン32の一端は最終処理水排出ライン22に接続され、他端は系外に設けられる溶離液貯留槽等に接続されている。   As shown in FIG. 1, the processing apparatus 1 further includes an acid storage tank 26, an acid addition line 28, an acid addition pump 30, and an eluent recovery line 32. The acid addition pump 30 is installed in the acid addition line 28. One end of the acid addition line 28 is connected to the acid storage tank 26, and the other end is connected to the inflow line 12. One end of the eluent recovery line 32 is connected to the final treated water discharge line 22 and the other end is connected to an eluent storage tank or the like provided outside the system.

図1に示す処理装置1は、さらに、分岐第1ライン34、一次処理水排出第2ライン36、分岐第2ライン38、を備えている。分岐第1ライン34の一端は流入ライン12に接続され、他端は一次処理水排出第1ライン20に接続されている。一次処理水排出第2ライン36の一端は第2イオン交換樹脂充填塔18に接続され、他端は流入ライン12に接続されている。分岐第2ライン38の一端は一次処理水排出第1ライン20に接続され、他端は最終処理水排出ライン22に接続されている。分岐第1ライン34、一次処理水排出第2ライン36、分岐第2ライン38、を備えることにより、第1イオン交換樹脂充填塔16及び第2イオン交換樹脂充填塔18の間で通液順序を入れ替えることが可能となる。すなわち、第1イオン交換樹脂充填塔16及び第2イオン交換樹脂充填塔18の一方を1段目のイオン交換樹脂充填塔とし、他方を2段目のイオン交換樹脂充填塔とするかを任意に設定することが可能となる。   The processing apparatus 1 shown in FIG. 1 further includes a branch first line 34, a primary treated water discharge second line 36, and a branch second line 38. One end of the branch first line 34 is connected to the inflow line 12, and the other end is connected to the primary treated water discharge first line 20. One end of the primary treated water discharge second line 36 is connected to the second ion exchange resin packed tower 18, and the other end is connected to the inflow line 12. One end of the branch second line 38 is connected to the primary treated water discharge first line 20, and the other end is connected to the final treated water discharge line 22. By providing the branched first line 34, the primary treated water discharge second line 36, and the branched second line 38, the flow order of liquid flow between the first ion exchange resin packed column 16 and the second ion exchange resin packed column 18 is improved. It can be replaced. That is, it is optional whether one of the first ion exchange resin packed tower 16 and the second ion exchange resin packed tower 18 is a first stage ion exchange resin packed tower and the other is a second stage ion exchange resin packed tower. It becomes possible to set.

以下に、図1に示す処理装置1の動作について説明する。   Below, operation | movement of the processing apparatus 1 shown in FIG. 1 is demonstrated.

本実施形態の処理対象である重金属含有溶液は、貯留槽10に貯留されている。本実施形態における重金属とは、比重が4以上の金属をいい、例えば、Fe、Hg、Cu、Ni、Zn、Cd、Co、Mn、Ti等が挙げられる。   The heavy metal-containing solution that is the processing target of the present embodiment is stored in the storage tank 10. The heavy metal in the present embodiment refers to a metal having a specific gravity of 4 or more, and examples thereof include Fe, Hg, Cu, Ni, Zn, Cd, Co, Mn, and Ti.

本実施形態の処理装置1では、少なくとも2つのイオン交換樹脂充填塔を直列に接続した多段式イオン交換樹脂充填塔に重金属含有溶液を通液して、溶液中の重金属をイオン交換処理により吸着除去する通液工程と、1段目のイオン交換樹脂充填塔内のイオン交換樹脂を再生する再生工程とを1サイクルとして、これらの工程を繰り返して実施する。本実施形態では、まず、1段目を第1イオン交換樹脂充填塔16とし、2段目を第2イオン交換樹脂充填塔18とした場合について説明する。但し、重金属含有溶液の通液順序は、第1及び第2イオン交換樹脂充填塔間で変更可能であり、1サイクル毎に、重金属含有溶液の通液順序を第1及び第2イオン交換樹脂充填塔間で変更することが好ましい。   In the processing apparatus 1 of the present embodiment, a heavy metal-containing solution is passed through a multistage ion exchange resin packed tower in which at least two ion exchange resin packed towers are connected in series, and heavy metals in the solution are adsorbed and removed by ion exchange processing. These steps are repeatedly carried out with one liquid passing step and a regeneration step of regenerating the ion exchange resin in the first-stage ion exchange resin packed tower as one cycle. In the present embodiment, first, a case where the first stage is the first ion exchange resin packed tower 16 and the second stage is the second ion exchange resin packed tower 18 will be described. However, the flow order of the heavy metal-containing solution can be changed between the first and second ion exchange resin-filled towers, and the flow order of the heavy metal-containing solution is filled with the first and second ion-exchange resins every cycle. It is preferable to change between towers.

<通液工程>
供給ポンプ14を稼働させると共に、流入ライン12に設けられるバルブ40及び42、一次処理水排出第1ライン20に設けられるバルブ44、最終処理水排出ライン22に設けられるバルブ46及び48を開く。これにより、貯留槽10内の重金属含有溶液が流入ライン12から第1イオン交換樹脂充填塔16に供給される。第1イオン交換樹脂充填塔16内のイオン交換樹脂により、溶液中の重金属等が吸着される。第1イオン交換樹脂充填塔16から排出される一次処理水は一次処理水排出第1ライン20を通り、第2イオン交換樹脂充填塔18に供給される。通液初期においては、重金属は第1イオン交換樹脂充填塔16内のイオン交換樹脂により吸着されるため、一次処理水中にはほとんど重金属は含まれない。しかし、通液を継続し、第1イオン交換樹脂充填塔16内のイオン交換樹脂の官能基が重金属等で飽和される状態(以下、単に第1イオン交換樹脂の飽和状態と呼ぶ場合がある)に近づくにつれ、第1イオン交換樹脂充填塔16から重金属がリークする。しかし、一次処理水中に重金属が含まれていても、第2イオン交換樹脂充填塔18内のイオン交換樹脂により、一次処理水中の重金属が吸着されるため、重金属が除去された最終処理水が第2イオン交換樹脂充填塔18内から排出される。
<Liquid passing process>
While operating the supply pump 14, the valves 40 and 42 provided in the inflow line 12, the valve 44 provided in the primary treated water discharge first line 20, and the valves 46 and 48 provided in the final treated water discharge line 22 are opened. Thereby, the heavy metal containing solution in the storage tank 10 is supplied from the inflow line 12 to the first ion exchange resin packed tower 16. The heavy metal in the solution is adsorbed by the ion exchange resin in the first ion exchange resin packed tower 16. The primary treated water discharged from the first ion exchange resin packed tower 16 passes through the first treated water discharge first line 20 and is supplied to the second ion exchange resin packed tower 18. In the initial stage of liquid flow, heavy metals are adsorbed by the ion exchange resin in the first ion exchange resin packed tower 16, so that the primary treated water contains almost no heavy metals. However, the liquid is continuously passed and the functional group of the ion exchange resin in the first ion exchange resin packed column 16 is saturated with heavy metal or the like (hereinafter, sometimes simply referred to as the saturated state of the first ion exchange resin). As the value approaches, heavy metal leaks from the first ion exchange resin packed tower 16. However, even if heavy metal is contained in the primary treated water, the heavy metal in the primary treated water is adsorbed by the ion exchange resin in the second ion exchange resin packed tower 18, so that the final treated water from which the heavy metal has been removed is the first treated water. The two ion exchange resin packed tower 18 is discharged.

さらに重金属含有溶液の通液を継続すれば、第1イオン交換樹脂充填塔16内のイオン交換樹脂の官能基が重金属等で飽和される状態となる。しかし、イオン交換樹脂の官能基が重金属等で飽和されると、重金属含有溶液の重金属はイオン交換樹脂に吸着されることなく、ほとんどそのままイオン交換樹脂を通過するため、前述したように、飽和状態のイオン交換樹脂から排出された処理液のpH変動はごくわずかとなる。したがって、通常、第1イオン交換樹脂充填塔16内のイオン交換樹脂の飽和状態を第1イオン交換樹脂充填塔16から排出される一次処理水のpH変動から検出することは困難である。そこで、本発明者らは鋭意検討した結果、以下の通液条件で、重金属含有溶液を通液させることにより、イオン交換樹脂の飽和状態を検知することが可能となることを見出した。   Furthermore, if the heavy metal-containing solution is continuously passed, the functional group of the ion exchange resin in the first ion exchange resin packed column 16 is saturated with heavy metal or the like. However, when the functional group of the ion exchange resin is saturated with a heavy metal or the like, the heavy metal in the heavy metal-containing solution passes through the ion exchange resin almost as it is without being adsorbed on the ion exchange resin. The pH fluctuation of the treatment liquid discharged from the ion exchange resin is negligible. Therefore, it is usually difficult to detect the saturation state of the ion exchange resin in the first ion exchange resin packed tower 16 from the pH change of the primary treated water discharged from the first ion exchange resin packed tower 16. As a result of intensive studies, the present inventors have found that the saturation state of the ion exchange resin can be detected by passing a heavy metal-containing solution under the following conditions.

本実施形態の通液工程では、溶液中の重金属濃度(mg当量/L)と1段目のイオン交換樹脂充填塔(本実施形態では第1イオン交換樹脂充填塔16)に通液する重金属含有溶液の通液速度(LV(m/h))の積が3以上300以下の範囲となるように、2段直列に接続された多段式イオン交換樹脂充填塔に重金属含有溶液を通液する。   In the liquid passing process of the present embodiment, the heavy metal concentration (mg equivalent / L) in the solution and the heavy metal containing liquid flowing through the first-stage ion exchange resin packed tower (the first ion exchange resin packed tower 16 in the present embodiment) are included. The heavy metal-containing solution is passed through a multistage ion exchange resin packed tower connected in two stages in series so that the product of the solution flow rate (LV (m / h)) is in the range of 3 to 300.

このような通液条件で、重金属含有溶液の通液を行うことにより、次のような現象が起きる。すなわち、第1段目のイオン交換樹脂充填塔内のイオン交換樹脂が飽和に近くなると、次第に第1段目のイオン交換樹脂充填塔を素通りして第2段目のイオン交換樹脂充填塔に流入する重金属が増加する。第2段目のイオン交換樹脂充填塔に流入した重金属が第2段目のイオン交換樹脂充填塔で樹脂に吸着され、吸着が進んで一部の重金属が第2段目のイオン交換樹脂充填塔内のイオン交換樹脂からリークすると、第2段目のイオン交換樹脂充填塔から排出される処理液のpHが下がることになる。本発明の方法によれば、第1段目のイオン交換樹脂充填塔内の樹脂が十分に飽和した後に、第2段目のイオン交換樹脂充填塔から重金属がリークし始め、処理液のpHが低下する。すなわち、第2段目のイオン交換樹脂充填塔から排出される処理水のpH変動により、第1段目のイオン交換樹脂充填塔内のイオン交換樹脂の官能基が重金属等で飽和されたことを検知することができる。また、本実施形態では、第2段目のイオン交換樹脂充填塔から排出される処理水のpH変動に基づいて、重金属含有溶液の通液を停止する。   The following phenomenon occurs when the heavy metal-containing solution is passed under such a fluid passing condition. That is, when the ion exchange resin in the first-stage ion exchange resin packed tower is close to saturation, it gradually passes through the first-stage ion exchange resin packed tower and flows into the second-stage ion exchange resin packed tower. Heavy metal to increase. The heavy metal that has flowed into the second-stage ion exchange resin packed tower is adsorbed by the resin in the second-stage ion exchange resin packed tower, and the adsorption proceeds and some heavy metals are in the second-stage ion exchange resin packed tower. When leaking from the ion exchange resin inside, the pH of the treatment liquid discharged from the second-stage ion exchange resin packed tower is lowered. According to the method of the present invention, after the resin in the first-stage ion exchange resin packed tower is sufficiently saturated, heavy metal begins to leak from the second-stage ion exchange resin packed tower, and the pH of the treatment liquid is reduced. descend. That is, the functional group of the ion exchange resin in the first stage ion exchange resin packed tower was saturated with heavy metal or the like due to the pH fluctuation of the treated water discharged from the second stage ion exchange resin packed tower. Can be detected. Moreover, in this embodiment, based on the pH fluctuation | variation of the treated water discharged | emitted from the ion exchange resin packed tower of the 2nd step, the liquid metal containing solution flow is stopped.

このように、前述の通液条件で重金属含有溶液の通液を行い、第2段目のイオン交換樹脂充填塔から排出される処理水のpH変動に基づいて、重金属含有溶液の通液停止の制御を行うことにより、第1イオン交換樹脂充填塔16内のイオン交換樹脂の官能基は重金属等で飽和した状態となり、また、第2イオン交換樹脂充填塔18から排出される最終処理水に重金属が混入することも抑制することができる。ここでイオン交換樹脂の官能基が重金属等により飽和された状態とは、重金属含有溶液由来のカチオン成分が99.8%〜100.0%の範囲にある状態を言う。重金属含有溶液由来のカチオン成分が99.8%未満では、官能基由来のNaやH等が後述する再生工程で得られる溶離液中に混入し、目標液質との差異が大きくなってしまう場合がある。   In this way, the heavy metal-containing solution is passed under the above-described flow conditions, and the suspension of the heavy metal-containing solution is stopped based on the pH fluctuation of the treated water discharged from the second stage ion exchange resin packed tower. By performing the control, the functional group of the ion exchange resin in the first ion exchange resin packed column 16 is saturated with heavy metal or the like, and the heavy metal is added to the final treated water discharged from the second ion exchange resin packed column 18. It is also possible to suppress the contamination. Here, the state in which the functional group of the ion exchange resin is saturated with heavy metal or the like means a state in which the cation component derived from the heavy metal-containing solution is in the range of 99.8% to 100.0%. When the cation component derived from the heavy metal-containing solution is less than 99.8%, Na or H derived from the functional group is mixed in the eluent obtained in the regeneration step described later, and the difference from the target liquid quality becomes large. There is.

溶液中の重金属濃度(mg当量/L)と1段目のイオン交換樹脂充填塔(第1イオン交換樹脂充填塔16)に通液する重金属含有溶液の通液速度(LV(m/h))の積が300を超える値で重金属含有溶液の通液を行った場合、イオン交換帯長さが長くなってしまうため、2段目のイオン交換樹脂充填塔(本実施形態では第2イオン交換樹脂充填塔18)から重金属がリークし始めた時には、まだ1段目のイオン交換樹脂充填塔(第1イオン交換樹脂充填塔16)内のイオン交換樹脂の官能基は重金属等で飽和した状態に達していない。また、溶液中の重金属濃度と1段目のイオン交換樹脂充填塔に通液する重金属含有溶液の通液速度の積が3未満の値で重金属含有溶液の通液を行った場合、重金属の処理に時間が掛かり、処理効率が悪くなる場合がある。   Heavy metal concentration in solution (mg equivalent / L) and flow rate of heavy metal-containing solution (LV (m / h)) passing through the first-stage ion exchange resin packed tower (first ion exchange resin packed tower 16) When the heavy metal-containing solution is passed at a value exceeding 300, the ion exchange zone length becomes long, so the second stage ion exchange resin packed tower (second ion exchange resin in this embodiment) When heavy metal begins to leak from the packed column 18), the functional groups of the ion exchange resin in the first-stage ion exchange resin packed column (first ion exchange resin packed column 16) still reach a state saturated with heavy metal or the like. Not. In addition, when the heavy metal-containing solution is passed with a product of the heavy metal concentration in the solution and the flow rate of the heavy metal-containing solution passing through the first-stage ion-exchange resin packed tower less than 3, the treatment of heavy metal Takes time and processing efficiency may deteriorate.

前述したように、本実施形態では、2段目のイオン交換樹脂充填塔から排出される処理水のpH変動に基づいて、イオン交換樹脂充填塔への重金属含有溶液の通液を停止する。具体的には、最終処理水排出ライン22を流れる最終処理水のpHをpH計24により検出して、最終処理水のpHが基準値から0.5以上変動した場合に、重金属含有溶液の通液を停止することが好ましい。なお、最終処理水のpHが基準値から0.5未満変動した段階で重金属含有溶液の通液を停止すると、測定誤差等によって、誤って通液を停止してしまう場合がある。ここで基準値は、2段目のイオン交換樹脂充填塔から重金属がリークしていない時の最終処理水のpH値に設定されるものであり、例えば、重金属含有溶液濃度(mg当量/L)×総通液量(L)÷2段目イオン交換樹脂量(L−樹脂)が1000(mg当量/L−樹脂)に達するまでに得られる最終処理水のpH値に設定されることが望ましい。   As described above, in the present embodiment, the flow of the heavy metal-containing solution to the ion exchange resin packed tower is stopped based on the pH fluctuation of the treated water discharged from the second stage ion exchange resin packed tower. Specifically, when the pH of the final treated water flowing through the final treated water discharge line 22 is detected by the pH meter 24 and the pH of the final treated water fluctuates by 0.5 or more from the reference value, the heavy metal-containing solution passes through. It is preferable to stop the liquid. Note that if the flow of the heavy metal-containing solution is stopped at the stage where the pH of the final treated water fluctuates by less than 0.5 from the reference value, the flow may be erroneously stopped due to a measurement error or the like. Here, the reference value is set to the pH value of the final treated water when heavy metal is not leaking from the second-stage ion exchange resin packed tower. For example, the concentration of the heavy metal-containing solution (mg equivalent / L) X Total liquid flow rate (L) ÷ It is desirable to set the pH value of the final treated water obtained until the second-stage ion exchange resin amount (L-resin) reaches 1000 (mg equivalent / L-resin). .

また、最終処理水排出ライン22を流れる最終処理水のpHが0.003pH/処理倍量以上変動した場合に、重金属含有溶液の通液を停止することが好ましい。ここで、pH/処理倍量は、最終処理液のpHを縦軸に、処理倍量を横軸にとってpHと処理倍量の関係をグラフ化した場合に、pHの変化を示すグラフ(曲線又は直線)のある処理倍量の時点での接線の傾き(すなわち微分値)として表される。また、処理倍量とは通液時の2段目のイオン交換樹脂充填塔に充填されるイオン交換樹脂の体積に対するある時点におけるそれまでの重金属含有溶液の総通液量で求められる。すなわち、処理倍量は、(重金属含有溶液の総通液量)/(2段目のイオン交換樹脂充填塔に充填されるイオン交換樹脂の体積)で求められる。   Further, when the pH of the final treated water flowing through the final treated water discharge line 22 fluctuates by 0.003 pH / treatment amount or more, it is preferable to stop the passage of the heavy metal-containing solution. Here, the pH / treatment volume is a graph (curve or curve) showing changes in pH when the pH of the final treatment solution is plotted on the vertical axis and the treatment volume is plotted on the horizontal axis. It is expressed as the slope of the tangent (that is, the differential value) at the time of a certain process multiple of (straight line). The treatment volume is determined by the total flow rate of the heavy metal-containing solution up to that point in time with respect to the volume of the ion exchange resin packed in the second-stage ion exchange resin packed tower at the time of the flow. That is, the processing amount is obtained by (total amount of heavy metal containing solution) / (volume of ion exchange resin packed in the second stage ion exchange resin packed tower).

重金属含有溶液の通液を停止する場合には、供給ポンプ14を停止し、通液する際に開いたバルブをすべて閉じる。   When stopping the flow of the heavy metal-containing solution, the supply pump 14 is stopped, and all valves that are opened when the liquid is passed are closed.

<再生工程>
前述の通液工程終了後、酸添加ポンプ30を稼働させ、酸添加ライン28に設けられたバルブ50、流入ライン12に設けられたバルブ42、分岐第2ライン38に設けられたバルブ60、溶離液回収ライン32に設けられたバルブ54を開くことにより、酸貯留槽26内の酸溶液が流入ライン12を通って、1段目のイオン交換樹脂充填塔である第1イオン交換樹脂充填塔16に供給され、イオン交換樹脂の再生が行われる。この際、イオン交換樹脂に吸着されていた重金属が酸溶液とイオン交換され、重金属を含む溶離液として第1イオン交換樹脂充填塔16から排出される。重金属を含む溶離液は、一次処理水排出第1ライン20、分岐第2ライン38、溶離液回収ライン32を通って、例えばリサイクルを目的として、系外に設けられる溶離液貯留槽等に回収される。
<Regeneration process>
After completion of the above-mentioned liquid passing process, the acid addition pump 30 is operated, the valve 50 provided in the acid addition line 28, the valve 42 provided in the inflow line 12, the valve 60 provided in the branch second line 38, elution By opening the valve 54 provided in the liquid recovery line 32, the acid solution in the acid storage tank 26 passes through the inflow line 12, and the first ion exchange resin packed tower 16 which is the first stage ion exchange resin packed tower. The ion exchange resin is regenerated. At this time, the heavy metal adsorbed on the ion exchange resin is ion-exchanged with the acid solution and discharged from the first ion exchange resin packed column 16 as an eluent containing the heavy metal. The eluent containing heavy metal passes through the primary treated water discharge first line 20, the branch second line 38, and the eluent recovery line 32, and is recovered, for example, in an eluent storage tank provided outside the system for the purpose of recycling. The

本実施形態では、前述したように、1段目のイオン交換樹脂充填塔内のイオン交換樹脂の官能基は重金属等で飽和された状態となっているため、再生工程により得られる溶離液は、重金属の純度の高い溶離液として回収することが可能となる。したがって、重金属の純度を高める等組成を変えるための精製等をほとんど必要とせず、回収した溶離液をそのまま再利用することが可能となる。   In the present embodiment, as described above, since the functional group of the ion exchange resin in the first-stage ion exchange resin packed tower is saturated with heavy metal or the like, the eluent obtained by the regeneration step is It can be recovered as an eluent with high purity of heavy metals. Therefore, it is possible to reuse the recovered eluent as it is without requiring purification for changing the composition such as increasing the purity of heavy metals.

本実施形態では、前述の通液工程、再生工程を1サイクル目として実施し、2サイクル目では、1段目のイオン交換樹脂充填塔を第2イオン交換樹脂充填塔18とし、2段目のイオン交換樹脂充填塔を第1イオン交換樹脂充填塔16として通液工程及び再生工程を実施する。   In the present embodiment, the above-described liquid passing step and regeneration step are performed as the first cycle, and in the second cycle, the first-stage ion exchange resin packed tower is used as the second ion-exchange resin packed tower 18. The ion exchange resin packed tower is used as the first ion exchange resin packed tower 16 to perform the liquid passing process and the regeneration process.

2サイクル目の通液工程では、供給ポンプ14を稼働させると共に、流入ライン12に設けられるバルブ40、分岐第1ライン34に設けられるバルブ56、一次処理水排出第2ライン36に設けられるバルブ58、分岐第2ライン38に設けられるバルブ60、最終処理水排出ライン22に設けられるバルブ48を開く。これにより、貯留槽10内の重金属含有溶液が流入ライン12、分岐第1ライン34を通って、第2イオン交換樹脂充填塔18に供給される。溶液中の重金属は第2イオン交換樹脂充填塔18内のイオン交換樹脂により、吸着される。第2イオン交換樹脂充填塔18から排出される一次処理水は一次処理水排出第2ライン36を通り、第1イオン交換樹脂充填塔16に供給される。一次処理水中に重金属が含まれている場合には、第1イオン交換樹脂充填塔16内のイオン交換樹脂により、一次処理水中の重金属が吸着され、重金属が除去された最終処理水が第1イオン交換樹脂充填塔16内から排出される。最終処理水は、分岐第2ライン38、最終処理水排出ライン22を通り、例えば系外に設けられる最終処理液貯留槽等に供給される。   In the liquid passing process in the second cycle, the supply pump 14 is operated, the valve 40 provided in the inflow line 12, the valve 56 provided in the branch first line 34, and the valve 58 provided in the primary treated water discharge second line 36. Then, the valve 60 provided in the branch second line 38 and the valve 48 provided in the final treated water discharge line 22 are opened. Thereby, the heavy metal containing solution in the storage tank 10 is supplied to the second ion exchange resin packed tower 18 through the inflow line 12 and the branched first line 34. The heavy metal in the solution is adsorbed by the ion exchange resin in the second ion exchange resin packed tower 18. The primary treated water discharged from the second ion exchange resin packed tower 18 passes through the first treated water discharge second line 36 and is supplied to the first ion exchange resin packed tower 16. When the heavy metal is contained in the primary treated water, the final treated water from which the heavy metal is adsorbed and removed by the ion exchange resin in the first ion exchange resin packed tower 16 is the first ion. It is discharged from the exchange resin packed tower 16. The final treated water passes through the branched second line 38 and the final treated water discharge line 22 and is supplied to, for example, a final treated liquid storage tank provided outside the system.

2サイクル目の通液工程の通液条件も、溶液中の重金属濃度(mg当量/L)と1段目のイオン交換樹脂充填塔(本実施形態では第2イオン交換樹脂充填塔18)に通液する重金属含有溶液の通液速度(LV(m/h))の積が3以上300以下の範囲となるように、多段式イオン交換樹脂充填塔に重金属含有溶液を通液する。この通液条件により、2段目の第1イオン交換樹脂充填塔16から重金属がリークするまでに、1段目の第2イオン交換樹脂充填塔18内のイオン交換樹脂の官能基が重金属等で飽和される。   The conditions for passing the second cycle are also passed through the heavy metal concentration (mg equivalent / L) in the solution and the first-stage ion-exchange resin packed tower (second ion-exchange resin packed tower 18 in this embodiment). The heavy metal-containing solution is passed through the multistage ion-exchange resin packed tower so that the product of the liquid passing rate (LV (m / h)) of the heavy metal-containing solution to be liquid is in the range of 3 to 300. By this liquid flow condition, the functional group of the ion exchange resin in the second ion exchange resin packed tower 18 in the first stage is heavy metal or the like until the heavy metal leaks from the first ion exchange resin packed tower 16 in the second stage. Saturated.

また、2サイクル目の通液工程でも、最終処理水排出ライン22を流れる最終処理水のpHをpH計24により検出する。そして、最終処理水排出ライン22を流れる最終処理水のpH変動に基づいて、イオン交換樹脂充填塔への重金属含有溶液の通液を停止する。これにより、1段目のイオン交換樹脂充填塔内のイオン交換樹脂の官能基を重金属等で飽和させると共に、最終処理水中に重金属が混入することを抑制することができる。重金属含有溶液の通液を停止する場合には、供給ポンプ14を停止し、通液する際に開いたバルブをすべて閉じる。   In the second cycle liquid passing step, the pH of the final treated water flowing through the final treated water discharge line 22 is detected by the pH meter 24. Then, based on the pH variation of the final treated water flowing through the final treated water discharge line 22, the flow of the heavy metal containing solution to the ion exchange resin packed tower is stopped. Thereby, it is possible to saturate the functional group of the ion exchange resin in the first-stage ion exchange resin packed tower with heavy metal or the like and to prevent heavy metal from being mixed into the final treated water. When stopping the flow of the heavy metal-containing solution, the supply pump 14 is stopped, and all valves that are opened when the liquid is passed are closed.

次に、再生工程では、酸添加ポンプ30を稼働させ、分岐第1ライン34に設けられたバルブ56、最終処理水排出ライン22に設けられたバルブ46、溶離液回収ライン32に設けられたバルブ54を開く。そして、酸貯留槽26内の酸溶液が流入ライン12、分岐第1ライン34を通って、1段目の第2イオン交換樹脂充填塔18に供給され、イオン交換樹脂の再生が行われる。この際、重金属を含む溶離液が第2イオン交換樹脂充填塔18から排出され、最終処理水排出ライン22、溶離液回収ライン32を通って、例えばリサイクルを目的として、系外に設けられる溶離液貯留槽等に回収される。   Next, in the regeneration step, the acid addition pump 30 is operated, a valve 56 provided in the branch first line 34, a valve 46 provided in the final treated water discharge line 22, and a valve provided in the eluent recovery line 32. 54 is opened. Then, the acid solution in the acid storage tank 26 is supplied to the second ion exchange resin packed tower 18 at the first stage through the inflow line 12 and the branched first line 34, and the ion exchange resin is regenerated. At this time, the eluent containing the heavy metal is discharged from the second ion exchange resin packed tower 18 and passes through the final treated water discharge line 22 and the eluent recovery line 32 to be provided outside the system for the purpose of recycling, for example. It is collected in a storage tank.

また、3サイクル、4サイクルと通液工程及び再生工程を繰り返し行う場合には、第1イオン交換樹脂充填塔16と第2イオン交換樹脂充填塔18との間で重金属含有溶液の通液順序を前述したように入れ替えればよい。   In the case of repeating the liquid passing process and the regeneration process with 3 cycles, 4 cycles, the flow order of the heavy metal-containing solution between the first ion exchange resin packed tower 16 and the second ion exchange resin packed tower 18 is changed. What is necessary is just to replace as mentioned above.

本実施形態の重金属含有溶液の処理方法におけるその他の条件について説明する。   The other conditions in the processing method of the heavy metal containing solution of this embodiment are demonstrated.

第1イオン交換樹脂充填塔16及び第2イオン交換樹脂充填塔18に充填されるイオン交換樹脂は、重金属を吸着することができるイオン交換樹脂であれば特に制限されるものではないが、例えば、強酸性カチオン交換樹脂、弱酸性カチオン交換樹脂等のカチオン交換樹脂、イミノジ酢酸形キレート樹脂等のキレート樹脂等が挙げられる。本実施形態で用いられるイオン交換樹脂は、重金属選択性の点等から、イミノジ酢酸形キレート樹脂を用いることが好ましいが、吸着した重金属の溶離性(再生効率)の点等から、弱酸性カチオン交換樹脂を用いることがより好ましい。弱酸性カチオン交換樹脂は、強酸性カチオン交換樹脂より、溶離性(再生効率)が良いので、再生工程において使用する酸の量をより少なくできるとともに、溶離液のpHを中性付近に保つことができる。なお、第1イオン交換樹脂充填塔16及び第2イオン交換樹脂充填塔18に充填されるイオン交換樹脂は、それぞれ種類の異なるイオン交換樹脂であってもよいが、同じ種類のイオン交換樹脂であることが好ましい。   The ion exchange resin filled in the first ion exchange resin packed tower 16 and the second ion exchange resin packed tower 18 is not particularly limited as long as it is an ion exchange resin capable of adsorbing heavy metals. Examples thereof include cation exchange resins such as strongly acidic cation exchange resins and weak acid cation exchange resins, and chelate resins such as iminodiacetic acid type chelate resins. The ion exchange resin used in the present embodiment is preferably an iminodiacetic acid-type chelate resin from the viewpoint of heavy metal selectivity, but weakly acidic cation exchange from the viewpoint of elution (regeneration efficiency) of the adsorbed heavy metal. It is more preferable to use a resin. Since weakly acidic cation exchange resins have better elution properties (regeneration efficiency) than strongly acidic cation exchange resins, the amount of acid used in the regeneration process can be reduced, and the pH of the eluent can be kept near neutrality. it can. The ion exchange resins charged in the first ion exchange resin packed tower 16 and the second ion exchange resin packed tower 18 may be different types of ion exchange resins, but are the same type of ion exchange resin. It is preferable.

本実施形態では、第1イオン交換樹脂充填塔16のイオン交換樹脂の充填量に対する第2イオン交換樹脂充填塔18のイオン交換樹脂の充填量の比が0.8〜1.25の範囲となるように、それぞれのイオン交換樹脂充填塔にイオン交換樹脂を充填させておくことが好ましい。充填量の比が上記範囲を満たすことにより、イオン交換樹脂充填塔間のイオン交換性能が同程度となるため、2サイクル目以降においても、前述の通液条件で、2段目のイオン交換樹脂充填塔からの重金属のリーク時期と1段目のイオン交換樹脂充填塔に充填されたイオン交換樹脂の官能基が重金属で飽和される時期とが同調し易くなる。   In this embodiment, the ratio of the ion exchange resin filling amount of the second ion exchange resin packed column 18 to the ion exchange resin filling amount of the first ion exchange resin packed column 16 is in the range of 0.8 to 1.25. Thus, it is preferable to fill each ion exchange resin packed tower with an ion exchange resin. When the ratio of the filling amount satisfies the above range, the ion exchange performance between the ion exchange resin packed columns becomes the same level. Therefore, the second-stage ion exchange resin is used in the above-described liquid passing condition even after the second cycle. It becomes easy to synchronize the leak time of the heavy metal from the packed tower with the time when the functional group of the ion exchange resin packed in the first-stage ion exchange resin packed tower is saturated with the heavy metal.

第1イオン交換樹脂充填塔16の断面積に対する第2イオン交換樹脂充填塔18の断面積の比は、0.8〜1.25の範囲とすることが好ましい。断面積の比が上記範囲を満たすことにより、イオン交換樹脂充填塔間の通液速度が同程度となるため、2サイクル目以降においても、前述の通液条件において、2段目のイオン交換樹脂充填塔からの重金属のリーク時期と1段目のイオン交換樹脂充填塔に充填されたイオン交換樹脂の官能基が重金属で飽和される時期とが同調し易くなる。   The ratio of the sectional area of the second ion exchange resin packed tower 18 to the sectional area of the first ion exchange resin packed tower 16 is preferably in the range of 0.8 to 1.25. When the ratio of the cross-sectional areas satisfies the above range, the liquid passing speed between the ion exchange resin packed towers becomes approximately the same. Therefore, even after the second cycle, the second-stage ion exchange resin in the liquid passing condition described above. It becomes easy to synchronize the leak time of the heavy metal from the packed tower with the time when the functional group of the ion exchange resin packed in the first-stage ion exchange resin packed tower is saturated with the heavy metal.

重金属含有溶液の通液速度は、重金属含有溶液の流量とイオン交換樹脂等の断面積により求められる。したがって、供給ポンプ14の出力を調節する等して重金属含有溶液の流量を調整すれば、重金属含有溶液の通液速度を制御することが可能となる。そして、1段目のイオン交換樹脂充填塔に通液する重金属含有溶液の通液速度は、前述の通液条件を満たせば特に制限されるものではないが、処理効率(処理時間)、圧力損失等の点において、1m/h以上200m/h以下の範囲を満たすことが好ましい。1段目のイオン交換樹脂充填塔に通液する重金属含有溶液の通液速度が上記範囲外では、処理に時間がかかりすぎたり、消費エネルギーが増えすぎたりして、非効率となる場合がある。   The flow rate of the heavy metal-containing solution is determined by the flow rate of the heavy metal-containing solution and the cross-sectional area of the ion exchange resin or the like. Therefore, if the flow rate of the heavy metal-containing solution is adjusted by adjusting the output of the supply pump 14 or the like, the flow rate of the heavy metal-containing solution can be controlled. The flow rate of the heavy metal-containing solution that passes through the first-stage ion-exchange resin packed tower is not particularly limited as long as the above-mentioned flow conditions are satisfied, but the processing efficiency (processing time), pressure loss It is preferable that the range of 1 m / h or more and 200 m / h or less is satisfied. If the flow rate of the heavy metal-containing solution passing through the first-stage ion-exchange resin packed tower is out of the above range, the process may take too much time or energy consumption may increase, resulting in inefficiency. .

重金属含有溶液中の重金属濃度は、貯留槽10内に重金属濃度計を設置すること等により測定することができる。重金属含有溶液中の重金属濃度は前述の通液条件を満たせば特に制限されるものではないが、イオン交換樹脂の総交換容量等の点において、1000mg当量/L以下の範囲を満たすことが好ましい。通常、貯留槽10内の重金属含有溶液の重金属濃度はほとんど変動しないため、重金属濃度計等により測定した濃度値に基づいて前述の通液条件を満たすように1段目のイオン交換樹脂充填塔に通液する重金属含有溶液の通液速度を調整すればよい。但し、本実施形態では、重金属濃度の変動を制限するものではなく、例えば、1段目のイオン交換樹脂充填塔に通液する重金属含有溶液の通液速度を一定として、前述の通液条件を満たすように、重金属含有溶液を希釈又は濃縮して重金属含有溶液中の重金属濃度を調整してもよい。   The heavy metal concentration in the heavy metal-containing solution can be measured by installing a heavy metal concentration meter in the storage tank 10 or the like. The heavy metal concentration in the heavy metal-containing solution is not particularly limited as long as the above-described liquid passing conditions are satisfied. However, in terms of the total exchange capacity of the ion exchange resin, it is preferable to satisfy the range of 1000 mg equivalent / L or less. Usually, the heavy metal concentration of the heavy metal-containing solution in the storage tank 10 hardly fluctuates. The flow rate of the heavy metal-containing solution to be passed may be adjusted. However, in this embodiment, the fluctuation of the heavy metal concentration is not limited. For example, the above-described flow conditions are set such that the flow rate of the heavy metal-containing solution flowing through the first-stage ion exchange resin packed tower is constant. The heavy metal-containing solution may be diluted or concentrated to adjust the heavy metal concentration in the heavy metal-containing solution so as to satisfy.

再生工程において使用する酸は、重金属を溶離できるものであれば、特に制限されるものではないが、再利用のしやすさ及び取り扱い性の点等から、硫酸または塩酸が望ましい。なお、再生工程において硫酸を使用した場合には、重金属硫酸塩の溶離液として回収され、塩酸を使用した場合には、重金属塩酸塩の溶離液として回収される。   The acid used in the regeneration step is not particularly limited as long as it can elute heavy metals, but sulfuric acid or hydrochloric acid is desirable from the viewpoint of ease of reuse and handling. When sulfuric acid is used in the regeneration step, it is recovered as an eluent of heavy metal sulfate, and when hydrochloric acid is used, it is recovered as an eluent of heavy metal hydrochloride.

以下、実施例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail more concretely, this invention is not limited to a following example.

(実施例1)
図1に示す処理装置を用いて、以下の条件で重金属含有溶液を処理した。重金属含有溶液の通液順序は第1イオン交換樹脂充填塔、第2イオン交換樹脂充填塔とした。
Example 1
The heavy metal containing solution was processed on condition of the following using the processing apparatus shown in FIG. The flow order of the heavy metal-containing solution was the first ion exchange resin packed tower and the second ion exchange resin packed tower.

(イオン交換樹脂)
Na形弱酸性カチオン交換樹脂として、「アンバーライトIRC76」(ダウ・ケミカル社製、総交換容量2.5g当量/L−R(樹脂))、体積300mLを使用した。このカチオン交換樹脂を樹脂製カラム(充填塔)に充填して、カチオン交換樹脂充填塔とした。樹脂製カラムは円筒形状のものであり、その内直径は25.4mm、長さは1000mmであった。このようなイオン交換樹脂充填塔を2つ製作した。
(Ion exchange resin)
As the Na-type weakly acidic cation exchange resin, “Amberlite IRC76” (manufactured by Dow Chemical Co., Ltd., total exchange capacity 2.5 g equivalent / LR (resin)), volume 300 mL was used. This cation exchange resin was packed in a resin column (packed tower) to obtain a cation exchange resin packed tower. The resin column had a cylindrical shape and had an inner diameter of 25.4 mm and a length of 1000 mm. Two such ion-exchange resin packed towers were manufactured.

(重金属含有溶液)
重金属含有溶液の液質は、ニッケル濃度が117mg/L(4.0mg当量/L)、pHが7.7、導電率が150μS/cmであった。
(Heavy metal-containing solution)
The heavy metal-containing solution had a nickel concentration of 117 mg / L (4.0 mg equivalent / L), a pH of 7.7, and a conductivity of 150 μS / cm.

(金属等の測定)
Naおよび重金属(ニッケル)は、フレーム原子吸光法によって測定した。R−Na%の測定は、以下のようにして行った。通液終了後のイオン交換樹脂を取り出し、4重量%の塩酸でNaを抽出した。抽出液中のNa濃度をフレーム原子吸光法によって分析し、イオン交換樹脂の総イオン交換容量(mg当量)における吸着Naのmg当量の%として求めた。
(Measurement of metals, etc.)
Na and heavy metals (nickel) were measured by flame atomic absorption. The measurement of R-Na% was performed as follows. After completion of the flow, the ion exchange resin was taken out and Na was extracted with 4% by weight hydrochloric acid. The Na concentration in the extract was analyzed by flame atomic absorption, and determined as a percentage of mg equivalent of adsorbed Na in the total ion exchange capacity (mg equivalent) of the ion exchange resin.

(通液条件)
第1イオン交換樹脂充填塔及び第2イオン交換樹脂充填塔に通液する重金属含有溶液の通液速度を50m/hr(25.3L/hr)とした。すなわち、重金属溶液中の重金属濃度と第1イオン交換樹脂充填塔に通液する重金属含有溶液の通液速度との積が200となるように重金属含有溶液の通液を行った。
(Liquid flow conditions)
The flow rate of the heavy metal-containing solution that passed through the first ion exchange resin packed column and the second ion exchange resin packed column was set to 50 m / hr (25.3 L / hr). That is, the heavy metal-containing solution was passed so that the product of the heavy metal concentration in the heavy metal solution and the flow rate of the heavy metal-containing solution passed through the first ion exchange resin packed tower was 200.

(通液工程の終点)
最終処理水排出ラインに設けたpH計により、第2イオン交換樹脂充填塔から排出された最終処理液のpHを計測し、計測したpH値が基準値より0.5低下した時点を通液工程の終点とし、重金属含有溶液の通液を停止した。上記基準値を重金属含有溶液の総通液量が50Lに達した時点の最終処理液のpH値とした。その結果、重金属含有溶液の総通液量が450Lに達した時に、最終処理液のpH値が基準値より0.5低下したため、重金属含有溶液の通液を停止した。なお、参考として第1イオン交換樹脂充填塔から排出された一次処理液のpHも同様に測定した。pH計は、東亜ディーケーケー社製「イオン・pHメータ IM−55G」を用いた。
(End point of liquid flow process)
The pH of the final treatment liquid discharged from the second ion exchange resin packed tower is measured by a pH meter provided in the final treatment water discharge line, and the liquid passing process is performed when the measured pH value is reduced by 0.5 from the reference value. The end point of was stopped, and the flow of the heavy metal-containing solution was stopped. The reference value was defined as the pH value of the final treatment liquid when the total amount of the heavy metal-containing solution reached 50 L. As a result, when the total flow rate of the heavy metal-containing solution reached 450 L, the pH value of the final treatment solution was lowered by 0.5 from the reference value, so the flow of the heavy metal-containing solution was stopped. For reference, the pH of the primary treatment liquid discharged from the first ion exchange resin packed tower was also measured in the same manner. The pH meter used was “Ion pH meter IM-55G” manufactured by Toa DKK Corporation.

(再生工程)
再生工程では、10wt%硫酸を使用し、再生レベルを9.0g当量/L−R(樹脂)、硫酸通液量を4.1L/L−R(樹脂)とし、再生剤の流量を4BV/時間とした。この条件での含有重金属濃度(mg当量/L)と通液速度(m/h)の積は200となる。
(Regeneration process)
In the regeneration process, 10 wt% sulfuric acid is used, the regeneration level is 9.0 g equivalent / LR (resin), the sulfuric acid flow rate is 4.1 L / LR (resin), and the flow rate of the regeneration agent is 4 BV / It was time. The product of the heavy metal concentration (mg equivalent / L) and the liquid flow rate (m / h) under this condition is 200.

(実施例2)
実施例2では、重金属含有溶液の通液速度を75m/hrとし、重金属含有溶液中の重金属と第1イオン交換樹脂充填塔に通液する重金属含有溶液の通液速度の積を300としたこと以外は実施例1と同様の条件とした。その結果、重金属含有溶液の総通液量が430Lに達した時に、最終処理液のpH値が基準値より0.5低下したため、重金属含有溶液の通液を停止した。
(Example 2)
In Example 2, the flow rate of the heavy metal-containing solution was set to 75 m / hr, and the product of the flow rate of the heavy metal-containing solution passing through the first ion exchange resin packed tower and the heavy metal in the heavy metal-containing solution was set to 300. The conditions were the same as in Example 1 except for the above. As a result, when the total flow rate of the heavy metal-containing solution reached 430 L, the pH value of the final treatment solution was lowered by 0.5 from the reference value, so the flow of the heavy metal-containing solution was stopped.

(実施例3)
実施例3では、重金属含有溶液の通液速度を1m/hrとし、重金属含有溶液中の重金属と第1イオン交換樹脂充填塔に通液する重金属含有溶液の通液速度の積を4としたこと以外は実施例1と同様の条件とした。その結果、重金属含有溶液の総通液量が520Lに達した時に、最終処理液のpH値が基準値より0.5低下したため、重金属含有溶液の通液を停止した。
(Example 3)
In Example 3, the flow rate of the heavy metal-containing solution was set to 1 m / hr, and the product of the flow rate of the heavy metal-containing solution passing through the first ion exchange resin packed tower and the heavy metal in the heavy metal-containing solution was set to 4. The conditions were the same as in Example 1 except for the above. As a result, when the total flow rate of the heavy metal-containing solution reached 520 L, the pH value of the final treatment solution decreased by 0.5 from the reference value, and thus the flow of the heavy metal-containing solution was stopped.

(比較例1)
比較例1では、重金属含有溶液の通液速度を80m/hrとし、重金属含有溶液中の重金属と第1イオン交換樹脂充填塔に通液する重金属含有溶液の通液速度の積を320としたこと以外は実施例1と同様の条件とした。その結果、重金属含有溶液の総通液量が400Lに達した時に、最終処理液のpH値が基準値より0.5低下したため、重金属含有溶液の通液を停止した。他の条件は実施例1と同じである。
(Comparative Example 1)
In Comparative Example 1, the flow rate of the heavy metal-containing solution was set to 80 m / hr, and the product of the flow rate of the heavy metal-containing solution passing through the first ion exchange resin packed tower was set to 320. The conditions were the same as in Example 1 except for the above. As a result, when the total flow rate of the heavy metal-containing solution reached 400 L, the pH value of the final treatment solution decreased by 0.5 from the reference value, and thus the flow of the heavy metal-containing solution was stopped. Other conditions are the same as those in Example 1.

実施例1〜3及び比較例1において、1段目及び2段目のイオン交換樹脂充填塔から排出される処理液のpH、通液工程終了後の1段目のイオン交換樹脂充填塔に充填されたイオン交換樹脂のR−Na%(総交換容量に対するNa形のまま残留したイオン交換容量の割合)、1段目のイオン交換樹脂充填塔から排出された溶離液(再生排液)中のNa濃度を測定した。   In Examples 1 to 3 and Comparative Example 1, the pH of the treatment liquid discharged from the first-stage and second-stage ion-exchange resin packed towers, and the first-stage ion-exchange resin packed towers after completion of the liquid passing process are packed. R-Na% of the ion exchange resin (the ratio of the ion exchange capacity remaining in the Na form to the total exchange capacity) in the eluent (regenerated waste liquid) discharged from the first stage ion exchange resin packed column Na concentration was measured.

図2は、実施例1〜3及び比較例1の通液工程における1段目及び2段目のイオン交換樹脂充填塔から排出される処理液のpHの推移を示す図である。表1に、通液工程終了後の1段目のイオン交換樹脂充填塔に充填されたイオン交換樹脂のR−Na%、1段目のイオン交換樹脂充填塔から排出された溶離液(再生排液)中のNa濃度をまとめた。   FIG. 2 is a graph showing the transition of the pH of the treatment liquid discharged from the first-stage and second-stage ion exchange resin packed towers in the liquid passing processes of Examples 1 to 3 and Comparative Example 1. Table 1 shows the R-Na% of the ion exchange resin packed in the first-stage ion exchange resin packed tower after completion of the liquid passing process, and the eluent discharged from the first-stage ion exchange resin packed tower (regeneration waste). The Na concentration in the liquid) was summarized.

実施例1〜3では、通液終了後のイオン交換樹脂のR−Na%が0.1%未満となり、溶離液(再生排液)中のNa濃度も20mg/L未満となった。この結果は、1段目のイオン交換樹脂充填塔内に充填されたイオン交換樹脂の官能基は重金属等で飽和していることを示している。また、通液終了後の最終処理液中の重金属濃度は1.1mg/L(0.037mg当量/L)であり、最終処理液中に重金属が多量に混入することも抑制された。比較例1では、R−Na%が0.3%、溶離液(再生排液)中のNa濃度が70mg/Lとなった。この結果は、1段目のイオン交換樹脂充填塔内に充填されたイオン交換樹脂の官能基は重金属により飽和された状態に至っておらず、官能基由来のNaが残留していたことを示している。そして、比較例では、イオン交換樹脂の官能基を重金属により飽和させるためには、さらなる通液工程を実施する必要があるが、その場合、最終処理液中に2段目のイオン交換樹脂充填塔内から重金属が多量にリークして、最終処理液中に混入する結果となる。   In Examples 1 to 3, the R-Na% of the ion exchange resin after the end of liquid passing was less than 0.1%, and the Na concentration in the eluent (regeneration waste liquid) was also less than 20 mg / L. This result indicates that the functional group of the ion exchange resin packed in the first-stage ion exchange resin packed tower is saturated with heavy metal or the like. In addition, the heavy metal concentration in the final treatment liquid after the end of the flow was 1.1 mg / L (0.037 mg equivalent / L), and mixing of a large amount of heavy metals in the final treatment liquid was also suppressed. In Comparative Example 1, R-Na% was 0.3%, and the Na concentration in the eluent (regeneration drainage) was 70 mg / L. This result shows that the functional group of the ion exchange resin packed in the first-stage ion exchange resin packed tower did not reach the state saturated with heavy metal, and the functional group-derived Na remained. Yes. In the comparative example, in order to saturate the functional group of the ion exchange resin with heavy metal, it is necessary to perform a further liquid passing step. In that case, the second stage ion exchange resin packed tower is included in the final treatment liquid. As a result, a large amount of heavy metal leaks from the inside and is mixed into the final processing solution.

(実施例4)
実施例4では、ニッケル濃度が44mg/L(1.5mg当量/L)、pHが7.5、導電率が100μS/cmの重金属含有溶液を用い、重金属含有溶液の通液速度を200m/hrとし、重金属含有溶液中の重金属と第1イオン交換樹脂充填塔に通液する重金属含有溶液の通液速度の積を300としたこと以外は実施例1と同様の条件とした。その結果、重金属含有溶液の総通液量が1150Lに達した時に、最終処理液のpH値が基準値より0.5低下したため、重金属含有溶液の通液を停止した。
Example 4
In Example 4, a heavy metal-containing solution having a nickel concentration of 44 mg / L (1.5 mg equivalent / L), a pH of 7.5, and an electric conductivity of 100 μS / cm was used, and the flow rate of the heavy metal-containing solution was 200 m / hr. And the same conditions as in Example 1 except that the product of the flow rate of the heavy metal in the heavy metal-containing solution and the heavy metal-containing solution flowing through the first ion exchange resin packed tower was set to 300. As a result, when the total flow rate of the heavy metal-containing solution reached 1150 L, the pH value of the final treatment solution decreased by 0.5 from the reference value, so the flow of the heavy metal-containing solution was stopped.

図3は、実施例4の通液工程における1段目及び2段目のイオン交換樹脂充填塔から排出される処理液のpHの推移を示す図である。表2に、通液工程終了後の1段目のイオン交換樹脂充填塔に充填されたイオン交換樹脂のR−Na%、1段目のイオン交換樹脂充填塔から排出された溶離液(再生排液)中のNa濃度をまとめた。   FIG. 3 is a graph showing changes in pH of the treatment liquid discharged from the first-stage and second-stage ion exchange resin packed towers in the liquid passing process of Example 4. Table 2 shows the R-Na% of the ion exchange resin packed in the first-stage ion exchange resin packed tower after completion of the liquid passing process, and the eluent discharged from the first-stage ion exchange resin packed tower (regeneration waste). The Na concentration in the liquid) was summarized.

実施例4では、通液終了後のイオン交換樹脂のR−Na%が0.1%未満となり、溶離液(再生排液)中のNa濃度も20mg/L未満となった。この結果は、1段目のイオン交換樹脂充填塔内に充填されたイオン交換樹脂の官能基は重金属で飽和していることを示している。また、通液終了後の最終処理液中の重金属濃度は1.0mg/L(0.034mg当量/L)であり、最終処理液中に重金属が多量に混入することも抑制された。   In Example 4, the R-Na% of the ion exchange resin after completion of the flow was less than 0.1%, and the Na concentration in the eluent (regeneration waste liquid) was also less than 20 mg / L. This result shows that the functional group of the ion exchange resin packed in the first-stage ion exchange resin packed tower is saturated with heavy metal. In addition, the heavy metal concentration in the final treatment liquid after completion of the liquid flow was 1.0 mg / L (0.034 mg equivalent / L), and mixing of a large amount of heavy metals in the final treatment liquid was also suppressed.

(実施例5)
実施例5では、第2イオン交換樹脂充填塔内の樹脂量を第1イオン交換樹脂充填塔内の樹脂量の体積比で0.8(240mL)とした以外は、実施例1と同様の試験を行った。処理液のpHが0.5低下した時点で通液を終了したところ、通液量は425Lであった。図4に実施例5の通液工程における1段目及び2段目のイオン交換樹脂充填塔から排出される処理液のpHの推移を、表3に通液後のイオン交換樹脂のR−Na%と、溶離液中のNa濃度を示した。
(Example 5)
In Example 5, the same test as in Example 1 except that the resin amount in the second ion exchange resin packed column was 0.8 (240 mL) in terms of the volume ratio of the resin amount in the first ion exchange resin packed column. Went. When the flow of liquid was terminated when the pH of the treatment liquid dropped by 0.5, the amount of liquid flow was 425 L. FIG. 4 shows the transition of the pH of the treatment liquid discharged from the first and second ion exchange resin packed towers in the liquid passing process of Example 5, and Table 3 shows the R-Na of the ion exchange resin after the flow. % And Na concentration in the eluent.

(実施例6)
実施例6では、第2イオン交換樹脂充填塔内の樹脂量を第1イオン交換樹脂充填塔内の樹脂量の体積比で0.7(210mL)とした以外は、実施例1と同様の試験を行った。処理液のpHが0.5低下した時点で通液を終了したところ、通液量は390Lであった。図4に実施例6の通液工程における1段目及び2段目のイオン交換樹脂充填塔から排出される処理液のpHの推移を、表3に通液後のイオン交換樹脂のR−Na%と、溶離液中のNa濃度を示した。
(Example 6)
In Example 6, the same test as in Example 1 except that the resin amount in the second ion exchange resin packed column was 0.7 (210 mL) in terms of the volume ratio of the resin amount in the first ion exchange resin packed column. Went. When the flow of liquid was terminated when the pH of the treatment liquid dropped by 0.5, the amount of liquid flow was 390 L. FIG. 4 shows the pH transition of the treatment liquid discharged from the first and second ion exchange resin packed towers in the liquid passing process of Example 6, and Table 3 shows the R-Na of the ion exchange resin after the liquid passing. % And Na concentration in the eluent.

図4及び表3から明らかなように、第2段目のイオン交換樹脂充填塔内の樹脂量が、第1段目のイオン交換樹脂充填塔内の樹脂量に対して体積比で0.8以上である実施例5では、第1段目のイオン交換樹脂充填塔内の樹脂が十分に飽和した後に、第2のイオン交換樹脂充填塔内の樹脂がリークしてpHが下がっている。従って、第1段目のイオン交換樹脂充填塔内の樹脂のR−Na%が低くなるので、溶離液中のNa濃度も低く、重金属の純度は高くなる。また、第2段目のイオン交換樹脂充填塔からの重金属のリークも抑制される。一方で、第2段目のイオン交換樹脂充填塔内の樹脂量が、第1段目のイオン交換樹脂充填塔内の樹脂量に対して体積比で0.7以下である実施例6では、比較例1と比較すると、第1段目のイオン交換樹脂充填塔内の樹脂のR−Na%は低く、溶離液中のNa濃度も低いため、比較例1より第1段目のイオン交換樹脂充填塔内の樹脂を飽和させ、第2段目のイオン交換樹脂充填塔の樹脂からの重金属のリークを抑制することができていると言える。しかし、実施例5と比較すると、第1段目のイオン交換樹脂充填塔内の樹脂のR−Na%は高くなり、溶離液中のNa濃度も高くなった。したがって、重金属の純度の低下を鑑みれば、第2段目のイオン交換樹脂充填塔内の樹脂量を、第1段目のイオン交換樹脂充填塔内の樹脂量に対して体積比で0.8以上とすることが好ましい。   As apparent from FIG. 4 and Table 3, the amount of resin in the second-stage ion exchange resin packed tower is 0.8 by volume with respect to the amount of resin in the first-stage ion exchange resin packed tower. In Example 5 as described above, after the resin in the first-stage ion exchange resin packed tower is sufficiently saturated, the resin in the second ion-exchange resin packed tower leaks and the pH is lowered. Therefore, since the R-Na% of the resin in the first-stage ion exchange resin packed column is low, the Na concentration in the eluent is low and the purity of heavy metal is high. Further, leakage of heavy metals from the second stage ion exchange resin packed tower is also suppressed. On the other hand, in Example 6 in which the resin amount in the second-stage ion exchange resin packed tower is 0.7 or less by volume with respect to the resin quantity in the first-stage ion exchange resin packed tower, Compared with Comparative Example 1, the R-Na% of the resin in the first-stage ion exchange resin packed column is low, and the Na concentration in the eluent is also low. It can be said that the resin in the packed tower is saturated and the leakage of heavy metals from the resin in the second-stage ion exchange resin packed tower can be suppressed. However, as compared with Example 5, the R-Na% of the resin in the first-stage ion exchange resin packed column was high, and the Na concentration in the eluent was also high. Therefore, in view of the decrease in the purity of heavy metals, the resin amount in the second-stage ion exchange resin packed tower is 0.8% by volume with respect to the resin quantity in the first-stage ion exchange resin packed tower. The above is preferable.

1 処理装置、10 貯留槽、12 流入ライン、14 供給ポンプ、16 第1イオン交換樹脂充填塔、18 第2イオン交換樹脂充填塔、20 一次処理水排出第1ライン、22 最終処理水排出ライン、24 pH計、26 酸貯留槽、28 酸添加ライン、30 酸添加ポンプ、32 溶離液回収ライン、34 分岐第1ライン、36 一次処理水排出第2ライン、38 分岐第2ライン、40,42,44,46,48,50,54,56,58,60 バルブ。   DESCRIPTION OF SYMBOLS 1 Processing apparatus, 10 Storage tank, 12 Inflow line, 14 Supply pump, 16 1st ion exchange resin packed tower, 18 2nd ion exchange resin packed tower, 20 Primary treated water discharge | emission 1st line, 22 Final treated water discharge line, 24 pH meter, 26 acid storage tank, 28 acid addition line, 30 acid addition pump, 32 eluent recovery line, 34 branch first line, 36 primary treated water discharge second line, 38 branch second line, 40, 42, 44, 46, 48, 50, 54, 56, 58, 60 Valves.

Claims (6)

少なくとも2つのイオン交換樹脂充填塔を直列に接続した多段式イオン交換樹脂充填塔に重金属含有溶液を通液して、前記溶液から重金属を除去する重金属含有溶液の処理方法であって、
前記溶液中の重金属濃度(mg当量/L)と第1段目のイオン交換樹脂充填塔に通液する前記溶液の通液速度(m/h)との積が3以上300以下の範囲となるように、前記多段式イオン交換樹脂充填塔に前記溶液を通液し、
第2段目のイオン交換樹脂充填塔から排出される処理水のpHの変動に基づいて、前記第1段目のイオン交換樹脂充填塔のイオン交換樹脂が飽和されたと判断し、前記多段式イオン交換樹脂充填塔への前記溶液の通液を停止することを特徴とする重金属含有溶液の処理方法。
A method for treating a heavy metal-containing solution, wherein a heavy metal-containing solution is passed through a multistage ion-exchange resin packed tower in which at least two ion-exchange resin packed towers are connected in series, and the heavy metal is removed from the solution,
The product of the heavy metal concentration (mg equivalent / L) in the solution and the liquid flow rate (m / h) of the solution passing through the first-stage ion-exchange resin packed tower is in the range of 3 to 300. So that the solution is passed through the multi-stage ion exchange resin packed tower,
Based on the change in pH of the treated water discharged from the second-stage ion exchange resin packed tower, it is determined that the ion-exchange resin in the first-stage ion exchange resin packed tower is saturated, and the multistage ion A method for treating a heavy metal-containing solution, wherein the solution passing through the exchange resin packed tower is stopped.
前記第1段目のイオン交換樹脂充填塔のイオン交換樹脂の充填量に対する前記2段目のイオン交換樹脂充填塔のイオン交換樹脂の充填量の比は0.8〜1.25の範囲であることを特徴とする請求項1記載の重金属含有溶液の処理方法。   The ratio of the ion exchange resin filling amount of the second stage ion exchange resin packed column to the ion exchange resin filling amount of the first stage ion exchange resin packed column is in the range of 0.8 to 1.25. The processing method of the heavy metal containing solution of Claim 1 characterized by the above-mentioned. 前記第1段目のイオン交換樹脂充填塔に通液する前記溶液の通液速度は、1m/h以上200m/h以下の範囲であることを特徴とする請求項1又は2記載の重金属含有溶液の処理方法。   3. The heavy metal-containing solution according to claim 1, wherein a flow rate of the solution passing through the first-stage ion-exchange resin packed tower is in a range of 1 m / h to 200 m / h. Processing method. 前記第1段目及び前記第2段目のイオン交換樹脂充填塔に充填されるイオン交換樹脂は、弱酸性カチオン交換樹脂であることを特徴とする請求項1〜3のいずれか1項に記載の重金属含有溶液の処理方法。   4. The ion exchange resin packed in the first-stage and second-stage ion exchange resin packed towers is a weakly acidic cation exchange resin, according to claim 1. Method for treating heavy metal-containing solution. 前記第2段目のイオン交換樹脂充填塔から排出される処理水のpHの変動が、基準値から0.5以上変動した際、又は0.003pH/処理倍量以上となった際に、前記多段式イオン交換樹脂充填塔への前記溶液の通液を停止することを特徴とする請求項1〜4のいずれか1項に記載の重金属含有溶液の処理方法。   When the change in pH of the treated water discharged from the second-stage ion exchange resin packed tower has changed by 0.5 or more from the reference value, or when 0.003 pH / treatment amount or more, The method for treating a heavy metal-containing solution according to any one of claims 1 to 4, wherein the solution flow through the multistage ion-exchange resin packed tower is stopped. 前記溶液の通液停止後に、前記1段目のイオン交換樹脂充填塔に酸溶液を通液して、前記1段目のイオン交換樹脂充填塔から排出される溶液を回収することを特徴とする請求項1〜5のいずれか1項に記載の重金属含有溶液の処理方法。   After stopping the solution flow, the acid solution is passed through the first-stage ion exchange resin packed tower to recover the solution discharged from the first-stage ion exchange resin packed tower. The processing method of the heavy metal containing solution of any one of Claims 1-5.
JP2013051728A 2013-03-14 2013-03-14 Method for treating heavy metal-containing solution Active JP6097104B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013051728A JP6097104B2 (en) 2013-03-14 2013-03-14 Method for treating heavy metal-containing solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013051728A JP6097104B2 (en) 2013-03-14 2013-03-14 Method for treating heavy metal-containing solution

Publications (2)

Publication Number Publication Date
JP2014176794A JP2014176794A (en) 2014-09-25
JP6097104B2 true JP6097104B2 (en) 2017-03-15

Family

ID=51697330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013051728A Active JP6097104B2 (en) 2013-03-14 2013-03-14 Method for treating heavy metal-containing solution

Country Status (1)

Country Link
JP (1) JP6097104B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6433377B2 (en) * 2015-05-28 2018-12-05 オルガノ株式会社 Heavy metal recovery method and recovery device
JP7225544B2 (en) * 2018-02-20 2023-02-21 栗田工業株式会社 Method for producing pure water or ultrapure water

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS539054A (en) * 1976-07-13 1978-01-27 Nippon Fuirutaa Kk Drainage treating method
JPS5348077A (en) * 1976-10-14 1978-05-01 Nippon Fuirutaa Kk Method of treating waste water by simultaneously recovering deionnrefined water and solution containing the same group heavy metals
JP3840447B2 (en) * 2002-11-28 2006-11-01 オルガノ株式会社 Removal of heavy metals in raw water
JP2006137987A (en) * 2004-11-11 2006-06-01 Japan Organo Co Ltd Method for regenerating trivalent chromate liquid
JP4977592B2 (en) * 2007-12-14 2012-07-18 オルガノ株式会社 Iodine recovery method and iodine recovery device from iodine-containing waste liquid

Also Published As

Publication number Publication date
JP2014176794A (en) 2014-09-25

Similar Documents

Publication Publication Date Title
CN108975556B (en) Method for purifying and recovering aged phosphoric acid polishing solution
JP5666196B2 (en) Copper sulfate recovery method and copper sulfate recovery device
EP3012230B1 (en) Method and apparatus for reducing regenerant and wastewater by using compressed air
KR101775888B1 (en) Method and device for treating fluorine-containing water
KR102407556B1 (en) Purification method and purification apparatus for aqueous hydrogen peroxide solution
JP6097104B2 (en) Method for treating heavy metal-containing solution
CN105420495B (en) In a kind of Bayer process alumina producing in gallium processing procedure uranium separation method
CN102161542A (en) Method and device for precisely processing nuclear power station condensation water
JPWO2014064754A1 (en) Desalination method for boron-containing solution
CN110349690B (en) Method and device for treating radioactive waste liquid
WO2019196143A1 (en) Radioactive waste liquid treatment method and apparatus
JP2010285655A (en) Metal recovering method
JP6433377B2 (en) Heavy metal recovery method and recovery device
CN203212407U (en) Reverse osmosis system for backwashing filter by using concentrated water
JP6437874B2 (en) Method and apparatus for regenerating ion exchange resin
JP5400845B2 (en) Boron adsorption device, boron removal system, and boron removal method
JP2012016673A (en) Device and method of treating iodine/boron-containing solution
CN203663849U (en) Catalyst recycle and recovery device
JP5648231B2 (en) Purification method of alkaline aqueous solution
KR101603785B1 (en) Hydrogen peroxide refined system using reverse osmosis and hydrogen peroxide produced thereof
CN202022800U (en) Sulfate wastewater reclamation device
CN104355452A (en) Continuous multistage ion-exchange treatment device for recovering heavy metal ions
JP4820266B2 (en) Etching waste liquid recycling method and recycling apparatus
TW201309852A (en) Method of regenerating chelating material and substrate processing apparatus
JP2017148729A (en) Waste water treatment method and waste water treatment equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170217

R150 Certificate of patent or registration of utility model

Ref document number: 6097104

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250