JP7225544B2 - Method for producing pure water or ultrapure water - Google Patents

Method for producing pure water or ultrapure water Download PDF

Info

Publication number
JP7225544B2
JP7225544B2 JP2018027933A JP2018027933A JP7225544B2 JP 7225544 B2 JP7225544 B2 JP 7225544B2 JP 2018027933 A JP2018027933 A JP 2018027933A JP 2018027933 A JP2018027933 A JP 2018027933A JP 7225544 B2 JP7225544 B2 JP 7225544B2
Authority
JP
Japan
Prior art keywords
boron
water
concentration
adsorption tower
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018027933A
Other languages
Japanese (ja)
Other versions
JP2019141775A (en
Inventor
高明 中馬
秀樹 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=67687527&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP7225544(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2018027933A priority Critical patent/JP7225544B2/en
Priority to KR1020207011157A priority patent/KR20200121279A/en
Priority to CN201880066892.1A priority patent/CN111225880A/en
Priority to PCT/JP2018/033811 priority patent/WO2019163174A1/en
Priority to TW107133323A priority patent/TWI781227B/en
Publication of JP2019141775A publication Critical patent/JP2019141775A/en
Application granted granted Critical
Publication of JP7225544B2 publication Critical patent/JP7225544B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/108Boron compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Description

本発明は、ホウ素含有水をホウ素選択性吸着体が充填されたホウ素吸着塔に通水してホウ素を除去する方法に関する。本発明はまた、このホウ素の除去方法を用いた純水又は超純水の製造方法に関する。
なお、本明細書において、BTC(Break through capacity)とは、ホウ素吸着塔の貫流交換容量をさし、BTP(Break through point)とは、その貫流点(破過点)をさす。
TECHNICAL FIELD The present invention relates to a method for removing boron by passing boron-containing water through a boron adsorption tower packed with a boron-selective adsorbent. The present invention also relates to a method for producing pure water or ultrapure water using this method for removing boron.
In the present specification, BTC (Break through capacity) refers to the cross-flow exchange capacity of the boron adsorption tower, and BTP (Break through point) refers to its flow-through point.

超純水製造システムは、前処理システム、一次純水システム、サブシステムにより構成される。
一次純水システムの役割は前処理水中のイオン成分やTOCの大部分を除去することにあり、RO装置(逆浸透膜装置)、脱気膜装置、脱イオン装置などによって構成される。このうち、脱イオン装置は水量やノンケミカルなどのニーズに応じてイオン交換樹脂による複数床式イオン交換装置、混床式イオン交換装置、電気脱イオン装置などから選択される。
The ultrapure water production system consists of a pretreatment system, a primary pure water system, and subsystems.
The role of the primary pure water system is to remove most of the ionic components and TOC in the pretreated water, and is composed of an RO device (reverse osmosis membrane device), a degassing membrane device, a deionization device, and the like. Among them, the deionization device is selected from a multi-bed ion exchange device using ion exchange resin, a mixed bed ion exchange device, an electrodeionization device, etc. according to needs such as the amount of water and non-chemicals.

サブシステムは一次純水システムで得られた純水を目的に応じてポリッシュアップし、所定の超純水水質とするシステムであり、UV装置(紫外線酸化装置)、非再生型イオン交換装置、脱気膜装置、UF装置(限外濾過膜装置)などで構成される。
サブシステムの役割は、一次純水システムでなし得なかった微量のイオンやTOC及び微粒子の除去にある。
The sub-system polishes the pure water obtained in the primary pure water system according to the purpose and makes it into the specified ultrapure water quality. It consists of an air membrane device, a UF device (ultrafiltration membrane device), and the like.
The role of the subsystem is to remove trace amounts of ions, TOC and particulates that could not be done in the primary pure water system.

近年、最先端の電子産業分野では、ホウ素濃度1ng/L以下の超純水が要求されるようになってきている。
従来、水中のホウ素濃度を低減する手段の一つに、ホウ素キレート樹脂(ホウ素選択性イオン交換樹脂)又はアニオン交換樹脂の利用が挙げられる。ホウ素キレート樹脂は、樹脂内部のN-メチルグルカミン基(NMG)とホウ素との反応によって、水中のホウ素を固定化して除去する樹脂である。
In recent years, ultrapure water with a boron concentration of 1 ng/L or less has been required in the cutting-edge electronics industry.
Conventionally, use of a boron chelate resin (boron-selective ion exchange resin) or an anion exchange resin is mentioned as one of means for reducing the boron concentration in water. The boron chelate resin is a resin that fixes and removes boron in water through a reaction between the N-methylglucamine group (NMG) inside the resin and boron.

例えば、特許文献1には、純水又は超純水製造設備内のいずれかの位置で、前処理水をホウ素キレート樹脂に接触させてホウ素を除去することが記載されている。
特許文献2には、非薬品再生型脱塩装置(2段RO、電気再生式脱塩装置、蒸留装置)の後段でホウ素キレート樹脂に接触させることが記載されている。
特許文献3には、アニオン交換樹脂によるホウ素の除去に当たり、被処理水の水温を低下させてホウ素BTCを上げることが記載されている。
特許文献4には、ホウ素を吸着したアニオン交換樹脂に温純水を通水してホウ素を脱着させて再生することでホウ素BTCを上げることが記載されている。
For example, Patent Literature 1 describes removing boron by bringing pretreated water into contact with a boron chelate resin at any position within a pure water or ultrapure water production facility.
Patent Literature 2 describes contacting a boron chelate resin in the latter stage of a non-chemically regenerated desalting device (two-stage RO, electrically regenerating desalting device, distillation device).
Patent Document 3 describes that when removing boron by an anion exchange resin, the water temperature of the water to be treated is lowered to raise the boron BTC.
Patent Document 4 describes increasing boron BTC by passing warm pure water through an anion exchange resin that adsorbs boron to desorb and regenerate the resin.

特開平8-84986号公報JP-A-8-84986 特開平9-192661号公報JP-A-9-192661 特開2005-177564号公報JP 2005-177564 A 特開2009-240891号公報JP 2009-240891 A

ホウ素キレート樹脂等のホウ素選択性吸着体は高価なものであるため、そのホウ素吸着容量を最大限に活用すること、即ち、ホウ素吸着塔のホウ素BTCを十分に高めることが望まれる。
このような技術的要求において、従来技術は十分ではなく、例えば、前述の特許文献1,2の方法では、単純な配置でホウ素を除去することは可能であるが、ホウ素キレート樹脂に合わせた最適な運転制御を行っておらず、適正化を図ることができない。
特許文献3の方法は、水温調整によってリークしやすいホウ素を樹脂内に留まらせ、樹脂の吸着容量を有効利用するものであるが、水温調整のために、熱交換器の設置が必要なうえに、その効果は十分なものとは言えない。
特許文献4の方法では、ホウ素の脱離分だけ新たにホウ素除去が見込めるが、この方法でも十分な吸着容量の向上効果は得られず、また、温水のコストもかかる。
Since boron-selective adsorbents such as boron chelating resins are expensive, it is desirable to maximize their boron adsorption capacity, ie, to sufficiently increase the boron BTC of the boron adsorption tower.
In terms of such technical requirements, the prior art is not sufficient. For example, the methods of Patent Documents 1 and 2 described above can remove boron with a simple arrangement, but the optimum method for the boron chelate resin is operation control is not performed properly, and optimization cannot be achieved.
The method of Patent Document 3 makes effective use of the adsorption capacity of the resin by allowing boron, which tends to leak, to remain in the resin by adjusting the water temperature. , the effect is not sufficient.
In the method of Patent Literature 4, it is expected that only the amount of desorbed boron will be newly removed.

本発明は、特別な装置設備や薬品、エネルギー等を必要とすることなく、ホウ素選択性吸着体を充填したホウ素吸着塔のホウ素BTCを高め、ホウ素選択性吸着体の吸着容量を最大限に活用し、より少ない樹脂量でより多くのホウ素を除去することを可能とするホウ素の除去方法と、このホウ素の除去方法を用いた純水又は超純水の製造方法を提供することを課題とする。 The present invention increases the boron BTC of a boron adsorption tower filled with a boron-selective adsorbent and makes maximum use of the adsorption capacity of the boron-selective adsorbent without requiring special equipment, chemicals, energy, etc. An object of the present invention is to provide a method for removing boron that can remove more boron with a smaller amount of resin, and a method for producing pure water or ultrapure water using this method for removing boron. .

本発明者は、上記課題を解決すべく鋭意検討を重ねた結果、ホウ素選択性吸着体を充填したホウ素吸着塔にホウ素含有水を通水してホウ素を除去する処理において、同じホウ素BTPを設置しても、通水SVによって、ホウ素BTCが異なるものとなること、給水負荷や通水SVを下げることで、ホウ素BTCを高めることができることを見出し、本発明を完成させた。
即ち、本発明は以下を要旨とする。
As a result of intensive studies to solve the above problems, the present inventors installed the same boron BTP in the process of removing boron by passing boron-containing water through a boron adsorption tower filled with a boron-selective adsorbent. However, it was found that the boron BTC differs depending on the water flow SV, and that the boron BTC can be increased by reducing the water supply load and the water flow SV, and completed the present invention.
That is, the gist of the present invention is as follows.

[1] ホウ素含有水をホウ素選択性吸着体が充填されたホウ素吸着塔に通水してホウ素を除去する方法において、予め設定された該ホウ素吸着塔のホウ素BTPに応じて、該ホウ素吸着塔の給水のホウ素濃度と該ホウ素吸着塔への該ホウ素含有水の通水SVとの積が所定値以下となる条件で該ホウ素含有水を通水することを特徴とするホウ素の除去方法。 [1] In a method of removing boron by passing boron-containing water through a boron adsorption tower filled with a boron-selective adsorbent, the boron adsorption tower is adjusted in accordance with a preset boron BTP of the boron adsorption tower. and passing the boron-containing water under the condition that the product of the boron concentration of the feed water and the flow SV of the boron-containing water to the boron adsorption tower is equal to or less than a predetermined value.

[2] [1]において、前記通水SVと給水ホウ素濃度との積が所定値以下となるように、該通水SV、及び/又は、前記ホウ素吸着塔に充填するホウ素選択性吸着体量を設定することを特徴とするホウ素の除去方法。 [2] In [1], the water flow SV and/or the amount of boron-selective adsorbent to be filled in the boron adsorption tower so that the product of the water flow SV and the boron concentration in the feed water is equal to or less than a predetermined value. A method for removing boron, characterized by setting

[3] ホウ素含有水をホウ素選択性吸着体が充填されたホウ素吸着塔に通水してホウ素を除去する方法において、予め設定された該ホウ素吸着塔のホウ素BTPに応じて、該ホウ素吸着塔の給水のホウ素濃度と該ホウ素吸着塔への該ホウ素含有水の通水SVと該ホウ素含有水の通水時間との積が所定値以下となる条件で該ホウ素含有水を通水することを特徴とするホウ素の除去方法。 [3] In the method of removing boron by passing boron-containing water through a boron adsorption tower filled with a boron-selective adsorbent, the boron adsorption tower is adjusted in accordance with the preset boron BTP of the boron adsorption tower. The boron-containing water is passed under the condition that the product of the boron concentration of the feed water, the flow time SV of the boron-containing water to the boron adsorption tower, and the flow time of the boron-containing water is a predetermined value or less. A method for removing boron.

[4] [3]において、前記通水SVと給水ホウ素濃度と通水時間との積が所定値以下となるように、該通水SVの設定、前記ホウ素吸着塔に充填するホウ素選択性吸着体量の設定、及び通水時間の制御のいずれかを行うことを特徴とするホウ素の除去方法。 [4] In [3], the water flow SV is set so that the product of the water flow SV, the boron concentration of the feed water, and the water flow time is equal to or less than a predetermined value, and the boron adsorption tower is filled with selective adsorption of boron. A method for removing boron, characterized by either setting a body weight or controlling a water flow time.

[5] [3]において、複数の前記ホウ素吸着塔を用い、該複数のホウ素吸着塔のうちの一部のホウ素吸着塔に前記給水の通水を継続しながら、前記通水SVと給水ホウ素濃度と通水時間との積が所定値以下となるように、他のホウ素吸着塔に通水の停止期間を設定することを特徴とするホウ素の除去方法。 [5] In [3], using a plurality of the boron adsorption towers, while continuing to flow the feed water to some of the boron adsorption towers, the water flow SV and the feed water boron A method for removing boron, characterized by setting a period during which water supply to another boron adsorption tower is stopped such that the product of concentration and water supply time is equal to or less than a predetermined value.

[6] [5]において、前記複数のホウ素吸着塔が並列に接続されており、該複数のホウ素吸着塔のうちの一部のホウ素吸着塔に前記給水の通水を継続しながら、他のホウ素吸着塔に通水の停止期間を設定することを特徴とするホウ素の除去方法。 [6] In [5], the plurality of boron adsorption towers are connected in parallel, and while continuing to pass the feed water to some boron adsorption towers of the plurality of boron adsorption towers, the other A method for removing boron, characterized by setting a period during which water supply to a boron adsorption tower is stopped.

[7] [1]ないし[6]のいずれかに記載のホウ素の除去方法によりホウ素を除去する工程を有する純水又は超純水の製造方法。 [7] A method for producing pure water or ultrapure water, comprising a step of removing boron by the method for removing boron according to any one of [1] to [6].

本発明によれば、ホウ素キレート樹脂等のホウ素選択性吸着体のホウ素吸着容量を最大限に有効利用して再生頻度又は交換頻度を低減し、より少ない樹脂量でより多くのホウ素を除去することができ、所望の低ホウ素濃度の処理水ないしは純水又は超純水を安定して得ることができる。 According to the present invention, the boron adsorption capacity of a boron-selective adsorbent such as a boron chelate resin is maximally utilized to reduce the frequency of regeneration or replacement, thereby removing more boron with a smaller amount of resin. Thus, it is possible to stably obtain treated water or pure water or ultrapure water having a desired low boron concentration.

実験例1における通水SVとホウ素BTCとの関係を示すグラフである。4 is a graph showing the relationship between water flow SV and boron BTC in Experimental Example 1. FIG. 実験例2における通水SVと給水ホウ素濃度との積と、ホウ素BTCとの関係を示すグラフである。10 is a graph showing the relationship between the product of water flow SV and feed-water boron concentration and boron BTC in Experimental Example 2. FIG.

以下に本発明の実施の形態を詳細に説明する。 Embodiments of the present invention will be described in detail below.

<メカニズム>
本発明により、ホウ素BTPに応じて、給水ホウ素濃度と通水SVの積或いは給水ホウ素濃度と通水SVと通水時間の積を所定値以下とすることで、ホウ素BTCを上げることができるメカニズムは以下の通り考えられる。
<Mechanism>
According to the present invention, depending on the boron BTP, the product of the boron concentration of the feed water and the water flow SV or the product of the boron concentration of the feed water, the water flow SV and the water flow time is set to a predetermined value or less. A mechanism that can increase the boron BTC. is considered as follows.

ホウ素キレート樹脂等のホウ素選択性吸着体の一般的な物性として、次のようなことが挙げられる。
即ち、例えば、吸着容量0.7eq/L-Rの樹脂を1L用いた場合、理論上は7.5g程度のホウ素を吸着除去できるはずであるが、超純水として求められるホウ素濃度1~10ng/Lの処理水を得るべくホウ素BTPを1~10ng/Lに設定した場合、ホウ素は50~300mg程度しか除去できない(即ち、吸着容量50~300mg/L-R)。
これは、ホウ素の反応が遅いので、樹脂であれば外周部に吸着したホウ素が樹脂内に拡散する速度が非常に遅くなることから、樹脂内部をホウ素の吸着除去に活用できていないためである。
給水負荷を極端に下げたり、非常にゆっくり通水すると、ホウ素が樹脂内を拡散し、樹脂の内部を効率的にホウ素の吸着に使うことができるようになり、ホウ素BTCを高くすることができるようになる。
General physical properties of boron-selective adsorbents such as boron chelate resins are as follows.
That is, for example, when using 1 L of resin with an adsorption capacity of 0.7 eq/LR, theoretically about 7.5 g of boron should be able to be adsorbed and removed, but the boron concentration required for ultrapure water is 1 to 10 ng. When boron BTP is set to 1-10 ng/L to obtain treated water of 1/L, only about 50-300 mg of boron can be removed (that is, adsorption capacity of 50-300 mg/L−R).
This is because the reaction of boron is slow, and if it is a resin, the speed at which boron adsorbed on the outer periphery diffuses into the resin is extremely slow, so the inside of the resin cannot be used to adsorb and remove boron. .
When the water supply load is extremely lowered or the water is passed very slowly, boron diffuses inside the resin, and the inside of the resin can be efficiently used for boron adsorption, and the boron BTC can be increased. become.

このことは後掲の実験例1,2の結果からも明らかであり、同じホウ素BTPであっても通水SVによってホウ素BTCは大きく異なり(実験例1の図1)、ホウ素BTPに応じて、給水ホウ素濃度と通水SVの積を所定値以下とすることで、ホウ素BTCを大きくすることができる(実験例2の図2)。
給水ホウ素濃度と通水SVと通水時間の積についても同様である。
This is also clear from the results of Experimental Examples 1 and 2 below. Even with the same boron BTP, the boron BTC differs greatly depending on the water flow SV (Fig. 1 of Experimental Example 1). By setting the product of the feed water boron concentration and the water flow SV to a predetermined value or less, the boron BTC can be increased (Fig. 2 of Experimental Example 2).
The same applies to the product of the feed water boron concentration, the water flow SV, and the water flow time.

<ホウ素吸着塔の運転方法>
本発明では、ホウ素選択性吸着体を充填したホウ素吸着塔にホウ素含有水を通水してホウ素含有水中のホウ素を除去するに当たり、予め設定したホウ素BTPに応じて、給水ホウ素含有水(ホウ素吸着塔に流入する水)のホウ素濃度と通水SVとの積、或いは給水ホウ素濃度と通水SVと通水時間との積が、所定値以下となるような条件で処理を行う。
<How to operate the boron adsorption tower>
In the present invention, when removing boron in the boron-containing water by passing the boron-containing water through a boron adsorption tower filled with a boron-selective adsorbent, the boron-containing water (boron adsorption The treatment is performed under conditions such that the product of the boron concentration in the water flowing into the tower and the water flow SV or the product of the feed water boron concentration, the water flow SV and the water flow time is less than or equal to a predetermined value.

前述の通り、ホウ素選択性吸着体は、同じホウ素BTP、同じ給水ホウ素濃度であっても、通水SVが異なるとホウ素BTCが大幅に異なるものとなる。そこで、本発明では、例えば、予め設定されたホウ素BTP(この値は目的とするホウ素除去処理水のホウ素濃度となる。)に対して所望のホウ素BTCを設定し、このホウ素BTCを得るために、通水SVと給水ホウ素濃度との積(時間あたり負荷量)を設定し、この設定値を満たすように通水SVや、ホウ素吸着塔に充填するホウ素選択性吸着体量(用いるホウ素選択性吸着体量)を決定する。 As described above, the boron-selective adsorbent has the same boron-BTP and the same feed-water boron concentration, but the boron-BTC is significantly different when the water flow SV is different. Therefore, in the present invention, for example, a desired boron BTC is set with respect to a preset boron BTP (this value is the boron concentration of the target boron removal treated water), and to obtain this boron BTC , Set the product of the water flow SV and the feed water boron concentration (load amount per hour), and set the water flow SV and the amount of boron selective adsorbent filled in the boron adsorption tower (boron selectivity to be used) so as to satisfy this set value Determine the amount of adsorbent).

一方、通水SVを下げられない場合は、例えば、一定量通水後に休止時間を設けることで、休止時間も含めて単位時間当たりの通水SVを下げることで、対応することができる。
例えば、医薬用、食品用、飲料用、半導体用水として用いられる超純水の製造装置において、複数のイオン交換塔を直列に接続し、イオン交換塔の再生又は交換に当たり、最もイオン成分濃度の高い水が導入される最前段のイオン交換塔を再生し、再生したイオン交換塔を最後段に設置するか、或いは、最前段のイオン交換塔を取り外し、最後段のイオン交換塔の更に後段に新しいイオン交換塔を設置する、所謂メリーゴーランド方式の再生又は交換方式が知られているが、本発明をこのようなメリーゴーランド方式に適用し、複数のホウ素吸着塔を直列に設け、順次通水を停止するホウ素吸着塔を変えてゆき、各々のホウ素吸着塔において、一定期間通水を行わないようにすることで、運転中の通水SVはそのままで単位時間当たりの通水SV(時間平均負荷量)を下げ、樹脂内部へのホウ素の浸透時間を確保してホウ素BTCを上げることができる。
また、複数のホウ素吸着塔を並列に接続し、順次通水を行うホウ素吸着塔と通水を停止するホウ素吸着塔を変えてゆき、各々のホウ素吸着塔において、一定時間通水を行わないようにすることで、運転中の通水SVはそのままで、単位時間当たりの通水SV(時間平均負荷)を下げ、樹脂内部へのホウ素の浸透時間を確保してホウ素BTCを上げることができる。
このような通水の停止による通水SV(時間平均負荷)の低減は、被処理水中のホウ素濃度が高い場合に特に有効である。
On the other hand, when the water flow SV cannot be lowered, for example, by providing a rest time after a certain amount of water flow, it is possible to reduce the water flow SV per unit time including the rest time.
For example, in ultrapure water production equipment used for pharmaceuticals, food, beverages, and semiconductors, a plurality of ion exchange towers are connected in series, and when the ion exchange towers are regenerated or replaced, the ion component concentration is the highest. Regenerate the foremost ion exchange tower into which water is introduced and install the regenerated ion exchange tower at the last stage, or remove the forefront ion exchange tower and install a new one after the last ion exchange tower. A so-called merry-go-round type regeneration or exchange system is known in which an ion exchange tower is installed, but the present invention is applied to such a merry-go-round system, a plurality of boron adsorption towers are installed in series, and water flow is stopped sequentially. By changing the boron adsorption tower and preventing water flow for a certain period of time in each boron adsorption tower, the water flow SV per unit time (time average load) remains the same as the water flow SV during operation. can be lowered, and boron BTC can be increased by ensuring the penetration time of boron into the inside of the resin.
In addition, a plurality of boron adsorption towers are connected in parallel, and the boron adsorption towers in which the water flow is sequentially switched and the boron adsorption towers in which the water flow is stopped are changed so that the water flow is not performed for a certain period of time in each boron adsorption tower. By doing so, the water flow SV (time average load) per unit time can be lowered while the water flow SV during operation remains the same, and the boron BTC can be increased by ensuring the penetration time of boron into the resin.
Reduction of the water flow SV (time average load) by stopping the water flow is particularly effective when the boron concentration in the water to be treated is high.

<具体的な条件設定>
本発明において、ホウ素BTPに応じて給水ホウ素濃度と通水SVの積、或いは、給水ホウ素濃度と通水SVと通水時間の積をどのように設定するかは、用いるホウ素選択性吸着体のホウ素吸着能と所望とするホウ素BTCに応じて決定されるものであるが、例えば、次のように条件設定することが好ましい。
<Specific condition settings>
In the present invention, how to set the product of the feedwater boron concentration and the water flow SV or the product of the feedwater boron concentration, the water flow SV and the water flow time depending on the boron BTP depends on the boron-selective adsorbent used. Although it is determined according to the boron adsorption capacity and the desired boron BTC, it is preferable to set the conditions as follows, for example.

具体的には、処理水ホウ素濃度即ちホウ素BTPを10ng/Lに設定したい時は、通水SV(1/h)と給水ホウ素濃度(μg/L)の積を120以下、通水SV(1/h)と給水ホウ素濃度(μg/L)と運転時間(h)の積を2880以下となるように条件設定する。
望ましくは、通水SV(1/h)と給水ホウ素濃度(μg/L)の積を100以下、通水SV(1/h)と給水ホウ素濃度(μg/L)と運転時間(h)の積は2400以下、さらに望ましくは通水SV(1/h)と給水ホウ素濃度(μg/L)の積を60以下、通水SV(1/h)と給水ホウ素濃度(μg/L)と運転時間(h)の積は1440以下に設定する。
Specifically, when you want to set the boron concentration in the treated water, that is, the boron BTP to 10 ng / L, the product of the water flow SV (1 / h) and the feed water boron concentration (μg / L) is 120 or less, and the water flow SV (1 /h), the feed-water boron concentration (μg/L) and the operating time (h) are set to 2880 or less.
Desirably, the product of the water flow SV (1/h) and the feedwater boron concentration (μg/L) is 100 or less, and the water flow SV (1/h), the feedwater boron concentration (μg/L) and the operating time (h) The product is 2400 or less, more preferably the product of water flow SV (1/h) and feedwater boron concentration (μg/L) is 60 or less, water flow SV (1/h) and feedwater boron concentration (μg/L) and operation The time (h) product is set to 1440 or less.

また、処理水ホウ素濃度即ち、ホウ素BTPを1ng/Lに設定したい時は、通水SV(1/h)と給水ホウ素濃度(μg/L)の積を80以下、通水SV(1/h)と給水ホウ素濃度(μg/L)と運転時間(h)の積を1920以下になるように条件設定する。望ましくは、通水SV(1/h)と給水ホウ素濃度(μg/L)の積を60以下、通水SV(1/h)と給水ホウ素濃度(μg/L)と運転時間(h)の積は1440以下、さらに望ましくは通水SV(1/h)と給水ホウ素濃度(μg/L)の積を45以下、通水SV(1/h)と給水ホウ素濃度(μg/L)と運転時間(h)の積は1080以下に設定する。 Also, when you want to set the boron concentration in the treated water, that is, the boron BTP to 1 ng / L, the product of the water flow SV (1 / h) and the feed water boron concentration (μg / L) is 80 or less, and the water flow SV (1 / h ), the feed-water boron concentration (μg/L), and the operating time (h) are set to 1920 or less. Desirably, the product of the water flow SV (1/h) and the feedwater boron concentration (μg/L) is 60 or less, and the water flow SV (1/h), the feedwater boron concentration (μg/L) and the operating time (h) The product is 1440 or less, more preferably the product of water flow SV (1/h) and feedwater boron concentration (μg/L) is 45 or less, water flow SV (1/h) and feedwater boron concentration (μg/L) and operation The time (h) product is set to 1080 or less.

<ホウ素選択性吸着体>
本発明で用いるホウ素選択性吸着体としては、ホウ素キレート樹脂(ホウ素選択性キレート樹脂)のような粒状物でも良く、繊維状物でも良い。
ホウ素選択性吸着体としては、イオン交換作用でホウ素を吸着するものや、キレート作用でホウ素を吸着するものなど、各種のものを用いることができるが、例えば、市販のホウ素選択性キレート樹脂の「ダイヤイオンCRB」(三菱ケミカル(株))、ホウ素選択性キレート繊維の「キレストファイバーGRY」(キレスト(株))等を用いることができる。
例えば、「ダイヤイオンCRB02」は、以下に示す如く、スチレン・ジビニルベンゼンの骨格にホウ素選択性の高いキレート形成基としてNグルカミン基を導入した化学構造を有している。
<Boron-selective adsorbent>
The boron-selective adsorbent used in the present invention may be a granular material such as a boron chelate resin (boron-selective chelate resin) or a fibrous material.
Various types of boron-selective adsorbents can be used, such as those that adsorb boron by ion exchange action and those that adsorb boron by chelate action. "Diaion CRB" (Mitsubishi Chemical Co., Ltd.), boron-selective chelate fiber "Chelast Fiber GRY" (Cherest Co., Ltd.), and the like can be used.
For example, "Diaion CRB02" has a chemical structure in which an N-glucamine group as a chelate-forming group with high boron selectivity is introduced into the skeleton of styrene-divinylbenzene, as shown below.

Figure 0007225544000001
Figure 0007225544000001

このNグルカミン基は、弱塩基性アニオン交換樹脂と同様の3級アミン型になっており、次のような反応でホウ酸性ホウ素を吸着する。 This N-glucamine group is of a tertiary amine type similar to that of the weakly basic anion exchange resin, and adsorbs boron borate in the following reaction.

Figure 0007225544000002
Figure 0007225544000002

ホウ素を吸着して破過したホウ素選択性吸着体は、HCl、HSO等の酸、又はNaOH、KOH等のアルカリ剤を用いて任意の方法で再生することができる。 The boron-selective adsorbent that adsorbs and breaks through boron can be regenerated by any method using an acid such as HCl or H2SO4 or an alkaline agent such as NaOH or KOH.

<純水又は超純水の製造への適用>
本発明のホウ素の除去方法を純水又は超純水の製造方法に適用することで、ホウ素濃度が十分に低減された純水又は超純水を安定かつ効率的に得ることができる。
この場合、本発明によるホウ素吸着塔は、サブシステムの入口側(一次純水システムの最後段)に設け、十分に通水SVを下げて運転を行うことで、ホウ素BTCを上げた上で、ホウ素濃度1~10ng/Lというような高水質の純水又は超純水を安定に製造することができ、通常3年毎、好ましくは5年毎のホウ素選択性吸着体の交換で運転を継続することが可能となる。
<Application to production of pure water or ultrapure water>
By applying the method for removing boron of the present invention to a method for producing pure water or ultrapure water, pure water or ultrapure water in which the boron concentration is sufficiently reduced can be stably and efficiently obtained.
In this case, the boron adsorption tower according to the present invention is provided on the inlet side of the subsystem (the last stage of the primary pure water system), and is operated with the water flow SV sufficiently lowered to raise the boron BTC, High-quality pure water or ultrapure water with a boron concentration of 1 to 10 ng / L can be stably produced, and operation is continued by replacing the boron-selective adsorbent usually every 3 years, preferably every 5 years. It becomes possible to

以下に実施例に代わる実験例を挙げる。 Experimental examples in place of the examples are given below.

[実験例1]
三菱ケミカル(株)製ホウ素キレート樹脂「CRBT03」を樹脂量として600mL-R充填したホウ素吸着塔に、ホウ素濃度1μg/Lの給水を通水して処理するときのホウ素BTPを50ng/Lに設定し、通水SVを種々に変えて、ホウ素BTCを調べる実験を行った。
その結果、通水SVとホウ素BTCとの関係は、下記表1の通りであり、これをグラフ化すると図1の通り、同じホウ素BTPであっても通水SVにより、ホウ素BTCは大きく異なること、通水SVを低くすることで、ホウ素BTCを大きくすることができることが判明した。
[Experimental example 1]
Boron BTP is set to 50 ng/L when water is passed through a boron adsorption tower filled with 600 mL-R of Mitsubishi Chemical Corporation's boron chelate resin "CRBT03" as a resin amount and treated with feed water having a boron concentration of 1 μg / L. Then, an experiment was conducted to check the boron BTC by changing the water flow SV variously.
As a result, the relationship between the water flow SV and boron BTC is as shown in Table 1 below, and when graphed, as shown in FIG. , it was found that the boron BTC can be increased by lowering the water flow SV.

Figure 0007225544000003
Figure 0007225544000003

[実験例2]
実験例1において、ホウ素BTPを1ng/L、10ng/L又は100ng/Lに設定したこと以外は同様にして実験を行い、通水SV(1/h)と給水ホウ素濃度(μg/L)の積と、ホウ素BTCとの関係を調べ、結果を図2(a),(b),(c)に示した。
図2(a),(b),(c)より、いずれのホウ素BTPの場合も、通水SVと給水ホウ素濃度との積を所定値以下とすることで、ホウ素BTCを大きくすることができることが分かる。
具体的には、ホウ素BTP1ng/Lの場合は通水SVと給水ホウ素濃度との積は80μg/L/h以下に、ホウ素BTP10ng/Lの場合は通水SVと給水ホウ素濃度との積は120μg/L/h以下に、ホウ素BTP100ng/Lの場合には通水SVと給水ホウ素濃度との積は200μg/L/h以下となるように条件設定することが好ましいことが分かる。
[Experimental example 2]
In Experimental Example 1, the experiment was performed in the same manner except that boron BTP was set to 1 ng / L, 10 ng / L or 100 ng / L. The relationship between the product and boron BTC was investigated, and the results are shown in FIGS.
2(a), (b), and (c), in the case of any boron BTP, the boron BTC can be increased by setting the product of the water flow SV and the boron concentration in the feed water to a predetermined value or less. I understand.
Specifically, when boron BTP is 1 ng/L, the product of water flow SV and feed-water boron concentration is 80 μg/L/h or less, and when boron BTP is 10 ng/L, the product of water flow SV and feed-water boron concentration is 120 μg. /L/h or less, and in the case of 100 ng/L of boron BTP, the product of the water flow SV and the feed-water boron concentration is preferably set to 200 µg/L/h or less.

Claims (6)

ホウ素含有水をホウ素選択性吸着体が充填されたホウ素吸着塔に通水してホウ素を除去するホウ素の除去方法によりホウ素を除去する工程を有する純水又は超純水の製造方法であって、
該ホウ素を除去する工程において、該ホウ素吸着塔の給水のホウ素濃度と該ホウ素吸着塔への該ホウ素含有水の通水SVとの積が所定値以下となる条件で該ホウ素含有水を通水し、
予め設定された該ホウ素吸着塔のホウ素BTPに応じて、該所定値を設定することにより、ホウ素濃度1~10ng/Lの純水又は超純水を製造することを特徴とする純水又は超純水の製造方法
A method for producing pure water or ultrapure water, comprising a step of removing boron by a boron removal method of removing boron by passing boron-containing water through a boron adsorption tower filled with a boron-selective adsorbent,
In the step of removing boron, the boron-containing water is passed under the condition that the product of the boron concentration in the feed water of the boron adsorption tower and the flow SV of the boron-containing water to the boron adsorption tower is a predetermined value or less. death,
By setting the predetermined value according to the boron BTP of the boron adsorption tower set in advance, pure water or ultrapure water having a boron concentration of 1 to 10 ng / L is produced . A method for producing pure water .
請求項1において、前記通水SVと給水ホウ素濃度との積が所定値以下となるように、該通水SV、及び/又は、前記ホウ素吸着塔に充填するホウ素選択性吸着体量を設定することを特徴とする純水又は超純水の製造方法In claim 1, the water flow SV and/or the boron-selective adsorbent amount to be filled in the boron adsorption tower is set so that the product of the water flow SV and the feed-water boron concentration is equal to or less than a predetermined value. A method for producing pure water or ultrapure water, characterized by: ホウ素含有水をホウ素選択性吸着体が充填されたホウ素吸着塔に通水してホウ素を除去するホウ素の除去方法によりホウ素を除去する工程を有する純水又は超純水の製造方法であって、
該ホウ素を除去する工程において、該ホウ素吸着塔の給水のホウ素濃度と該ホウ素吸着塔への該ホウ素含有水の通水SVと該ホウ素含有水の通水時間との積が所定値以下となる条件で該ホウ素含有水を通水し、
予め設定された該ホウ素吸着塔のホウ素BTPに応じて、該所定値を設定することにより、ホウ素濃度1~10ng/Lの純水又は超純水を製造することを特徴とする純水又は超純水の製造方法
A method for producing pure water or ultrapure water, comprising a step of removing boron by a boron removal method of removing boron by passing boron-containing water through a boron adsorption tower filled with a boron-selective adsorbent,
In the step of removing boron, the product of the concentration of boron in the feed water of the boron adsorption tower, the flow time SV of the boron-containing water to the boron absorption tower, and the flow time of the boron-containing water becomes equal to or less than a predetermined value. passing the boron-containing water under conditions,
By setting the predetermined value according to the boron BTP of the boron adsorption tower set in advance, pure water or ultrapure water having a boron concentration of 1 to 10 ng / L is produced . A method for producing pure water .
請求項3において、前記通水SVと給水ホウ素濃度と通水時間との積が所定値以下となるように、該通水SVの設定、前記ホウ素吸着塔に充填するホウ素選択性吸着体量の設定、及び通水時間の制御のいずれかを行うことを特徴とする純水又は超純水の製造方法In claim 3, the water flow SV is set so that the product of the water flow SV, the boron concentration of the feed water, and the water flow time is equal to or less than a predetermined value, and the amount of the boron selective adsorbent to be filled in the boron adsorption tower is adjusted. A method for producing pure water or ultrapure water, characterized in that either setting or control of water flow time is performed. 請求項3において、複数の前記ホウ素吸着塔を用い、該複数のホウ素吸着塔のうちの一部のホウ素吸着塔に前記給水の通水を継続しながら、前記通水SVと給水ホウ素濃度と通水時間との積が所定値以下となるように、他のホウ素吸着塔に通水の停止期間を設定することを特徴とする純水又は超純水の製造方法In claim 3, using a plurality of the boron adsorption towers, while continuing to flow the feed water to a part of the boron adsorption towers among the plurality of boron adsorption towers, the water flow SV and the feed water boron concentration are communicated. A method for producing pure water or ultrapure water, characterized in that a period during which water is not supplied to another boron adsorption tower is set such that the product of water time and water time is equal to or less than a predetermined value. 請求項5において、前記複数のホウ素吸着塔が並列に接続されており、該複数のホウ素吸着塔のうちの一部のホウ素吸着塔に前記給水の通水を継続しながら、他のホウ素吸着塔に通水の停止期間を設定することを特徴とする純水又は超純水の製造方法6. The method according to claim 5, wherein the plurality of boron adsorption towers are connected in parallel, and while continuing to pass the feed water to a part of the boron adsorption towers among the plurality of boron adsorption towers, the other boron adsorption towers A method for producing pure water or ultrapure water, characterized by setting a water flow suspension period to .
JP2018027933A 2018-02-20 2018-02-20 Method for producing pure water or ultrapure water Active JP7225544B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018027933A JP7225544B2 (en) 2018-02-20 2018-02-20 Method for producing pure water or ultrapure water
KR1020207011157A KR20200121279A (en) 2018-02-20 2018-09-12 Method for removing boron, and method for producing pure or ultrapure water
CN201880066892.1A CN111225880A (en) 2018-02-20 2018-09-12 Method for removing boron and method for producing pure water or ultrapure water
PCT/JP2018/033811 WO2019163174A1 (en) 2018-02-20 2018-09-12 Method for removing boron and method for manufacturing pure water or ultrapure water
TW107133323A TWI781227B (en) 2018-02-20 2018-09-21 Method for removing boron, and method for producing pure water or ultrapure water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018027933A JP7225544B2 (en) 2018-02-20 2018-02-20 Method for producing pure water or ultrapure water

Publications (2)

Publication Number Publication Date
JP2019141775A JP2019141775A (en) 2019-08-29
JP7225544B2 true JP7225544B2 (en) 2023-02-21

Family

ID=67687527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018027933A Active JP7225544B2 (en) 2018-02-20 2018-02-20 Method for producing pure water or ultrapure water

Country Status (5)

Country Link
JP (1) JP7225544B2 (en)
KR (1) KR20200121279A (en)
CN (1) CN111225880A (en)
TW (1) TWI781227B (en)
WO (1) WO2019163174A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102498578B1 (en) * 2022-02-22 2023-02-13 삼성전자주식회사 Management method of ultra pure water manufacturing system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001017866A (en) 1999-07-07 2001-01-23 Kurita Water Ind Ltd Preparation of boron adsorbing resin
JP2001340851A (en) 2000-06-02 2001-12-11 Nippon Denko Kk Method and apparatus for treating boron-containing wastewater
JP2004066153A (en) 2002-08-08 2004-03-04 Japan Organo Co Ltd Organic porous body having selective boron adsorption capability and boron removal module and ultrapure water production apparatus using the same
JP2004195457A (en) 2002-12-18 2004-07-15 Rohm & Haas Co Water treatment system generating small waste quantity
JP2004275948A (en) 2003-03-18 2004-10-07 Sumitomo Chem Co Ltd Boron removal process and boron removal apparatus
JP2012205996A (en) 2011-03-29 2012-10-25 Kurita Water Ind Ltd Operation method of ion exchange apparatus and ion exchange system
JP2011167606A5 (en) 2010-02-17 2013-03-28
JP2014176794A (en) 2013-03-14 2014-09-25 Japan Organo Co Ltd Treatment method of heavy metal-containing solution
JP2014188444A (en) 2013-03-27 2014-10-06 Chiyoda Corp Method for treating boron-containing effluent
JP2015136685A (en) 2014-01-24 2015-07-30 三菱レイヨンアクア・ソリューションズ株式会社 Device for treating water to be treated, device for producing purified water, and method for treating water to be treated

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54131340A (en) * 1978-03-31 1979-10-12 Mitsubishi Chem Ind Ltd Water treatment device
JPS632619A (en) * 1986-06-18 1988-01-07 Satake Eng Co Ltd Electric discharge machine
JP3200301B2 (en) 1994-07-22 2001-08-20 オルガノ株式会社 Method and apparatus for producing pure or ultrapure water
JP3426072B2 (en) 1996-01-17 2003-07-14 オルガノ株式会社 Ultrapure water production equipment
JP3489650B2 (en) * 1997-03-13 2004-01-26 オルガノ株式会社 Treatment method of boron-containing wastewater
JP2004330012A (en) * 2003-05-01 2004-11-25 Shin Nihon Salt Co Ltd Boron adsorbing agent and manufacturing method therefor
CN1894029B (en) * 2003-12-15 2011-05-11 旭化成化学株式会社 Porous formed article and method for production thereof
JP2005177564A (en) 2003-12-17 2005-07-07 Nomura Micro Sci Co Ltd Ultrapure water production method and apparatus
JP5081690B2 (en) 2008-03-31 2012-11-28 オルガノ株式会社 Production method of ultra pure water
JP2011167606A (en) 2010-02-17 2011-09-01 Nippon Rensui Co Ltd Method for producing chelate forming group-containing adsorbing material
CN106629975A (en) * 2016-12-27 2017-05-10 南京慧城水处理设备有限公司 Method used for removing trace boron in desalination seawater with boron selective chelating resin

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001017866A (en) 1999-07-07 2001-01-23 Kurita Water Ind Ltd Preparation of boron adsorbing resin
JP2001340851A (en) 2000-06-02 2001-12-11 Nippon Denko Kk Method and apparatus for treating boron-containing wastewater
JP2004066153A (en) 2002-08-08 2004-03-04 Japan Organo Co Ltd Organic porous body having selective boron adsorption capability and boron removal module and ultrapure water production apparatus using the same
JP2004195457A (en) 2002-12-18 2004-07-15 Rohm & Haas Co Water treatment system generating small waste quantity
JP2004275948A (en) 2003-03-18 2004-10-07 Sumitomo Chem Co Ltd Boron removal process and boron removal apparatus
JP2011167606A5 (en) 2010-02-17 2013-03-28
JP2012205996A (en) 2011-03-29 2012-10-25 Kurita Water Ind Ltd Operation method of ion exchange apparatus and ion exchange system
JP2014176794A (en) 2013-03-14 2014-09-25 Japan Organo Co Ltd Treatment method of heavy metal-containing solution
JP2014188444A (en) 2013-03-27 2014-10-06 Chiyoda Corp Method for treating boron-containing effluent
JP2015136685A (en) 2014-01-24 2015-07-30 三菱レイヨンアクア・ソリューションズ株式会社 Device for treating water to be treated, device for producing purified water, and method for treating water to be treated

Also Published As

Publication number Publication date
TW201934495A (en) 2019-09-01
CN111225880A (en) 2020-06-02
KR20200121279A (en) 2020-10-23
WO2019163174A1 (en) 2019-08-29
TWI781227B (en) 2022-10-21
JP2019141775A (en) 2019-08-29

Similar Documents

Publication Publication Date Title
US8771522B2 (en) Method and apparatus for treating organic matter-containing water
JP6298275B2 (en) Water treatment especially to obtain ultrapure water
CN105517957A (en) Method and apparatus for manufacturing pure water
JP4599803B2 (en) Demineralized water production equipment
JPH09278418A (en) Purification of hydrogen peroxide solution
TWI808053B (en) Ultrapure water production system and ultrapure water production method
JP7225544B2 (en) Method for producing pure water or ultrapure water
JP5584043B2 (en) Pretreatment device for membrane separation and membrane separation method using the same
KR20150048866A (en) Method of desalinating boron-containing solution
JP2013023442A (en) Method and apparatus for purifying alcohol
JP6437874B2 (en) Method and apparatus for regenerating ion exchange resin
JP6310819B2 (en) Pure water production apparatus, ultrapure water production system, and pure water production method
JPS62110795A (en) Device for producing high-purity water
JP5739687B2 (en) Alcohol purification method, apparatus and system
JP2016150275A (en) Method and device for producing purified water
KR102489442B1 (en) Anion exchange resin and water treatment method using the same
JP7313262B2 (en) Reverse osmosis membrane device
JP2005246126A (en) Device and method for manufacturing pure water or ultra pure water
JP2015199050A (en) Method of removing metal ion in saturated salt water
JPH0251672B2 (en)
JPH04271848A (en) Recovery method for anion exchange resin
JP2006254794A (en) Method for regenerating phenolic absorbing resin in sugar solution refining system and sugar solution refining apparatus
JP5564817B2 (en) Ion exchange resin regeneration method and ultrapure water production apparatus
JP2023077744A (en) Regeneration process for pure water production apparatus and pure water production apparatus
JP2001219163A (en) Treating method of boron-containing water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230123

R150 Certificate of patent or registration of utility model

Ref document number: 7225544

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150