JP6040830B2 - 膜分離装置 - Google Patents

膜分離装置 Download PDF

Info

Publication number
JP6040830B2
JP6040830B2 JP2013066025A JP2013066025A JP6040830B2 JP 6040830 B2 JP6040830 B2 JP 6040830B2 JP 2013066025 A JP2013066025 A JP 2013066025A JP 2013066025 A JP2013066025 A JP 2013066025A JP 6040830 B2 JP6040830 B2 JP 6040830B2
Authority
JP
Japan
Prior art keywords
water
line
pressure
membrane module
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013066025A
Other languages
English (en)
Other versions
JP2014188437A (ja
Inventor
敦行 真鍋
敦行 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2013066025A priority Critical patent/JP6040830B2/ja
Publication of JP2014188437A publication Critical patent/JP2014188437A/ja
Application granted granted Critical
Publication of JP6040830B2 publication Critical patent/JP6040830B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、膜モジュールを備える膜分離装置に関する。
医薬品や化粧品の製造、電子部品や精密機器の洗浄等においては、不純物を含まない高純度の純水が使用される。この種の純水は、一般に、地下水や水道水等の原水を、逆浸透膜モジュール(以下、「RO膜モジュール」ともいう)等の膜モジュールで膜分離処理することにより製造される。膜モジュールで膜分離処理することにより、原水は、溶存塩類等が除去された透過水と、溶存塩類等が濃縮された濃縮水とに分離される。
従来、膜分離装置として、供給水を透過水と濃縮水とに分離する膜モジュールと、供給水を膜モジュールに流通させる供給水ラインと、供給水ラインに設けられると共に供給水を膜モジュールに向けて吐出する加圧ポンプと、膜モジュールにより分離された濃縮水の一部を加圧ポンプの上流側に返送する返送ラインと、返送ラインに設けられると共に濃縮水の一部を加圧ポンプの上流側に向けて吐出する循環ポンプと、を備える膜分離装置が知られている(例えば、特許文献1)。
特許文献1に記載の膜分離装置においては、膜モジュールにより分離された濃縮水の一部が供給水に循環され、濃縮水が混合された供給水は、膜モジュールに供給される。即ち、膜モジュールにおいては、循環ポンプにより供給水を循環させながら、透過水を生産するクロスフロー方式の分離操作が行われる。これにより、膜モジュールの上流側に濃縮水の一部を流入させて、供給水に含まれる懸濁物質(例えば、不溶状態のコロイド状鉄)が膜の表面や細孔内に沈着する、いわゆるファウリングと呼ばれる現象を抑制することができるとされる。
特開2003−260449号公報
ところで、近年、膜モジュールにおいて、膜の透水性能が向上され、低い操作圧力で高流束の透過水を製造できるようになっている。特許文献1に記載される膜分離装置においては、加圧ポンプの下流側に膜モジュールが設けられている。そのため、膜の透水性能が向上された膜モジュールを使用すると、加圧ポンプの下流側の圧力(すなわち、膜モジュールから流出する濃縮水の圧力)が低くなる場合がある。この場合には、加圧ポンプの上流側の圧力が高いと、膜モジュールにより分離された濃縮水の一部を加圧ポンプの上流側に返送しにくい。
そのため、クロスフロー方式の膜分離装置において、濃縮水の一部を加圧ポンプの上流側に安定して返送することができる膜分離装置が望まれる。
本発明は、供給水を膜モジュールに向けて吐出する加圧ポンプと、膜モジュールにより分離された濃縮水の一部を加圧ポンプの上流側に返送する返送ラインと、を備え、濃縮水の一部を加圧ポンプの上流側に安定して返送することができる膜分離装置を提供することを目的とする。
本発明は、供給水を透過水と濃縮水とに分離する膜モジュールと、供給水を前記膜モジュールに流通させる供給水ラインと、前記供給水ラインに設けられ、供給水を前記膜モジュールに向けて吐出する加圧ポンプと、前記膜モジュールにより分離された濃縮水の一部を前記加圧ポンプの上流側に返送する返送ラインと、前記膜モジュールにより分離された濃縮水の残部を外部に排出する排水ラインと、前記返送ラインに設けられ、前記膜モジュールにより分離された濃縮水の一部を前記加圧ポンプの上流側に向けて吐出する循環ポンプと、前記供給水ラインにおける前記加圧ポンプよりも上流側を流通する供給水の圧力を検出圧力値として検出する圧力検出手段と、前記検出圧力値が所定の圧力閾値を上回る場合には前記加圧ポンプを停止させ且つ前記循環ポンプを駆動させるように制御し、前記検出圧力値が所定の圧力閾値を下回る場合には前記加圧ポンプを駆動させ且つ前記循環ポンプを停止させるように制御する制御部と、を備える膜分離装置に関する。
本発明によれば、供給水を膜モジュールに向けて吐出する加圧ポンプと、膜モジュールにより分離された濃縮水の一部を加圧ポンプの上流側に返送する返送ラインと、を備え、加圧ポンプの上流側に濃縮水の一部を安定して返送することができる膜分離装置を提供することができる。
本実施形態に係る純水製造装置1の全体概略図である。 本実施形態に係る純水製造装置1の全体構成図の前段部分である。 本実施形態に係る純水製造装置1の全体構成図の中段部分である。 本実施形態に係る純水製造装置1の全体構成図の後段部分である。 制御部30による加圧ポンプ5及び循環ポンプ21の制御を実行する処理手順を示すフローチャートである。
以下、本発明に係る膜分離装置を純水製造装置に適用した場合の実施形態について説明する。
(第1実施形態)
まず、本実施形態に係る純水製造装置1について、図面を参照しながら説明する。図1は、本実施形態に係る純水製造装置1の全体概略図である。図2Aは、本実施形態に係る純水製造装置1の全体構成図の前段部分である。図2Bは、本実施形態に係る純水製造装置1の全体構成図の中段部分である。図2Cは、本実施形態に係る純水製造装置1の全体構成図の後段部分である。本実施形態に係る純水製造装置1は、例えば、原水(例えば、水道水)から脱塩水(脱イオン水)を製造する純水製造装置に適用される。純水製造装置1で製造された脱塩水は、純水として、需要箇所等に送出される。なお、本実施形態に係る純水製造装置1において、需要箇所等へ純水を供給することを「採水」ともいう。
図1に示すように、本実施形態に係る純水製造装置1は、第1オプション機器OP1と、プレフィルタ4と、第2オプション機器OP2と、加圧ポンプ5と、加圧側インバータ6と、膜モジュールとしてのRO膜モジュール7と、第3オプション機器OP3と、第1流路切換弁V71と、電気脱イオンスタック(以下、「EDIスタック」ともいう)16と、循環ポンプ21と、循環側インバータ22と、第2流路切換弁V72と、第4オプション機器OP4と、制御部30と、入力操作部40と、直流電源装置50と、表示部60と、を備える。
第1オプション機器OP1〜第4オプション機器OP4は、純水製造装置1に着脱可能なオプション機器として、純水製造装置1に装着される機器である。第1オプション機器OP1は、軟水器2及び活性炭濾過器3を含む。第2オプション機器OP2は、硬度センサS1及び残留塩素センサS2を含む。第3オプション機器OP3は、脱炭酸装置15を含む。第4オプション機器OP4は、第2比抵抗センサRS2、全有機炭素センサTOC及び第3温度センサTE3を含む。
また、図1に示すように、純水製造装置1は、供給水ラインL1と、透過水ラインL21と、RO透過水リターンラインL41と、RO濃縮水ラインL50と、返送ラインとしてのRO濃縮水リターンラインL51と、排出ラインとしてのRO濃縮水排出ラインL61と、脱塩水ラインL3と、脱塩水リターンラインL42と、EDI濃縮水ラインL52と、を備える。なお、本明細書における「ライン」とは、流路、径路、管路等の流体の流通が可能なラインの総称である。
また、純水製造装置1は、図2A〜図2Cに示すように、図1に示す構成に加えて、第1開閉弁V11〜第7開閉弁V17と、真空破壊弁V41と、供給水補給弁V31と、第1排水弁V32〜第3排水弁V34と、第1定流量弁V51〜第4定流量弁V54と、第1逆止弁V61〜第5逆止弁V65と、第1圧力計P1〜第6圧力計P6と、第1圧力センサPS1〜第4圧力センサPS4と、圧力検出手段としての圧力スイッチPSWと、第1温度センサTE1及び第2温度センサTE2と、第1流量センサFM1及び第2流量センサFM2と、第1電気伝導率センサEC1と、第1比抵抗センサRS1と、を備える。
図1、図2A〜図2Cでは、電気的な接続の経路を省略するが、制御部30は、供給水補給弁V31、第1流路切換弁V71、第2流路切換弁V72、第1排水弁V32〜第3排水弁V34、圧力スイッチPSW、第1温度センサTE1〜第3温度センサTE3、第1圧力センサPS1〜第4圧力センサPS4、第1流量センサFM1及び第2流量センサFM2、第1電気伝導率センサEC1、第1比抵抗センサRS1及び第2比抵抗センサRS2、全有機炭素センサTOC、硬度センサS1、残留塩素センサS2等と電気的に接続される。
まず、純水製造装置1における全体構成図の前段部分について説明する。
図1及び図2Aに示すように、供給水ラインL1には、供給水W1が流通する。供給水ラインL1は、供給水W1を、RO膜モジュール7へ流通させるラインである。供給水ラインL1は、第1供給水ラインL11と、第2供給水ラインL12と、を有する。
第1供給水ラインL11には、原水W11(供給水W1)が流通する。第1供給水ラインL11は、原水W11の供給源(不図示)と軟水器2とをつなぐラインである。第1供給水ラインL11の上流側の端部は、原水W11の供給源(不図示)に接続されている。また、第1供給水ラインL11の下流側の端部は、軟水器2に接続されている。
第1供給水ラインL11には、図2Aに示すように、上流側から順に、接続部J1、第1開閉弁V11、及び軟水器2が設けられている。第1開閉弁V11は、第1供給水ラインL11の開閉を操作可能な手動弁である。
軟水器2は、原水W11中に含まれる硬度成分をナトリウムイオンに置換して軟水W12(供給水W1)を製造する機器である。軟水器2は、圧力タンク内に陽イオン交換樹脂床を収容したイオン交換塔を有する。
第2供給水ラインL12には、軟水W12(供給水W1)が流通する。第2供給水ラインL12は、軟水W12を、RO膜モジュール7へ流通させるラインである。第2供給水ラインL12は、軟水器2とRO膜モジュール7とをつなぐラインである。図2Aに示すように、第2供給水ラインL12の上流側の端部は、軟水器2に接続されている。また、図2Bに示すように、第2供給水ラインL12の下流側の端部は、RO膜モジュール7の一次側入力ポート(供給水W1の入口)に接続されている。
第2供給水ラインL12には、上流側から順に、図2Aに示すように、第2開閉弁V12、接続部J2、第3開閉弁V13、活性炭濾過器3、第4開閉弁V14、接続部J3、プレフィルタ4、接続部J4、及び接続部J5が設けられている。また、接続部J5以降には、図2Bに示すように、第5開閉弁V15、接続部J6、供給水補給弁V31、接続部J59、接続部J51、接続部J7、接続部J8、加圧ポンプ5、接続部J9、及びRO膜モジュール7が設けられている。第2開閉弁V12〜第5開閉弁V15は、第2供給水ラインL12の開閉を操作可能な手動弁である。供給水補給弁V31は、第2供給水ラインL12の開閉を制御可能な自動弁である。供給水補給弁V31は、制御部30と電気的に接続されている。供給水補給弁V31の開閉は、制御部30から送信される流路開閉信号により制御される。
活性炭濾過器3は、軟水W12(供給水W1)に含まれる塩素成分(主として遊離残留塩素)を除去する機器である。活性炭濾過器3は、圧力タンク内に活性炭からなる濾材床を収容した濾過塔を有する。活性炭濾過器3は、軟水W12に含まれる塩素成分を分解除去する他、有機成分を吸着除去したり、懸濁物質を捕捉したりして軟水W12(供給水W1)を浄化する。
プレフィルタ4は、活性炭濾過器3により浄化された軟水W12(供給水W1)に含まれる微粒子を除去するフィルタである。プレフィルタ4は、ハウジング内にフィルタエレメントが収容されて構成される。フィルタエレメントとしては、例えば、濾過精度が1〜50μmの不織布フィルタエレメント又は糸巻きフィルタエレメント等が用いられる。
硬度センサS1は、供給水ラインL1を流通する供給水W1の全硬度(すなわち、硬度リーク量)を測定する機器である。残留塩素センサS2は、供給水ラインL1を流通する供給水W1の遊離残留塩素濃度(すなわち、塩素リーク量)を測定する機器である。硬度センサS1及び残留塩素センサS2は、図2Aに示すように、測定ラインL110を介して、接続部J5において供給水ラインL1に接続されている。接続部J5は、供給水ラインL1におけるプレフィルタ4と第5開閉弁V15との間に配置されている。硬度センサS1及び残留塩素センサS2は、制御部30と電気的に接続されている。硬度センサS1で測定された硬度リーク量、及び残留塩素センサS2で測定された塩素リーク量は、それぞれ制御部30へ検出信号として送信される。
次に、純水製造装置1における全体構成図の中段部分について説明する。
図2Bに示すように、接続部J6には、真空破壊弁V41が接続されている。真空破壊弁V41は、常閉式の圧力作動弁であり、供給水ラインL1の管内圧力が大気圧力よりも低くなった場合に弁体が開いて大気を吸入する。真空破壊弁V41を設けることにより、原水W11(供給水W1)が断水となって供給水ラインL1が負圧になったとしても、RO膜モジュール7の膜の破損等の不具合を防止することができる。
接続部J59には、後述する脱塩水リターンラインL42の下流側の端部が接続されている。接続部J51には、後述するRO透過水リターンラインL41の下流側の端部及びRO濃縮水リターンラインL51の下流側の端部が接続されている。
加圧ポンプ5は、供給水ラインL1を流通する供給水W1を吸入し、RO膜モジュール7へ向けて圧送(吐出)する装置である。加圧ポンプ5には、加圧側インバータ6から周波数が変換された駆動電力が供給される。加圧ポンプ5は、供給された駆動電力の周波数(以下、「駆動周波数」ともいう)に応じた回転速度で駆動される。
加圧側インバータ6は、加圧ポンプ5に、周波数が変換された駆動電力を供給する電気回路(又はその回路を持つ装置)である。加圧側インバータ6は、制御部30と電気的に接続されている。加圧側インバータ6には、制御部30から指令信号が入力される。加圧側インバータ6は、制御部30により入力された指令信号(電流値信号又は電圧値信号)に対応する駆動周波数の駆動電力を加圧ポンプ5に出力する。
RO膜モジュール7は、加圧ポンプ5により圧送された供給水W1を、溶存塩類が除去された透過水W2と、溶存塩類が濃縮された濃縮水W3と、に分離する。RO膜モジュール7は、単一又は複数のスパイラル型RO膜エレメントを圧力容器(ベッセル)に収容して構成される。当該RO膜エレメントに使用されるRO膜としては、架橋芳香族ポリアミド系複合膜などが例示される。架橋芳香族ポリアミド系複合膜からなるRO膜エレメントとしては、東レ社製:型式名「TMG20−400」、ウンジン・ケミカル社製:型式名「RE8040−BLF」、日東電工社製:型式名「ESPA1」等が市販されており、これらのエレメントを好適に用いることができる。
RO濃縮水ラインL50は、RO膜モジュール7で分離された濃縮水W3が流通されるラインである。RO濃縮水ラインL50の上流側の端部は、RO膜モジュール7の一次側出口ポート(濃縮水W3の出口)に接続されている。RO濃縮水ラインL50の下流側の端部は、接続部J53において、RO濃縮水リターンラインL51及びRO濃縮水排出ラインL61に接続されている。
RO濃縮水リターンラインL51は、RO膜モジュール7で分離された濃縮水W3の一部W31を、RO濃縮水ラインL50を介して、供給水ラインL1へ返送するラインである。RO濃縮水リターンラインL51の上流側の端部は、接続部J53に接続されている。RO濃縮水リターンラインL51の下流側の端部は、接続部J51において供給水ラインL1に接続されている。RO濃縮水リターンラインL51には、第1逆止弁V61及び循環ポンプ21が設けられている。
循環ポンプ21は、RO濃縮水リターンラインL51を流通する濃縮水W3の一部W31を吸入し、加圧ポンプ5の上流側に向けて圧送(吐出)する装置である。循環ポンプ21には、循環側インバータ22から周波数が変換された駆動電力が供給される。循環ポンプ21は、供給された駆動電力の周波数(以下、「駆動周波数」ともいう)に応じた回転速度で駆動される。
循環側インバータ22は、循環ポンプ21に、周波数が変換された駆動電力を供給する電気回路(又はその回路を持つ装置)である。循環側インバータ22は、制御部30と電気的に接続されている。循環側インバータ22には、制御部30から指令信号が入力される。循環側インバータ22は、制御部30により入力された指令信号(電流値信号又は電圧値信号)に対応する駆動周波数の駆動電力を循環ポンプ21に出力する。
循環側インバータ22により循環ポンプ21が駆動されることにより、濃縮水W3の一部W31が加圧ポンプ5の上流側に循環され、加圧ポンプ5の上流側を流通される軟水W12に濃縮水W3が混合された供給水は、RO膜モジュール7に供給される。即ち、RO膜モジュール7においては、循環ポンプ21により供給水を循環させながら、透過水を生産するクロスフロー方式の分離操作が行われる。
RO濃縮水排出ラインL61は、RO膜モジュール7で分離された濃縮水W3の残部W32を、RO濃縮水ラインL50を介して、装置の外へ排出するラインである。RO濃縮水排出ラインL61の上流側の端部は、接続部J53に接続されている。第1濃縮水排水ラインL611、第2濃縮水排水ラインL612及び第3濃縮水排水ラインL613の上流側の端部は、接続部J55及びJ56において、RO濃縮水排出ラインL61に接続されている。
第1濃縮水排水ラインL611〜第3濃縮水排水ラインL613には、それぞれ、第1排水弁V32〜第3排水弁V34、及び第1定流量弁V51〜第3定流量弁V53が設けられている。第1定流量弁V51〜第3定流量弁V53は、それぞれ異なる流量値に設定されている。第1排水弁V32〜第3排水弁V34により、第1濃縮水排水ラインL611〜第3濃縮水排水ラインL613を個別に開閉することができる。第1排水弁V32〜第3排水弁V34の開放数を適宜に選択することにより、装置外へ排出する濃縮水W3の排水流量を調節することができる。この調節により、透過水W2の回収率を予め設定された値に保つことができる。なお、透過水W2の回収率とは、RO膜モジュール7に供給される軟水W12(濃縮水W3の一部W31が混合される前の供給水W1)の流量に対する透過水W2の割合(%)をいう。
第1排水弁V32〜第3排水弁V34は、それぞれ制御部30と電気的に接続されている。第1排水弁V32〜第3排水弁V34の開閉は、制御部30から送信される駆動信号により制御される。
第1濃縮水排水ラインL611、第2濃縮水排水ラインL612及び第3濃縮水排水ラインL613の下流側の端部は、接続部J57及びJ58において、合流排水ラインL62の上流側の端部に接続されている。合流排水ラインL62の下流側の端部は、例えば、排水ピット(不図示)に接続又は開口している。合流排水ラインL62の途中には、第2逆止弁V62が設けられている。
透過水ラインL21は、RO膜モジュール7で分離された透過水W2をEDIスタック16に流通させるラインである。透過水ラインL21は、図2B及び図2Cに示すように、前段側透過水ラインL211と、中段側透過水ラインL212と、脱塩室流入ラインL213と、濃縮室流入ラインL214と、を有する。
前段側透過水ラインL211の上流側の端部は、図2Bに示すように、RO膜モジュール7の二次側ポート(透過水W2の出口)に接続されている。前段側透過水ラインL211の下流側の端部は、図2Cに示すように、第1流路切換弁V71を介して、中段側透過水ラインL212及びRO透過水リターンラインL41に接続されている。
前段側透過水ラインL211には、上流側から順に、図2Bに示すように、第3逆止弁V63、接続部J10、接続部J11、及び第6開閉弁V16が設けられている。また、第6開閉弁V16以降には、図2Cに示すように、脱炭酸装置15、接続部J31、接続部J32、及び第1流路切換弁V71が設けられている。第6開閉弁V16は、前段側透過水ラインL211の開閉を操作可能な手動弁である。
次に、純水製造装置1における全体構成図の後段部分について説明する。
図2Cにおいて、脱炭酸装置15は、透過水W2に含まれる遊離炭酸(溶存炭酸ガス)を、気体分離膜モジュールにより脱気処理して、脱気水(脱気透過水)を得る設備である。RO膜モジュール7の下流側に脱炭酸装置15を設けることにより、RO膜を透過しやすい遊離炭酸を透過水W2から除去することができる。従って、より純度の高い透過水W2を得ることができる。本実施形態の脱炭酸装置15では、中空糸膜からなる外部灌流式の気体分離膜モジュールを用い、中空糸膜の内側を真空ポンプ(不図示)で吸引しながら、空気等の掃引ガスを導入し、膜壁を介して遊離炭酸を掃引ガス中に移行させつつ排気する。このような用途に適した気体分離膜モジュールとしては、例えば、セルガード社製:製品名「Liqui−Cel G−521R」等が挙げられる。気体分離膜モジュールに接続される真空ポンプは、制御部30と電気的に接続されている。
第1流路切換弁V71は、RO膜モジュール7で分離された透過水W2を、中段側透過水ラインL212を介してEDIスタック16へ向けて流通させる流路(採水側流路)、又は、RO透過水リターンラインL41を介してRO膜モジュール7の上流側の供給水ラインL1へ向けて流通させる流路(循環側流路)に切り換え可能な自動弁である。第1流路切換弁V71は、例えば、電動式又は電磁式の三方弁により構成される。第1流路切換弁V71は、制御部30と電気的に接続されている。第1流路切換弁V71における流路の切り換えは、制御部30から送信される流路切換信号により制御される。
RO透過水リターンラインL41は、RO膜モジュール7で分離された透過水W2を、RO膜モジュール7よりも上流側の供給水ラインL1へ返送するラインである。RO透過水リターンラインL41の上流側の端部は、第1流路切換弁V71に接続されている。RO透過水リターンラインL41の下流側の端部は、接続部J52において、RO濃縮水リターンラインL51に接続されている。接続部J52は、RO濃縮水リターンラインL51における接続部J53と接続部J51との間に配置されている。RO透過水リターンラインL41における接続部J52から接続部J51までの部分は、RO濃縮水リターンラインL51における接続部J52から接続部J51までの部分と共通する。RO透過水リターンラインL41の上流側には、第4逆止弁V64が設けられている。
中段側透過水ラインL212の上流側の端部は、第1流路切換弁V71に接続されている。中段側透過水ラインL212の下流側の端部は、分岐部J71において、脱塩室流入ラインL213の上流側の端部及び濃縮室流入ラインL214の上流側の端部に接続されている。
脱塩室流入ラインL213の下流側の端部は、EDIスタック16の一次側ポート(脱塩室161の入口側)に接続されている。脱塩室流入ラインL213には、接続部J33が配置されている。濃縮室流入ラインL214の下流側の端部は、EDIスタック16の一次側ポート(濃縮室162の各入口側)に接続されている。濃縮室流入ラインL214には、上流側から順に、第4定流量弁V54、及び接続部J34が設けられている。
EDIスタック16は、RO膜モジュール7で分離された透過水W2を脱塩処理(脱イオン処理)して、脱塩水W6(脱イオン水)と濃縮水W7とを得る水処理機器である。EDIスタック16は、直流電源装置50(図1参照)と電気的に接続されている。EDIスタック16には、直流電源装置50から直流電圧が印加される。EDIスタック16は、直流電源装置50から印加された直流電圧により通電され、動作する。
直流電源装置50は、直流電圧をEDIスタック16の一対の電極間に印加する。直流電源装置50は、制御部30と電気的に接続されている。直流電源装置50は、制御部30により入力された指令信号に応答して、直流電圧をEDIスタック16に出力する。
EDIスタック16は、一対の電極間に、陽イオン交換膜及び陰イオン交換膜(不図示)が交互に配置される。EDIスタック16の内部は、これらイオン交換膜により、脱塩室161及び濃縮室162(陽極室及び陰極室を含む)に区画される。脱塩室161には、イオン交換体(不図示)が充填される。脱塩室161に充填されるイオン交換体としては、例えば、イオン交換樹脂又はイオン交換繊維等が用いられる。なお、図2Cでは、EDIスタック16の内部に区画された複数の脱塩室161及び濃縮室162を模式的に示す。
脱塩室161の入口側には、透過水W2を流入させる脱塩室流入ラインL213が接続されている。脱塩室161の出口側には、脱塩室161においてイオンが除去されて排出された脱塩水W6を流通させる脱塩水ラインL3が接続されている。濃縮室162の入口側には、透過水W2を流入させる濃縮室流入ラインL214が接続されている。濃縮室162の出口側には、イオンが濃縮されて排出された濃縮水W7を流通させるEDI濃縮水ラインL52が接続されている。
脱塩室161及び濃縮室162それぞれには、透過水ラインL21を流通する透過水W2が流入される。透過水W2に含まれる残留イオンは、脱塩室161内に充填されたイオン交換体(不図示)により捕捉され、脱塩水W6となる。脱塩水W6は、脱塩水ラインL3(後述)を介して需要箇所へ送出される。また、脱塩室161内のイオン交換体に捕捉された残留イオンは、印加された直流電圧の電気エネルギーにより濃縮室162に移動する。そして、残留イオンを含む水は、濃縮水W7として、濃縮室162からEDI濃縮水ラインL52(後述)を介して脱炭酸装置15に向けて送出される。脱炭酸装置15に送出された濃縮水W7は、真空ポンプの封水として利用され、その後、封水排出ラインL71(後述)を介して装置の外に排出される。
脱塩水ラインL3は、EDIスタック16で得られた脱塩水W6を純水として需要箇所に向けて送出するラインである。脱塩水ラインL3は、上流側脱塩水ラインL31と、下流側脱塩水ラインL32と、を有する。
上流側脱塩水ラインL31の上流側の端部は、EDIスタック16の二次側ポート(脱塩室161の出口側)に接続されている。上流側脱塩水ラインL31の下流側の端部は、第2流路切換弁V72を介して、下流側脱塩水ラインL32及び脱塩水リターンラインL42(後述)に接続されている。上流側脱塩水ラインL31には、上流側から順に、接続部J36、接続部J37、接続部J38、第7開閉弁V17、及び第2流路切換弁V72が設けられている。第7開閉弁V17は、上流側脱塩水ラインL31の開閉を操作可能な手動弁である。
第2流路切換弁V72は、EDIスタック16の脱塩室161で得られた脱塩水W6を、下流側脱塩水ラインL32を介して需要箇所に向けて送出させる流路(採水側流路)、又は、脱塩水リターンラインL42を介してRO膜モジュール7の上流側の供給水ラインL1に向けて流通させる流路(循環側流路)に切り換え可能な自動弁である。第2流路切換弁V72は、例えば、電動式又は電磁式の三方弁により構成される。第2流路切換弁V72は、制御部30と電気的に接続されている。第2流路切換弁V72における流路の切り換えは、制御部30から送信される流路切換信号により制御される。
第2流路切換弁V72は、制御部30により採水側流路に切り換えられることにより、EDIスタック16で得られた脱塩水W6を脱塩水ラインL3から需要箇所に送り出す処理を実行可能な送出手段として機能する。
下流側脱塩水ラインL32の上流側の端部は、第2流路切換弁V72に接続されている。下流側脱塩水ラインL32の下流側の端部は、需要箇所の装置等(不図示)に接続されている。
脱塩水リターンラインL42は、EDIスタック16の脱塩室161で得られた脱塩水W6を、脱塩水ラインL3の途中から、RO膜モジュール7の上流側(供給水ラインL1)へ返送するラインである。本実施形態においては、脱塩水リターンラインL42の上流側の端部は、第2流路切換弁V72に接続されている。脱塩水リターンラインL42の下流側の端部は、接続部J59に接続されている。脱塩水リターンラインL42の上流側には、第5逆止弁V65が設けられている。
EDI濃縮水ラインL52は、EDIスタック16の濃縮室162から排出された濃縮水W7を、脱炭酸装置15に送出するラインである。EDI濃縮水ラインL52の上流側の端部は、EDIスタック16の二次側ポート(濃縮室162の出口側)に接続されている。EDI濃縮水ラインL52の下流側の端部は、脱炭酸装置15に接続されている。
封水排出ラインL71は、脱炭酸装置15から排出される封水排水W8を、装置の外に排出するラインである。封水排出ラインL71の上流側の端部は、脱炭酸装置15に接続されている。封水排出ラインL71の下流側は、例えば、排水ピット(不図示)に接続又は開口している。
第1圧力計P1〜第6圧力計P6は、接続された各ラインを流通する水の圧力を計測する機器である。図2Aに示すように、第1圧力計P1〜第4圧力計P4は、接続部J1〜J4において、それぞれ、供給水ラインL1に接続されている。図2Cに示すように、第5圧力計P5は、接続部J35において、EDI濃縮水ラインL52に接続されている。第6圧力計P6は、接続部J36において、脱塩水ラインL3に接続されている。
第1圧力センサPS1〜第4圧力センサPS4は、接続された各ラインを流通する水の圧力を計測する機器である。図2B及び図2Cに示すように、第1圧力センサPS1は、接続部J9において、供給水ラインL1に接続されている。接続部J9は、供給水ラインL1における加圧ポンプ5とRO膜モジュール7との間に配置されている。第2圧力センサPS2は、接続部J11において、透過水ラインL21に接続されている。接続部J11は、透過水ラインL21におけるRO膜モジュール7と脱炭酸装置15との間に配置されている。第3圧力センサPS3は、接続部J33において、脱塩室流入ラインL213に接続されている。接続部J33は、脱塩室流入ラインL213の途中に配置されている。第4圧力センサPS4は、接続部J34において、濃縮室流入ラインL214に接続されている。接続部J34は、濃縮室流入ラインL214における第4定流量弁V54とEDIスタック16との間に配置されている。
第1圧力センサPS1〜第4圧力センサPS4は、制御部30と電気的に接続されている。第1圧力センサPS1〜第4圧力センサPS4で測定された供給水W1又は透過水W2の圧力は、制御部30へ検出信号として送信される。
圧力スイッチPSWは、供給水ラインL1における加圧ポンプ5よりも上流側を流通する供給水W1の圧力を検出する機器である。圧力スイッチPSWは、例えば、供給水ラインL1を流通する供給水W1の圧力が第1設定圧力値以下又は第2設定圧力値以上であることを検出する。本実施形態においては、圧力スイッチPSWは、供給水ラインL1における加圧ポンプ5よりも上流側を流通する供給水W1の圧力が所定の圧力閾値を上回る場合に、検出信号を出力する。例えば、所定の圧力閾値としては、供給水ラインL1における加圧ポンプ5よりも上流側の供給水W1の圧力が高すぎるために、濃縮水W3の一部を加圧ポンプ5の上流側に返送できない下限の圧力値が設定される。例えば、所定の圧力閾値は、0.1MPaに設定される。
図2Bに示すように、圧力スイッチPSWは、接続部J7において、供給水ラインL1に接続されている。接続部J7は、供給水ラインL1における接続部J51と加圧ポンプ5との間に配置されている。圧力スイッチPSWで検出された供給水W1の圧力の検出信号は、制御部30へ送信される。
第1温度センサTE1〜第3温度センサTE3は、接続された各ラインを流通する水の温度を測定する機器である。第1温度センサTE1は、接続部J8において、供給水ラインL1に接続されている。接続部J8は、供給水ラインL1における接続部J51と加圧ポンプ5との間に配置されている。第2温度センサTE2は、接続部J31において、透過水ラインL21に接続されている。接続部J31は、透過水ラインL21における脱炭酸装置15と第1流路切換弁V71との間に配置されている。第3温度センサTE3は、接続部J43において、脱塩水ラインL3に接続されている。接続部J43は、脱塩水ラインL3における第2流路切換弁V72よりも下流側の下流側脱塩水ラインL32に配置されている。
第1温度センサTE1〜第3温度センサTE3は、制御部30と電気的に接続されている。第1温度センサTE1〜第3温度センサTE3で測定された供給水W1、透過水W2又は脱塩水W6の温度(検出水温値)は、制御部30へ検出信号として送信される。
第1流量センサFM1及び第2流量センサFM2は、接続された各ラインを流通する水(透過水W2又は脱塩水W6)の流量を測定する機器である。第1流量センサFM1は、接続部J10において、透過水ラインL21に接続されている。接続部J10は、透過水ラインL21におけるRO膜モジュール7と脱炭酸装置15との間に配置されている。第2流量センサFM2は、接続部J38において、脱塩水ラインL3に接続されている。接続部J38は、脱塩水ラインL3におけるEDIスタック16と第2流路切換弁V72との間に配置されている。
第1流量センサFM1及び第2流量センサFM2は、制御部30と電気的に接続されている。第1流量センサFM1及び第2流量センサFM2で測定された透過水W2又は脱塩水W6の流量(検出流量値)は、制御部30へ検出信号として送信される。
第1電気伝導率センサEC1は、透過水ラインL21を流通する透過水W2の電気伝導率(電気的特性値)を測定する機器である。第1電気伝導率センサEC1は、接続部J32において、透過水ラインL21に接続されている。接続部J32は、透過水ラインL21における脱炭酸装置15と第1流路切換弁V71との間に配置されている。
第1比抵抗センサRS1及び第2比抵抗センサRS2は、脱塩水ラインL8を流通する脱塩水W6の比抵抗(電気的特性値)を測定する機器である。第1比抵抗センサRS1は、接続部J37において、脱塩水ラインL3に接続されている。接続部J37は、脱塩水ラインL3におけるEDIスタック16と第2流路切換弁V72との間に配置されている。第2比抵抗センサRS2は、接続部J41において、脱塩水ラインL3に接続されている。接続部J41は、脱塩水ラインL3における第2流路切換弁V72よりも下流側の下流側脱塩水ラインL32に配置されている。なお、第1比抵抗センサRS1及び第2比抵抗センサRS2は、測定された比抵抗値の温度補償のため、温度センサを内蔵している。そのため、第1比抵抗センサRS1及び第2比抵抗センサRS2は、脱塩水W6の水温を測定することができる。
第1電気伝導率センサEC1、第1比抵抗センサRS1及び第2比抵抗センサRS2は、制御部30と電気的に接続されている。第1電気伝導率センサEC1で測定された透過水W2の電気伝導率、第1比抵抗センサRS1で測定された脱塩水W6の比抵抗(及び温度)、及び第2比抵抗センサRS2で測定された脱塩水W6の比抵抗(及び温度)は、それぞれ、制御部30へ検出信号として送信される。
全有機炭素センサTOCは、脱塩水ラインL8を流通する脱塩水W6の有機体炭素量を検出する機器である。有機体炭素とは、水中に存在する有機物中の炭素である。全有機炭素センサTOCは、接続部J42において、脱塩水ラインL3に接続されている。接続部J42は、脱塩水ラインL3における第2流路切換弁V72よりも下流側の下流側脱塩水ラインL32に配置されている。
全有機炭素センサTOCは、制御部30と電気的に接続されている。全有機炭素センサTOCで検出された脱塩水W6の全有機炭素量は、制御部30へ検出信号として送信される。
入力操作部40は、装置の運転モードに係る選択(例えば、運転/停止の選択、警報の解除など)、装置の運転条件に係る各種設定について、ユーザー又は管理者の入力操作を受け付ける入力インターフェースである。この入力操作部40は、ディスプレイとボタンスイッチを組み合わせた操作パネル、ディスプレイ上で直接操作するタッチパネル等により構成される。入力操作部40は、制御部30と電気的に接続されている。入力操作部40から入力された情報は、制御部30に送信される。
表示部60は、所望の情報を表示する。表示部60は、制御部30と電気的に接続されている。
次に、制御部30について説明する。制御部30は、CPU及びメモリを含むマイクロプロセッサ(不図示)により構成される。制御部30において、マイクロプロセッサのCPUは、メモリから読み出した所定のプログラムに従って、後述する各種の制御を実行する。制御部30において、マイクロプロセッサのメモリには、純水製造装置1を制御するためのデータや各種プログラムが記憶される。また、制御部30のマイクロプロセッサには、時間の計時等を管理するインテグレーテッドタイマユニット(以下、「ITU」ともいう)が組み込まれている。
制御部30は、圧力スイッチPSWにより検出された検出圧力値が所定の圧力閾値を上回る場合には、加圧ポンプ5を停止させるように加圧側インバータ6を制御すると共に、循環ポンプ21を駆動させるように循環側インバータ22を制御する。また、制御部30は、圧力スイッチPSWにより検出された検出圧力値が所定の圧力閾値を下回る場合には、加圧ポンプ5を駆動させるように加圧側インバータ6を制御すると共に、循環ポンプ21を停止させるように循環側インバータ22を制御する。
本実施形態においては、圧力スイッチPSWにより検出された検出圧力値が所定の圧力閾値を上回る場合に、圧力スイッチPSWから検出信号が出力される。そのため、制御部30は、圧力スイッチPSWから検出信号が出力された場合には、加圧ポンプ5を停止させるように加圧側インバータ6を制御すると共に、循環ポンプ21を駆動させるように循環側インバータ22を制御する。また、制御部30は、圧力スイッチPSWから検出信号が出力されない場合には、加圧ポンプ5を駆動させるように加圧側インバータ6を制御すると共に、循環ポンプ21を停止させるように循環側インバータ22を制御する。
このようにして、加圧ポンプ5よりも上流側を流通する供給水W1の圧力が所定の圧力閾値を上回る場合には、循環ポンプ21のみを駆動させて、濃縮水W3の一部W31を加圧ポンプ5の上流側へ安定して返送することができる。これにより、RO膜モジュール7の一次側におけるRO膜の表面の流速が低下することが抑制される。従って、RO膜モジュール7におけるRO膜の表面におけるファウリングが抑制され、RO膜の膜詰まりが発生しにくくなる。
一方、加圧ポンプ5よりも上流側を流通する供給水W1の圧力が所定の圧力閾値を下回る場合には、加圧ポンプ5のみを駆動させて、RO膜モジュール7に供給水W1を供給して、RO膜モジュール7により透過水W2を生産することができる。よって、加圧ポンプ5よりも上流側を流通する供給水W1の圧力に基づいて、循環ポンプ21又は加圧ポンプ5のうちの一方を必要なときに駆動させることができる。そのため、加圧ポンプ5及び循環ポンプ21の動作において消費電力を抑制することができる。
次に、制御部30による加圧ポンプ5及び循環ポンプ21の制御について説明する。図3は、制御部30による加圧ポンプ5及び循環ポンプ21の制御を実行する処理手順を示すフローチャートである。図3に示すフローチャートの処理は、純水製造装置1の運転中において、繰り返し実行される。
図3に示すステップST101において、制御部30は、圧力スイッチPSWから検出信号が出力されたか否かを判定する。圧力スイッチPSWからの検出信号は、検出圧力値が所定の圧力閾値を上回る場合に出力される。圧力スイッチPSWから検出信号が出力された(YSE)場合には、処理は、ステップST102へ移行する。圧力スイッチPSWから検出信号が出力されない(NO)場合には、処理は、ステップST103へ移行する。
ステップST102において、制御部30は、加圧ポンプ5を停止させるように加圧側インバータ6を制御すると共に、循環ポンプ21を駆動させるように循環側インバータ22を制御する。これにより、濃縮水W3の一部W31を、加圧ポンプ5の上流側へ安定して戻しつつ、循環ポンプ21の運転圧力によって透過水W2を生産することができる。その後、処理は終了する(ステップST101へリターンする)。
ステップST103において、制御部30は、加圧ポンプ5を駆動させるように加圧側インバータ6を制御すると共に、循環ポンプ21を停止させるように循環側インバータ22を制御する。これにより、加圧ポンプ5は、供給水W1をRO膜モジュール7に向けて吐出する。その結果、加圧ポンプ5の運転圧力のみで、濃縮水W3の一部W31を、加圧ポンプ5の上流側へ戻しつつ、透過水W2を生産することができる。その後、処理は終了する(ステップST101へリターンする)。
上述した本実施形態に係る純水製造装置1によれば、例えば、以下のような効果が奏される。
本実施形態においては、RO膜モジュール7と、供給水W1をRO膜モジュール7に向けて吐出する加圧ポンプ5と、濃縮水W3の一部W31を加圧ポンプ5の上流側に返送するRO濃縮水リターンラインL51と、濃縮水W3の残部W32を外部に排出するRO濃縮水排出ラインL61と、RO濃縮水リターンラインL51に設けられると共に濃縮水W3の一部W31を加圧ポンプ5の上流側に向けて吐出する循環ポンプ21と、供給水ラインL1における加圧ポンプ5よりも上流側を流通する供給水W1の圧力を検出圧力値として検出する圧力スイッチPSWと、検出圧力値が所定の圧力閾値を上回る場合には加圧ポンプ5を停止させ且つ循環ポンプ21を駆動させるように制御し、又は、検出圧力値が所定の圧力閾値を下回る場合には加圧ポンプ5を駆動させ且つ循環ポンプ21を停止させるように制御する制御部30と、を備える。
そのため、濃縮水W3の一部を加圧ポンプ5の上流側に安定して返送することができる。これにより、RO膜モジュール7の一次側におけるRO膜の表面の流速が低下することが抑制される。従って、RO膜モジュール7におけるRO膜の表面におけるファウリングが抑制される。
また、加圧ポンプ5よりも上流側を流通する供給水W1の検出圧力値に基づいて、循環ポンプ21又は加圧ポンプ5のうちの一方のみを駆動させることができる。そのため、加圧ポンプ5及び循環ポンプ21の動作において消費電力を抑制することができる。
以上、本発明の好ましい実施形態について説明した。しかし、本発明は、上述した実施形態に限定されることなく、種々の形態で実施することができる。
例えば、前記実施形態では、膜モジュールをRO膜モジュール7として構成し、膜分離装置を純水製造装置1として構成したが、これに制限されない。膜モジュールとして、RO膜モジュール以外にも、逆浸透膜よりも細孔がルーズなナノ濾過膜を有するNF膜モジュールや、限外濾過膜を有するUF膜モジュールや、精密濾過膜を有するMF膜モジュール等を適用することもできる。
前記実施形態においては、圧力検出手段として圧力スイッチPSWを用いたが、これに制限されない。圧力検出手段として圧力センサを用いてもよい。圧力センサを用いた場合には、制御部30は、圧力センサにより検出された検出圧力値が所定の圧力閾値を上回るか又は下回るか否かを判定するように構成し、この判定結果に基づいて、加圧ポンプ5及び循環ポンプ21を駆動又は停止させるように制御することができる。
また、実施形態では、第1排水弁V32〜第3排水弁V34の開放数を選択することにより、濃縮水W3の排水流量を段階的に調節する例について説明した。これに限らず、例えば、RO濃縮水排出ラインL61を分岐させずに、当該RO濃縮水排出ラインL61に比例制御弁を設けた構成としてもよい。この場合、制御部(30)から電流値信号を比例制御弁に送信して弁体の開度を制御することにより、濃縮水W3の排水流量を調節することができる。
また、RO濃縮水排出ラインL61に比例制御弁を設けた構成において、RO濃縮水排出ラインL61に流量センサを設けた構成としてもよい。この場合は、流量センサで測定された流量値を、制御部(30)にフィードバック値として入力することにより、濃縮水W3の実際の排水流量をより正確に制御することができる。
実施形態においては、原水W11中に含まれる硬度成分を除去した軟水W12を供給水W1とする例について説明した。これに限らず、原水W11を除鉄除マンガン装置、砂濾過装置等により前処理した水を供給水W1としてもよい。なお、原水W11としては、例えば、地下水や水道水等を用いることができる。
1 純水製造装置(膜分離装置)
5 加圧ポンプ
7 RO膜モジュール(膜モジュール)
21 循環ポンプ
30 制御部
L1 供給水ライン
L51 RO濃縮水リターンライン(返送ライン)
L61 RO濃縮水排出ライン(排出ライン)
PSW 圧力スイッチ(圧力検出手段)
W1 供給水
W2 透過水
W3 濃縮水
W31 濃縮水の一部
W32 濃縮水の残部

Claims (1)

  1. 供給水を透過水と濃縮水とに分離する膜モジュールと、
    供給水を前記膜モジュールに流通させる供給水ラインと、
    前記供給水ラインに設けられ、供給水を前記膜モジュールに向けて吐出する加圧ポンプと、
    前記膜モジュールにより分離された濃縮水の一部を前記加圧ポンプの上流側に返送する返送ラインと、
    前記膜モジュールにより分離された濃縮水の残部を外部に排出する排水ラインと、
    前記返送ラインに設けられ、前記膜モジュールにより分離された濃縮水の一部を前記加圧ポンプの上流側に向けて吐出する循環ポンプと、
    前記供給水ラインにおける前記加圧ポンプよりも上流側を流通する供給水の圧力を検出圧力値として検出する圧力検出手段と、
    前記検出圧力値が所定の圧力閾値を上回る場合には前記加圧ポンプを停止させ且つ前記循環ポンプを駆動させるように制御し、前記検出圧力値が所定の圧力閾値を下回る場合には前記加圧ポンプを駆動させ且つ前記循環ポンプを停止させるように制御する制御部と、を備える
    膜分離装置。
JP2013066025A 2013-03-27 2013-03-27 膜分離装置 Active JP6040830B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013066025A JP6040830B2 (ja) 2013-03-27 2013-03-27 膜分離装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013066025A JP6040830B2 (ja) 2013-03-27 2013-03-27 膜分離装置

Publications (2)

Publication Number Publication Date
JP2014188437A JP2014188437A (ja) 2014-10-06
JP6040830B2 true JP6040830B2 (ja) 2016-12-07

Family

ID=51835330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013066025A Active JP6040830B2 (ja) 2013-03-27 2013-03-27 膜分離装置

Country Status (1)

Country Link
JP (1) JP6040830B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104591444A (zh) * 2015-02-10 2015-05-06 淄博绿洲环境工程有限公司 反渗透浓水处理工艺
JP2017221878A (ja) * 2016-06-13 2017-12-21 三浦工業株式会社 逆浸透膜分離装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE505028C2 (sv) * 1992-05-13 1997-06-16 Electrolux Ab Förfarande och anordning för rening av vatten
JPH11104639A (ja) * 1997-10-03 1999-04-20 Toray Kiki Kk 逆浸透膜式純水製造装置
JP2000279958A (ja) * 1999-03-31 2000-10-10 Hitachi Zosen Corp 逆浸透水処理装置
JP2003260449A (ja) * 2002-03-12 2003-09-16 Kubota Corp 高濃度有機性廃棄物の処理方法
JP4831480B2 (ja) * 2006-06-21 2011-12-07 三浦工業株式会社 膜濾過システム
US8216473B2 (en) * 2008-06-13 2012-07-10 Solution Dynamics, Llc Apparatus and methods for solution processing using reverse osmosis

Also Published As

Publication number Publication date
JP2014188437A (ja) 2014-10-06

Similar Documents

Publication Publication Date Title
JP6070345B2 (ja) 逆浸透膜分離装置
JP6107296B2 (ja) 純水製造装置
JP6056587B2 (ja) 水処理装置
JP6048274B2 (ja) 純水製造装置
JP6065687B2 (ja) 水処理装置
JP6107287B2 (ja) 水処理装置
JP6075031B2 (ja) 純水製造装置
JP6164121B2 (ja) 水処理装置
JP6040830B2 (ja) 膜分離装置
JP6155742B2 (ja) 水処理装置
JP6255686B2 (ja) 水処理装置
JP6167939B2 (ja) 水処理装置
JP2014108381A (ja) 純水製造装置及び純水製造方法
JP6176149B2 (ja) 水処理装置
JP6111854B2 (ja) 純水製造装置
JP6065696B2 (ja) 純水製造装置
JP6107274B2 (ja) 純水製造装置
JP6111868B2 (ja) 純水製造装置
JP6075032B2 (ja) 純水製造装置
JP6070344B2 (ja) 逆浸透膜分離装置
JP6028537B2 (ja) 純水製造装置
JP6028539B2 (ja) 純水製造装置
JP6107277B2 (ja) 純水製造装置
JP6171448B2 (ja) 水処理装置
JP6028536B2 (ja) 純水製造装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161024

R150 Certificate of patent or registration of utility model

Ref document number: 6040830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250