JP3994439B2 - Conductive paste for multilayer ceramic electronic component terminal electrode - Google Patents

Conductive paste for multilayer ceramic electronic component terminal electrode Download PDF

Info

Publication number
JP3994439B2
JP3994439B2 JP2004179372A JP2004179372A JP3994439B2 JP 3994439 B2 JP3994439 B2 JP 3994439B2 JP 2004179372 A JP2004179372 A JP 2004179372A JP 2004179372 A JP2004179372 A JP 2004179372A JP 3994439 B2 JP3994439 B2 JP 3994439B2
Authority
JP
Japan
Prior art keywords
powder
electronic component
multilayer ceramic
paste
conductor paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004179372A
Other languages
Japanese (ja)
Other versions
JP2006004734A (en
JP2006004734A5 (en
Inventor
友子 内田
恵 河原
隆 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shoei Chemical Inc
Original Assignee
Shoei Chemical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shoei Chemical Inc filed Critical Shoei Chemical Inc
Priority to JP2004179372A priority Critical patent/JP3994439B2/en
Publication of JP2006004734A publication Critical patent/JP2006004734A/en
Publication of JP2006004734A5 publication Critical patent/JP2006004734A5/ja
Application granted granted Critical
Publication of JP3994439B2 publication Critical patent/JP3994439B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、積層セラミックコンデンサ、積層セラミックインダクタ、積層型圧電素子等の積層セラミック電子部品の端子電極を形成するための導体ペーストに関する。特に、ニッケル等の卑金属内部電極を有する積層セラミック電子部品の、端子電極を形成するのに適した銅導体ペーストに関する。   The present invention relates to a conductor paste for forming terminal electrodes of multilayer ceramic electronic components such as multilayer ceramic capacitors, multilayer ceramic inductors, multilayer piezoelectric elements and the like. In particular, the present invention relates to a copper conductor paste suitable for forming a terminal electrode of a multilayer ceramic electronic component having a base metal internal electrode such as nickel.

積層セラミック電子部品、例えば積層セラミックコンデンサは、一般に次のようにして製造される。チタン酸バリウム系セラミック等の誘電体セラミックグリーンシート上に、内部電極用導体ペーストを所定のパターンで印刷する。このシートを複数枚積み重ね、圧着して、セラミックグリーンシートと内部電極ペースト層とが交互に積層された未焼成の積層体を得る。得られた積層体を所定の形状のチップに切断した後、高温で同時焼成して、積層セラミックコンデンサ素体を得る。次いで、素体の内部電極の露出する端面に、導電性粉末、ガラス粉末、および有機ビヒクルを主成分とする端子電極用導体ペーストを、浸漬法等により塗布し、乾燥した後、高温で焼成することにより端子電極が形成される。この後、端子電極上には、必要に応じてニッケル、スズ等のめっき層が、電気めっき等により形成される。   A multilayer ceramic electronic component, for example, a multilayer ceramic capacitor, is generally manufactured as follows. A conductor paste for internal electrodes is printed in a predetermined pattern on a dielectric ceramic green sheet such as a barium titanate ceramic. A plurality of these sheets are stacked and pressure-bonded to obtain an unfired laminate in which ceramic green sheets and internal electrode paste layers are alternately laminated. The obtained multilayer body is cut into chips having a predetermined shape and then simultaneously fired at a high temperature to obtain a multilayer ceramic capacitor element body. Next, a terminal electrode conductor paste mainly composed of conductive powder, glass powder, and organic vehicle is applied to the exposed end face of the internal electrode of the element body by a dipping method or the like, dried, and then fired at a high temperature. Thereby, a terminal electrode is formed. Thereafter, a plating layer of nickel, tin or the like is formed on the terminal electrode by electroplating or the like as necessary.

内部電極材料としては、従来、パラジウム、銀−パラジウム、白金等の貴金属が用いられていたが、省資源やコストダウン、またパラジウム、銀−パラジウムの焼成時の酸化膨張に起因するデラミネーション、クラックの発生防止等の要求から、最近ではニッケル、コバルト、銅等の卑金属を用いるのが主流になっている。このため、端子電極材料としても銀や銀−パラジウムに替わり、卑金属内部電極と良好な電気的接続を形成しやすい、銅、ニッケル、コバルト、またはこれらの合金が用いられている。   Conventionally, noble metals such as palladium, silver-palladium, and platinum have been used as internal electrode materials. However, resource saving and cost reduction, and delamination and cracks caused by oxidative expansion during firing of palladium and silver-palladium. In recent years, the use of base metals such as nickel, cobalt, and copper has become the mainstream because of the demand for preventing the occurrence of the above. For this reason, instead of silver or silver-palladium as a terminal electrode material, copper, nickel, cobalt, or an alloy thereof that easily forms a good electrical connection with the base metal internal electrode is used.

このように内部電極および端子電極に卑金属が使用される場合、端子電極の焼成は、これらの卑金属が焼成中に酸化されないように、通常極力酸素分圧の低い非酸化性雰囲気中、例えば酸素含有量が数ppm〜数十ppmの不活性ガス雰囲気中で、最高温度が700〜900℃の範囲で行われる。   Thus, when base metals are used for the internal electrode and the terminal electrode, firing of the terminal electrodes is usually performed in a non-oxidizing atmosphere having a low partial pressure of oxygen, for example, containing oxygen, so that these base metals are not oxidized during firing. The maximum temperature is 700 to 900 ° C. in an inert gas atmosphere having an amount of several ppm to several tens of ppm.

しかし、特に銅を主成分とする導体ペーストをこのような酸素の少ない雰囲気で焼成する場合、ビヒクルとして用いられるバインダ樹脂や溶剤等の有機成分が酸化分解しにくいため、これら有機成分の燃焼、分解、飛散(以下「脱バインダ」ということもある。)を適切に行うことが難しい。即ち、焼成初期の比較的低温の段階で、ガラスの流動化と銅粉末の焼結がおこる前に、脱バインダが十分に行われないと、焼結開始後、カーボンやビヒクル分解物等の炭素質の有機物残渣が膜中に閉じ込められてしまう。この閉じ込められたカーボンや炭素質の有機物残渣(以下「残留カーボン」ということもある。)が、その後の高温段階で様々な問題を引き起こし、電子部品の特性を損ない、また信頼性を低下させる。例えば、膜中に残っているカーボンは、高温で銅粉末を焼結させる段階で、ガラスの流動や銅粉末の焼結を阻害するため、電極の緻密性や素体との接着性が損なわれる。また、残留カーボンは、高温下でセラミック誘電体から酸素を奪って、酸素欠損を生じさせ、誘電体特性を劣化させるほか、セラミック素体の強度も低下させる。素体の強度が低下する結果、その後のはんだ付け工程等において、熱衝撃による素体クラック(サーマルクラック)を引起こす。更に、閉じ込められた残留カーボンが高温でガス化すると、ブリスタ(気泡)を生じて焼成膜の緻密性を損う。このため、その後焼成膜にめっき処理を行うと、めっき液が電極膜中に浸入し、絶縁抵抗の低下や素体クラックの発生を招くほか、浸入しためっき液がはんだリフロー時に熱せられてガス化し、溶融したはんだが飛び散る「はんだ爆ぜ現象」を引き起こす。   However, especially when conductor pastes containing copper as the main component are fired in such an oxygen-poor atmosphere, organic components such as binder resins and solvents used as vehicles are difficult to oxidatively decompose. , Scattering (hereinafter sometimes referred to as “binder removal”) is difficult to perform appropriately. That is, if the binder is not sufficiently removed before the fluidization of the glass and the sintering of the copper powder occur at a relatively low temperature in the initial stage of firing, the carbon such as carbon and vehicle decomposition products after the sintering starts. Quality organic residue is trapped in the film. This trapped carbon or carbonaceous organic residue (hereinafter sometimes referred to as “residual carbon”) causes various problems in the subsequent high-temperature stage, impairs the characteristics of the electronic component, and reduces the reliability. For example, carbon remaining in the film inhibits the flow of glass and the sintering of copper powder at the stage of sintering copper powder at a high temperature, thereby impairing the denseness of the electrode and the adhesion to the element body. . Residual carbon also takes oxygen from the ceramic dielectric at high temperatures, causing oxygen vacancies and deteriorating dielectric properties, as well as reducing the strength of the ceramic body. As a result of the strength of the element body decreasing, element cracks (thermal cracks) due to thermal shock are caused in the subsequent soldering process or the like. Further, when the trapped residual carbon is gasified at a high temperature, blisters (bubbles) are generated and the denseness of the fired film is impaired. For this reason, if the fired film is subsequently plated, the plating solution penetrates into the electrode film, leading to a decrease in insulation resistance and the occurrence of cracks in the body, and the invaded plating solution is heated during solder reflow to gasify. This causes a “solder explosion phenomenon” in which molten solder scatters.

従って、焼成初期の段階でいかに効率よく脱バインダを行い、高温域での銅粉末の焼結が進む前に残留カーボンを低減させるかが、従来、卑金属、特に銅を主成分とする端子電極用導体ペーストの重要な課題であった。   Therefore, how to efficiently remove the binder at the initial stage of firing and reduce the residual carbon before the sintering of the copper powder in the high temperature range has been conventionally performed for base electrodes, especially for terminal electrodes mainly composed of copper It was an important issue for conductor paste.

この問題を解決するため、従来、バインダ樹脂としてアクリル樹脂等の熱分解性のよい樹脂を用いたり、ガラスとして低温で軟化しにくく、ビヒクルが飛散してから軟化して電極を緻密化させるような特性を有するものを使う等の方法が、試みられている。   In order to solve this problem, conventionally, a resin having a good thermal decomposability such as an acrylic resin is used as a binder resin, or it is difficult to soften at a low temperature as glass, and softens after the vehicle scatters to make the electrode dense. Attempts have been made to use those having characteristics.

また、微細な球状銅粉末を用いた端子電極ペーストは、塗布、乾燥したときの膜の充填性が高すぎてしまい、このためビヒクルが飛散しにくく、高温までカーボンが残留しやすいと考えられる。そこで球状銅粉末に代えて、フレーク状銅粉末、またはフレーク状銅粉末と球状銅粉末の混合粉末を用いることも提案されている(特許文献1、2参照。)。フレーク状銅粉末は、ペーストの乾燥膜中に適当なスペースを作るので、これがガスの抜け道となって、構造的に脱バインダをスムーズに行わせることができると考えられている。   Also, the terminal electrode paste using fine spherical copper powder has a film filling property that is too high when applied and dried, and therefore, the vehicle is unlikely to scatter and carbon is likely to remain at high temperatures. Therefore, it has been proposed to use flaky copper powder or a mixed powder of flaky copper powder and spherical copper powder instead of spherical copper powder (see Patent Documents 1 and 2). Since the flaky copper powder creates an appropriate space in the dry film of the paste, it is considered that this serves as a gas escape route and the binder can be smoothly removed structurally.

ところで、導体ペーストに配合される銅粉末には、酸化防止や分散性の改善のため、予め表面処理が行われることが多い。特に前記フレーク状の銅粉末は、一般にペースト中での分散性が極めて悪いため、通常分散剤で表面処理される。従来、このような表面処理剤としては、ステアリン酸、ラウリン酸等の高級脂肪酸やその金属塩が用いられている(特許文献3参照)。   By the way, the copper powder blended in the conductor paste is often subjected to surface treatment in advance to prevent oxidation and improve dispersibility. In particular, since the flaky copper powder generally has very poor dispersibility in the paste, it is usually surface-treated with a dispersant. Conventionally, higher fatty acids such as stearic acid and lauric acid and their metal salts have been used as such surface treatment agents (see Patent Document 3).

一方、球状の金属粉末を粉砕することによってフレーク状の金属粉末を製造する際、滑剤として、前記高級脂肪酸類のほか、脂肪族アミンを用い得る旨を記載した文献がある(特許文献4参照。)。しかしながら、この文献では、高級脂肪酸類も脂肪族アミンも、共に単なる滑剤の一つとしての利用可能性を教唆するにとどまり、両者を同一視しているものであって、これら滑剤は、フレーク状金属粉末を得た後、これを塊状凝集構造とするために、導体ペーストに配合される前に除去される。   On the other hand, when producing a flaky metal powder by pulverizing a spherical metal powder, there is a document describing that an aliphatic amine can be used as a lubricant in addition to the higher fatty acids (see Patent Document 4). ). However, in this document, both higher fatty acids and aliphatic amines only teach the applicability as one of the lubricants, and both are regarded as the same. After obtaining the metal powder, it is removed before blending into the conductor paste in order to make it into a lump aggregate structure.

また、熱硬化型の導体ペースト用の樹枝状銅粉末を特定の脂肪族第一アミンで表面処理することにより、銅粉末の酸化を防止することも知られている(特許文献5参照)。しかしながらこの文献では、脂肪族第一アミンは、高温で焼成を行わない熱硬化型のペーストにおいて、酸化防止効果が得られる材料のひとつであると言う知見が示されているに過ぎず、高温焼成したときの挙動については何ら示唆されていない。
特開平8−180731号公報 特開平2002−56717号公報 特開2002−332502号公報 特開2003−268402号公報 特開平7−226110号公報
It is also known to prevent oxidation of copper powder by subjecting dendritic copper powder for thermosetting conductor paste to surface treatment with a specific aliphatic primary amine (see Patent Document 5). However, this document only shows that aliphatic primary amines are one of the materials that can provide an antioxidant effect in thermosetting pastes that are not fired at high temperatures. There is no suggestion of the behavior when doing so.
Japanese Patent Laid-Open No. 8-180731 Japanese Patent Laid-Open No. 2002-56717 JP 2002-332502 A JP 2003-268402 A JP-A-7-226110

近年、積層セラミック電子部品に対する高容量化、高性能化、信頼性の向上の要求はますます厳しくなっている。特に小型大容量の積層セラミックコンデンサにおいては、内部電極の間隔が1〜2μmと狭くなっており、端子電極が緻密でないと容量不良が発生しやすい。このため、脱バインダをよりスムーズに行わせ、かつ最終的には酸化のない、より緻密な焼成膜とすることが求められる。   In recent years, demands for higher capacity, higher performance, and higher reliability for multilayer ceramic electronic components have become increasingly severe. In particular, in a small-sized and large-capacity multilayer ceramic capacitor, the interval between the internal electrodes is as narrow as 1 to 2 μm. For this reason, it is required to remove the binder more smoothly and finally to form a denser fired film without oxidation.

しかし、酸素分圧が数十ppm以下の低酸素雰囲気で脱バインダを行う場合、フレーク状銅粉末を用いて膜をガスが抜け易い構造にしたとしても、低温での脱バインダが不完全になり易い。この傾向は、特に焼成雰囲気中の酸素濃度が数ppm以下の場合、また同時に焼成するチップの数が多い場合、顕著である。さらに、フレーク状金属粉末は、前述のように通常ステアリン酸等の脂肪酸やその金属塩で表面処理されているが、本発明者等の研究によれば、これらの存在はブリスタや素体劣化を助長する。   However, when the binder is removed in a low oxygen atmosphere with an oxygen partial pressure of several tens of ppm or less, the binder removal at low temperature becomes incomplete even if the film is made easy to escape gas using flake copper powder. easy. This tendency is particularly remarkable when the oxygen concentration in the firing atmosphere is several ppm or less, and when the number of chips fired simultaneously is large. Furthermore, as described above, the flaky metal powder is usually surface-treated with a fatty acid such as stearic acid or a metal salt thereof. To encourage.

本発明は、積層セラミック電子部品に焼付ける際、低温での脱バインダ性が極めて優れ、ブリスタや素体の劣化を引き起こすことがなく、かつ緻密でめっき液の浸入や内部電極との接合不良のない、高導電性の焼成膜を形成できる、端子電極用銅導体ペーストを提供することを目的とする。   The present invention has an excellent binder removal property at a low temperature when it is baked onto a multilayer ceramic electronic component, does not cause blisters or elemental deterioration, and is dense and infiltrate the plating solution or has poor bonding with the internal electrode. An object of the present invention is to provide a copper conductor paste for a terminal electrode, which can form a fired film having no high conductivity.

本発明は、上記本発明の目的のためになされたものであって、以下に記載する構成よりなる。   The present invention has been made for the purpose of the present invention, and has the following configuration.

(1) 少なくとも(A)銅を主成分とし、脂肪族アミンで表面処理されたことによりその表面に該脂肪族アミンを付着した導電性粉末と、(B)ガラス粉末と、(C)有機ビヒクルとを含むことを特徴とする、積層セラミック電子部品端子電極用導体ペースト。 (1) Conductive powder comprising at least (A) copper as a main component and surface-treated with an aliphatic amine so that the aliphatic amine is adhered to the surface ; (B) glass powder; and (C) an organic vehicle. A conductor paste for a multilayer ceramic electronic component terminal electrode, comprising:

(2) 前記導電性粉末がフレーク状導電性粉末および/または球状導電性粉末である、前記(1)に記載の積層セラミック電子部品端子電極用導体ペースト。   (2) The conductor paste for multilayer ceramic electronic component terminal electrodes according to (1), wherein the conductive powder is a flaky conductive powder and / or a spherical conductive powder.

(3) 前記フレーク状導電性粉末と球状導電性粉末の重量比率が100:0〜5:95である、前記(2)に記載の積層セラミック電子部品端子電極用導体ペースト。   (3) The conductor paste for multilayer ceramic electronic component terminal electrodes according to (2) above, wherein the weight ratio of the flaky conductive powder and the spherical conductive powder is 100: 0 to 5:95.

(4) 導体ペースト中に存在する前記脂肪族アミンの量が、ペースト中に含まれる導電性粉末の全量に対して0.01〜2.0重量%である、前記(1)ないし(3)のいずれかに記載の積層セラミック電子部品端子電極用導体ペースト。   (4) Said (1) thru | or (3) whose quantity of the said aliphatic amine which exists in conductor paste is 0.01 to 2.0 weight% with respect to the whole quantity of the electroconductive powder contained in paste. The conductor paste for multilayer ceramic electronic component terminal electrodes according to any one of the above.

(5) 前記脂肪族アミンが、主鎖の炭素数が8〜20のアルキルアミンを主成分とするものである、前記(1)ないし(4)のいずれかに記載の積層セラミック電子部品端子電極用導体ペースト。   (5) The multilayer ceramic electronic component terminal electrode according to any one of (1) to (4), wherein the aliphatic amine is mainly composed of an alkylamine having 8 to 20 carbon atoms in the main chain. Conductor paste.

(6) さらに(D)他の導電性粉末を含む、前記(1)ないし(5)のいずれかに記載の積層セラミック電子部品端子電極用導体ペースト。   (6) The conductor paste for multilayer ceramic electronic component terminal electrodes according to any one of (1) to (5), further including (D) another conductive powder.

(7) 誘電体セラミック層と内部電極層とを交互に積層した積層体の内部電極の露出する端面に、前記(1)ないし(6)のいずれかに記載の導体ペーストを用いて端子電極を形成したことを特徴とするセラミック積層電子部品。   (7) A terminal electrode is formed on the exposed end surface of the internal electrode of the laminated body in which the dielectric ceramic layers and the internal electrode layers are alternately laminated using the conductor paste according to any one of (1) to (6). A ceramic laminated electronic component characterized by being formed.

本発明の端子電極用導体ペーストは、銅系の導電性粉末の表面処理剤として脂肪族アミンを用いることにより、分散性が良好になるとともに、脱バインダ性が著しく改善され、このため緻密で接着性、導電性の優れた端子電極を形成することができる。   The conductor paste for terminal electrode of the present invention uses aliphatic amine as a surface treatment agent for copper-based conductive powder, so that the dispersibility is improved and the binder removal property is remarkably improved. Terminal electrodes having excellent conductivity and conductivity can be formed.

本発明者等の研究によれば、従来、端子電極用導体ペーストの銅粉末の表面処理剤として従来使用されているステアリン酸、ラウリン酸等の高級脂肪酸やその金属塩は、通常の焼成条件では極めて分解、飛散しにくく、ビヒクル成分が分解を終えた後も700〜800℃の高温まで残ってしまう。これは、これらの高級脂肪酸類は銅と金属石鹸を作ることにより銅粉末表面に強固に付着し、酸素の極めて少ない雰囲気では、低温で分解しにくくなるためと考えられる。従って乾燥膜構造によりガラスの流動化前にビヒクル分解物が膜中に閉じ込められることなく膜外に脱け出れるようにビヒクルの飛散性をいくら向上させても、これが残留カーボンとして膜中に残り、膜が焼結をし始めてから分解をはじめるので、焼結を阻害し、またブリスタや素体劣化の原因となり、またプロセス依存性を大きくする原因となると考えられる。   According to the studies by the present inventors, conventionally, higher fatty acids such as stearic acid and lauric acid, and metal salts thereof conventionally used as a surface treatment agent for the copper powder of the terminal electrode conductor paste, are used under normal firing conditions. It is extremely difficult to decompose and scatter, and the vehicle component remains at a high temperature of 700 to 800 ° C. even after the decomposition of the vehicle component. This is presumably because these higher fatty acids adhere firmly to the copper powder surface by making copper and metal soap, and are difficult to decompose at low temperatures in an atmosphere with very little oxygen. Therefore, no matter how much the scattering property of the vehicle is improved so that the decomposition product of the vehicle can escape from the membrane without being trapped in the membrane before the fluidization of the glass due to the dry membrane structure, this remains in the membrane as residual carbon. Since the film starts to sinter and then decompose, it is thought to inhibit sintering, cause blister and element deterioration, and increase process dependency.

これに対して脂肪族アミンは、分散剤としての効果が優れている上に、銅と強固に結びついた化合物を作ることがなく、非酸化性雰囲気中でも低温で容易に分解されて電極膜から除去される。従って、酸素分圧の低い不活性雰囲気中で焼成する場合にも、残留カーボン等による素体の電気特性の劣化や、機械的強度が劣化することによるサーマルクラックの発生がなく、また高温負荷寿命特性の優れた、信頼性の高い積層セラミック電子部品を製造することができる。またブリスタのない緻密な電極膜が形成されることにより、焼成後のめっき工程でも、めっき液の浸入がなく、絶縁抵抗の低下やクラック、更にははんだ爆ぜ現象を引き起こすことがない。   In contrast, aliphatic amines are excellent as dispersants and do not form compounds that are strongly bonded to copper, and are easily decomposed and removed from electrode films at low temperatures in non-oxidizing atmospheres. Is done. Therefore, even when firing in an inert atmosphere with a low oxygen partial pressure, there is no degradation of the electrical properties of the element due to residual carbon, etc., thermal cracks due to deterioration of mechanical strength, and high temperature load life A highly reliable monolithic ceramic electronic component having excellent characteristics can be manufactured. In addition, since a dense electrode film without blisters is formed, the plating solution does not enter even in the plating process after firing, and does not cause a decrease in insulation resistance, cracks, or solder explosion.

本発明において、(A)の銅を主成分とする導電性粉末としては、純銅粉末のほか、銅を主成分とする合金、例えばニッケル、コバルト、鉄、亜鉛、錫、金、銀、パラジウム、白金等を含む銅合金等も使用される。また、銅粉末や銅合金粉末の表面にニッケル、コバルト、鉄、亜鉛、錫、金、銀、パラジウム、白金、ロジウム等の抗酸化性金属またはその合金の薄膜をめっき、蒸着等、種々の方法で形成したものや、ガラス質薄膜を形成したものを用いてもよい。このような金属やガラスを被覆することにより、抗酸化性を向上させ、より高い酸素分圧下での焼成を可能にすることができる。以下、これらの粉末を併せて単に「銅粉末」という。   In the present invention, as the conductive powder mainly composed of copper (A), in addition to pure copper powder, an alloy mainly composed of copper, such as nickel, cobalt, iron, zinc, tin, gold, silver, palladium, A copper alloy containing platinum or the like is also used. Also, various methods such as plating, vapor deposition, etc. on the surface of copper powder or copper alloy powder with an antioxidative metal such as nickel, cobalt, iron, zinc, tin, gold, silver, palladium, platinum, rhodium, or alloys thereof You may use what was formed by this, and what formed the vitreous thin film. By coating such a metal or glass, it is possible to improve the antioxidant property and to enable firing under a higher oxygen partial pressure. Hereinafter, these powders are simply referred to as “copper powder”.

銅粉末の形状は、球状、フレーク状、粒状等、特に限定されない。しかし、ペースト乾燥膜をビヒクル分解ガスが膜外に飛散しやすい構造にするためには、フレーク状銅粉末、またはフレーク状銅粉末と球状銅粉末の混合粉末とすることが望ましい。この場合、ペースト中のフレーク状銅粉末と球状銅粉末の比率は、使用材料や焼成条件、要求特性により適宜決定される設計事項であるが、重量で100:0〜5:95の範囲であることが好ましい。フレーク状導電性粉末の比率がこれより少ないと、乾燥膜の充填性が高くなり過ぎ、脱バインダ性が低下する傾向がある。   The shape of the copper powder is not particularly limited, such as spherical shape, flake shape, and granular shape. However, in order to make the paste dry film have a structure in which the vehicle decomposition gas is likely to be scattered outside the film, it is desirable to use flaky copper powder or a mixed powder of flaky copper powder and spherical copper powder. In this case, the ratio of the flaky copper powder to the spherical copper powder in the paste is a design matter appropriately determined according to the material used, firing conditions, and required characteristics, but is in the range of 100: 0 to 5:95 by weight. It is preferable. When the ratio of the flaky conductive powder is less than this, the filling property of the dry film becomes too high, and the binder removal property tends to be lowered.

望ましくは、次式で算出されるペーストの乾燥膜密度D(g/cm)が3.0〜4.8g/cmとなるように、導電性粉末を適宜選択、混合して用いる。
D=W/(πT×10 −4
但し、WおよびTは、導体ペーストを膜厚が約250μmとなるようにPETフィルム上に塗布し、150℃で10分間乾燥した後、直径20mmの円形に切出し、PETフィルムを剥がした後の乾燥膜の重量(g)および厚さ(μm)である。
Desirably, a dry film density D of the paste, which is calculated by the following equation (g / cm 3) of the 3.0~4.8g / cm 3, appropriately selected conductive powder, used as a mixture.
D = W / (πT × 10 −4 )
However, W and T were applied after applying a conductive paste on a PET film so that the film thickness was about 250 μm, drying at 150 ° C. for 10 minutes, then cutting into a circle with a diameter of 20 mm, and drying after peeling the PET film The membrane weight (g) and thickness (μm).

フレーク状銅粉末としては、平均粒径1.0〜10.0μmのものを用いるのが好ましい。但し、平均粒径は、フレーク粉末の長径の平均値であり、レーザー式粒度分布測定装置を用いて測定した粒度分布の重量基準の積算分率50%値(D50)である。平均粒径を上記範囲内とすることにより、導体ペーストの乾燥膜を、焼成中ガス化したビヒクル分解物が膜外に抜けやすい構造とすることができ、また良好な塗膜形状とすることができる。平均粒径が1.0μmより小さいと脱バインダが不十分になり、ブリスタが発生しやすくなるほか、耐酸化性が低下する傾向がある。また、平均粒径が10.0μmより大きいと、ペーストの流動性が低下し、良好な形状に塗布することが難しくなるほか、ペースト乾燥時のポーラスな構造がそのまま焼成膜に残ってしまい、電極がポーラスになりやすい。   As the flaky copper powder, those having an average particle diameter of 1.0 to 10.0 μm are preferably used. However, the average particle diameter is an average value of the major axis of the flake powder, and is a weight-based integrated fraction 50% value (D50) of the particle size distribution measured using a laser type particle size distribution measuring apparatus. By setting the average particle size within the above range, the dried film of the conductive paste can have a structure in which a vehicle decomposition product gasified during firing can easily escape from the film, and can have a good coating shape. it can. When the average particle size is smaller than 1.0 μm, binder removal becomes insufficient, blisters are easily generated, and oxidation resistance tends to be lowered. On the other hand, if the average particle size is larger than 10.0 μm, the fluidity of the paste is lowered and it becomes difficult to apply in a good shape, and the porous structure when the paste is dried remains in the fired film as it is. Tends to be porous.

また特に、フレーク状銅粉末の平均粒径(μm)の平均厚み(μm)に対する比を3〜80の範囲、また比表面積が0.3〜2.0m/gとすることにより、極めて優れた脱バインダ効果とともに良好な塗布適性、焼結性を併せ有する端子電極用導体ペーストを得る。平均粒径/平均厚みが3より小さいと、脱バインダ性が十分でなく、また80より大きいとペーストの流動性が低下し、浸漬法により塗布する際に突起が形成される等、良好な形状に塗布することが困難になるほか、電極がポーラスになりやすく、表面が荒れる傾向がある。なお、フレーク粉末の平均厚みは走査型電子顕微鏡(SEM)観察により求められるものである。比表面積は0.3m/gより小さいと焼成により得られた電極膜がポーラスとなり易く、2.0m/gを超えるとペーストの流動性が十分でなく、端子電極の中央部が突起状となりやすい。このようなフレーク状銅粉末は、どのような方法で製造されたものでもよい。例えば球状や粒状の粉末をボールミル等を用いて摩砕する方法や、化学還元法、また銅箔を粉砕する方法等がある。 In particular, the ratio of the average particle diameter (μm) of the flaky copper powder to the average thickness (μm) is in the range of 3 to 80, and the specific surface area is 0.3 to 2.0 m 2 / g. Thus, a terminal electrode conductor paste having both good binder applicability and good coating suitability and sinterability is obtained. If the average particle size / average thickness is smaller than 3, the binder removal property is not sufficient, and if it is larger than 80, the fluidity of the paste is lowered, and a good shape is formed such that protrusions are formed when applied by the dipping method. In addition to being difficult to apply, the electrode tends to be porous and the surface tends to be rough. In addition, the average thickness of flake powder is calculated | required by scanning electron microscope (SEM) observation. If the specific surface area is less than 0.3 m 2 / g, the electrode film obtained by firing is likely to be porous, and if it exceeds 2.0 m 2 / g, the paste has insufficient fluidity, and the center portion of the terminal electrode is protruding. It is easy to become. Such flaky copper powder may be produced by any method. For example, there are a method of grinding spherical or granular powder using a ball mill or the like, a chemical reduction method, a method of pulverizing copper foil, and the like.

球状銅粉末としては、0.1〜10μm程度の平均粒径を有するものが好ましく使用される。なお平均粒径は、レーザー式粒度分布測定装置を用いて測定した粒度分布の重量基準の積算分率50%値(D50)である。   As the spherical copper powder, those having an average particle diameter of about 0.1 to 10 μm are preferably used. The average particle size is a weight-based integrated fraction 50% value (D50) of the particle size distribution measured using a laser type particle size distribution measuring apparatus.

脂肪族アミンとしては、オクチルアミン、ラウリルアミン、ミリスチルアミン、ステアリルアミン、オレイルアミン、牛脂アミン、牛脂プロピレンジアミン等の1級アミン、ジステアリルアミン等の2級アミン、トリエチルアミン、ジメチルオクチルアミン、ジメチルミリスチルアミン、ジメチルパルミチルアミン、ジメチルステアリルアミン、ジメチルべヘニルアミン、ジメチルラウリルアミン、トリオクチルアミン等の3級アミン等、種々のものが使用できる。これらのアミンを2種以上併用してもよく、通常「脂肪族アミン」として市販されている、数種の脂肪族アミンの混合物を使用することもできる。特に、銅粉末に対する被覆処理のしやすさと、金属との吸着性の点から、主鎖の炭素数が8〜20程度のアルキルアミン、またはこれを主成分とする脂肪族アミンが好ましい。   Aliphatic amines include primary amines such as octylamine, laurylamine, myristylamine, stearylamine, oleylamine, beef tallow amine, tallow propylenediamine, secondary amines such as distearylamine, triethylamine, dimethyloctylamine, dimethylmyristylamine Various compounds such as tertiary amines such as dimethylpalmitylamine, dimethylstearylamine, dimethylbehenylamine, dimethyllaurylamine, and trioctylamine can be used. Two or more kinds of these amines may be used in combination, and a mixture of several kinds of aliphatic amines which are usually marketed as “aliphatic amines” can also be used. In particular, an alkylamine having a main chain of about 8 to 20 carbon atoms or an aliphatic amine containing this as a main component is preferred from the viewpoint of easy coating treatment of copper powder and adsorptivity with metal.

脂肪族アミンは、予め銅粉末の表面に被覆処理し、付着させて用いる。被覆方法には特に限定はないが、例えば、液状のアミン、またはアミンを液状媒体に溶解した溶液に銅粉末を混合し、通常の表面処理剤と同様の方法で、銅粉末表面に被覆処理を行う。また、球状または粒状の銅粉末を摩砕することによりフレーク状銅粉末を製造する場合に、脂肪族アミンを滑剤として使用し、これを粉末表面に付着させたままペーストに配合することもできる。   The aliphatic amine is used after being coated on the surface of the copper powder in advance. The coating method is not particularly limited. For example, the copper powder is mixed with a liquid amine or a solution obtained by dissolving an amine in a liquid medium, and the copper powder surface is coated with the same method as a normal surface treatment agent. Do. Moreover, when manufacturing flaky copper powder by grind | pulverizing spherical or granular copper powder, an aliphatic amine can be used as a lubricant and it can also mix | blend with a paste, making this adhere to the powder surface.

ペースト中の脂肪族アミンの量は、好ましくはペースト中に含まれる導電性粉末の全量に対して、合計で0.01〜2.0重量%である。0.01重量%より少ないと分散剤としての効果が充分でなく、焼成膜の緻密性が低下する傾向がある。また2.0重量%を超えると、焼成時の飛散性が悪くなる傾向がある。   The amount of the aliphatic amine in the paste is preferably 0.01 to 2.0% by weight in total with respect to the total amount of the conductive powder contained in the paste. If it is less than 0.01% by weight, the effect as a dispersant is not sufficient, and the denseness of the fired film tends to be lowered. Moreover, when it exceeds 2.0 weight%, there exists a tendency for the scattering property at the time of baking to worsen.

ガラス粉末(B)は、端子電極用の銅系ペーストに無機バインダとして用い得るものであれば、特に制限はない。特に、鉛等の還元されやすい成分を含まない耐還元性ガラス、例えばBaO−ZnO−B系、RO−ZnO−B−MnO系、RO−ZnO系、RO−ZnO−MnO系、RO−ZnO−SiO系、ZnO−B系、SiO−B−R’O系、SiO−RO−R’O系(但しRはアルカリ土類金属元素、R’はアルカリ金属元素)等のガラスが好ましく使用される。配合量は、導電性粉末100重量部に対して1〜20重量部程度である。1重量部より少ない場合には、前記素体と端子電極の接着強度が小さくなる。また20重量部より多いと、焼成後の電極表面にガラスが多く分布するようになり、チップ間で融着が生じたり、また端子電極へのめっきが困難となる。 The glass powder (B) is not particularly limited as long as it can be used as an inorganic binder in the copper paste for terminal electrodes. In particular, reduction-resistant glass containing no easily reduced components such as lead, such as BaO—ZnO—B 2 O 3 series, RO—ZnO—B 2 O 3 —MnO 2 series, RO—ZnO series, RO—ZnO— MnO 2 system, RO—ZnO—SiO 2 system, ZnO—B 2 O 3 system, SiO 2 —B 2 O 3 —R ′ 2 O system, SiO 2 —RO—R ′ 2 O system (where R is alkaline earth) A glass such as a similar metal element and R ′ is an alkali metal element) is preferably used. A compounding quantity is about 1-20 weight part with respect to 100 weight part of electroconductive powder. When the amount is less than 1 part by weight, the bonding strength between the element body and the terminal electrode is reduced. On the other hand, when the amount is more than 20 parts by weight, a large amount of glass is distributed on the surface of the electrode after firing, so that fusion occurs between the chips or plating on the terminal electrode becomes difficult.

ガラス粉末は、各成分の原料化合物を混合、溶融、急冷、粉砕する通常の方法の他、ゾルゲル法、噴霧熱分解法、アトマイズ法等、どのような製法で得られたものでもよい。とりわけ噴霧熱分解法で製造する場合、微細で粒度の揃った球状のガラス粉末を得ることができ、導体ペーストに使用する際粉砕処理を行う必要がないので好ましい。   The glass powder may be obtained by any production method such as a sol-gel method, a spray pyrolysis method, an atomizing method, etc., in addition to a usual method of mixing, melting, quenching, and pulverizing the raw material compounds of each component. In particular, when produced by the spray pyrolysis method, a spherical glass powder having a fine and uniform particle size can be obtained, and it is not necessary to perform a pulverizing treatment when used in a conductor paste, which is preferable.

有機ビヒクル(C)も特に限定されず、アクリル系樹脂、セルロ−ス系樹脂等通常使用されるような有機バインダを有機溶剤に溶解または分散させたものを、適宜選択して使用する。必要により可塑剤、粘度調整剤、界面活性剤、酸化剤、金属有機化合物等を添加することができる。ビヒクルの配合比率も限定はなく、無機成分をペースト中に保持し得る適切な量で、塗布方法に応じて適宜調整される。   The organic vehicle (C) is not particularly limited, and an organic binder or the like in which an organic binder such as an acrylic resin or a cellulose resin, which is usually used, is dissolved or dispersed in an organic solvent is appropriately selected and used. If necessary, a plasticizer, a viscosity modifier, a surfactant, an oxidizing agent, a metal organic compound, and the like can be added. The blending ratio of the vehicle is not limited, and is appropriately adjusted according to the coating method with an appropriate amount capable of retaining the inorganic component in the paste.

本発明の導体ペーストには、更に、本発明の効果を損わない程度であれば、通常使用される金属酸化物や粘土鉱物、セラミック、酸化剤等種々の無機添加剤や、他の導電性粉末(D)、さらに脂肪族アミン以外の分散剤を配合してもよい。   In the conductive paste of the present invention, various inorganic additives such as normally used metal oxides, clay minerals, ceramics, oxidants, and other conductive materials are used as long as the effects of the present invention are not impaired. You may mix | blend powder (D) and also dispersing agents other than an aliphatic amine.

他の導電性粉末(D)としては、前記銅粉末以外の、例えばニッケル、コバルト、鉄、亜鉛、錫等の金属粉末やこれらの合金粉末等、特に限定はない。これらの粉末は、予め脂肪族アミンによる表面処理を行ってもよいが、表面処理しないものでもよい。また導電性粉末(D)は、脂肪族アミンで表面処理されていない銅粉末であってもよく、該銅粉末はガラス質薄膜等を形成したものであってもよい。   The other conductive powder (D) is not particularly limited, for example, metal powder such as nickel, cobalt, iron, zinc, tin, or alloy powder thereof other than the copper powder. These powders may be subjected to surface treatment with an aliphatic amine in advance, but may be those not subjected to surface treatment. The conductive powder (D) may be a copper powder that has not been surface-treated with an aliphatic amine, and the copper powder may be a glassy thin film or the like.

以下、実施例を挙げて詳細に説明するが、本発明はこれに限定されるものではない。   Hereinafter, although an example is given and explained in detail, the present invention is not limited to this.

各実施例、比較例において、フレーク状銅粉末としては、平均粒径5μm、平均厚み0.2μmのフレーク状銅粉末(a)、平均粒径3μm、平均厚み0.2μmのフレーク状銅粉末(b)、平均粒径7μm、平均厚み0.2μmのフレーク状銅粉末(c)の3種を使用した。また、ニッケル被覆フレーク状銅粉末としては、平均粒径7μm、平均厚み0.2μmで、かつ平均厚み0.2μmの均一なニッケルめっき被膜を有するフレーク状銅粉末を使用した。   In each of Examples and Comparative Examples, the flaky copper powder includes flaky copper powder (a) having an average particle diameter of 5 μm and an average thickness of 0.2 μm, flaky copper powder having an average particle diameter of 3 μm and an average thickness of 0.2 μm ( b) Three types of flaky copper powder (c) having an average particle diameter of 7 μm and an average thickness of 0.2 μm were used. As the nickel-coated flaky copper powder, a flaky copper powder having a uniform nickel plating film having an average particle diameter of 7 μm, an average thickness of 0.2 μm, and an average thickness of 0.2 μm was used.

これらフレーク状銅粉末の製造および表面処理は、次のようにして行った。   Manufacture and surface treatment of these flaky copper powders were performed as follows.

ボールミル中に、原料の球状銅粉末と、下記表面処理剤と液状媒体とを投入し、数時間粉砕を行い、球状銅粉末のフレーク化と同時に表面処理を行った。得られたスラリーを濾過、洗浄後、乾燥した。ニッケルめっき被膜を有するフレーク状銅粉末の場合も、ニッケルめっき被膜を有する球状銅粉末を原料に用い、同様に処理して、フレーク化と同時に表面処理を行った。表面処理剤の量はCHN分析により測定した。   In a ball mill, raw material spherical copper powder, the following surface treatment agent and a liquid medium were added, and pulverized for several hours, and surface treatment was performed simultaneously with flaking the spherical copper powder. The obtained slurry was filtered, washed and dried. In the case of flaky copper powder having a nickel plating film, spherical copper powder having a nickel plating film was used as a raw material, and the same treatment was performed, and surface treatment was performed simultaneously with flaking. The amount of the surface treatment agent was measured by CHN analysis.

球状銅粉末、球状ニッケル粉末としては、それぞれ平均粒径1.5μmのものを用いた。これら球状粉末を表面処理する場合は、次のようにして行った。液状媒体中に球状粉末を分散させたスラリーに、下記表面処理剤を添加して攪拌し、濾過、洗浄後、乾燥した。   As the spherical copper powder and the spherical nickel powder, those having an average particle diameter of 1.5 μm were used. The surface treatment of these spherical powders was carried out as follows. The following surface treatment agent was added to a slurry in which a spherical powder was dispersed in a liquid medium, stirred, filtered, washed and dried.

表面処理剤としては、ステアリルアミンを主成分とする脂肪族アミン(花王株式会社製「ファーミン80」、以下「ステアリルアミン」という。)、オクチルアミンを主成分とする脂肪族アミン(同「ファーミン08D」、以下「オクチルアミン」という。)、ラウリルアミンを主成分とする脂肪族アミン(同「ファーミン20D」、以下「ラウリルアミン」という。)、オレイルアミンを主成分とする脂肪族アミン(同「ファーミンO」、以下「オレイルアミン」という。)、ジステアリルアミンを主成分とする脂肪族アミン(同「ファーミンD86」、以下「ジステアリルアミン」という。)、ジメチルステアリルアミンを主成分とする脂肪族アミン(同「ファーミンDM8680」、以下「ジメチルステアリルアミン」という。)、およびステアリン酸を用いた。 As the surface treatment agent, an aliphatic amine mainly composed of stearylamine (“Farmin 80” manufactured by Kao Corporation, hereinafter referred to as “stearylamine”), an aliphatic amine mainly composed of octylamine (“Farmin 08D”). ”, Hereinafter referred to as“ octylamine ”), aliphatic amine based on laurylamine (hereinafter“ Farmin 20D ”, hereinafter referred to as“ laurylamine ”), aliphatic amine based on oleylamine (hereinafter referred to as“ Farmin ”). O ", hereinafter referred to as" oleylamine ".), aliphatic amines composed mainly of di-stearylamine (the" FARMIN D86 ", hereinafter referred to as" distearyl amine ".), aliphatic amines mainly composed of dimethyl stearylamine (“Farmin DM8680”, hereinafter referred to as “dimethylstearylamine”), Fine stearate was used.

ガラス粉末としては、平均粒径2μのBaO−ZnO−B系ガラス粉末を、また有機ビヒクルとしては、アクリル樹脂をテルピネオールに溶解した溶液を用いた。 As the glass powder, a BaO—ZnO—B 2 O 3 glass powder having an average particle diameter of 2 μm was used, and as the organic vehicle, a solution in which an acrylic resin was dissolved in terpineol was used.

実施例1〜16、比較例1〜3
各表面処理剤で表面処理された、または表面処理されない導電性粉末と、ガラス粉末を、表1、表2に示した配合比率(重量部)で混合し、有機ビヒクルと共に三本ロールミルで混練して、導体ペーストを製造した。なお、有機ビヒクルの配合量は、導電性粉末100重量部に対して35重量部である。また表1に示す表面処理剤の量は、ペースト中に含有される表面処理剤の合計量であり、ペースト中に含まれる導電性粉末の全量に対する重量百分率で示した。
Examples 1-16, Comparative Examples 1-3
Conductive powder surface-treated or not surface-treated with each surface-treating agent and glass powder are mixed at the blending ratios (parts by weight) shown in Tables 1 and 2, and kneaded with a three-roll mill with an organic vehicle. A conductor paste was manufactured. In addition, the compounding quantity of an organic vehicle is 35 weight part with respect to 100 weight part of electroconductive powder. The amount of the surface treatment agent shown in Table 1 is the total amount of the surface treatment agent contained in the paste, and is expressed as a percentage by weight with respect to the total amount of the conductive powder contained in the paste.

チタン酸バリウム系セラミック誘電体グリーンシートと、ニッケル内部電極との積層体を、高温で焼結して得られた、平面寸法が2.0mm×1.25mmで厚みが1.2mmのX7R 2.2μF(規格値)の積層セラミックコンデンサ素体を用意し、前記導体ペーストを、コンデンサ素体のニッケル内部電極が露出した両端面に、焼成後の膜厚が60μmとなるように浸漬法により塗布し、熱風式乾燥機中150℃で10分間保持し、乾燥させた。   1. X7R having a plane dimension of 2.0 mm × 1.25 mm and a thickness of 1.2 mm obtained by sintering a laminate of a barium titanate ceramic dielectric green sheet and a nickel internal electrode at a high temperature. A 2 μF (standard value) multilayer ceramic capacitor body is prepared, and the conductor paste is applied to both end faces of the capacitor body where the nickel internal electrodes are exposed by a dipping method so that the film thickness after firing is 60 μm. Then, it was kept at 150 ° C. for 10 minutes in a hot air dryer and dried.

次いで、ベルト式マッフル炉で全域5ppmの酸素を含む窒素雰囲気中、表1に示すピーク温度で、ピーク温度での保持時間が10分間、焼成の開始から終了まで1時間の条件で焼成して端子電極を形成し、積層セラミックコンデンサを得た。   Next, in a belt-type muffle furnace, in a nitrogen atmosphere containing 5 ppm of oxygen in the entire region, the terminals were baked at the peak temperatures shown in Table 1 for 10 minutes at the peak temperature and for 1 hour from the start to the end of firing. Electrodes were formed to obtain a multilayer ceramic capacitor.

各導体ペーストを用いて上記のように端子電極を形成して得た積層セラミックコンデンサのそれぞれの30個の試料についてコンデンサの静電容量を測定し、規格値±10%の範囲外となったものを容量不良品として、その数を調べた。また端子電極膜の表面および断面をSEMで観察し、ブリスタの有無を調べた。   Capacitance of capacitors was measured for each of 30 samples of multilayer ceramic capacitors obtained by forming terminal electrodes as described above using each conductor paste, and the value was outside the range of the standard value ± 10%. The number was examined as a defective product. Further, the surface and cross section of the terminal electrode film were observed with an SEM, and the presence or absence of blisters was examined.

また、端子電極膜に電気めっきによりニッケルめっき膜を、更にスズめっき膜を形成し、端子電極の引張り強度、はんだ爆ぜの有無を調べ、また熱衝撃試験を行った。結果を表1、表2に併せて示す。尚、はんだ爆ぜの有無の確認、および熱衝撃試験は、次のようにして行った。   Further, a nickel plating film and a tin plating film were formed on the terminal electrode film by electroplating, and the tensile strength of the terminal electrode and the presence or absence of solder explosion were examined, and a thermal shock test was performed. The results are shown in Tables 1 and 2. The confirmation of the presence or absence of solder explosion and the thermal shock test were performed as follows.

はんだ爆ぜ:端子電極にはんだを被覆した試料30個につき、はんだリフロー炉に流し、溶融したはんだが周辺に飛び散る現象が見られたものの個数を調べた。   Solder explosion: Thirty samples in which terminal electrodes were coated with solder were poured into a solder reflow furnace, and the number of melted solder scattered around was examined.

熱衝撃試験:330℃のはんだ浴に7秒間浸漬し、試料30個中、サーマルクラックの発生が認められたものの個数を調べた。   Thermal shock test: The sample was immersed in a solder bath at 330 ° C. for 7 seconds, and the number of samples in which generation of thermal cracks was observed in 30 samples was examined.

Figure 0003994439
Figure 0003994439

Figure 0003994439
Figure 0003994439

上記の表の結果から明らかな様に、脂肪族アミンで表面処理された導電性銅粉末を用いた端子電極用導体ペーストを用いた本発明実施例では、ブリスターのない緻密で、接着性に優れた端子電極膜が形成され、サーマルクラック、はんだ爆ぜ等のない規格値を満足する静電容量の積層セラミックコンデンサが得られた。これに対して、ステアリン酸で表面処理された銅粉末を用いた比較例ではブリスター、サーマルクラック、はんだ爆ぜ等の問題が生じ本発明実施例に比較して劣るものであった。   As is clear from the results in the above table, in the present embodiment using the conductive paste for terminal electrodes using conductive copper powder surface-treated with aliphatic amine, it is dense without blisters and has excellent adhesion. As a result, a multilayer ceramic capacitor having a capacitance satisfying standard values free from thermal cracks and solder explosions was obtained. On the other hand, in the comparative example using the copper powder surface-treated with stearic acid, problems such as blistering, thermal cracking, and solder explosion occurred and were inferior to the examples of the present invention.

Claims (7)

少なくとも(A)銅を主成分とし、脂肪族アミンで表面処理されたことによりその表面に該脂肪族アミンを付着した導電性粉末と、(B)ガラス粉末と、(C)有機ビヒクルとを含むことを特徴とする、積層セラミック電子部品端子電極用導体ペースト。 At least (A) a conductive powder containing copper as a main component and surface-treated with an aliphatic amine so that the aliphatic amine is attached to the surface ; (B) a glass powder; and (C) an organic vehicle. A conductor paste for a laminated ceramic electronic component terminal electrode. 前記導電性粉末がフレーク状導電性粉末および/または球状導電性粉末である、請求項1に記載の積層セラミック電子部品端子電極用導体ペースト。   The conductor paste for multilayer ceramic electronic component terminal electrodes according to claim 1, wherein the conductive powder is a flaky conductive powder and / or a spherical conductive powder. 前記フレーク状導電性粉末と球状導電性粉末の重量比率が100:0〜5:95である、請求項2に記載の積層セラミック電子部品端子電極用導体ペースト。   The conductor paste for multilayer ceramic electronic component terminal electrodes according to claim 2, wherein a weight ratio of the flaky conductive powder and the spherical conductive powder is 100: 0 to 5:95. 導体ペースト中に存在する前記脂肪族アミンの量が、ペースト中に含まれる導電性粉末の全量に対して0.01〜2.0重量%である、請求項1ないし3のいずれかに記載の積層セラミック電子部品端子電極用導体ペースト。   The amount of the aliphatic amine present in the conductor paste is 0.01 to 2.0% by weight with respect to the total amount of the conductive powder contained in the paste. Conductive paste for multilayer ceramic electronic component terminal electrodes. 前記脂肪族アミンが、主鎖の炭素数が8〜20のアルキルアミンを主成分とするものである、請求項1ないし4のいずれかに記載の積層セラミック電子部品端子電極用導体ペースト。   The conductor paste for multilayer ceramic electronic component terminal electrodes according to any one of claims 1 to 4, wherein the aliphatic amine is mainly composed of an alkylamine having 8 to 20 carbon atoms in the main chain. さらに(D)他の導電性粉末を含む、請求項1ないし5のいずれかに記載の積層セラミック電子部品端子電極用導体ペースト。 Furthermore, (D) The conductor paste for multilayer ceramic electronic component terminal electrodes in any one of Claim 1 thru | or 5 containing another electroconductive powder. 誘電体セラミック層と内部電極層とを交互に積層した積層体の内部電極の露出する端面に、請求項1ないし6のいずれかに記載の導体ペーストを用いて端子電極を形成したことを特徴とするセラミック積層電子部品。   A terminal electrode is formed using the conductor paste according to any one of claims 1 to 6 on an exposed end face of an internal electrode of a laminate in which dielectric ceramic layers and internal electrode layers are alternately laminated. Ceramic laminated electronic parts.
JP2004179372A 2004-06-17 2004-06-17 Conductive paste for multilayer ceramic electronic component terminal electrode Active JP3994439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004179372A JP3994439B2 (en) 2004-06-17 2004-06-17 Conductive paste for multilayer ceramic electronic component terminal electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004179372A JP3994439B2 (en) 2004-06-17 2004-06-17 Conductive paste for multilayer ceramic electronic component terminal electrode

Publications (3)

Publication Number Publication Date
JP2006004734A JP2006004734A (en) 2006-01-05
JP2006004734A5 JP2006004734A5 (en) 2007-06-07
JP3994439B2 true JP3994439B2 (en) 2007-10-17

Family

ID=35772951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004179372A Active JP3994439B2 (en) 2004-06-17 2004-06-17 Conductive paste for multilayer ceramic electronic component terminal electrode

Country Status (1)

Country Link
JP (1) JP3994439B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4748158B2 (en) * 2005-04-06 2011-08-17 株式会社村田製作所 Conductive resin cured product and electronic component module
JP2014182891A (en) * 2013-03-18 2014-09-29 Fdk Corp Conductive paste, laminated chip inductor, and ceramic electronic component
JP2015035581A (en) * 2013-07-10 2015-02-19 株式会社村田製作所 Ceramic electronic component and method for manufacturing the same
JP6546309B1 (en) * 2018-03-19 2019-07-17 株式会社ノリタケカンパニーリミテド Conductive paste with stable viscosity over time
KR102147408B1 (en) * 2018-08-23 2020-08-24 삼성전기주식회사 Multi-layered ceramic electronic component and method for manufacturing the same
KR102545056B1 (en) * 2021-07-13 2023-06-21 (주)창성 Cupper paste having branch shape and the ceramic product using thereof

Also Published As

Publication number Publication date
JP2006004734A (en) 2006-01-05

Similar Documents

Publication Publication Date Title
JP4647224B2 (en) Conductive paste for multilayer ceramic electronic component terminal electrode
JP5569747B2 (en) Gravure printing conductive paste used for multilayer ceramic capacitor internal electrode
US6841495B2 (en) Glass and conductive paste using the same
KR101172723B1 (en) Copper conductor paste, conductor circuit board and electronic part
JP2012174797A5 (en)
CN1913044A (en) Thick film conductor composition, and its use in ltcc circuit and device
EP1184881B1 (en) Conductive paste
JP4916107B2 (en) Conductive paste and ceramic electronic component using the same
JP2005222737A (en) Copper paste composition for external electrode
JP4561574B2 (en) Conductive paste for multilayer ceramic component terminal electrode
JP3994439B2 (en) Conductive paste for multilayer ceramic electronic component terminal electrode
JP2011129884A (en) Method of manufacturing ceramic electronic component, and ceramic electronic component
JP3827060B2 (en) Conductive paste for multilayer ceramic component terminal electrode
WO2020166361A1 (en) Electroconductive paste, electronic component, and laminated ceramic capacitor
KR102441705B1 (en) Conductive paste for forming external electrodes of multilayer ceramic electronic components
JP2004228094A (en) Terminal electrode composition material for multi-layer ceramic capacitor
JP2002110444A (en) Conductive paste and laminated ceramic electronic part
CN111902882B (en) Conductive paste, electronic component, and multilayer ceramic capacitor
JP7206671B2 (en) Conductive paste, electronic parts and laminated ceramic capacitors
JP2018152218A (en) Conductive paste, chip electronic component and method for producing the same
JP4427785B2 (en) Conductive paste for terminal electrodes of multilayer ceramic electronic components
JP2007294633A (en) Ceramic electronic component and conductive paste therefor
JP2657008B2 (en) Metallized composition for ceramics
JP5056828B2 (en) Conductor paste
JP4438090B2 (en) Glass powder for conductor paste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070416

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20070416

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070722

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3994439

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140810

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250