JP5901861B1 - 電力変換システム及び電力変換装置 - Google Patents

電力変換システム及び電力変換装置 Download PDF

Info

Publication number
JP5901861B1
JP5901861B1 JP2015544221A JP2015544221A JP5901861B1 JP 5901861 B1 JP5901861 B1 JP 5901861B1 JP 2015544221 A JP2015544221 A JP 2015544221A JP 2015544221 A JP2015544221 A JP 2015544221A JP 5901861 B1 JP5901861 B1 JP 5901861B1
Authority
JP
Japan
Prior art keywords
power conversion
power converter
time
slave
semiconductor power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015544221A
Other languages
English (en)
Other versions
JPWO2016035217A1 (ja
Inventor
市原 昌文
昌文 市原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP5901861B1 publication Critical patent/JP5901861B1/ja
Publication of JPWO2016035217A1 publication Critical patent/JPWO2016035217A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0043Converters switched with a phase shift, i.e. interleaved

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

電力変換システムは、1つのマスタの電力変換装置と1つ又は複数のスレーブの電力変換装置とを備える。各電力変換装置は、時刻カウンタと、キャリア波を時刻カウンタに同期して発生させるキャリア波発生部と、を備える。マスタの電力変換装置は、時刻カウンタが予め定められた値に達したとき、スレーブの時刻カウンタの値をマスタの時刻カウンタに同期させるための同期データを生成する同期データ生成部と、同期データをスレーブに送信する通信部と、を備える。スレーブの電力変換装置は、同期データを受信する通信部と、同期データに基づいて、時刻カウンタの値を補正する時刻カウンタ補正処理部と、スレーブの電力変換装置の出力電流を検出する電流センサと、環流電流成分に基づいて、スレーブの電力変換装置のゲート信号の位相を進める又は遅らせるゲートタイミング調整部と、を備える。

Description

本発明は、並列運転する複数の電力変換装置を備える電力変換システムに関係する。
PWM(Pulse Width Modulation)半導体電力変換装置の容量拡大を行う手法には、PWM半導体電力変換装置単体の容量を増加させる手法と、複数のPWM半導体電力変換装置を並列接続して容量を増加させる手法と、がある。前者の手法では、使用する半導体デバイスの容量に上限があるので、容量拡大に上限がある。一方、後者の手法では、理論的に並列接続台数を無限に増加させることができるので、実用範囲であれば台数を増加させることへの制限がほとんどないメリットがある。
しかし、PWM半導体電力変換装置を特に注意無く並列接続した場合、各PWM半導体電力変換装置のPWMキャリア波が同期しないことに基づいて、PWM半導体電力変換装置間を流れる電流である、いわゆる環流電流が増加し、負荷に出力される電流が減少する。つまり、PWM半導体電力変換装置の電流容量利用率が低下する。また、過電流保護機能が動作して、PWM半導体電力変換装置が停止する可能性もある。これに対して、PWM半導体電力変換装置の出力ラインにリアクトルを挿入することによって環流電流を抑制する手法が存在するが、設置面積及びコストの点で不利となる。従って、並列接続されているPWM半導体電力変換装置のPWMキャリア波を同期させることが求められる。
上記に鑑み、本願発明者は、1台のPWM半導体電力変換装置をマスタとし、他のPWM半導体電力変換装置をスレーブとし、マスタのPWM半導体電力変換装置から同期信号をスレーブのPWM半導体電力変換装置に送信することにより、マスタのPWM半導体電力変換装置のPWMキャリア波とスレーブのPWM半導体電力変換装置のPWMキャリア波とを同期させるPWM半導体電力変換システムを提案した(下記の特許文献1参照)。
また、基準インバータ装置の出力電流と並列運転される他のインバータ装置の出力電流との偏差電流を検出し、偏差電流が零になるように、基準インバータ装置の点,消弧信号に対して、並列運転される他のインバータ装置の点,消弧信号のタイミングを前後させるインバータ装置の並列運転回路が知られている(下記の特許文献2参照)。
特許第5398380号公報 特開平1−110062号公報
特許文献1に記載の技術では、各PWM半導体電力変換装置のPWMキャリア波を同期させることができる。しかしながら、PWMキャリア波発生部より後段に位置する例えばスイッチング素子又はスイッチング素子を駆動する回路が、個体差、又は温度で例示される周囲環境による特性変化を有する場合には、完全な同期状態とならずに環流電流が生じてしまう可能性がある。
特許文献2に記載の技術では、基準インバータ装置の出力電流と並列運転される他のインバータ装置の出力電流との偏差電流を検出するために、インバータ装置の数だけ電流センサを必要とする。また、特許文献2記載の技術では、各電流センサと調節器とを接続する配線が必要となり、インバータ装置の設置への制限となる。また、特許文献2に記載の技術では、インバータ装置が2個よりも多い場合には、基準インバータ装置の出力電流と複数のインバータ装置の出力電流との偏差電流を夫々求める必要があり、煩雑となる。
本発明は、上記に鑑みてなされたものであって、簡単な構成で環流電流を抑制することができる電力変換システム及び電力変換装置を提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明にかかる電力変換システムは、1つのマスタの電力変換装置と1つ又は複数のスレーブの電力変換装置とを備え、前記マスタの電力変換装置と前記スレーブの電力変換装置とが同一の電圧指令値をPWM変調することによって得られるゲート信号に基づきPWM電圧を1つの負荷に並列に出力する電力変換システムにおいて、前記マスタの電力変換装置及び前記スレーブの電力変換装置の各々は、時刻カウンタと、前記電圧指令値をPWM変調するためのキャリア波を前記時刻カウンタに同期して発生させるキャリア波発生部と、を備え、前記マスタの電力変換装置は、前記マスタの電力変換装置の前記時刻カウンタが予め定められた値に達したとき、前記スレーブの電力変換装置の前記時刻カウンタの値を前記マスタの電力変換装置の前記時刻カウンタに同期させるための同期データを生成する同期データ生成部と、前記同期データを前記スレーブの電力変換装置に送信する通信部と、を備え、前記スレーブの電力変換装置は、前記マスタの電力変換装置から前記同期データを受信する通信部と、前記スレーブの電力変換装置の前記通信部が前記同期データを受信完了した時点における前記スレーブの電力変換装置の前記時刻カウンタの値と予め求められている通信時間とに基づいて、前記スレーブの電力変換装置の前記時刻カウンタの値を補正する時刻カウンタ補正処理部と、前記スレーブの電力変換装置の出力側の電流を検出する電流センサと、前記電流センサによって検出された電流のうちの環流電流成分に基づいて、前記スレーブの電力変換装置の前記ゲート信号の位相を進める又は遅らせるゲートタイミング調整部と、を備えることを特徴とする。
本発明によれば、簡単な構成で環流電流を抑制することができ、電力変換装置の電流容量利用率を向上させることができる。
本発明の実施の形態1の電力変換システムの構成を示す機能ブロック図 半導体電力変換装置が備える制御装置の機能構成を示す機能ブロック図 電圧指令値、三角波及びゲート信号の一例を示す波形図 時刻カウンタ補正処理を説明するタイミング図 時刻カウンタ補正処理を説明するタイミング図 マスタ半導体電力変換装置の動作を説明するフローチャート スレーブ半導体電力変換装置の動作を説明するフローチャート 遅延回路、ゲートタイミング調整回路及び主回路の構成を示す機能ブロック図 U相ゲートタイミング調整回路の構成を示す機能ブロック図 U相主回路の電流の周波数スペクトルの一例を示す図 他のフィルタ回路の一例を示す機能ブロック図 ディレイラインの遅延時間を示す図 ディレイ量調整部の調整方向を示す図 U相ゲートタイミング調整回路による効果を説明するタイミング図 U相ゲートタイミング調整回路による効果を説明するタイミング図 U相ゲートタイミング調整回路による効果を説明するタイミング図 U相ゲートタイミング調整回路による効果を説明するタイミング図 本発明の実施の形態2の半導体電力変換システムの構成を示す機能ブロック図 半導体電力変換装置の遅延時間の一例を示す図 半導体電力変換装置の調整後の遅延時間の一例を示す図
以下に、本発明にかかる半導体電力変換システムおよび半導体電力変換装置の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態により本発明が限定されるものではない。
実施の形態1.
図1は、本発明の実施の形態1の電力変換システムの構成を示す機能ブロック図である。図1に示すように、実施の形態1の電力変換システム1は、複数の半導体電力変換装置1a、1b及び1cを備えている。半導体電力変換装置1a、1b及び1cは、例えばモータなどの負荷2に並列接続されている。半導体電力変換装置1a、1b及び1cの各々は、負荷2を駆動するためのPWM電圧を発生する。
実施の形態1では、半導体電力変換システム1は、3台の半導体電力変換装置1a、1b及び1cを備えているが、これに限定されず、2台の半導体電力変換装置を備えていても良いし、3台より多くの半導体電力変換装置を備えていても良い。
半導体電力変換装置1aは、有線又は無線の通信路4を介して上位制御装置3に接続されている。近年広く使用されている半導体電力変換装置には、動作設定などを行うための上位制御装置3との間で、例えばRS−485又はUSB(Universal Serial Bus)などの通信規格で通信できるものがある。半導体電力変換装置1aと上位制御装置3との間の通信路4の通信規格は、特に限定しないが、ここでは上記したような既に備えられている通信手段の通信規格を使用することとする。上位制御装置3は、負荷2に印加する電圧の指令値である電圧指令値を、通信路4を介して、半導体電力変換装置1aに送信する。
半導体電力変換装置1a、1b及び1cは、有線又は無線の通信路Cを介して互いに接続されている。半導体電力変換装置1a、1b及び1c間の通信路Cの通信規格は、特に限定しないが、ここでは上記したような既に備えられている通信手段の通信規格を使用することとする。半導体電力変換装置1aは、上位制御装置3から受信した電圧指令値を、通信路Cを介して、半導体電力変換装置1b及び1cに送信する。
なお、上位制御装置3が、通信路Cを介して、半導体電力変換装置1a、1b及び1cに接続されることとし、上位制御装置3が、電圧指令値を、通信路Cを介して、半導体電力変換装置1a、1b及び1cに送信しても良い。
半導体電力変換装置1aは、制御装置11aと、主回路12aと、を備えており、半導体電力変換装置1bは、制御装置11bと、主回路12bと、を備えており、半導体電力変換装置1cは、制御装置11cと、主回路12cと、を備えている。制御装置11a、11b及び11cは、上位制御装置3から供給される電圧指令値に対してPWM変調処理を夫々行い、電圧指令値のPWM変調処理の結果得られるゲート信号を夫々出力する。主回路12a、12b及び12cには、制御装置11a、11b及び11cから出力されたゲート信号が夫々入力される。主回路12a、12b及び12cは、入力されたゲート信号に基づいて負荷2に供給するPWM電圧を夫々発生する。
実施の形態1では、環流電流を抑制するために、半導体電力変換装置1b及び1cの各々が、半導体電力変換装置1aとの間で通信することにより、自半導体電力変換装置のキャリア波の位相を半導体電力変換装置1aのキャリア波の位相に同期させる第1の制御を行う。また、半導体電力変換装置1b及び1cの各々が、自半導体電力変換装置の状態に基づいて、自半導体電力変換装置のゲート信号の位相を調整する第2の制御を行う。実施の形態1では、まず第1の制御の説明を行い、次いで第2の制御の説明を行う。
図2は、半導体電力変換装置が備える制御装置の機能構成を示す機能ブロック図である。図2では、半導体電力変換装置1aが備える制御装置11aと、半導体電力変換装置1bが備える制御装置11bと、の機能構成を示している。なお、制御装置11bの機能構成と制御装置11cの機能構成とは同様であるので、制御装置11bの機能構成について説明し、制御装置11cの説明を省く。
制御装置11aは、コントローラ111aと、遅延回路112aと、を備える。コントローラ111aは、周期カウンタである時刻カウンタ113aと、時刻カウンタ113aに同期した三角波を発生する三角波発生部114aと、上位制御装置3から入力される電圧指令値を三角波発生部114aによって発生された三角波に基づいてPWM変調し、ゲート信号を生成するPWM変調部115aと、を備えている。
遅延回路112aは、PWM変調部115aから出力されるゲート信号を予め定められた遅延時間だけ遅延させて、主回路12aに出力する。
半導体電力変換システム1は、制御装置11a内に遅延回路112aを備えることにより、第2の制御をより好適に行うことができる。また、遅延回路112aの予め定められた遅延時間については、第2の制御の説明において説明する。
制御装置11bは、コントローラ111bと、ゲートタイミング調整回路112bと、を備える。コントローラ111bは、時刻カウンタ113aと同じ周期でカウントする周期カウンタである時刻カウンタ113bと、時刻カウンタ113bに同期した三角波を発生する三角波発生部114bと、PWM変調部115aに入力された電源電圧値と同一の電圧指令値を三角波発生部114bによって発生された三角波に基づいてPWM変調し、ゲート信号を生成するPWM変調部115bと、を備えている。
コントローラ111bは、第1の制御を行う。また、ゲートタイミング調整回路112bは、第2の制御を行う。
なお、実施の形態1では、PWM変調のキャリア波に三角波を使用しているが、三角波以外の、例えばのこぎり波などのキャリア波を使用する場合においても、第1の制御は同様に行うことができる。
まず、第1の制御について説明する。第1の制御の説明においては、理解の容易のため、遅延回路112aの遅延時間及びゲートタイミング調整回路112bの遅延時間が共にゼロであるものとする。
上述したように、制御装置11aの三角波発生部114a及び制御装置11bの三角波発生部114bは、時刻カウンタ113a及び113bに同期した三角波を夫々発生させる。ここで、時刻カウンタ113a及び113bが互いに同期しておらず、三角波発生部114a及び114bが互いに同期していない三角波を発生させる場合について説明する。
図3は、電圧指令値、三角波及びゲート信号の一例を示す波形図である。図3では、図2に示すコントローラ111a及び111bに入力される電圧指令値20、三角波発生部114aによって生成される三角波21、PWM変調部115aによって生成されるゲート信号22、三角波発生部114bによって生成される三角波31及びPWM変調部115bによって生成されるゲート信号32を示している。
コントローラ111a及びコントローラ111bには、同一の電圧指令値20が入力される。三角波発生部114bが発生する三角波31は、三角波発生部114aが発生する三角波21よりもΔtだけ遅くなっている。すなわち、三角波21と三角波31とは、互いに同期していない状態となっている。PWM変調部115bによって生成されるゲート信号32は、PWM変調部115aによって生成されるゲート信号22よりもΔtだけ遅れている。そして、ゲート信号32の遅れに起因して、ゲート信号22の状態とゲート信号32の状態とが異なる時間が生じる。
例えば、図3中に示される三角波21及び三角波31の左端の1周期に着目すると、時刻t2から時刻t3までの間は、ゲート信号22及びゲート信号32が共にローレベルになっている。しかし、時刻t1から時刻t2までの間は、ゲート信号22がローレベルである一方、ゲート信号32はハイレベルになっている。また、時刻t3から時刻t4までの間は、ゲート信号22がハイレベルである一方、ゲート信号32がローレベルになっている。すなわち、時刻t1から時刻t2までの間及び時刻t3から時刻t4までの間においては、ゲート信号22の状態とゲート信号32の状態とが、異なっている。
主回路12aが出力するPWM電圧は、ゲート信号22に基づいて生成され、主回路12bが出力するPWM電圧は、ゲート信号32に基づいて生成される。ゲート信号22の状態とゲート信号32の状態とが異なるとき、半導体電力変換装置1aから出力されるPWM電圧と半導体電力変換装置1bから出力されるPWM電圧とは、異なる。従って、半導体電力変換装置1aと半導体電力変換装置1bとの間に流電流が流れ、負荷2に供給する電流が減少するので、半導体電力変換システム1の電流容量利用率が低下する。つまり、半導体電力変換装置1a、1b及び1cのゲート信号22及び32を同期させることが重要となる。
そこで、第1の制御では、半導体電力変換装置1aが備える時刻カウンタ113aの値を基準とし、他の2つの半導体電力変換装置1b及び1cが夫々備える時刻カウンタ113bを時刻カウンタ113aに同期させるようにする。ゲート信号22及び32は、時刻カウンタ113a及び113bによって夫々生成される三角波21及び31に基づいて電圧指令値20をPWM変調させることによって、夫々生成される。従って、時刻カウンタ113bを時刻カウンタ113aに同期させることで、半導体電力変換装置1a、1b及び1cのゲート信号22及び32を同期させることができる。
具体的には、半導体電力変換装置1aは、時刻カウンタ113aのゼロ復帰時に、半導体電力変換装置1b及び1cに対して同期データを送信する。半導体電力変換装置1b及び1cは、同期データを夫々受信すると、予め設定されている半導体電力変換装置1aと半導体電力変換装置1b及び1cとの間の通信に夫々かかる通信時間と、同期データを受信した時点での半導体電力変換装置1b及び1cに夫々備える時刻カウンタ113bの値と、の比較に基づいて、時刻カウンタ113bの値を夫々調整する。
これを実現するため、コントローラ111aは、同期データ生成部121と、通信時間記憶部122と、誤り検出符号生成部123と、同期データ送信部124と、を備えており、コントローラ111bは、誤り検出部131と、時刻カウンタ補正処理部132と、同期データ受信部133と、を備えている。なお、以降の説明において、半導体電力変換装置1aをマスタ半導体電力変換装置、半導体電力変換装置1b及び1cをスレーブ半導体電力変換装置ということもある。
通信時間記憶部122は、マスタ半導体電力変換装置1aとスレーブ半導体電力変換装置1bとの間の通信時間及びマスタ半導体電力変換装置1aとスレーブ半導体電力変換装置1cとの間の通信時間を記憶している。
同期データ生成部121は、時刻カウンタ113aがゼロ復帰したとき、スレーブ半導体電力変換装置1b及び1cに夫々送信される2つの同期データを生成する。スレーブ半導体電力変換装置1bに送信される同期データには、通信時間記憶部122に記憶されている、マスタ半導体電力変換装置1aとスレーブ半導体電力変換装置1bとの間の通信時間が記述されている。また、スレーブ半導体電力変換装置1cに送信される同期データには、通信時間記憶部122に記憶されている、マスタ半導体電力変換装置1aとスレーブ半導体電力変換装置1cとの間の通信時間が記述されている。
誤り検出符号生成部123は、同期データ生成部121によって生成された2つの同期データを対象とする2つの誤り検出符号を生成し、生成した2つの誤り検出符号を2つの同期データに夫々付与する。なお、誤り検出符号の種類については特に限定しないが、例えばチェックサム又はCRC(Cyclic Redundancy Check)などであってよい。同期データ送信部124は、誤り検出符号が付与された2つの同期データを、通信路Cを介して、スレーブ半導体電力変換装置1b及び1cに夫々送信するための通信インターフェースである。同期データ送信部124は、上位制御装置3から供給される電圧指令値を受信し、受信した電圧指令値を、PWM変調部115aに送信するとともに、スレーブ半導体電力変換装置1b及び1cに送信する役割も有する。
同期データ受信部133は、マスタ半導体電力変換装置1aから送信された同期データを受信するための通信インターフェースである。同期データ受信部133は、マスタ半導体電力変換装置1aから電圧指令値を受信し、受信した電圧指令値をPWM変調部115bに送信する役割も有する。誤り検出部131は、受信した同期データに付与されている誤り検出符号に基づいて、同期データの誤り検出を行う。
時刻カウンタ補正処理部132は、誤り検出部131が誤りはないと判定した同期データから通信時間を読み出す。そして、時刻カウンタ補正処理部132は、通信時間と、同期データ受信完了時における時刻カウンタ113bの値とを比較し、比較結果に基づいて、時刻カウンタ113bの値を時刻進み方向又は時刻戻し方向に補正する処理である時刻カウンタ補正処理を実行する。
なお、上記の説明においては、マスタ半導体電力変換装置1aとスレーブ半導体電力変換装置1b及び1cとの間の通信にかかる時間を通信時間と表現している。しかしながら、時刻カウンタ補正処理部132は、通信時間と同期データ受信完了時における時刻カウンタ113bの値とを比較するようにしている。従って、通信時間は、厳密には時刻カウンタ113aがゼロ復帰した時点からスレーブ半導体電力変換装置1b及び1cが同期データを受信完了するまでの時間を指す。
なお、上述の通信時間の定義を変更することで、時刻カウンタ補正処理部132による時刻カウンタ113bの値の読み出しタイミングを変更することができる。例えば、通信時間の終期の定義を、同期データを受信完了してからt秒後に変更することで、時刻カウンタ補正処理部132は、同期データを受信完了後即座に時刻カウンタ113bを読み出す必要はなくなり、同期データを受信完了してからさらにt秒後に時刻カウンタ113bを読み出せば良くなる。
図4及び図5は、時刻カウンタ補正処理を説明するタイミング図である。図4は、スレーブ半導体電力変換装置の時刻カウンタがマスタ半導体電力変換装置の時刻カウンタよりも進んでいる場合を示す図であり、図5は、スレーブ半導体電力変換装置の時刻カウンタがマスタ半導体電力変換装置の時刻カウンタよりも遅れている場合を示す図である。
図4に示すように、時刻カウンタ113aの値40及び時刻カウンタ113bの値50は、同一の周期tintでゼロ復帰を繰り返す。時刻カウンタ113aの値40がゼロ復帰したとき、マスタ半導体電力変換装置1aとスレーブ半導体電力変換装置1bとの間で通信処理comが行われ、同期データがマスタ半導体電力変換装置1aからスレーブ半導体電力変換装置1bに送信される。スレーブ半導体電力変換装置1bは、時刻カウンタ113aがゼロ復帰してから通信時間tcom後のタイミング51で同期データを受信完了する。
マスタ半導体電力変換装置1aの時刻カウンタ113aとスレーブ半導体電力変換装置1bの時刻カウンタ113bとが同期している場合、スレーブ半導体電力変換装置1bが同期データを受信完了したタイミング51での時刻カウンタ113bの値は、tcomと同値になる。
一方、図4に示すように、スレーブ半導体電力変換装置1bの時刻カウンタ113bがマスタ半導体電力変換装置1aの時刻カウンタ113aよりも進んでいる場合、スレーブ半導体電力変換装置1bが同期データを受信完了したタイミング51での時刻カウンタ113bの値は、tcomよりも大きい値であるts1を示す。そこで、時刻カウンタ補正処理部132は、次に時刻カウンタ113bがゼロ復帰した後、ts1とtcomとの差分であるtc1だけ更に経過したとき、時刻カウンタ113bを再度ゼロ復帰させる。
これにより、スレーブ半導体電力変換装置1bの時刻カウンタ113bは、進んでいた分だけ戻され、マスタ半導体電力変換装置1aの時刻カウンタ113aに同期することになる。
次に、図5に示すように、スレーブ半導体電力変換装置1bの時刻カウンタ113bがマスタ半導体電力変換装置1aの時刻カウンタ113aよりも遅れている場合、スレーブ半導体電力変換装置1bが同期データを受信完了したタイミング51での時刻カウンタ113bの値は、tcomよりも小さい値であるts2を示す。そこで、時刻カウンタ補正処理部132は、次に時刻カウンタ113bがゼロ復帰する予定時刻よりも、ts2とtcomとの差分であるtc2だけ早く、時刻カウンタ113bをゼロ復帰させる。
これにより、スレーブ半導体電力変換装置1bの時刻カウンタ113bは、遅れていた分だけ進み、マスタ半導体電力変換装置1aの時刻カウンタ113aに同期することになる。
なお、スレーブ半導体電力変換装置1cは、同期データを受信したとき、スレーブ半導体電力変換装置1bと同様に、マスタ半導体電力変換装置1aとスレーブ半導体電力変換装置1cとの間の通信時間と、同期データを受信した時点でのスレーブ半導体電力変換装置1cが備える時刻カウンタの値との比較に基づいて、スレーブ半導体電力変換装置1cが備える時刻カウンタの値を補正する。
次に、図6及び図7を用いて実施の形態1の半導体電力変換システムの同期動作を説明する。図6は、マスタ半導体電力変換装置の動作を説明するフローチャートである。図7は、スレーブ半導体電力変換装置の動作を説明するフローチャートである。
図6を参照すると、マスタ半導体電力変換装置1aは、最初、ステップS1において、スレーブ半導体電力変換装置1bをマスタ半導体電力変換装置1aに同期させるための動作の開始を待機する待機処理を行っている。マスタ半導体電力変換装置1aは、時刻カウンタ113aがゼロ復帰して時刻カウンタゼロ復帰割り込みが発生すると、ステップS2において、同期データを送信するための割り込み処理である時刻カウンタゼロ復帰割り込み処理を開始する。次いで、同期データ生成部121は、ステップS3において、スレーブ半導体電力変換装置1bへの通信時間及びスレーブ半導体電力変換装置1cへの通信時間を通信時間記憶部122から読み出して、読み出した2つの通信時間を夫々含む2つの同期データを生成する。
次に、誤り検出符号生成部123は、ステップS4において、2つの同期データへの2つの誤り検出符号を生成し、生成した2つの誤り検出符号を2つの同期データに夫々付与する。そして、同期データ送信部124は、ステップS5において、誤り検出符号が付与された2つの同期データのスレーブ半導体電力変換装置1b及び1cへの送信を開始する。ステップS6において、同期データ送信部124は、同期データの送信を終了する。そして、マスタ半導体電力変換装置1aは、ステップS1に移行して、次の時刻カウンタゼロ復帰割り込みが発生するまで待機する状態となる。
図7を参照すると、スレーブ半導体電力変換装置1bは、最初、ステップS11において、スレーブ半導体電力変換装置1bをマスタ半導体電力変換装置1aに同期させるための動作の開始を待機する待機処理を行っている。そして、同期データ受信部133は、ステップS12において、同期データの受信を開始する。同期データ受信部133は、同期データの受信が完了して同期データ受信完了割り込みが発生すると、ステップS13において、同期データ受信完了割り込み処理を実行する。次いで、時刻カウンタ補正処理部132は、ステップS14において、スレーブ半導体電力変換装置1bの時刻カウンタ113b、すなわちスレーブ時刻カウンタ113bの値tsを読み出す。
続いて、誤り検出部131は、ステップS15において、受信した同期データに付与されている誤り検出符号に基づいて、受信した同期データにエラーがあるか否かを判定する。ステップS15においてエラーがあった場合、すなわちステップS15でYesである場合、スレーブ半導体電力変換装置1bは、ステップS11に移行して次の同期データを受信するまで待機する。
ステップS15においてエラーが無かった場合、すなわちステップS15でNoである場合、時刻カウンタ補正処理部132は、ステップS16において、時刻カウンタ113bの値tsと同期データに記述されていた通信時間tcomとが同じであるか否か、すなわちts=tcomであるか否かを判定する。
ステップS16において時刻カウンタ113bの値tsと通信時間tcomとが同じであった場合、すなわちステップS16でYesであった場合、時刻カウンタ113aと時刻カウンタ113bとは同期している、すなわち、マスタ半導体電力変換装置1aとスレーブ半導体電力変換装置1bとが同期していることになる。そこで、スレーブ半導体電力変換装置1bは、ステップS11に移行して次の同期データを受信するまで待機する。
一方、ステップS16において時刻カウンタ113bの値tsと通信時間tcomとが同じではなかった場合、すなわちステップS16でNoであった場合、時刻カウンタ113aと時刻カウンタ113bとは同期していない。すなわち、マスタ半導体電力変換装置1aとスレーブ半導体電力変換装置1bとは同期していないことになる。そこで、時刻カウンタ補正処理部132は、ステップS17において、時刻カウンタ113bの値tsが通信時間tcomより大きいか否か、すなわちts>tcomであるか否かをさらに判定する。
ステップS17において時刻カウンタ113bの値tsが通信時間tcomより大きい場合、すなわちステップS17でYesである場合、時刻カウンタ113bは、時刻カウンタ113aより進んでいることになる。そこで、時刻カウンタ補正処理部132は、ステップS18において、時刻を戻す方向の補正処理である時刻戻し方向補正処理を、時刻カウンタ113bに実行する。
一方、ステップS17において時刻カウンタ113bの値tsが通信時間tcomより小さい場合、すなわちステップS17でNoである場合、時刻カウンタ113bは、時刻カウンタ113aより遅れていることになる。そこで、時刻カウンタ補正処理部132は、ステップS19において、時刻を進める方向の補正処理である時刻進み方向補正処理を、時刻カウンタ113bに実行する。
スレーブ半導体電力変換装置1bは、ステップS18又はステップS19の処理の後、ステップS11に移行し、次の同期データを受信するまで待機する。
なお、上記の説明においては、通信時間記憶部122、すなわちマスタ半導体電力変換装置1aが通信時間を記憶しているとした。しかしながら、通信時間記憶部122を削除し、スレーブ半導体電力変換装置1b及び1cの各々が、マスタ半導体電力変換装置1aから自半導体電力変換装置1b及び1cへの同期データの通信に要する通信時間を記憶する通信時間記憶部を有するようにしてもよい。つまり、マスタ半導体電力変換装置1aは通信時間を含まない同期データをスレーブ半導体電力変換装置1b及び1cに送信し、スレーブ半導体電力変換装置1b及び1cの各々は、記憶している通信時間と自半導体電力変換装置1b及び1cの時刻カウンタ113bの値とを比較するようにするとよい。また、同期データのサイズを可変に構成するなど、通信時間が変化するケースが考えられる場合、同期データ生成部121は、同期データ毎に、同期データのサイズ又は同期データの送受信前後に要する処理時間などに基づいて、同期データに記述する通信時間を算出するようにしてもよい。
また、同期データに記述される通信時間は時刻カウンタ113a及び113bのカウント値と同一の単位で表したものでなくてもよい。通信時間の単位とカウント値の単位とが異なる場合、時刻カウンタ補正処理部132は、受信した同期データから読み出した通信時間の単位をカウント値の単位とひとしくなるように通信時間を変換し、変換した通信時間に基づいて時刻カウンタ113bの補正を行うようにするとよい。
また、時刻カウンタ113a及び113bは周期カウンタであり、時刻カウンタ113aがゼロ復帰したときに同期データを生成するとした。しかしながら、同期データを生成するタイミングは、時刻カウンタ113aがゼロ復帰したタイミングでなくてもよい。例えば、同期データ生成部121は、時刻カウンタ113aが予め定められた値に達したときに同期データを生成し、時刻カウンタ補正処理部132は、同期データ受信部133が同期データを受信完了した時点における時刻カウンタ113bの値から予め定められた値を減算した値と通信時間との差分に基づいて時刻カウンタ113bを補正するようにしてもよい。また、時刻カウンタ113a及び113bは周期カウンタではなく、カウントアップ又はカウントダウンを長時間続けるカウンタであってもよい。また、時刻カウンタ113a及び113bは、良好なカウント精度を得るという観点からハードウェアで実現することが望ましいが、ソフトウェアで実現するようにしてもよい。
また、同期データ送信部124及び同期データ受信部133は、上位制御装置3から供給される電圧指令値を受信し、受信した電圧指令値をPWM変調部115a及びPWM変調部115bに夫々送信するとした。しかしながら、コントローラ111a及び111bは、電圧指令値の送受信のための通信機能部と同期データの送受信のための通信機能部とを分けた構成とするようにしてもよい。
上記したように、第1の制御によれば、マスタ半導体電力変換装置1aは、自半導体電力変換装置1aが備える時刻カウンタ113aが予め定められた値に達したとき、誤り検出符号が付与された2つの同期データを生成してスレーブ半導体電力変換装置1b及び1cに夫々送信する。そして、スレーブ半導体電力変換装置1b及び1cの各々は、受信した同期データに付与されている誤り検出符号に基づいて受信した同期データの誤り検出を行う。ここで、受信した同期データに誤りが検出されなかった場合、スレーブ半導体電力変換装置1b及び1cは、同期データを受信完了した時点における自半導体電力変換装置1b及び1cが備える時刻カウンタ113bの値と予め算出されている同期データの通信時間とに基づいて自半導体電力変換装置1b及び1cが備える時刻カウンタ113bの値を補正する。従って、時刻カウンタ113aが予め定められた値に達した時刻で同期処理が行われることから、半導体電力変換システム1は、データ送受信速度が遅い通信路Cを用いても同期精度に影響しない。つまり、半導体電力変換システム1は、低速で安価な通信路Cを使用することができる。さらに、半導体電力変換システム1は、ノイズなどによってデータ転送エラーが発生した場合には同期処理を行わないので、ノイズの影響によって誤ったタイミングで同期してしまうことがなく、要求されるノイズ対策レベルを低くすることができる。すなわち、半導体電力変換システム1は、可及的に簡単な構成でかつ可及的にノイズに影響されずに複数の半導体電力変換装置が互いに同期して動作することが可能になる。
上記した第1の制御によれば、半導体電力変換装置1a、1b及び1cの時刻カウンタ113a及び113bを同期させることができる。しかしながら、時刻カウンタ113a及び113bよりも後段の回路に、スイッチング素子のスイッチングタイミング同期を損なわせる要因が存在する場合がある。例えば、主回路12a、12b及び12c内のスイッチング素子又はスイッチング素子を駆動する回路に個体差が存在したり、温度で例示される周囲環境による特性変化が生じたりすることがあり得る。個体差又は特性変化がある場合、個体差又は特性変化の影響によって、スイッチング素子のスイッチングタイミング同期が損なわれ、環流電流が生じてしまう。
そこで、第2の制御では、スレーブ半導体電力変換装置1b及び1cの各々が、自半導体電力変換装置1b及び1cの状態に基づいて、主回路12b及び12cに供給するゲート信号のタイミングを調整する。半導体電力変換装置1b及び1cの各々は、予め定められた周期で、次に説明する第2の制御を繰り返し実行する。
図8は、遅延回路、ゲートタイミング調整回路及び主回路の構成を示す機能ブロック図である。図8では、遅延回路112a、主回路12a、ゲートタイミング調整回路112b及び主回路12bのうちのU相分を示している。
なお、半導体電力変換システム1が単相出力のシステムの場合には、遅延回路112a、主回路12a、ゲートタイミング調整回路112b及び主回路12bは、V相分の回路を更に備えるが、V相分の回路構成は、U相分の回路構成と同様である。また、半導体電力変換システム1が3相出力のシステムの場合には、遅延回路112a、主回路12a、ゲートタイミング調整回路112b及び主回路12bは、V相分及びW相分の回路を更に備えるが、V相分及びW相分の回路構成は、U相分の回路構成と同様である。
図1に示すマスタ半導体電力変換装置1aのU相主回路12auは、高電位側の直流電力母線Pと低電位側の直流電力母線Nとの間に直列に接続された2つのスイッチング素子12au1及び12au2を備える。高電位側の直流電力母線Pと低電位側の直流電力母線Nとの間には、直流電源5から直流電力が供給される。
スイッチング素子12au1には、フリーホイールのためのダイオード12au3が逆並列接続されている。スイッチング素子12au2には、フリーホイールのためのダイオード12au4が逆並列接続されている。
スイッチング素子12au1とスイッチング素子12au2との接続点は、出力線12au5を介して、負荷2に接続されている。出力線12au5は、インダクタンス成分Lmを有する。なお、インダクタンス成分Lmは、出力線12au5が有する成分であり、回路素子ではない。
U相遅延回路112auには、コントローラ111aから高電位側のゲート信号G0p及び低電位側のゲート信号G0nが供給される。U相遅延回路112auは、ゲート信号G0p及びG0nを予め定められた遅延時間だけ夫々遅延させた後の高電位側のゲート信号G1p及び低電位側のゲート信号G1nを、スイッチング素子12au1のゲート端子及びスイッチング素子12au2のゲート端子に夫々供給する。
図1に示すスレーブ半導体電力変換装置1bのU相主回路12buは、高電位側の直流電力母線Pと低電位側の直流電力母線Nとの間に直列に接続された2つのスイッチング素子12bu1及び12bu2を備える。
スイッチング素子12bu1には、フリーホイールのためのダイオード12bu3が逆並列接続されている。スイッチング素子12bu2には、フリーホイールのためのダイオード12bu4が逆並列接続されている。
スイッチング素子12bu1とスイッチング素子12bu2との接続点は、出力線12bu5を介して、負荷2に接続されている。出力線12bu5は、インダクタンス成分Lsを有する。なお、インダクタンス成分Lsは、出力線12bu5が有する成分であり、回路素子ではない。
出力線12bu5には、出力線12bu5に流れる電流Isを検出する電流センサ12bu6が設けられている。電流センサ12bu6が検出する電流Isの向きは、U相主回路12buから負荷2及びU相主回路12auに向かう向きである。
U相ゲートタイミング調整回路112buには、コントローラ111bから高電位側のゲート信号G2p及び低電位側のゲート信号G2nが供給される。U相ゲートタイミング調整回路112buは、電流センサ12bu6によって検出された電流Isに基づいて、ゲート信号G2p及びG2nを夫々時刻進み方向又は時刻戻し方向にタイミング調整した後の高電位側のゲート信号G3p及び低電位側のゲート信号G3nを、スイッチング素子12bu1のゲート端子及びスイッチング素子12bu2のゲート端子に夫々供給する。
図9は、U相ゲートタイミング調整回路の構成を示す機能ブロック図である。図9に示すように、U相ゲートタイミング調整回路112buは、バンドパスフィルタ112bu1と、正側閾値保持部112bu2と、負側閾値保持部112bu3と、比較器112bu4及び112bu5と、ラッチ112bu6及び112bu7と、ディレイ量調整部112bu8と、ディレイライン112bu9及び112bu10と、を備える。
バンドパスフィルタ112bu1は、電流Isのうちの、ノイズ成分及びU相主回路12buから負荷2への負荷電流成分を除去し、環流電流成分を通過させて、比較器112bu4の非反転入力端子及び比較器112bu5の反転入力端子に供給する。
図10は、U相主回路の電流の周波数スペクトルの一例を示す図である。図10に示すように、U相主回路12buの電流Isは、低周波数領域に負荷電流成分60を有し、中周波数領域に環流電流成分61を有し、高周波数領域にノイズ成分62を有する。負荷電流成分60の周波数は、0Hzから1kHz程度である。ノイズ成分62の周波数は、数百kHzより高い周波数である。
マスタ半導体電力変換装置1aのスイッチングタイミングとスレーブ半導体電力変換装置1bのスイッチングタイミングとが一致している場合、電流Isの電流変化は、負荷2へ流れる通常の電流変化となる。マスタ半導体電力変換装置1aのスイッチングタイミングとスレーブ半導体電力変換装置1bのスイッチングタイミングとが一致している場合の電流変化の値は、直流電力母線Pと直流電力母線Nとの間の電圧と、負荷2のインダクタンスと、によって定まる。マスタ半導体電力変換装置1aのスイッチングタイミングとスレーブ半導体電力変換装置1bのスイッチングタイミングとが一致している場合の電流変化は、マスタ半導体電力変換装置1aのスイッチングタイミングとスレーブ半導体電力変換装置1bのスイッチングタイミングとが一致していない場合の環流電流の変化に比べて緩やかであり、周波数が低い。
そこで、バンドパスフィルタ112bu1は、負荷電流成分60及びノイズ成分62を除去し、環流電流成分61を通過させる。これにより、バンドパスフィルタ112bu1は、環流電流成分61だけを比較器112bu4及び112bu5に供給することができ、ゲートタイミング調整の精度を高めることができる。
なお、U相ゲートタイミング調整回路112buは、バンドパスフィルタ112bu1に代えて、他の回路を備えても良い。図11は、他のフィルタ回路の一例を示す機能ブロック図である。図11に示すフィルタ回路70は、電流Isのうちの、高周波数成分を除去するローパスフィルタ71と、ローパスフィルタ71の出力を微分することで低周波数成分を除去する微分要素72と、を備える。
再び図9を参照すると、正側閾値保持部112bu2は、電流Isの環流電流成分に許容される正側の閾値を比較器112bu4の反転入力端子に供給する。負側閾値保持部112bu3は、電流Isの環流電流成分に許容される負側の閾値を比較器112bu5の非反転入力端子に供給する。
比較器112bu4は、非反転入力端子に供給される電流Isの環流電流成分の振幅と、反転入力端子に供給される正側の閾値と、を比較する。そして、比較器112bu4は、電流Isの環流電流成分の振幅が正側の閾値を超えていたら、ハイレベルの信号をラッチ112bu6に供給し、電流Isの環流電流成分の振幅が正側の閾値を超えていなかったら、ローレベルの信号をラッチ112bu6に供給する。
比較器112bu5は、非反転入力端子に供給される負側の閾値と、反転入力端子に供給される電流Isの環流電流成分の振幅と、を比較する。そして、比較器112bu5は、負側の閾値が電流Isの環流電流成分の振幅を超えていたら、ハイレベルの信号をラッチ112bu7に供給し、負側の閾値が電流Isの環流電流成分の振幅を超えていなかったら、ローレベルの信号をラッチ112bu7に供給する。
ラッチ112bu6は、クロック信号に同期して動作しており、比較器112bu4の出力信号を一定時間保持する。ラッチ112bu7は、クロック信号に同期して動作しており、比較器112bu5の出力信号を一定時間保持する。
ディレイ量調整部112bu8は、ラッチ112bu6及び112bu7から供給される信号に基づいて、ディレイライン112bu9及び112bu10の遅延時間を制御する。
ここで、ディレイライン112bu9及び112bu10が取り得る遅延時間を0からTとすると、ディレイ量調整部112bu8は、初期時において、ディレイライン112bu9及び112bu10の遅延時間をTの半分に制御する。なお、初期時におけるディレイライン112bu9及び112bu10の遅延時間は、Tの半分に限定されず、0からTまでの範囲の他の値でも良い。
図12は、ディレイラインの遅延時間を示す図である。初期時におけるディレイライン112bu9及び112bu10の遅延時間をTの半分にしておくことにより、ディレイ量調整部112bu8は、ディレイライン112bu9及び112bu10の遅延時間を時間進み方向80の方向へTの半分の調整幅で調整することができ、ディレイライン112bu9及び112bu10の遅延時間を時間遅れ方向81の方向へTの半分の調整幅で調整することもできる。
図8のU相遅延回路112auの予め定められた遅延時間は、初期時におけるディレイライン112bu9及び112bu10の遅延時間と同じ時間に定めておくと良い。これにより、初期時におけるゲート信号G1p及びG1nの位相と、ゲート信号G3p及びG3nの位相と、を合わせることができる。
図13は、ディレイ量調整部の調整方向を示す図である。図13の表80の第1行目に示すように、ゲート信号G3pがローレベルからハイレベルに変わるときに、電流Isの環流電流成分の増加方向が正方向であり、電流Isの環流電流成分の振幅が正側の閾値を超えた場合というのは、U相主回路12buの出力電圧VsがハイレベルになるのがU相主回路12auの出力電圧Vmがハイレベルになるよりも早すぎる状態である。従って、ディレイ量調整部112bu8は、ゲート信号G3p及びG3nの位相を遅らせる方向に、ディレイライン112bu9及び112bu10を制御する。つまり、ディレイ量調整部112bu8は、ディレイライン112bu9及び112bu10の遅延時間を増やすように、ディレイライン112bu9及び112bu10を制御する。
従って、ディレイ量調整部112bu8は、U相主回路12buの出力電圧VsがハイレベルになるタイミングをU相主回路12auの出力電圧Vmがハイレベルになるタイミングに近づけることができる。これにより、ディレイ量調整部112bu8は、電流Isの環流電流成分を小さくすることができる。
先に説明したように、U相ゲートタイミング調整回路112buは、予め定められた周期で、ゲートタイミング調整動作を繰り返し実行する。従って、ゲートタイミング調整回路112buは、電流Isの環流電流成分を徐々に小さくさせてゆくことができる。
なお、ディレイ量調整部112bu8がディレイライン112bu9及び112bu10の遅延時間を増やす又は減らす幅は、予め定められた一定時間とすることが考えられる。また、電流Isの環流電流成分の振幅が大きくなるほど幅を増やすことも考えられる。予め定められた一定時間を増やす手法では、着実に環流電流を収束方向に向かわせることができるので、半導体電力変換装置の台数が多い場合例えば半導体電力変換装置の台数が2台を超える場合に効果的と考えられる。一方、電流Isの環流電流成分の振幅が大きくなるほど増加幅を増やす手法では、環流電流の収束時間を短くできる反面、環流電流が発散する可能性も考えられるので、半導体電力変換装置の台数が少ない場合例えば半導体電力変換装置の台数が2台の場合に、環流電流の収束時間を短くでき且つ環流電流が発散する可能性を抑制できて効果的である。
また、図13の表80の第2行目に示すように、ゲート信号G3pがローレベルからハイレベルに変わるときに、電流Isの環流電流成分の増加方向が負方向であり、電流Isの環流電流成分の振幅が負側の閾値を超えた場合というのは、U相主回路12buの出力電圧VsがハイレベルになるのがU相主回路12auの出力電圧Vmがハイレベルになるよりも遅すぎる状態である。従って、ディレイ量調整部112bu8は、ゲート信号G3p及びG3nの位相を進める方向に、ディレイライン112bu9及び112bu10を制御する。つまり、ディレイ量調整部112bu8は、ディレイライン112bu9及び112bu10の遅延時間を減らすように、ディレイライン112bu9及び112bu10を制御する。
従って、ディレイ量調整部112bu8は、U相主回路12buの出力電圧VsがハイレベルになるタイミングをU相主回路12auの出力電圧Vmがハイレベルになるタイミングに近づけることができる。これにより、ディレイ量調整部112bu8は、電流Isの環流電流成分を小さくすることができる。
また、図13の表80の第3行目に示すように、ゲート信号G3pがハイレベルからローレベルに変わるときに、電流Isの環流電流成分の増加方向が正方向であり、電流Isの環流電流成分の振幅が正側の閾値を超えた場合というのは、U相主回路12buの出力電圧VsがローレベルになるのがU相主回路12auの出力電圧Vmがローレベルになるよりも遅すぎる状態である。従って、ディレイ量調整部112bu8は、ゲート信号G3p及びG3nの位相を進める方向に、ディレイライン112bu9及び112bu10を制御する。つまり、ディレイ量調整部112bu8は、ディレイライン112bu9及び112bu10の遅延時間を減らすように、ディレイライン112bu9及び112bu10を制御する。
従って、ディレイ量調整部112bu8は、U相主回路12buの出力電圧VsがハイレベルになるタイミングをU相主回路12auの出力電圧Vmがハイレベルになるタイミングに近づけることができる。これにより、ディレイ量調整部112bu8は、電流Isの環流電流成分を小さくすることができる。
また、図13の表80の第4行目に示すように、ゲート信号G3pがハイレベルからローレベルに変わるときに、電流Isの環流電流成分の増加方向が負方向であり、電流Isの環流電流成分の振幅が負側の閾値を超えた場合というのは、U相主回路12buの出力電圧VsがローレベルになるのがU相主回路12auの出力電圧Vmがローレベルになるよりも早すぎる状態である。従って、ディレイ量調整部112bu8は、ゲート信号G3p及びG3nの位相を遅らせる方向に、ディレイライン112bu9及び112bu10を制御する。つまり、ディレイ量調整部112bu8は、ディレイライン112bu9及び112bu10の遅延時間を増やすように、ディレイライン112bu9及び112bu10を制御する。
従って、ディレイ量調整部112bu8は、U相主回路12buの出力電圧VsがハイレベルになるタイミングをU相主回路12auの出力電圧Vmがハイレベルになるタイミングに近づけることができる。これにより、ディレイ量調整部112bu8は、電流Isの環流電流成分を小さくすることができる。
図14から図17は、U相ゲートタイミング調整回路による効果を説明するタイミング図である。図14では、U相主回路12buの出力電圧91のローレベルからハイレベルへの変化タイミングがU相主回路12auの出力電圧90のローレベルからハイレベルへの変化タイミングよりも遅れており、電流Isの環流電流成分92が負方向に流れている。
ここで、次のスイッチングタイミングで、図15に示すように、U相ゲートタイミング調整回路112buが、ゲート信号G3p及びG3nのタイミングを時間t11だけ進めると、スイッチング素子12bu1及び12bu2のスイッチングタイミングも時間t11だけ進む。これにより、U相ゲートタイミング調整回路112buは、U相主回路12buの出力電圧94のローレベルからハイレベルへの変化タイミングをU相主回路12auの出力電圧93のローレベルからハイレベルへの変化タイミングに近づけることができ、電流Isの環流電流成分95を減少させることができる。
先に説明したように、U相ゲートタイミング調整回路112buは、予め定められた周期で、ゲートタイミング調整動作を繰り返し実行する。従って、ゲートタイミング調整回路112buは、電流Isの環流電流成分95を徐々に小さくさせてゆくことができる。
図16では、U相主回路12buの出力電圧97のローレベルからハイレベルへの変化タイミングがU相主回路12auの出力電圧96のローレベルからハイレベルへの変化タイミングよりも進んでおり、電流Isの環流電流成分98が正方向に流れている。
ここで、次のスイッチングタイミングで、図17に示すように、U相ゲートタイミング調整回路112buが、ゲート信号G3p及びG3nのタイミングを時間t12だけ遅らせると、スイッチング素子12bu1及び12bu2のスイッチングタイミングも時間t12だけ遅れる。これにより、U相ゲートタイミング調整回路112buは、U相主回路12buの出力電圧100のローレベルからハイレベルへの変化タイミングをU相主回路12auの出力電圧99のローレベルからハイレベルへの変化タイミングに近づけることができ、電流Isの環流電流成分101を減少させることができる。
先に説明したように、U相ゲートタイミング調整回路112buは、予め定められた周期で、ゲートタイミング調整動作を繰り返し実行する。従って、U相ゲートタイミング調整回路112buは、電流Isの環流電流成分101を徐々に小さくさせてゆくことができる。
上記した第2の制御によれば、スレーブ半導体電力変換装置1b及び1cは、自半導体電力変換装置の環流電流に基づいて、スイッチング素子12bu1及び12bu2のスイッチングタイミングを調整することができる。これにより、スレーブ半導体電力変換装置1b及び1cは、自半導体電力変換装置の環流電流を抑制することができる。
第2の制御は、スレーブ半導体電力変換装置1b及び1cの各々が、他の半導体電力変換装置と通信することなく、単独で行うことができる。従って、第2の制御は、配線の引き回しなどの制限を生じることがない。また、第2の制御は、半導体電力変換装置間の電流の差分を算出する必要もない。また、第2の制御は、マスタ半導体電力変換装置1aに電流センサを備える必要もない。
第1の制御及び第2の制御の各々は、単独で行っても上記した効果を奏する。但し、第1の制御を単独で行う場合、時刻カウンタ113a及び113bよりも後段の回路にスイッチング素子のスイッチングタイミング同期を損なわせる要因が存在する場合、環流電流を抑制することが困難である。時刻カウンタ113a及び113bよりも後段の回路にスイッチング素子のスイッチングタイミング同期を損なわせる要因が存在する場合とは、例えばスイッチング素子12au1、12au2、12bu1及び12bu2又はこれらのスイッチング素子を駆動する回路に、個体差が存在したり、温度で例示される周囲環境による特性変化が発生したりする場合である。
また、第2の制御を単独で行う場合、スイッチング素子12au1、12au2、12bu1及び12bu2のスイッチングタイミングのずれ量が小さければ、環流電流を徐々に減少させて抑制することができると考えられる。しかしながら、スイッチング素子12au1、12au2、12bu1及び12bu2のスイッチングタイミングのずれ量が大きいと、環流電流を減少させることができずに、環流電流を発散させてしまう可能性が考えられる。
そこで、図1に示す半導体電力変換システム1は、第1の制御と第2の制御との結合により、第1の制御単独又は第2の制御単独では得られない、相乗効果を奏することができる。
つまり、半導体電力変換システム1は、第1の制御により、三角波発生部114aの位相と三角波発生部114bの位相とを同期させることができる。これにより、半導体電力変換システム1は、スイッチング素子12au1、12au2、12bu1及び12bu2のスイッチングタイミングのずれ量を抑制することができる。そして、半導体電力変換システム1は、第2の制御を行うに際して、第1の制御によりスイッチング素子12au1、12au2、12bu1及び12bu2のスイッチングタイミングのずれ量が抑制されているので、環流電流を発散させることなく抑制することができるという相乗効果を奏する。
なお、実施の形態1において、スイッチング素子12au1、12au2、12bu1及び12bu2並びにダイオード12au3、12au4、12bu3及び12bu4は、一般的には珪素(Si:シリコン)を材料とするSi系半導体を用いるのが主流であるが、炭化珪素(SiC:シリコンカーバイド)又は窒化ガリウム(GaN)、ダイヤモンドを材料とするワイドバンドギャップ半導体を用いてもよい。
ワイドバンドギャップ半導体によって形成されたスイッチング素子及びダイオードは、耐電圧性が高く、許容電流密度も高い。従って、より小型化したパワー半導体モジュールが実現でき、小型化されたパワー半導体モジュールを用いることにより、半導体電力変換装置1a、1b及び1cの小型化が可能となる。
また、ワイドバンドギャップ半導体によって形成されたスイッチング素子及びダイオードは、耐熱性も高い。従って、半導体電力変換装置1a、1b及び1cのヒートシンクの放熱フィンの小型化が可能であるので、半導体電力変換装置1a、1b及び1cの一層の小型化が可能になる。
さらに、ワイドバンドギャップ半導体によって形成されたスイッチング素子及びダイオードは、電力損失が低い。従って、スイッチング素子及びダイオードの高効率化が可能であり、ひいてはパワー半導体モジュール及び半導体電力変換装置1a、1b及び1cの高効率化が可能になる。
スイッチング素子12au1、12au2、12bu1及び12bu2並びにダイオード12au3、12au4、12bu3及び12bu4がワイドバンドギャップ半導体によって形成されている場合、スイッチング速度が速いことから、キャリア波の周波数を高くすることができる。従って、ゲートタイミング調整回路112bのタイミング調整分解能を高くすることができ、より高精度な並列運転が可能になる。
また、半導体電力変換装置1a、1b及び1cの各々は、コントローラ111a、遅延回路112a、コントローラ111b及びゲートタイミング調整回路112bを全て備えていても良い。そして、半導体電力変換装置1a、1b及び1cの各々は、機械的スイッチ又は電気的信号などに基づいて、マスタ又はスレーブに設定されても良い。半導体電力変換装置1a、1b及び1cの各々は、マスタに設定されたら、コントローラ111a及び遅延回路112aを動作させる。また、半導体電力変換装置1a、1b及び1cの各々は、スレーブに設定されたら、コントローラ111b及びゲートタイミング調整回路112bを動作させる。
これにより、1種類の半導体電力変換装置を製造するだけで、半導体電力変換システム1を実現することができる。これにより、部品の共通化、製造工程の共通化、在庫管理の容易化を図ることができ、コストダウンを図ることができる。
実施の形態2.
図18は、本発明の実施の形態2の半導体電力変換システムの構成を示す機能ブロック図である。実施の形態2では、マスタ半導体電力変換装置1aの制御装置11aは、コントローラ111aと、ディレイライン116aと、遅延時間調整部117aと、を備える。ディレイライン116aは、スレーブ半導体電力変換装置1b及び1cのディレイライン112bu9及び112bu10(図9参照)と同様に、0からTまでの遅延時間を取り得る。ディレイライン116aの遅延時間は、初期時において、Tの半分に設定されている。
スレーブ半導体電力変換装置1b及び1cのゲートタイミング調整回路112bは、予め定められたタイミング又は予め定められた周期で、自半導体電力変換装置のディレイライン112bu9及び112bu10の遅延時間を通信部133bに送る。通信部133bは、ゲートタイミング調整回路112bから受け取った遅延時間を、通信路Cを介して、マスタ半導体電力変換装置1aの通信部124aに送信する。通信部124aは、スレーブ半導体電力変換装置1b及び1cから夫々受信した遅延時間を遅延時間調整部117aに送る。遅延時間調整部117aは、更に、予め定められたタイミング又は予め定められた周期で、ディレイライン116aから遅延時間を受け取る。
遅延時間調整部117aは、予め定められたタイミング又は予め定められた周期で、マスタ半導体電力変換装置1aのディレイライン116aの遅延時間、並びに、スレーブ半導体電力変換装置1b及び1cの各々のディレイライン112bu9及び112bu10の遅延時間を調整する。
図19は、半導体電力変換装置の遅延時間の一例を示す図である。マスタ半導体電力変換装置1aのディレイライン116aの遅延時間110は、Tの半分に設定されている。スレーブ半導体電力変換装置1bのディレイライン112bu9及び112bu10の遅延時間111は、ゲートタイミング調整回路112bにより、マスタ半導体電力変換装置1aのディレイライン116aの遅延時間110より多く設定されている。スレーブ半導体電力変換装置1cのディレイライン112bu9及び112bu10の遅延時間112は、ゲートタイミング調整回路112bにより、マスタ半導体電力変換装置1aのディレイライン116aの遅延時間110より少なく設定されている。
ここで、スレーブ半導体電力変換装置1bのディレイライン112bu9及び112bu10の遅延時間111は、マスタ半導体電力変換装置1aの遅延時間110より非常に多く設定されている。従って、スレーブ半導体電力変換装置1bのディレイライン112bu9及び112bu10の遅延時間111を更に多くすることが可能なマージン113は、非常に少なくなっている。つまり、スレーブ半導体電力変換装置1bのディレイライン112bu9及び112bu10の調整余地は、非常に少なくなっている。
一方、スレーブ半導体電力変換装置1cのディレイライン112bu9及び112bu10の遅延時間112は、マスタ半導体電力変換装置1aの遅延時間110より僅かに少なく設定されている。従って、スレーブ半導体電力変換装置1cのディレイライン112bu9及び112bu10の遅延時間112を更に少なくすることが可能なマージン114は、マージン113よりも多くなっている。つまり、スレーブ半導体電力変換装置1cのディレイライン112bu9及び112bu10の調整余地は、多くなっている。
そこで、遅延時間調整部117aは、半導体電力変換装置1a、1b及び1cの中の調整マージンが1番少ない半導体電力変換装置の調整マージンが増加するように、半導体電力変換装置1a、1b及び1cの全ての遅延時間を少なくする又は多くする調整幅を決定する。遅延時間調整部117aは、調整幅を決定したら、ディレイライン116aの遅延時間を調整するとともに、調整幅をスレーブ半導体電力変換装置1b及び1cに送信する。スレーブ半導体電力変換装置1b及び1cの各々のゲートタイミング調整回路112bは、マスタ半導体電力変換装置1aから受信した調整幅に基づいて、自半導体電力変換装置のディレイライン112bu9及び112bu10の遅延時間を調整する。
図20は、半導体電力変換装置の調整後の遅延時間の一例を示す図である。先に説明した図19では、スレーブ半導体電力変換装置1bの遅延時間111を更に多くすることが可能なマージン113が非常に少なくなっている。そこで、遅延時間調整部117aは、半導体電力変換装置1a、1b及び1cの各々の遅延時間を少なくするように、調整幅115を決定する。
マスタ半導体電力変換装置1aの遅延時間110は、調整幅115だけ少なくされている。同様に、スレーブ半導体電力変換装置1bの遅延時間111も、調整幅115だけ少なくされている。結果、スレーブ半導体電力変換装置1bの遅延時間111を多くすることが可能なマージン116は、調整前のマージン113に調整幅115を加算したものとなっている。
また、スレーブ半導体電力変換装置1cの遅延時間112も、調整幅115だけ少なくされている。結果、スレーブ半導体電力変換装置1cの遅延時間112を更に少なくすることが可能なマージン117は、調整前のマージン114から調整幅115を減算したものとなっている。
なお、遅延時間調整部117aは、半導体電力変換装置1a、1b及び1cの中の遅延時間が1番多い半導体電力変換装置の遅延時間を更に多くする調整マージンと、半導体電力変換装置1a、1b及び1cの中の遅延時間が1番少ない半導体電力変換装置の遅延時間を更に少なくする調整マージンと、が同じになるように、調整幅を決定することができる。
図20を参照すると、遅延時間調整部117aは、半導体電力変換装置1a、1b及び1cの中の遅延時間が1番多い半導体電力変換装置1bの遅延時間111を更に多くする調整マージン116と、半導体電力変換装置1a、1b及び1cの中の遅延時間が1番少ない半導体電力変換装置1cの遅延時間112を更に少なくする調整マージン117と、が同じになるように、調整幅115を決定することができる。これにより、半導体電力変換装置1a、1b及び1cの中の1番遅延時間が多い半導体電力変換装置の調整余地と、半導体電力変換装置1a、1b及び1cの中の1番遅延時間が少ない半導体電力変換装置の調整余地と、のバランスを取ることができ、半導体電力変換システム1全体の調整余地を大きくすることができる。
1 半導体電力変換システム、1a,1b,1c 半導体電力変換装置、11a,11b,11c 制御装置、12a,12b,12c 主回路、111a,111b コントローラ、112a 遅延回路、112b ゲートタイミング調整回路、113a,113b 時刻カウンタ、114a,114b 三角波発生部、115a,115b PWM変調部、121 同期データ生成部、122 通信時間記憶部、123 誤り検出符号生成部、124 同期データ送信部、131 誤り検出部、132 時刻カウンタ補正処理部、133 同期データ受信部、112au U相遅延回路、112bu U相ゲートタイミング調整回路、12au,12bu U相主回路、112bu1 バンドパスフィルタ、112bu8 ディレイ量調整部、112bu9,112bu10,116a ディレイライン、117a 遅延時間調整部、124a,133b 通信部。

Claims (10)

  1. 1つのマスタの電力変換装置と1つ又は複数のスレーブの電力変換装置とを備え、前記マスタの電力変換装置と前記スレーブの電力変換装置とが同一の電圧指令値をPWM変調することによって得られるゲート信号に基づきPWM電圧を1つの負荷に並列に出力する電力変換システムにおいて、
    前記マスタの電力変換装置及び前記スレーブの電力変換装置の各々は、
    時刻カウンタと、
    前記電圧指令値をPWM変調するためのキャリア波を前記時刻カウンタに同期して発生させるキャリア波発生部と、
    を備え、
    前記マスタの電力変換装置は、
    前記マスタの電力変換装置の前記時刻カウンタが予め定められた値に達したとき、前記スレーブの電力変換装置の前記時刻カウンタの値を前記マスタの電力変換装置の前記時刻カウンタに同期させるための同期データを生成する同期データ生成部と、
    前記同期データを前記スレーブの電力変換装置に送信する通信部と、
    を備え、
    前記スレーブの電力変換装置は、
    前記マスタの電力変換装置から前記同期データを受信する通信部と、
    前記スレーブの電力変換装置の前記通信部が前記同期データを受信完了した時点における前記スレーブの電力変換装置の前記時刻カウンタの値と予め求められている通信時間とに基づいて、前記スレーブの電力変換装置の前記時刻カウンタの値を補正する時刻カウンタ補正処理部と、
    前記スレーブの電力変換装置の出力側の電流を検出する電流センサと、
    前記電流センサによって検出された電流のうちの環流電流成分に基づいて、前記スレーブの電力変換装置の前記ゲート信号の位相を進める又は遅らせるゲートタイミング調整部と、
    を備えることを特徴とする、電力変換システム。
  2. 前記ゲートタイミング調整部は、
    前記ゲート信号がローレベルからハイレベルへ変化するときに、前記スレーブの電力変換装置から外部へ向かう方向の環流電流成分の振幅が予め定められた、前記環流電流成分に許容される正側の閾値を超えていたら、前記ゲート信号の位相を遅らせ、
    前記ゲート信号がローレベルからハイレベルへ変化するときに、外部から前記スレーブの電力変換装置へ向かう方向の環流電流成分の振幅が予め定められた、前記環流電流成分に許容される負側の閾値を超えていたら、前記ゲート信号の位相を進め、
    前記ゲート信号がハイレベルからローレベルへ変化するときに、前記スレーブの電力変換装置から外部へ向かう方向の環流電流成分の振幅が前記正側の閾値を超えていたら、前記ゲート信号の位相を進め、
    前記ゲート信号がハイレベルからローレベルへ変化するときに、外部から前記スレーブの電力変換装置へ向かう方向の環流電流成分の振幅が前記負側の閾値を超えていたら、前記ゲート信号の位相を遅らせることを特徴とする、
    請求項1に記載の電力変換システム。
  3. 前記ゲートタイミング調整部は、
    環流電流成分の振幅が大きくなるほど、前記ゲート信号の位相を進める又は遅らせる幅を増やすことを特徴とする、
    請求項1又は2に記載の電力変換システム。
  4. 前記ゲートタイミング調整部は、
    前記電流センサによって検出された電流のうちのノイズ成分及び負荷へ流れる負荷電流成分を除去し、環流電流成分を通過させるフィルタ回路を備えることを特徴とする、
    請求項1から3のいずれか1項に記載の電力変換システム。
  5. 前記マスタの電力変換装置は、
    前記マスタの電力変換装置の前記ゲート信号の位相を進める又は遅らせるディレイラインと、
    前記マスタの電力変換装置の前記ゲート信号並びに前記1つ又は複数のスレーブの電力変換装置の前記ゲート信号の遅延時間を調整する遅延時間調整部と、
    を備え、
    前記ゲートタイミング調整部は、
    前記スレーブの電力変換装置の前記ゲート信号の位相を進める又は遅らせるディレイラインを備え、
    前記スレーブの電力変換装置の前記通信部は、前記スレーブの電力変換装置の前記ディレイラインの遅延時間を前記遅延時間調整部に送信し、
    前記遅延時間調整部は、全ての前記電力変換装置の前記ディレイラインの遅延時間に基づいて、全ての前記電力変換装置の中の前記ディレイラインの調整マージンが1番少ない前記電力変換装置の調整マージンが増加するように、全ての前記電力変換装置の前記ディレイラインの遅延時間を一律に少なくする又は一律に多くするための調整幅を決定して、前記マスタの電力変換装置が備える前記ディレイラインに設定するとともに、前記1つ又は複数のスレーブの電力変換装置の前記ゲートタイミング調整部に送信することを特徴とする、
    請求項1から4のいずれか1項に記載の電力変換システム。
  6. 前記遅延時間調整部は、全ての前記電力変換装置の中の前記ディレイラインの遅延時間が1番多い前記電力変換装置の前記ディレイラインの遅延時間を更に多くする調整マージンと、全ての前記電力変換装置の中の前記ディレイラインの遅延時間が1番少ない前記半導体電力変換装置の前記ディレイラインの遅延時間を更に少なくする調整マージンと、が同じになるように、調整幅を決定することを特徴とする、
    請求項5に記載の電力変換システム。
  7. 前記電力変換装置の各々は、
    前記ゲート信号に基づいてスイッチングすることによりPWM電圧を出力するスイッチング素子を備え、
    前記スイッチング素子は、ワイドバンドギャップ半導体素子であることを特徴とする、
    請求項1から6のいずれか1項に記載の電力変換システム。
  8. 1つのマスタの電力変換装置と1つ又は複数のスレーブの電力変換装置とを備え、前記マスタの電力変換装置と前記スレーブの電力変換装置とが同一の電圧指令値をPWM変調することによって得られるゲート信号に基づきPWM電圧を1つの負荷に並列に出力する電力変換システムにおいて、
    前記スレーブの電力変換装置の各々は、
    前記ゲート信号に基づいてスイッチングすることによりPWM電圧を出力するスイッチング素子と、
    前記スイッチング素子がスイッチングする第1のスイッチングのときにおいて、前記スレーブの電力変換装置の出力電流の環流電流成分が予め定められた閾値を超えていたら、前記第1のスイッチングの次の第2のスイッチングのときにおいて、前記スレーブの電力変換装置の出力側の電圧が変化するタイミングを前記スレーブの電力変換装置の他の電力変換装置の出力側の電圧が変化するタイミングに近づけるように前記スレーブの電力変換装置の前記ゲート信号を進める又は遅らせる制御を行うことにより、前記第2のスイッチングのときにおける前記スレーブの電力変換装置の出力電流の環流電流成分を前記第1のスイッチングのときにおける前記スレーブの電力変換装置の出力電流の環流電流成分よりも小さくする制御装置と、を備えることを特徴とする、電力変換システム。
  9. 1つのマスタの電力変換装置と同一の電圧指令値をPWM変調することによって得られるゲート信号に基づき、PWM電圧を前記1つのマスタの電力変換装置と並列に1つの負荷に出力する電力変換装置において、
    時刻カウンタと、
    前記電圧指令値をPWM変調するためのキャリア波を前記時刻カウンタに同期して発生させるキャリア波発生部と、
    前記マスタの電力変換装置の時刻カウンタが予め定められた値に達したとき、前記時刻カウンタの値を前記マスタの電力変換装置の前記時刻カウンタに同期させるための同期データを前記マスタの電力変換装置から受信する通信部と、
    前記通信部が前記同期データを受信完了した時点における前記時刻カウンタの値と予め求められている通信時間とに基づいて、前記時刻カウンタの値を補正する時刻カウンタ補正処理部と、
    出力側の電流を検出する電流センサと、
    前記電流センサによって検出された電流のうちの環流電流成分に基づいて、前記ゲート信号の位相を進める又は遅らせるゲートタイミング調整部と、
    を備えることを特徴とする、電力変換装置。
  10. 1つのマスタの電力変換装置と同一の電圧指令値をPWM変調することによって得られるゲート信号に基づき、PWM電圧を前記1つのマスタの電力変換装置と並列に1つの負荷に出力する電力変換装置において、
    前記ゲート信号に基づいてスイッチングすることによりPWM電圧を出力するスイッチング素子と、
    前記スイッチング素子がスイッチングする第1のスイッチングのときにおいて、出力電流の環流電流成分が予め定められた閾値を超えていたら、前記第1のスイッチングの次の第2のスイッチングのときにおいて、出力側の電圧が変化するタイミングを他の電力変換装置の出力側の電圧が変化するタイミングに近づけるように前記ゲート信号を進める又は遅らせる制御を行うことにより、前記第2のスイッチングのときにおける前記出力電流の環流電流成分を前記第1のスイッチングのときにおける前記出力電流の環流電流成分よりも小さくする制御装置と、を備えることを特徴とする、電力変換装置。
JP2015544221A 2014-09-05 2014-09-05 電力変換システム及び電力変換装置 Active JP5901861B1 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/073584 WO2016035217A1 (ja) 2014-09-05 2014-09-05 電力変換システム

Publications (2)

Publication Number Publication Date
JP5901861B1 true JP5901861B1 (ja) 2016-04-13
JPWO2016035217A1 JPWO2016035217A1 (ja) 2017-04-27

Family

ID=55439312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015544221A Active JP5901861B1 (ja) 2014-09-05 2014-09-05 電力変換システム及び電力変換装置

Country Status (4)

Country Link
US (1) US9673736B2 (ja)
JP (1) JP5901861B1 (ja)
CN (1) CN105580264B (ja)
WO (1) WO2016035217A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6260587B2 (ja) * 2015-06-29 2018-01-17 トヨタ自動車株式会社 電源装置
EP3319218A4 (en) * 2015-07-03 2019-03-06 Toshiba Mitsubishi-Electric Industrial Systems Corporation CONTROL DEVICE FOR POWER CONVERTERS
DE102017009836A1 (de) * 2017-03-14 2018-09-20 Diehl Ako Stiftung & Co. Kg Verfahren zum Betrieb eines ersten Umrichters und eines zweiten Umrichters
US10974607B2 (en) * 2017-07-07 2021-04-13 Transportation Ip Holdings, Llc Power system and associated system
US11329573B2 (en) * 2017-08-04 2022-05-10 Panasonic Intellectual Property Management Co., Ltd. Power converter and power conversion system
JP6922576B2 (ja) * 2017-09-13 2021-08-18 株式会社明電舎 インバータシステムの同期制御方法及びインバータシステム
FR3087060B1 (fr) * 2018-10-04 2021-03-19 Safran Electrical & Power Procede de commande d'un ensemble d'onduleurs dans un systeme de generation electrique a onduleurs parallelises
JP6825637B2 (ja) * 2019-02-28 2021-02-03 株式会社安川電機 電力変換装置、電力変換システム及び電力変換方法
US20220334151A1 (en) * 2019-11-05 2022-10-20 Toshiba Mitsubishi-Electric Industrial Systems Corporation Open-phase detection circuit and power conversion apparatus
CN111030514B (zh) * 2019-12-26 2021-10-08 深圳市英威腾电气股份有限公司 一种变频器并机控制***

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07298625A (ja) * 1994-04-19 1995-11-10 Sanyo Electric Co Ltd 系統連系インバータ
JP2008125182A (ja) * 2006-11-09 2008-05-29 Hitachi Industrial Equipment Systems Co Ltd 多重インバータシステム
JP2011036045A (ja) * 2009-08-03 2011-02-17 Daihen Corp 系統連系インバータシステム
WO2011039865A1 (ja) * 2009-09-30 2011-04-07 東芝三菱電機産業システム株式会社 電力変換システム
JP2013118743A (ja) * 2011-12-02 2013-06-13 Fuji Electric Co Ltd 並列インバータ装置
WO2013190609A1 (ja) * 2012-06-18 2013-12-27 三菱電機株式会社 インバータシステム、及び通信方法
JP5398380B2 (ja) * 2009-06-26 2014-01-29 三菱電機株式会社 Pwm半導体電力変換装置システムおよびpwm半導体電力変換装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0815394B2 (ja) 1983-10-31 1996-02-14 株式会社安川電機 多重結合インバータ装置の接続・制御方法
JPH088774B2 (ja) 1987-10-22 1996-01-29 富士電機株式会社 インバータ装置の並列運転回路
JP3226609B2 (ja) * 1992-06-24 2001-11-05 三菱電機株式会社 電力変換器の並列運転制御装置
ATE141727T1 (de) 1992-12-03 1996-09-15 Inventio Ag Verfahren zum parallelschalten von umrichtern anhand von strom-extremwerten
JP3260033B2 (ja) 1994-05-13 2002-02-25 東芝アイティー・コントロールシステム株式会社 Pwmインバータ
US5973485A (en) * 1995-06-28 1999-10-26 Dell Usa, L.P. Method and apparatus for a multiple stage sequential synchronous regulator
JP3580048B2 (ja) 1996-10-03 2004-10-20 富士電機システムズ株式会社 インバータのデッドタイム補償回路
JPH10225142A (ja) 1997-02-06 1998-08-21 Fuji Electric Co Ltd インバータのデッドタイム補償回路
JP2001008489A (ja) 1999-06-22 2001-01-12 Matsushita Electric Ind Co Ltd インバータ装置
JP2001037247A (ja) 1999-07-19 2001-02-09 Toyota Motor Corp 電源装置、この電源装置を備えた機器およびモータ駆動装置並びに電動車輌
JP2002315350A (ja) 2001-04-09 2002-10-25 Fuji Electric Co Ltd 並列接続電力変換器の制御装置
SE0102230L (sv) * 2001-06-25 2002-12-26 Ragnar Joensson Switchkrets med multipla steg
JP4037114B2 (ja) 2002-01-23 2008-01-23 三菱電機株式会社 電力変換装置
US6809678B2 (en) * 2002-10-16 2004-10-26 Perkinelmer Inc. Data processor controlled DC to DC converter system and method of operation
CN101110518B (zh) 2006-07-21 2011-05-11 中兴通讯股份有限公司 三相并联式逆变模块的同步方法
FI118875B (fi) * 2006-09-26 2008-04-15 Vacon Oyj Invertterien rinnankytkentä
JP5483805B2 (ja) * 2007-05-01 2014-05-07 キヤノン株式会社 光走査装置及びそれを用いた画像形成装置
JP5233418B2 (ja) 2008-05-29 2013-07-10 東京電力株式会社 電力変換器の制御装置
US9553501B2 (en) * 2010-12-08 2017-01-24 On-Bright Electronics (Shanghai) Co., Ltd. System and method providing over current protection based on duty cycle information for power converter
US8964432B2 (en) * 2013-01-29 2015-02-24 The Boeing Company Apparatus and method for controlling circulating current in an inverter system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07298625A (ja) * 1994-04-19 1995-11-10 Sanyo Electric Co Ltd 系統連系インバータ
JP2008125182A (ja) * 2006-11-09 2008-05-29 Hitachi Industrial Equipment Systems Co Ltd 多重インバータシステム
JP5398380B2 (ja) * 2009-06-26 2014-01-29 三菱電機株式会社 Pwm半導体電力変換装置システムおよびpwm半導体電力変換装置
JP2011036045A (ja) * 2009-08-03 2011-02-17 Daihen Corp 系統連系インバータシステム
WO2011039865A1 (ja) * 2009-09-30 2011-04-07 東芝三菱電機産業システム株式会社 電力変換システム
JP2013118743A (ja) * 2011-12-02 2013-06-13 Fuji Electric Co Ltd 並列インバータ装置
WO2013190609A1 (ja) * 2012-06-18 2013-12-27 三菱電機株式会社 インバータシステム、及び通信方法

Also Published As

Publication number Publication date
US20160211771A1 (en) 2016-07-21
WO2016035217A1 (ja) 2016-03-10
CN105580264B (zh) 2018-12-21
US9673736B2 (en) 2017-06-06
CN105580264A (zh) 2016-05-11
JPWO2016035217A1 (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
JP5901861B1 (ja) 電力変換システム及び電力変換装置
JP6438018B2 (ja) 並列電力スイッチの同期
US9236814B2 (en) Parallel inverter device and method for control thereof
US9318975B2 (en) Power system controlling and monitoring power semiconductor devices employing two serial signals
JP5850620B2 (ja) 電力コンバータの電力変換を制御するための方法およびコントロールシステム
JP5398380B2 (ja) Pwm半導体電力変換装置システムおよびpwm半導体電力変換装置
US8400791B2 (en) Power layer generation of inverter gate drive signals
US20140203756A1 (en) Inverter system and communication method
US20150357822A1 (en) Inverter electric generator system and inverter electric generator thereof
WO2020195552A1 (ja) サーボ給電システム
CN107852106B (zh) 对并联连接的功率器件的控制
JP5999271B2 (ja) 電源システムおよび電源装置
JP6601668B2 (ja) 電力変換装置
KR101695503B1 (ko) 다중레벨 인버터 제어장치
RU2586870C2 (ru) Схемное устройство с полупроводниковым переключателем и относящейся к нему схемой управления
WO2015180151A1 (zh) 多机变频器的运行控制方法和多机变频器
JP2015023777A (ja) 高圧インバータの2段変化防止装置
JP2009060708A (ja) ダブルコンバータ変換装置の制御方式
JP2023005838A (ja) モータ制御装置、モータ制御方法、及びプログラム
JP6191698B2 (ja) 電源システム
JP2021151066A (ja) 無停電電源システム
JP2019097221A (ja) 電力変換装置
KR20160106435A (ko) Zvs/zcs 제어 방식을 사용한 모듈식 계통 연계형 양방향 전력 변환기

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160308

R150 Certificate of patent or registration of utility model

Ref document number: 5901861

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250