JP5809783B2 - Resin composition for gasket, method for producing the same, and gasket for secondary battery - Google Patents

Resin composition for gasket, method for producing the same, and gasket for secondary battery Download PDF

Info

Publication number
JP5809783B2
JP5809783B2 JP2010142585A JP2010142585A JP5809783B2 JP 5809783 B2 JP5809783 B2 JP 5809783B2 JP 2010142585 A JP2010142585 A JP 2010142585A JP 2010142585 A JP2010142585 A JP 2010142585A JP 5809783 B2 JP5809783 B2 JP 5809783B2
Authority
JP
Japan
Prior art keywords
gasket
group
resin composition
thermoplastic elastomer
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010142585A
Other languages
Japanese (ja)
Other versions
JP2011029167A (en
Inventor
芳野 泰之
泰之 芳野
豊 丸山
豊 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43637650&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP5809783(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2010142585A priority Critical patent/JP5809783B2/en
Publication of JP2011029167A publication Critical patent/JP2011029167A/en
Application granted granted Critical
Publication of JP5809783B2 publication Critical patent/JP5809783B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Description

本発明は、二次電池のガスケットに用いられるガスケット用樹脂組成物、その製造方法及び二次電池用ガスケットに関する。   The present invention relates to a gasket resin composition used for a secondary battery gasket, a method for producing the same, and a secondary battery gasket.

密閉型二次電池は、一般に正極板、負極板及び正極板と負極板との間に配置されたセパレータを含む極板群と、この極板群を浸漬するための電解液とを含む電池素子が一部開口されている電池ケース(外装体)の内部に収容され、電池ケースの開口を封口するための封口体により密閉されている。また、この密閉型二次電池において、例えば正極板と電気的に接続されている正極端子との接点や、負極板と電気的に接続されている負極端子との接点には一対の端子間での短絡防止や電解液の漏出防止のためにガスケットが設けられている。このガスケットには電解液に対する耐電解液性や優れた気密性が要求されている。   A sealed secondary battery generally includes a positive electrode plate, a negative electrode plate, an electrode plate group including a separator disposed between the positive electrode plate and the negative electrode plate, and a battery element including an electrolytic solution for immersing the electrode plate group. Is housed inside a partially opened battery case (exterior body), and is sealed by a sealing body for sealing the opening of the battery case. Further, in this sealed secondary battery, for example, a contact point between the positive electrode terminal electrically connected to the positive electrode plate and a contact point between the negative electrode terminal electrically connected to the negative electrode plate are between a pair of terminals. Gaskets are provided to prevent short circuits and electrolyte leakage. The gasket is required to have resistance to electrolyte and excellent airtightness against the electrolyte.

これらの要求を満たすために、例えば、ガスケット材料として耐湿熱性を向上させたポリアミド樹脂を使用する技術が報告されている(例えば、特許文献1参照。)。しかしながら、耐湿熱性を向上させたポリアミド樹脂の使用により耐湿熱性をわずかに改善することはできるものの、耐電解液性及び気密性の程度はまだ不十分なものであり、近年求められているリチウムイオン二次電池などに代表される密閉型二次電池(蓄電池)に対して要求されるレベルに至るものではなかった。   In order to satisfy these requirements, for example, a technique using a polyamide resin having improved heat and moisture resistance as a gasket material has been reported (for example, see Patent Document 1). However, although the heat and moisture resistance can be slightly improved by using the polyamide resin having improved moisture and heat resistance, the electrolyte solution resistance and the hermeticity are still insufficient. It did not reach the level required for sealed secondary batteries (storage batteries) typified by secondary batteries.

一方、ガスケット材料として、ポリアリーレンスルフィド樹脂又はテトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)樹脂を用いたガスケットが優れた気密性や耐電解液性を有することが報告されている(例えば、特許文献2参照。)。   On the other hand, it has been reported that a gasket using a polyarylene sulfide resin or a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA) resin as a gasket material has excellent airtightness and electrolyte resistance (for example, , See Patent Document 2).

特開2005−78890号公報JP 2005-78890 A 特開平8−321287号公報JP-A-8-32287

しかしながら、前記特許文献2に記載された材料は、内部媒体の圧力に耐えられず、近年求められているリチウムイオン二次電池等の密閉型二次電池(蓄電池)に対して要求されるレベルに至らず、材料としては不十分であった。
すなわち、近年、高い理論容量の活物質を電極物質として用いることによってリチウムイオン電池の高容量化が進んだ反面、充放電時に3〜4倍といった大きな体積変化を示すようになり、内部媒体の圧力が格段に高くなっている。さらには、ハイブリッド自動車(HV)や電気自動車(EV)といった車載用途の比重が高くなった結果、従来よりも高い安全性が要求され、高温・高湿の過酷な条件下でのガスケットの気密性や耐電解液性に対する信頼性が極めて高いレベルで必要となってきている。
このような環境変化のなかで、特に「Li/(CF)n系のコイン型電池」を主として想定し発明された上記樹脂組成物のガスケットでは、気密性及び耐電解質性が不十分なものとなっていた。
本発明が解決しようとする課題は、リチウムイオン二次電池等の密閉型二次電池(蓄電池)に用いられるガスケット用材料として、優れた耐電解液性及び気密性を兼備したガスケット用樹脂組成物及び二次電池用ガスケットを提供することである。
However, the material described in Patent Document 2 cannot withstand the pressure of the internal medium, and is at a level required for a sealed secondary battery (storage battery) such as a lithium ion secondary battery that has been required in recent years. However, it was insufficient as a material.
That is, in recent years, the use of an active material having a high theoretical capacity as an electrode material has led to an increase in capacity of the lithium ion battery, but on the other hand, a large volume change such as 3 to 4 times during charge / discharge has been shown. Is much higher. Furthermore, as a result of higher specific gravity for in-vehicle applications such as hybrid vehicles (HV) and electric vehicles (EV), higher safety is required than before, and the tightness of gaskets under severe conditions of high temperature and high humidity. And a high level of reliability with respect to electrolyte resistance.
Among such environmental changes, the gasket of the above resin composition invented mainly assuming “Li / (CF) n-based coin-type battery” has insufficient airtightness and electrolyte resistance. It was.
The problem to be solved by the present invention is to provide a resin composition for a gasket having both excellent electrolyte solution resistance and airtightness as a gasket material used in a sealed secondary battery (storage battery) such as a lithium ion secondary battery. And providing a gasket for a secondary battery.

本発明者らは、上記課題を解決すべく鋭意研究した結果、熱可塑性エラストマー及び特定範囲のピーク分子量を有したポリアリーレンスルフィド樹脂(以下、「ポリアリーレンスルフィド」は「PAS」と略記することがある。)を含有した樹脂組成物が密閉型二次電池用ガスケットとして好ましい応力緩和特性を示し、当該樹脂組成物を用いた密閉型二次電池用ガスケットが優れた耐電解液性及び気密性を呈することを見出し、本発明を完成するに至った。   As a result of diligent research to solve the above-mentioned problems, the present inventors have abbreviated a thermoplastic elastomer and a polyarylene sulfide resin having a peak molecular weight in a specific range (hereinafter, “polyarylene sulfide” is abbreviated as “PAS”). The resin composition containing the present invention exhibits preferable stress relaxation characteristics as a gasket for a sealed secondary battery, and the sealed secondary battery gasket using the resin composition has excellent electrolyte resistance and airtightness. The present invention has been found and the present invention has been completed.

すなわち、本発明は、正極、負極、封口体、ガスケット、セパレータ及び電解液から構成される二次電池に用いられるガスケットであって、前記ガスケットが熱可塑性エラストマー(A)及びゲル浸透クロマトグラフィーにより求められる分子量分布のピーク分子量として28,000〜100,000であるポリアリーレンスルフィド樹脂(B)を含有するガスケット用樹脂組成物からなることを特徴とする二次電池用ガスケットを提供する。
また本発明は、正極、負極、封口体、ガスケット、セパレータ及び電解液から構成される二次電池に用いられるガスケット用樹脂組成物であって、熱可塑性エラストマー(A)及びゲル浸透クロマトグラフィーにより求められる分子量分布のピーク分子量として28,000〜100,000であるポリアリーレンスルフィド樹脂(B)を含有することを特徴とするガスケット用樹脂組成物を提供する。
また本発明は、正極、負極、封口体、ガスケット、セパレータ及び電解液から構成される二次電池に用いられるガスケット用樹脂組成物の製造方法であって、熱可塑性エラストマー(A)及びゲル浸透クロマトグラフィーにより求められる分子量分布のピーク分子量として28,000〜100,000であるポリアリーレンスルフィド樹脂(B)を混合することを特徴とするガスケット用樹脂組成物の製造方法を提供する。
That is, the present invention is a gasket used for a secondary battery composed of a positive electrode, a negative electrode, a sealing body, a gasket, a separator, and an electrolytic solution, and the gasket is obtained by thermoplastic elastomer (A) and gel permeation chromatography. Provided is a gasket for a secondary battery comprising a resin composition for a gasket containing a polyarylene sulfide resin (B) having a peak molecular weight of 28,000 to 100,000 as a molecular weight distribution.
Moreover, this invention is a resin composition for gaskets used for the secondary battery comprised from a positive electrode, a negative electrode, a sealing body, a gasket, a separator, and electrolyte solution, Comprising: It calculates | requires by thermoplastic elastomer (A) and gel permeation chromatography. A gasket resin composition comprising a polyarylene sulfide resin (B) having a molecular weight distribution peak molecular weight of 28,000 to 100,000 is provided.
The present invention also relates to a method for producing a resin composition for a gasket used in a secondary battery composed of a positive electrode, a negative electrode, a sealing body, a gasket, a separator, and an electrolyte solution, the thermoplastic elastomer (A) and a gel permeation chromatography. Provided is a method for producing a resin composition for a gasket, which comprises mixing a polyarylene sulfide resin (B) having a peak molecular weight of 28,000 to 100,000 as a molecular weight distribution determined by chromatography.

本発明のガスケット用樹脂組成物は、耐湿熱性及び耐電解液性に優れ、一定歪み下で圧縮されても応力緩和が起こりにくく、ガスケットとして重要な要求特性である気密性を長期間にわたって維持することができる。よって、本発明のガスケット用樹脂組成物は、ノート型パソコン、携帯電話、ビデオカメラ等の電気機器用途、あるいはハイブリッド自動車(HV)、電気自動車(EV)等の車載用途に用いられる二次電池、特に高容量リチウムイオン二次電池用のガスケット等に特に有用である。従って、本発明のガスケットは、耐湿熱性及び耐電解液性に優れ、一定歪み下で圧縮されても応力緩和が起こりにくく、長期間にわたって気密性を維持することができる。   The resin composition for gaskets of the present invention is excellent in resistance to moist heat and electrolyte, and is less susceptible to stress relaxation even when compressed under a constant strain, and maintains airtightness, which is an important required characteristic for a gasket, over a long period of time. be able to. Therefore, the resin composition for gaskets of the present invention is a secondary battery used for electric equipment applications such as notebook computers, mobile phones, video cameras, or in-vehicle applications such as hybrid vehicles (HV) and electric vehicles (EV), It is particularly useful for gaskets for high capacity lithium ion secondary batteries. Therefore, the gasket of the present invention is excellent in heat and moisture resistance and electrolytic solution resistance, and even when compressed under a constant strain, stress relaxation hardly occurs and airtightness can be maintained over a long period of time.

図1は圧縮応力緩和試験に用いた試験片を示す模式図である。FIG. 1 is a schematic diagram showing a test piece used in a compression stress relaxation test.

本発明で用いる熱可塑性エラストマー(A)は、PAS樹脂(B)を混練する温度で、溶融し混合分散可能であることが好ましい。その点から、融点が300℃以下であり、室温でゴム弾性を有するエラストマーが好ましい。また、耐熱性、混合の容易さ、耐衝撃性の向上の点でポリオレフィン系エラストマー類又はニトリル系エラストマー類が好ましい。   The thermoplastic elastomer (A) used in the present invention is preferably meltable, mixed and dispersible at the temperature at which the PAS resin (B) is kneaded. From this point, an elastomer having a melting point of 300 ° C. or less and having rubber elasticity at room temperature is preferable. In addition, polyolefin elastomers or nitrile elastomers are preferable in terms of improving heat resistance, ease of mixing, and impact resistance.

前記ポリオレフィン系エラストマーとしては、水酸基、カルボキシル基、アミノ基、メルカプト基、エポキシ基、酸無水物基、イソシアネート基、エステル基、ビニル基等の官能基を有するものが好ましい、   As the polyolefin elastomer, those having a functional group such as hydroxyl group, carboxyl group, amino group, mercapto group, epoxy group, acid anhydride group, isocyanate group, ester group, vinyl group are preferable.

さらに、これらの中でも、酸無水物、酸、エステル等のカルボン酸由来の官能基又はエポキシ基が特に好ましい。   Further, among these, a functional group derived from a carboxylic acid such as an acid anhydride, an acid, or an ester, or an epoxy group is particularly preferable.

前記ポリオレフィン系エラストマーとしては、例えば、α−オレフィン類と前記官能基を有するビニル重合性化合物類との共重合で得ることができる。前記α−オレフィン類としては、例えば、エチレン、プロピレン、ブテン−1等の炭素数2〜8のα−オレフィン類等が挙げられる。また、前記官能基を有するビニル重合性化合物類としては、例えば、アクリル酸、メタクリル酸、アクリル酸アルキルエステル、メタクリル酸アルキルエステル類等のα,β―不飽和カルボン酸類及びそのアルキルエステル類、マレイン酸、フマル酸、イタコン酸、その他炭素原子数4〜10の不飽和ジカルボン酸とそのモノ及びジエステル類、及びその酸無水物等のα,β―不飽和ジカルボン酸及びその無水物、(メタ)アクリル酸グリシジル等が挙げられる。   The polyolefin elastomer can be obtained, for example, by copolymerization of α-olefins and vinyl polymerizable compounds having the functional group. Examples of the α-olefins include α-olefins having 2 to 8 carbon atoms such as ethylene, propylene, and butene-1. Examples of the vinyl polymerizable compounds having the functional group include α, β-unsaturated carboxylic acids such as acrylic acid, methacrylic acid, alkyl acrylate, alkyl methacrylate, and alkyl esters thereof, Α, β-unsaturated dicarboxylic acids and anhydrides thereof such as acids, fumaric acid, itaconic acid, other unsaturated dicarboxylic acids having 4 to 10 carbon atoms, mono- and diesters thereof, and acid anhydrides thereof, (meth) Examples thereof include glycidyl acrylate.

これらの官能基類を複数個、同時に含有した共重合体を用いることができる。これらの好ましい例としては、α−オレフィン類、無水マレイン酸、(メタ)アクリル酸グリシジル、(メタ)アクリル酸アルキルエステル等のモノマーを重合させた三元共重合体が挙げられる。   A copolymer containing a plurality of these functional groups at the same time can be used. Preferable examples thereof include terpolymers obtained by polymerizing monomers such as α-olefins, maleic anhydride, glycidyl (meth) acrylate, and alkyl (meth) acrylate.

前記ニトリル系エラストマーとしては、例えば、アクリロニトリル、メタクリロニトリル等の様な不飽和結合を有するニトリルと共役二重結合を有するブタジエン、メチルブタジエン等との共重合により得ることができる。この共重合体は二重結合の一部又は全部を水素添加して耐熱性を高めたタイプはさらに好ましい。   The nitrile elastomer can be obtained, for example, by copolymerization of a nitrile having an unsaturated bond such as acrylonitrile or methacrylonitrile with butadiene or methylbutadiene having a conjugated double bond. This copolymer is more preferably of a type in which part or all of the double bonds are hydrogenated to improve heat resistance.

これらの官能基を有する熱可塑性エラストマー(A)は、PAS樹脂(B)との分散性が良好になり、均一混合された樹脂組成物を得ることが容易になり、耐電解液性及び気密性が向上する。   The thermoplastic elastomer (A) having these functional groups has good dispersibility with the PAS resin (B), makes it easy to obtain a uniformly mixed resin composition, and is resistant to electrolyte and airtight. Will improve.

より具体的な好ましい熱可塑性エラストマー(A)としては、エチレン−メタクリル酸グリシジル−アクリル酸メチル共重合体、エチレン−無水マレイン酸−アクリル酸エチル共重合体等が挙げられる。   More specific preferable thermoplastic elastomers (A) include ethylene-glycidyl methacrylate-methyl acrylate copolymer, ethylene-maleic anhydride-ethyl acrylate copolymer, and the like.

また、熱可塑性エラストマー(A)の配合量は、熱可塑性エラストマー(A)及びポリアリーレンスルフィド樹脂(B)の合計100質量部に対して1〜30質量部であることが好ましく、4〜20質量部であることがより好ましい。   Moreover, it is preferable that the compounding quantity of a thermoplastic elastomer (A) is 1-30 mass parts with respect to a total of 100 mass parts of a thermoplastic elastomer (A) and a polyarylene sulfide resin (B), and 4-20 masses. More preferably, it is a part.

次いで、本発明で用いるポリアリーレンスルフィド樹脂(B)は、ゲル浸透クロマトグラフィーを用いた測定において分子量28,000〜100,000の範囲にピーク分子量を有するものであり、より好ましくは30,000〜70,000の範囲にピーク分子量を有するものである。ピーク分子量が28,000未満の場合、靱性不足となるため、一定歪み下での圧縮応力緩和の状況下でクラック等が発生して、気密性が保てない問題がある。一方、ピーク分子量が100,000を超える場合は押出機によるペレット化及び射出成形が困難となる問題がある。   Next, the polyarylene sulfide resin (B) used in the present invention has a peak molecular weight in the range of 28,000 to 100,000 in the measurement using gel permeation chromatography, and more preferably 30,000 to It has a peak molecular weight in the range of 70,000. When the peak molecular weight is less than 28,000, the toughness is insufficient, so that cracks and the like occur under the condition of relaxation of compressive stress under a constant strain, and there is a problem that the airtightness cannot be maintained. On the other hand, when the peak molecular weight exceeds 100,000, there is a problem that pelletization and injection molding by an extruder are difficult.

前記ポリアリーレンスルフィド樹脂(B)の樹脂構造は、芳香族環と硫黄原子とが結合した構造を繰り返し単位として有するものであり、具体的には、下記構造式(1)で表される構造部位を繰り返し単位とする樹脂である。   The resin structure of the polyarylene sulfide resin (B) has a structure in which an aromatic ring and a sulfur atom are bonded as a repeating unit, and specifically, a structural site represented by the following structural formula (1) Is a resin having a repeating unit.

Figure 0005809783
(式中、R及びRは、それぞれ独立的に水素原子、炭素原子数1〜4のアルキル基、ニトロ基、アミノ基、フェニル基、メトキシ基、エトキシ基を表す。)
Figure 0005809783
(In the formula, R 1 and R 2 each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a nitro group, an amino group, a phenyl group, a methoxy group, or an ethoxy group.)

ここで、前記構造式(1)で表される構造部位は、特に該式中のR及びRは、前記PAS樹脂(B)の機械的強度の点から水素原子であることが好ましく、その場合、下記構造式(2)で表されるパラ位で結合するもの、及び下記構造式(3)で表されるメタ位で結合するものが挙げられる。 Here, in the structural part represented by the structural formula (1), it is particularly preferable that R 1 and R 2 in the formula are hydrogen atoms from the viewpoint of the mechanical strength of the PAS resin (B), In that case, what couple | bonds in the para position represented by following Structural formula (2) and what couple | bonds in the meta position represented by following Structural formula (3) are mentioned.

Figure 0005809783
Figure 0005809783

これらの中でも、特に繰り返し単位中の芳香族環に対する硫黄原子の結合は前記構造式(2)で表されるパラ位で結合した構造であることが前記PAS樹脂(B)の耐熱性や結晶性の面で好ましい。   Among these, the heat resistance and crystallinity of the PAS resin (B) include that the bond of the sulfur atom to the aromatic ring in the repeating unit is a structure bonded at the para position represented by the structural formula (2). It is preferable in terms of

また、前記PAS樹脂(B)は、前記構造式(1)で表される構造部位のみならず、下記の構造式(4)〜(7)で表される構造部位を、前記構造式(1)で表される構造部位との合計の30モル%以下で含んでいてもよい。特に本発明では上記構造式(4)〜(7)で表される構造部位は10モル%以下であることが、PAS樹脂(B)の耐熱性、機械的強度の点から好ましい。前記PAS樹脂(B)中に、上記構造式(4)〜(7)で表される構造部位を含む場合、それらの結合様式としては、ランダム共重合体、ブロック共重合体のいずれであってもよい。   Further, the PAS resin (B) has not only the structural portion represented by the structural formula (1) but also the structural portion represented by the following structural formulas (4) to (7). ) And 30 mol% or less of the total with the structural site represented by. In particular, in the present invention, the structural sites represented by the structural formulas (4) to (7) are preferably 10 mol% or less from the viewpoint of heat resistance and mechanical strength of the PAS resin (B). In the case where the PAS resin (B) includes a structural portion represented by the structural formulas (4) to (7), the bonding mode thereof is either a random copolymer or a block copolymer. Also good.

Figure 0005809783
Figure 0005809783

また、前記PAS樹脂(B)は、その分子構造中に、下記構造式(8)で表される3官能性の構造部位、あるいは、ナフチルスルフィド結合などを有していてもよいが、他の構造部位との合計モル数に対して、1モル%以下であること、特に実質的には含まれないことがPAS樹脂(B)中の塩素原子含有量低減の観点から好ましい。   The PAS resin (B) may have a trifunctional structural site represented by the following structural formula (8) or a naphthyl sulfide bond in the molecular structure. From the viewpoint of reducing the chlorine atom content in the PAS resin (B), it is preferably 1 mol% or less, particularly not substantially contained, relative to the total number of moles with the structural site.

Figure 0005809783
Figure 0005809783

前記PAS樹脂(B)は、例えば、下記(1)〜(4)の方法によって製造することができる。
(1)N−メチルピロリドン、ジメチルアセトアミドなどのアミド系溶剤やスルホラン等のスルホン系溶媒中で硫化ナトリウムとp−ジクロロベンゼンを反応させる方法。
(2)p−ジクロロベンゼンを硫黄と炭酸ソーダの存在下で重合させる方法。
(3)p−ジクロロベンゼンを極性溶媒中で硫化ナトリウムあるいは水硫化ナトリウムと水酸化ナトリウム又は硫化水素と水酸化ナトリウムの存在下で重合させる方法。
(4)p−クロロチオフェノールの自己縮合による方法。
The PAS resin (B) can be produced, for example, by the following methods (1) to (4).
(1) A method in which sodium sulfide and p-dichlorobenzene are reacted in an amide solvent such as N-methylpyrrolidone or dimethylacetamide or a sulfone solvent such as sulfolane.
(2) A method of polymerizing p-dichlorobenzene in the presence of sulfur and sodium carbonate.
(3) A method of polymerizing p-dichlorobenzene in a polar solvent in the presence of sodium sulfide or sodium hydrosulfide and sodium hydroxide or hydrogen sulfide and sodium hydroxide.
(4) A method by self-condensation of p-chlorothiophenol.

これらの中でも(1)のN−メチルピロリドン、ジメチルアセトアミドなどのアミド系溶剤やスルホラン等のスルホン系溶媒中で硫化ナトリウムとp−ジクロロベンゼンを反応させる方法が反応の制御が容易であり、工業的生産性に優れる点から好ましい。   Among these, the method of reacting sodium sulfide and p-dichlorobenzene in an amide solvent such as N-methylpyrrolidone or dimethylacetamide or a sulfolane solvent such as sulfolane in (1) is easy to control the reaction. It is preferable from the viewpoint of excellent productivity.

また、リニアかつ高分子量のPAS樹脂(B)を工業的に効率よく製造できる点から前記方法(1)のなかでも、特に、固形のアルカリ金属硫化物、ジクロロベンゼン、アルカリ金属水硫化物、有機酸アルカリ金属塩を必須成分とする反応スラリーを調整し、これを加熱して不均一系で重合を行う方法が特に好ましい。かかる重合方法は具体的には、下記の2つの工程を必須の製造工程とする方法が生産性の点から好ましい。   Among the methods (1), linear and high molecular weight PAS resin (B) can be produced industrially and efficiently. Particularly, solid alkali metal sulfide, dichlorobenzene, alkali metal hydrosulfide, organic Particularly preferred is a method in which a reaction slurry containing an acid alkali metal salt as an essential component is prepared and heated to carry out polymerization in a heterogeneous system. Specifically, such a polymerization method is preferably a method in which the following two steps are essential production steps from the viewpoint of productivity.

[工程1]
含水アルカリ金属硫化物、又は、含水アルカリ金属水硫化物及びアルカリ金属水酸化物と、N−メチルピロリドンと、非加水分解性有機溶媒とを、脱水させながら反応させて、スラリー(I)を製造する工程。
[工程2]
次いで、前記スラリー(I)中、ジクロロベンゼンと、前記アルカリ金属水硫化物と、前記N−メチルピロリドンの加水分解物のアルカリ金属塩とを、反応させて重合を行う工程。
[Step 1]
Hydrous alkali metal sulfide, or hydrous alkali metal hydrosulfide and alkali metal hydroxide, N-methylpyrrolidone, and non-hydrolyzable organic solvent are reacted while being dehydrated to produce slurry (I). Process.
[Step 2]
Next, in the slurry (I), dichlorobenzene, the alkali metal hydrosulfide, and the alkali metal salt of the hydrolyzate of N-methylpyrrolidone are reacted to perform polymerization.

ここで用いる含水アルカリ金属硫化物は、例えば硫化リチウム、硫化ナトリウム、硫化カリウム、硫化ルビジウム、硫化セシウム等の化合物の液状又は固体状の含水物が挙げられ、その固形分濃度は10〜80質量%、特に35〜65質量%であることが好ましい。   Examples of the hydrated alkali metal sulfide used here include liquid or solid hydrates of compounds such as lithium sulfide, sodium sulfide, potassium sulfide, rubidium sulfide, and cesium sulfide, and the solid content concentration thereof is 10 to 80% by mass. In particular, it is preferably 35 to 65% by mass.

また、前記含水アルカリ金属水硫化物としては、例えば、水硫化リチウム、水硫化ナトリウム、水硫化カリウム、水硫化ルビジウム及び水硫化セシウム等の化合物の液状又は固体状の含水物が挙げられ、その固形分濃度は10〜80質量%であることが好ましい。これらの中でも水硫化リチウムの含水物と水硫化ナトリウムの含水物が好ましく、特に水硫化ナトリウムの含水物が好ましい。   Examples of the hydrous alkali metal hydrosulfide include liquid or solid hydrates of compounds such as lithium hydrosulfide, sodium hydrosulfide, potassium hydrosulfide, rubidium hydrosulfide, and cesium hydrosulfide. The partial concentration is preferably 10 to 80% by mass. Among these, hydrated lithium hydrosulfide and hydrated sodium hydrosulfide are preferable, and hydrated sodium hydrosulfide is particularly preferable.

さらに、前記アルカリ金属水酸化物としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム、及びこれらの水溶液が挙げられる。なお、該水溶液を用いる場合には、濃度20質量%以上の水溶液であることが工程1の脱水処理が容易である点から好ましい。これらの中でも特に水酸化リチウムと水酸化ナトリウム及び水酸化カリウムが好ましく、特に水酸化ナトリウムが好ましい。   Furthermore, examples of the alkali metal hydroxide include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, and aqueous solutions thereof. In addition, when using this aqueous solution, it is preferable that it is aqueous solution with a density | concentration of 20 mass% or more from the point that the spin-drying | dehydration process of the process 1 is easy. Among these, lithium hydroxide, sodium hydroxide, and potassium hydroxide are particularly preferable, and sodium hydroxide is particularly preferable.

また、前記PAS樹脂(B)のピーク分子量及び分子量分布(Mw/Mn)は、ゲル浸透クロマトグラフィーを用いて、次の条件で、6種類の単分散ポリスチレンを校正に用いて、測定することができる。   In addition, the peak molecular weight and molecular weight distribution (Mw / Mn) of the PAS resin (B) can be measured using gel permeation chromatography using six types of monodisperse polystyrene for calibration under the following conditions. it can.

[ゲル浸透クロマトグラフィーによる測定条件]
装置:超高温ポリマー分子量分布測定装置(株式会社センシュー科学製「SSC−7000」)
カラム:UT−805L(昭和電工株式会社製)
カラム温度:210℃
溶媒:1−クロロナフタレン
測定方法:UV検出器(360nm)
で6種類の単分散ポリスチレンを校正に用いて分子量分布とピーク分子量を測定する。
[Measurement conditions by gel permeation chromatography]
Apparatus: Ultra-high temperature polymer molecular weight distribution measuring apparatus (“SSC-7000” manufactured by Senshu Scientific Co., Ltd.)
Column: UT-805L (made by Showa Denko KK)
Column temperature: 210 ° C
Solvent: 1-chloronaphthalene Measurement method: UV detector (360 nm)
The molecular weight distribution and peak molecular weight are measured using 6 types of monodisperse polystyrene for calibration.

この方法により測定された分子量が、28,000〜100,000の範囲にピークを有するものが好ましく、30,000〜70,000の範囲にピークを有するものがより好ましい。   The molecular weight measured by this method preferably has a peak in the range of 28,000 to 100,000, and more preferably has a peak in the range of 30,000 to 70,000.

また、前記PAS樹脂(B)の非ニュートン指数は、次の条件で測定することができる。すなわち、前記PAS樹脂(B)をキャピラリーレオメーターにて、温度300℃の条件下、直径1mm、長さ40mmのダイスを用いて100〜1000( sec−1 )の剪断速度に対する剪断応力を測定し、これらの対数プロットした傾きから計算した値である。
本発明で用いるPAS樹脂(B)は、この方法により測定された非ニュートン指数が、1.0〜1.7のものを用いることができるが、特に、1.10〜1.70のものを用いることが好ましい。
The non-Newtonian index of the PAS resin (B) can be measured under the following conditions. That is, the PAS resin (B) was measured with a capillary rheometer at a temperature of 300 ° C. using a die having a diameter of 1 mm and a length of 40 mm for a shear rate of 100 to 1000 (sec −1 ). These are values calculated from the slopes of these logarithmic plots.
As the PAS resin (B) used in the present invention, those having a non-Newtonian index measured by this method of 1.0 to 1.7 can be used, and in particular, those of 1.10 to 1.70. It is preferable to use it.

以上詳述したPAS樹脂(B)は、さらに、残存金属イオン量を低減して耐湿特性を改善するとともに、重合の際副生する低分子量不純物の残存量を低減できる点から、該PAS樹脂(B)を製造した後に、酸で処理し、次いで、水で洗浄されたものであることが好ましい。   The PAS resin (B) described in detail above further reduces moisture content by reducing the amount of residual metal ions, and further reduces the residual amount of low molecular weight impurities by-produced during polymerization. B) is preferably prepared, treated with acid and then washed with water.

ここで使用し得る酸は、酢酸、塩酸、硫酸、リン酸、珪酸、炭酸、プロピル酸がPAS樹脂(B)の分解することなく残存金属イオン量を効率的に低減できる点から好ましく、なかでも酢酸、塩酸が好ましい。   The acid that can be used here is preferable in that acetic acid, hydrochloric acid, sulfuric acid, phosphoric acid, silicic acid, carbonic acid, and propyl acid can efficiently reduce the amount of residual metal ions without decomposition of the PAS resin (B). Acetic acid and hydrochloric acid are preferred.

酸処理の方法は、酸又は酸水溶液にPAS樹脂を浸漬する方法が挙げられる。この際、必要に応じさらに攪拌又は加熱してもよい。   Examples of the acid treatment method include a method of immersing the PAS resin in an acid or an aqueous acid solution. At this time, further stirring or heating may be performed as necessary.

ここで、前記酸処理の具体的方法は、酢酸を用いる場合を例に挙げれば、まずpH4の酢酸水溶液を80〜90℃に加熱し、その中にPAS樹脂(B)を浸漬し、20〜40分間攪拌する方法が挙げられる。   Here, as a specific method of the acid treatment, for example, when acetic acid is used, first, an aqueous acetic acid solution having a pH of 4 is heated to 80 to 90 ° C., and the PAS resin (B) is immersed in the solution. The method of stirring for 40 minutes is mentioned.

このようにして酸処理されたPAS樹脂(B)は、残存している酸又は塩等を物理的に除去するため、次いで、水又は温水で数回洗浄する。このときに使用される水としては、蒸留水又は脱イオン水であることが好ましい。   The acid-treated PAS resin (B) is then washed several times with water or warm water in order to physically remove the remaining acid or salt. The water used at this time is preferably distilled water or deionized water.

また、前記酸処理に供せられるPAS樹脂(B)は、粉粒体であることが好ましく、具体的には、ペレットのような粒状体でも、重合した後のスラリー状態体にあるものでもよい。   Further, the PAS resin (B) to be subjected to the acid treatment is preferably a granular material, and specifically, it may be a granular material such as a pellet or a slurry state material after polymerization. .

さらに、本発明のガスケット用樹脂組成物は、図1に示すような圧縮応力緩和用試験片(試験片厚さ3mm、圧縮面側表面積60mm)に成形した後、恒温槽を備えたオートグラフによって10%歪み下(温度条件:23℃)で圧縮応力緩和を測定した際の100時間後における圧縮応力の絶対値は、10MPa以上である。通常、圧縮応力は経時的に大きく低下するが、本発明においては、PAS樹脂(B)及び熱可塑性エラストマー(A)を含有する樹脂組成物を用いることにより、現行ガスケットとして用いられているPFAよりも圧縮応力が大きいため、二次電池に必要とされる気密性(シール性)を十分に維持することができる。 Furthermore, the resin composition for gaskets of the present invention is formed into a compression stress relaxation test piece (test piece thickness 3 mm, compression surface side surface area 60 mm 2 ) as shown in FIG. Thus, the absolute value of the compressive stress after 100 hours when compressive stress relaxation is measured under 10% strain (temperature condition: 23 ° C.) is 10 MPa or more. Usually, the compressive stress greatly decreases with time, but in the present invention, by using a resin composition containing a PAS resin (B) and a thermoplastic elastomer (A), the PFA used as a current gasket is used. However, since the compressive stress is large, the airtightness (sealability) required for the secondary battery can be sufficiently maintained.

また、本発明のガスケット用樹脂組成物は、オートグラフによる引張試験(ASTM D638)において、引張破断伸びが10%以上であるものがより好ましい。引張破断伸びが10%以上であれば、さらに高い靱性を有することになり、靱性不足によるクラック等の発生を防止でき、ガスケットの気密性を維持することができる。   The resin composition for gaskets of the present invention is more preferably one having a tensile elongation at break of 10% or more in an autograph tensile test (ASTM D638). If the tensile elongation at break is 10% or more, it will have higher toughness, cracks due to insufficient toughness and the like can be prevented, and the gas tightness of the gasket can be maintained.

また、本発明のガスケット用樹脂組成物に、組成物としてシリコーン化合物(C)を配合すると、引張破断伸びが向上するため、より信頼性の高い気密性を維持できるため好ましい。このシリコーン化合物(C)としては、主鎖にシロキサン結合を有する下記一般式(9)で表されるポリオルガノシロキサンが好ましい。   In addition, it is preferable to add the silicone compound (C) as a composition to the resin composition for gaskets of the present invention, because the tensile elongation at break is improved, so that more reliable airtightness can be maintained. The silicone compound (C) is preferably a polyorganosiloxane represented by the following general formula (9) having a siloxane bond in the main chain.

R−〔SiR−O〕−R (9)
(式中、Rは水素原子、有機基を表し、nは2以上の整数である。)
R- [SiR 2 -O] n -R (9)
(In the formula, R represents a hydrogen atom or an organic group, and n is an integer of 2 or more.)

これらの中でも、特に上記一般式(9)中のRが総てメチル基であるポリジメチルシロキサンが好ましく、該ポリジメチルシロキサンのメチル基の一部を、水素原子又はその他の置換基に置き換えたものも好ましい。   Among these, polydimethylsiloxane in which R in the above general formula (9) is all methyl groups is preferable, and a part of the methyl groups of the polydimethylsiloxane is replaced with hydrogen atoms or other substituents. Is also preferable.

ここで、その他の置換基としては、炭素原子数2以上のアルキル基、アリール基、ハロゲン化アルキル基、シリルアルキル基、ポリオキシアルキレン基及び反応性官能基が挙げられ、複数のメチル基を置換する場合は、これらの中から、互いに同一あるいは異なるものを選択可能である。   Examples of other substituents include alkyl groups having 2 or more carbon atoms, aryl groups, halogenated alkyl groups, silylalkyl groups, polyoxyalkylene groups, and reactive functional groups. In this case, the same or different ones can be selected from these.

炭素原子数2以上のアルキル基としては、例えばエチル基、プロピル基、ブチル基、オクチル基、ドデシル基等が挙げられる。アリール基としては例えば、フェニル基、トリル基、ナフチル基等が挙げられる。   Examples of the alkyl group having 2 or more carbon atoms include an ethyl group, a propyl group, a butyl group, an octyl group, and a dodecyl group. Examples of the aryl group include a phenyl group, a tolyl group, and a naphthyl group.

ハロゲン化アルキル基としては例えば、フルオロプロピル基、クロロプロピル基等が挙げられる。   Examples of the halogenated alkyl group include a fluoropropyl group and a chloropropyl group.

シリルアルキル基は、下記一般式(10)で表されるものがその代表的な具体例として挙げられる。   A typical example of the silylalkyl group is represented by the following general formula (10).

−(CH−Si(OCH (10)
(式中、nは1以上の整数である。)
- (CH 2) n -Si ( OCH 3) 3 (10)
(In the formula, n is an integer of 1 or more.)

ポリオキシアルキレン基は、下記一般式(11)で表されるものがその具体例として挙げられる。   Specific examples of the polyoxyalkylene group include those represented by the following general formula (11).

−〔CH−O−〔CO〕−〔CO〕−R (11)
(式中、k、l、mは、0又は正の整数であり、l、mは同時に0でない整数をとる。また、Rは水素原子、アルキル基、アリール基、ハロゲン化アルキル基、シリルアルキル基及び後述する反応性官能基からなる群から選ばれる1種以上の置換基である。)
- [CH 2] k -O- [C 2 H 4 O] l - [C 3 H 6 O] m -R 3 (11)
(In the formula, k, l and m are 0 or a positive integer, and l and m are simultaneously non-zero integers. R 3 is a hydrogen atom, an alkyl group, an aryl group, a halogenated alkyl group, a silyl group. It is one or more substituents selected from the group consisting of an alkyl group and a reactive functional group described later.)

特にシリコーン化合物(C)には、反応性官能基を有することが好ましい。反応性官能基の具体例としては、エポキシ基、アミノ基、メルカプト基、ビニル基、カルボキシル基、水酸基、イソシアネート基、アミド基、アシル基、及びニトリル基、酸無水基等が挙げられる。これらの反応性官能基は主鎖に直接結合していても良く、あるいは主鎖に結合したアルキレン基、ポリオキシアルキレン基等の有機基の末端に結合していても良い。その中で特にカルボキシル基、水酸基、エポキシ基とアミノ基は好ましく、エポキシ基とアミノ基はさらに好ましい。   In particular, the silicone compound (C) preferably has a reactive functional group. Specific examples of the reactive functional group include an epoxy group, amino group, mercapto group, vinyl group, carboxyl group, hydroxyl group, isocyanate group, amide group, acyl group, nitrile group, and acid anhydride group. These reactive functional groups may be directly bonded to the main chain, or may be bonded to the terminal of an organic group such as an alkylene group or a polyoxyalkylene group bonded to the main chain. Among them, a carboxyl group, a hydroxyl group, an epoxy group and an amino group are particularly preferable, and an epoxy group and an amino group are more preferable.

前記シリコーン化合物(C)は、樹脂組成物中で均一に分散されることにより電解液に対する耐久性向上に効果が発揮されるものであり、この観点からシリコーン化合物(C)の粘度(25℃)は、10〜100,000mPa・sが好ましく、特に10〜80,000mPa・sの範囲にあるオイル状のものが好適である。なお、本発明の樹脂組成物中にシリコーン化合物を均一に分散させるため、シリコーン化合物はシリカなどの無機粉体に担持させたものを用いてもよい。   The silicone compound (C) is effective in improving durability against the electrolytic solution by being uniformly dispersed in the resin composition. From this viewpoint, the viscosity of the silicone compound (C) (25 ° C.) Is preferably 10 to 100,000 mPa · s, particularly preferably oily in the range of 10 to 80,000 mPa · s. In addition, in order to disperse | distribute a silicone compound uniformly in the resin composition of this invention, you may use the silicone compound carry | supported by inorganic powders, such as a silica.

前記シリコーン化合物(C)中に反応性官能基を含有していると、樹脂組成物へのシリコーン化合物の分散を良好にし、そのため耐衝撃性の向上を計ることができる。さらにシリコーン化合物が成型品表面に滲み出る、いわゆるブリードアウトを抑制する効果がある点からも好ましい。   When the reactive functional group is contained in the silicone compound (C), the silicone compound is favorably dispersed in the resin composition, so that the impact resistance can be improved. Furthermore, it is preferable also from the point which has the effect which suppresses what is called a bleed out that a silicone compound oozes out on the molded article surface.

シリコーン化合物(C)中の反応性官能基の含有率は、耐衝撃性、強靭性の付与により好ましい効果を与えることから、400g/当量(以下「g/eq」と略記する。)以上が好ましく、混合の容易さの点で50,000g/eq以下が好ましい。   The content of the reactive functional group in the silicone compound (C) is preferably 400 g / equivalent (hereinafter abbreviated as “g / eq”) or more because it gives a favorable effect by imparting impact resistance and toughness. In view of ease of mixing, 50,000 g / eq or less is preferable.

また、シリコーン化合物(C)の配合量は、PAS樹脂(B)、熱可塑性エラストマー(A)及びシリコーン化合物(C)の合計100質量部に対して0.1〜10質量部であることが好ましく、0.3〜5質量部であることがより好ましい。   Moreover, it is preferable that the compounding quantity of a silicone compound (C) is 0.1-10 mass parts with respect to a total of 100 mass parts of PAS resin (B), a thermoplastic elastomer (A), and a silicone compound (C). More preferably, it is 0.3-5 mass parts.

本発明のガスケット用樹脂組成物には、組成物としてシラン化合物を配合してもよい。シラン化合物としては、例えば、アミノアルコキシシラン、エポキシアルコキシシラン、ビニルアルコキシシラン等が挙げられる。これらのシラン化合物は、単独で用いることも2種以上併用することもできる。   You may mix | blend a silane compound with the resin composition for gaskets of this invention as a composition. Examples of the silane compound include aminoalkoxysilane, epoxyalkoxysilane, and vinylalkoxysilane. These silane compounds can be used alone or in combination of two or more.

前記アミノアルコキシシランとしては、1分子中にアミノ基を1つ以上有し、アルコキシ基を2つ以上有するシラン化合物であれば用いることができ、例えば、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルメチルジエトキシシラン、γ−アミノプロピルメチルジメトキシシラン、N−β(アミノエチル)−γ−アミノプロピルトリエトキシシラン、N−β(アミノエチル)−γ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)−γ−アミノプロピルメチルジエトキシシラン、N−β(アミノエチル)−γ−アミノプロピルメチルジメトキシシラン、N−フェニル−γ−アミノプロピルトリエトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン等が挙げられる。   As the aminoalkoxysilane, any silane compound having one or more amino groups and two or more alkoxy groups in one molecule can be used. For example, γ-aminopropyltriethoxysilane, γ-amino Propyltrimethoxysilane, γ-aminopropylmethyldiethoxysilane, γ-aminopropylmethyldimethoxysilane, N-β (aminoethyl) -γ-aminopropyltriethoxysilane, N-β (aminoethyl) -γ-aminopropyl Trimethoxysilane, N-β (aminoethyl) -γ-aminopropylmethyldiethoxysilane, N-β (aminoethyl) -γ-aminopropylmethyldimethoxysilane, N-phenyl-γ-aminopropyltriethoxysilane, N -Phenyl-γ-aminopropyltrimethoxysilane and the like .

また、前記エポキシアルコキシシランとしては、1分子中にエポキシ基を1つ以上有し、アルコキシ基を2つ以上有するシラン化合物であれば用いることができ、例えば、γ−グリシドキシプロピルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン等が挙げられる。   The epoxyalkoxysilane may be any silane compound having one or more epoxy groups and two or more alkoxy groups in one molecule. For example, γ-glycidoxypropyltrimethoxysilane , Β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, and the like.

さらに、前記ビニルアルコキシシランとしては、1分子中にビニル基を1つ以上有し、アルコキシ基を2つ以上有するシラン化合物であれば用いることができ、例えば、ビニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリス(β−メトキシエトキシ)シラン等が挙げられる。   Further, as the vinyl alkoxysilane, any silane compound having one or more vinyl groups and two or more alkoxy groups in one molecule can be used, for example, vinyltriethoxysilane, vinyltrimethoxysilane. Vinyltris (β-methoxyethoxy) silane and the like.

本発明では、さらに上記各成分に加え、本発明の効果を損なわない範囲で繊維状強化材又は無機質フィラーを添加してもよい。   In the present invention, in addition to the above components, a fibrous reinforcing material or an inorganic filler may be added as long as the effects of the present invention are not impaired.

前記繊維状強化材としては、例えば、ガラス繊維、PAN系又はピッチ系の炭素繊維、シリカ繊維、シリカ・アルミナ繊維、ジルコニア繊維、窒化ホウ素繊維、窒化ケイ素繊維、ホウ素繊維、ホウ酸アルミニウム繊維、チタン酸カリウム繊維、ステンレス、アルミニウム、チタン、銅、真ちゅう等の金属の繊維状物の無機質繊維状物質、及びアラミド繊維等の有機質繊維状物質等が挙げられる。   Examples of the fibrous reinforcing material include glass fiber, PAN-based or pitch-based carbon fiber, silica fiber, silica-alumina fiber, zirconia fiber, boron nitride fiber, silicon nitride fiber, boron fiber, aluminum borate fiber, and titanium. Examples thereof include inorganic fibrous substances such as potassium acid fibers, stainless steel, aluminum, titanium, copper, brass and other metallic fibrous substances, and organic fibrous substances such as aramid fibers.

また、無機質フィラーは、例えば、マイカ、タルク、ワラステナイト、セリサイト、カオリン、クレー、ベントナイト、アスベスト、アルミナシリケート、ゼオライト、パイロフィライト等の珪酸塩や炭酸カルシウム、炭酸マグネシウム、ドロマイト等の炭酸塩、硫酸カルシウム、硫酸バリウム等の硫酸塩、アルミナ、酸化マグネシウム、シリカ、ジルコニア、チタニア、酸化鉄等の金属酸化物、ガラスビーズ、セラミックビーズ、窒化ホウ素、炭化珪素、燐酸カルシウムなどが挙げられる。これらの繊維状強化材及び無機質フィラーは、単独で用いることも2種以上併用することもできる。   Examples of the inorganic filler include silicates such as mica, talc, wollastonite, sericite, kaolin, clay, bentonite, asbestos, alumina silicate, zeolite, pyrophyllite, and carbonates such as calcium carbonate, magnesium carbonate, and dolomite. And sulfates such as calcium sulfate and barium sulfate, metal oxides such as alumina, magnesium oxide, silica, zirconia, titania and iron oxide, glass beads, ceramic beads, boron nitride, silicon carbide, calcium phosphate and the like. These fibrous reinforcing materials and inorganic fillers can be used alone or in combination of two or more.

さらに、本発明のガスケット用樹脂組成物には、本発明の効果を損なわない範囲で、酸化防止剤、安定剤、加工熱安定剤、可塑剤、離型剤、着色剤、滑剤、耐候性安定剤、発泡剤、防錆剤、ワックスを適量配合してもよい。   Furthermore, the resin composition for gaskets of the present invention includes an antioxidant, a stabilizer, a processing heat stabilizer, a plasticizer, a release agent, a colorant, a lubricant, and a stable weather resistance as long as the effects of the present invention are not impaired. An appropriate amount of an agent, a foaming agent, a rust inhibitor, and a wax may be blended.

さらに、本発明のガスケット用樹脂組成物には、要求される特性に合わせてその他の樹脂成分を適宜配合してもよい。ここで用いることができる樹脂成分としては、ポリウレタン、ポリブチレンテレフタレート、ポリエチレンテレフタレート等のポリエステル、ポリアセタール、ポリカーボネ−ト、ポリサルホン、ポリアリルサルホン、ポリエーテルサルホン、ポリフェニレンエーテル、ポリエ−テルケトン、ポリエーテルエーテルケトン、ポリイミド、ポリアミドイミド、ポリエーテルイミド、シリコーン樹脂、エポキシ樹脂、フェノキシ樹脂、液晶ポリマー、ポリアリールエーテルなどの単独重合体、ランダム共重合体又はブロック共重合体、グラフト共重合体等が挙げられる。   Furthermore, you may mix | blend other resin components suitably with the resin composition for gaskets of this invention according to the characteristic requested | required. Examples of the resin component that can be used here include polyesters such as polyurethane, polybutylene terephthalate, and polyethylene terephthalate, polyacetal, polycarbonate, polysulfone, polyallyl sulfone, polyether sulfone, polyphenylene ether, polyether ketone, and polyether. Homopolymers such as ether ketone, polyimide, polyamideimide, polyetherimide, silicone resin, epoxy resin, phenoxy resin, liquid crystal polymer, polyaryl ether, random copolymer or block copolymer, graft copolymer, etc. It is done.

本発明のガスケット用樹脂組成物の製造する方法としては、具体的には、前記PAS樹脂(B)及び熱可塑性エラストマー(A)を、さらに必要に応じてその他の配合成分をタンブラー又はヘンシェルミキサーなどで均一に混合、次いで、2軸押出機に投入し、樹脂成分の吐出量(kg/hr)とスクリュー回転数(rpm)との比率(吐出量/スクリュー回転数)が0.02〜0.2(kg/hr・rpm)なる条件下に溶融混練する方法が挙げられる。   As a method for producing the resin composition for gaskets of the present invention, specifically, the PAS resin (B) and the thermoplastic elastomer (A) are used, and if necessary, other blending components are tumbler or Henschel mixer. Then, the mixture is introduced into a twin-screw extruder, and the ratio (discharge amount / screw rotation number) of the resin component discharge amount (kg / hr) to the screw rotation speed (rpm) is 0.02 to 0.02. Examples of the method include melt kneading under a condition of 2 (kg / hr · rpm).

上記の製造方法について、さらに詳述すれば、前記した各成分を2軸押出機内に投入し、設定温度330℃、樹脂温度350℃程度の温度条件下に溶融混練する方法が挙げられる。この際、樹脂成分の吐出量は回転数250rpmで5〜50kg/hrの範囲となる。なかでも特に分散性の点から20〜35kg/hrであることが好ましい。よって、樹脂成分の吐出量(kg/hr)とスクリュー回転数(rpm)との比率(吐出量/スクリュー回転数)は、特に0.08〜0.14(kg/hr・rpm)であることが好ましい。   The above production method will be described in more detail. A method in which the above-described components are put into a twin-screw extruder and melt-kneaded under temperature conditions of a preset temperature of 330 ° C. and a resin temperature of about 350 ° C. can be mentioned. At this time, the discharge amount of the resin component is in a range of 5 to 50 kg / hr at a rotation speed of 250 rpm. Especially, it is preferable that it is 20-35 kg / hr from the point of a dispersibility. Therefore, the ratio (discharge amount / screw rotation number) between the resin component discharge amount (kg / hr) and the screw rotation speed (rpm) is particularly 0.08 to 0.14 (kg / hr · rpm). Is preferred.

このようにして溶融混練されたガスケット用樹脂組成物は、通常ペレット状にカッティングされる。また、得られたペレットを成形機に供給して溶融成形することにより、最終的に目的とする形状の成形物が得られる。   The resin composition for gaskets thus melt-kneaded is usually cut into pellets. Further, the obtained pellet is supplied to a molding machine and melt-molded to finally obtain a molded product having a desired shape.

ここで溶融成形する方法は、例えば、射出成形、押出成形、圧縮成形等が挙げられるが、このうち二次電池用ガスケットを成形する方法としては、射出成形が特に好ましい。   Examples of the melt molding method include injection molding, extrusion molding, and compression molding. Among these methods, the injection molding is particularly preferable as a method of molding the secondary battery gasket.

本発明のガスケット用樹脂組成物は、例えば、ノート型パソコン、携帯電話、ビデオカメラ等の電気機器用途、あるいはハイブリッド自動車(HV)、電気自動車(EV)等の車載用途に用いられる二次電池、特に高容量リチウムイオン二次電池用のガスケット等に特に有用である。   The resin composition for a gasket of the present invention is, for example, a secondary battery used for electric equipment applications such as notebook computers, mobile phones, video cameras, or in-vehicle applications such as hybrid vehicles (HV) and electric vehicles (EV), It is particularly useful for gaskets for high capacity lithium ion secondary batteries.

以下に、実施例により本発明をさらに詳しく説明する。
実施例1〜8及び比較例1〜4
表1及び表2に記載する配合量にしたがい、PAS樹脂であるポリフェニレンスルフィド、熱可塑性エラストマー及びその他配合材料をタンブラーで均一に混合した。その後、東芝機械株式会社製ベント付き2軸押出機「TEM−35B」に前記配合材料を投入し、樹脂成分吐出量25kg/hr、スクリュー回転数250rpm、樹脂成分の吐出量(kg/hr)とスクリュー回転数(rpm)との比率(吐出量/スクリュー回転数)=0.1(kg/hr・rpm)、設定樹脂温度330℃で溶融混練して樹脂組成物のペレットを得た。次いで、このペレットを用いて以下の各種評価試験を行った。試験及び評価の結果は、表1及び2に示す。
Hereinafter, the present invention will be described in more detail with reference to examples.
Examples 1-8 and Comparative Examples 1-4
According to the blending amounts shown in Table 1 and Table 2, polyphenylene sulfide, a thermoplastic elastomer and other blending materials, which are PAS resins, were uniformly mixed with a tumbler. Thereafter, the blended material is put into a twin-screw extruder “TEM-35B” manufactured by Toshiba Machine Co., Ltd., and the resin component discharge rate is 25 kg / hr, the screw rotation speed is 250 rpm, and the resin component discharge rate (kg / hr). The ratio of the screw rotation speed (rpm) (discharge amount / screw rotation speed) = 0.1 (kg / hr · rpm) was melt kneaded at a set resin temperature of 330 ° C. to obtain resin composition pellets. Subsequently, the following various evaluation tests were performed using this pellet. The results of the test and evaluation are shown in Tables 1 and 2.

[引張破断伸びの測定]
測定対象樹脂配合物の試験片をASTM4号ダンベル形状で作成し、ASTM D638に従って、株式会社島津製作所製「オートグラフ AG−5000C」にて測定し、引張破断伸びを測定した。
[Measurement of tensile elongation at break]
A test piece of the resin composition to be measured was prepared in ASTM No. 4 dumbbell shape, and measured according to ASTM D638 with “Autograph AG-5000C” manufactured by Shimadzu Corporation to measure the tensile elongation at break.

[圧縮応力緩和試験]
樹脂組成物ペレットを射出成形機を用いて成形し、射出成形機により縦8mm×横8mm×厚さ3mmの平板を成形し、図1に示すような圧縮応力緩和用試験片を作製した。この試験片を用い、恒温層を備えた株式会社島津製作所製「オートグラフ AG−50KNX」により10%歪み下(温度条件:23℃及び60℃)で圧縮応力緩和を測定し、100時間後の圧縮応力を求めた。
[Compressive stress relaxation test]
The resin composition pellets were molded using an injection molding machine, and a flat plate of 8 mm length × 8 mm width × 3 mm thickness was molded by the injection molding machine, and a test piece for compressive stress relaxation as shown in FIG. 1 was produced. Using this test piece, compression stress relaxation was measured under 10% strain (temperature conditions: 23 ° C. and 60 ° C.) by “Autograph AG-50KNX” manufactured by Shimadzu Corporation equipped with a thermostatic layer, and after 100 hours. The compressive stress was determined.

[気密性の評価]
樹脂組成物ペレットを射出成形機を用いて成形し、形状が縦8mm×横8mm×高さ10mmで厚さ0.8mmの箱形成型品を作成した。次いで、この箱形成型品に電解液(1mol/LのLiPF/エチレンカーボネート(EC):ジメチルカーボネート(DMC)(容量1:1混合溶液)溶液、キシダ化学株式会社製)を入れ、圧縮応力緩和試験で用いた縦8mm×横8mm×厚さ3mmの平板で一定応力(10%歪み下)で封をした気密試験用サンプルを作成する。これを60℃の乾熱下で放置し、液の漏れ具合について確認した。なお、評価結果は以下のように表示した。
◎:200時間後に液の漏れを生じない。
○:100時間後に液の漏れが生じない。
×:100時間後に液の漏れが生じる。
[Evaluation of airtightness]
The resin composition pellets were molded using an injection molding machine, and a box-forming product having a shape of 8 mm long × 8 mm wide × 10 mm high and 0.8 mm thick was prepared. Next, an electrolytic solution (1 mol / L LiPF 6 / ethylene carbonate (EC): dimethyl carbonate (DMC) (capacity 1: 1 mixed solution) solution, manufactured by Kishida Chemical Co., Ltd.)) was put into this box forming product, and compression stress was applied. An airtightness test sample sealed with a constant stress (under 10% strain) on a flat plate of 8 mm length × 8 mm width × 3 mm thickness used in the relaxation test is prepared. This was allowed to stand under dry heat at 60 ° C., and the liquid leakage was confirmed. The evaluation results were displayed as follows.
A: No liquid leakage occurs after 200 hours.
○: No liquid leakage occurs after 100 hours.
X: Liquid leakage occurs after 100 hours.

なお、表1及び表2中の配合樹脂、材料は下記のものである。
(1)PPS−1:ポリフェニレンスルフィド(DIC株式会社製「DSP LD−10G」;ピーク分子量 35,000、非ニュートン指数 1.56)
(2)PPS−2:ポリフェニレンスルフィド(DIC株式会社製「DSP ML−320」:ピーク分子量 41,000、非ニュートン指数 1.27)
(3)PPS−3:ポリフェニレンスルフィド(DIC株式会社製「DSP LR−2G」;ピーク分子量 34,000、非ニュートン指数 1.12)
(4)PPS−4:ポリフェニレンスルフィド(DIC株式会社製「DSP LR−100G」;ピーク分子量 20,000、非ニュートン指数 1.05)
(5)PPS−5:ポリフェニレンスルフィド(DIC株式会社製「DSP HC−270」;ピーク分子量 30,000、非ニュートン指数 1.62)
(6)PPS−6:ポリフェニレンスルフィド(DIC株式会社製「DSP LR−300G」;ピーク分子量 25,000、非ニュートン指数 1.08)
(7)ELA−1:エチレン−メタクリル酸グリシジル−アクリル酸メチル共重合体(住友化学工業株式会社製「ボンドファースト7L」)
(8)ELA−2:エチレン−無水マレイン酸−アクリル酸エチル共重合体(住友化学工業株式会社製「ボンダインAX8390」)
(9)Si−1:アミノ基含有シリコーン(信越化学工業株式会社製「KF−868」)
(10)PFA:テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(ダイキン工業株式会社製の「ネオフロンAP−201」)
The compounded resins and materials in Tables 1 and 2 are as follows.
(1) PPS-1: Polyphenylene sulfide (“DSP LD-10G” manufactured by DIC Corporation; peak molecular weight 35,000, non-Newtonian index 1.56)
(2) PPS-2: Polyphenylene sulfide (“DSP ML-320” manufactured by DIC Corporation: peak molecular weight 41,000, non-Newtonian index 1.27)
(3) PPS-3: Polyphenylene sulfide (“DSP LR-2G” manufactured by DIC Corporation; peak molecular weight 34,000, non-Newtonian index 1.12)
(4) PPS-4: Polyphenylene sulfide (“DSP LR-100G” manufactured by DIC Corporation; peak molecular weight 20,000, non-Newtonian index 1.05)
(5) PPS-5: Polyphenylene sulfide (“DSP HC-270” manufactured by DIC Corporation; peak molecular weight 30,000, non-Newtonian index 1.62)
(6) PPS-6: Polyphenylene sulfide (“DSP LR-300G” manufactured by DIC Corporation; peak molecular weight 25,000, non-Newtonian index 1.08)
(7) ELA-1: ethylene-glycidyl methacrylate-methyl acrylate copolymer (“Bond First 7L” manufactured by Sumitomo Chemical Co., Ltd.)
(8) ELA-2: ethylene-maleic anhydride-ethyl acrylate copolymer (“Bondaine AX8390” manufactured by Sumitomo Chemical Co., Ltd.)
(9) Si-1: amino group-containing silicone (“KF-868” manufactured by Shin-Etsu Chemical Co., Ltd.)
(10) PFA: Tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (“Neofluon AP-201” manufactured by Daikin Industries, Ltd.)

Figure 0005809783
Figure 0005809783

Figure 0005809783
Figure 0005809783

表1に示した評価結果より、本発明のガスケット用樹脂組成物は、ガスケットとして用いた場合、優れた気密性を有し、二次電池に必要とされる気密性を維持することができることが分かった。   From the evaluation results shown in Table 1, the resin composition for a gasket of the present invention has excellent airtightness when used as a gasket, and can maintain the airtightness required for a secondary battery. I understood.

一方、表2に示した評価結果より、比較例1及び2は、熱可塑性エラストマー(A)を配合しなかった例であるが、引張破断伸びが低く、気密性が不十分であることが分かった。また、比較例3及び4は、ゲル浸透クロマトグラフィーにより求められる分子量分布のピーク分子量が28,000未満であるPAS樹脂を用いた例であるが、引張破断伸びが低く、気密性が不十分であることが分かった。さらに、比較例5は、従来、ガスケットとして用いられてきているPFA樹脂の例であるが、引張破断伸びは高いが、10%歪み下(温度条件:23℃、60℃)での100時間後圧縮応力の絶対値は、6MPa及び5MPaとなり、本発明のガスケット用樹脂組成物の20〜40MPaと比較して大幅に低く、結果として気密性が不十分であることが分かった。   On the other hand, from the evaluation results shown in Table 2, Comparative Examples 1 and 2 are examples in which the thermoplastic elastomer (A) was not blended, but it was found that the tensile elongation at break was low and the airtightness was insufficient. It was. Comparative Examples 3 and 4 are examples using a PAS resin having a peak molecular weight of less than 28,000 in the molecular weight distribution obtained by gel permeation chromatography, but the tensile elongation at break is low and the airtightness is insufficient. I found out. Further, Comparative Example 5 is an example of a PFA resin that has been conventionally used as a gasket, but the tensile elongation at break is high, but after 100 hours under 10% strain (temperature conditions: 23 ° C., 60 ° C.). The absolute values of the compressive stress were 6 MPa and 5 MPa, which was significantly lower than 20 to 40 MPa of the gasket resin composition of the present invention, and as a result, it was found that the airtightness was insufficient.

Claims (15)

正極板、負極板、セパレータ、電解液、電池ケース、及び封口体を含む二次電池に用いられるガスケットであって、前記ガスケットは、前記正極板と電気的に接続されている正極端子との接点又は前記負極板と電気的に接続されている負極端子との接点に設けられており、前記ガスケットが熱可塑性エラストマー(A)及びゲル浸透クロマトグラフィーにより求められる分子量分布のピーク分子量として28,000〜100,000であるポリアリーレンスルフィド樹脂(B)を含有するガスケット用樹脂組成物からなり、
前記熱可塑性エラストマー(A)の配合量が、前記熱可塑性エラストマー(A)及びポリアリーレンスルフィド樹脂(B)の合計100質量部に対して1〜30質量部であり、
前記樹脂組成物を射出成形して得られる試験片が、一定条件下(23℃、10%歪み、試験片厚さ3mm、圧縮面側表面積60mm)での圧縮応力緩和試験において、100時間後圧縮応力の絶対値が10MPa以上であることを特徴とする二次電池用ガスケット。
A gasket used for a secondary battery including a positive electrode plate, a negative electrode plate, a separator, an electrolyte, a battery case, and a sealing body , wherein the gasket is a contact point with a positive electrode terminal electrically connected to the positive electrode plate Or provided at a contact point with the negative electrode terminal electrically connected to the negative electrode plate, and the gasket has a peak molecular weight of 28,000 to as a molecular weight distribution obtained by thermoplastic elastomer (A) and gel permeation chromatography. A resin composition for a gasket containing a polyarylene sulfide resin (B) which is 100,000,
The amount of the thermoplastic elastomer (A) is 1 to 30 parts by mass with respect to a total of 100 parts by mass of the thermoplastic elastomer (A) and the polyarylene sulfide resin (B),
A test piece obtained by injection molding of the resin composition was tested after 100 hours in a compression stress relaxation test under certain conditions (23 ° C., 10% strain, test piece thickness 3 mm, compression surface side surface area 60 mm 2 ). A gasket for a secondary battery, wherein the absolute value of the compressive stress is 10 MPa or more.
前記樹脂組成物を射出成形して得られる試験片を用いた引張試験(ASTM D638)において、10%以上の引張破断伸びを有することを特徴とする請求項1記載のガスケット。   The gasket according to claim 1, which has a tensile elongation at break of 10% or more in a tensile test (ASTM D638) using a test piece obtained by injection molding of the resin composition. 前記熱可塑性エラストマー(A)が、水酸基、カルボキシル基、アミノ基、メルカプト基、エポキシ基、酸無水物基、イソシアネート基、エステル基及びビニル基からなる群から選ばれる少なくとも1つの官能基を有するものである請求項1または2記載のガスケット。   The thermoplastic elastomer (A) has at least one functional group selected from the group consisting of hydroxyl group, carboxyl group, amino group, mercapto group, epoxy group, acid anhydride group, isocyanate group, ester group and vinyl group The gasket according to claim 1 or 2. 前記熱可塑性エラストマー(A)が、α−オレフィン類、無水マレイン酸、(メタ)アクリル酸グリシジル及び(メタ)アクリル酸アルキルエステルからなる群から選ばれるモノマーを重合させた三元共重合体である請求項1〜3のいずれか一項記載のガスケット。   The thermoplastic elastomer (A) is a terpolymer obtained by polymerizing a monomer selected from the group consisting of α-olefins, maleic anhydride, glycidyl (meth) acrylate and alkyl (meth) acrylate. The gasket as described in any one of Claims 1-3. 前記熱可塑性エラストマー(A)が、エチレン−メタクリル酸グリシジル−アクリル酸メチル共重合体又はエチレン−無水マレイン酸−アクリル酸エチル共重合体である請求項1〜4のいずれか一項記載のガスケット。   The gasket according to any one of claims 1 to 4, wherein the thermoplastic elastomer (A) is an ethylene-glycidyl methacrylate-methyl acrylate copolymer or an ethylene-maleic anhydride-ethyl acrylate copolymer. 前記ガスケット用樹脂組成物が、熱可塑性エラストマー(A)及びポリアリーレンスルフィド樹脂(B)に加え、さらにシリコーン化合物(C)を含有する請求項1〜のいずれか1項記載のガスケット。 The gasket according to any one of claims 1 to 5 , wherein the gasket resin composition further comprises a silicone compound (C) in addition to the thermoplastic elastomer (A) and the polyarylene sulfide resin (B). 前記シリコーン化合物(C)の配合量が、前記熱可塑性エラストマー(A)及びポリアリーレンスルフィド樹脂(B)、シリコーン化合物(C)の合計100質量部に対して0.1〜10質量部である請求項記載のガスケット。 The blending amount of the silicone compound (C) is 0.1 to 10 parts by mass with respect to 100 parts by mass in total of the thermoplastic elastomer (A), the polyarylene sulfide resin (B), and the silicone compound (C). Item 7. The gasket according to item 6 . 正極板、負極板、セパレータ、電解液、電池ケース、及び封口体を含む二次電池に用いられるガスケット用樹脂組成物であって、前記ガスケットは、前記正極板と電気的に接続されている正極端子との接点又は前記負極板と電気的に接続されている負極端子との接点に設けられており、前記ガスケット用樹脂組成物が、熱可塑性エラストマー(A)及びゲル浸透クロマトグラフィーにより求められる分子量分布のピーク分子量として28,000〜100,000であるポリアリーレンスルフィド樹脂(B)を含有すること、
前記熱可塑性エラストマー(A)の配合量が、前記熱可塑性エラストマー(A)及びポリアリーレンスルフィド樹脂(B)の合計100質量部に対して1〜30質量部であること、
前記樹脂組成物を射出成形して得られる試験片が、一定条件下(23℃、10%歪み、試験片厚さ3mm、圧縮面側表面積60mm)での圧縮応力緩和試験において、100時間後圧縮応力の絶対値が10MPa以上であること、
を特徴とするガスケット用樹脂組成物。
A resin composition for a gasket used for a secondary battery including a positive electrode plate, a negative electrode plate, a separator, an electrolytic solution, a battery case, and a sealing body , wherein the gasket is a positive electrode electrically connected to the positive electrode plate The molecular weight which is provided in the contact with a terminal or the contact with the negative electrode terminal electrically connected with the said negative electrode plate, and the said resin composition for gaskets is calculated | required by thermoplastic elastomer (A) and gel permeation chromatography Containing a polyarylene sulfide resin (B) having a distribution peak molecular weight of 28,000 to 100,000,
The blending amount of the thermoplastic elastomer (A) is 1 to 30 parts by mass with respect to 100 parts by mass in total of the thermoplastic elastomer (A) and the polyarylene sulfide resin (B),
A test piece obtained by injection molding of the resin composition was tested after 100 hours in a compression stress relaxation test under certain conditions (23 ° C., 10% strain, test piece thickness 3 mm, compression surface side surface area 60 mm 2 ). The absolute value of the compressive stress is 10 MPa or more,
A gasket resin composition.
前記樹脂組成物を射出成形して得られる試験片を用いた引張試験(ASTM D638)において、10%以上の引張破断伸びを有することを特徴とする請求項記載のガスケット用樹脂組成物。 The resin composition for a gasket according to claim 8, which has a tensile elongation at break of 10% or more in a tensile test (ASTM D638) using a test piece obtained by injection molding of the resin composition. 前記熱可塑性エラストマー(A)が、水酸基、カルボキシル基、アミノ基、メルカプト基、エポキシ基、酸無水物基、イソシアネート基、エステル基及びビニル基からなる群から選ばれる少なくとも1つの官能基を有するものである請求項8または9記載のガスケット用樹脂組成物。 The thermoplastic elastomer (A) has at least one functional group selected from the group consisting of hydroxyl group, carboxyl group, amino group, mercapto group, epoxy group, acid anhydride group, isocyanate group, ester group and vinyl group claim 8 or 9 Symbol mounting gasket resin composition is. 前記熱可塑性エラストマー(A)が、α−オレフィン類、無水マレイン酸、(メタ)アクリル酸グリシジル及び(メタ)アクリル酸アルキルエステルからなる群から選ばれるモノマーを重合させた三元共重合体である請求項8〜10のいずれか一項記載のガスケット用樹脂組成物。 The thermoplastic elastomer (A) is a terpolymer obtained by polymerizing a monomer selected from the group consisting of α-olefins, maleic anhydride, glycidyl (meth) acrylate and alkyl (meth) acrylate. The resin composition for gaskets as described in any one of Claims 8-10 . 前記熱可塑性エラストマー(A)が、エチレン−メタクリル酸グリシジル−アクリル酸メチル共重合体又はエチレン−無水マレイン酸−アクリル酸エチル共重合体である請求項8〜11のいずれか一項記載のガスケット用樹脂組成物。 12. The gasket according to claim 8 , wherein the thermoplastic elastomer (A) is an ethylene-glycidyl methacrylate-methyl acrylate copolymer or an ethylene-maleic anhydride-ethyl acrylate copolymer. Resin composition. 前記ガスケット用樹脂組成物が、熱可塑性エラストマー(A)及びポリアリーレンスルフィド樹脂(B)に加え、さらにシリコーン化合物(C)を含有する請求項8〜12のいずれか1項記載のガスケット用樹脂組成物。 The resin composition for a gasket according to any one of claims 8 to 12 , wherein the resin composition for a gasket further contains a silicone compound (C) in addition to the thermoplastic elastomer (A) and the polyarylene sulfide resin (B). object. 前記シリコーン化合物(C)の配合量が、前記熱可塑性エラストマー(A)ポリアリーレンスルフィド樹脂(B)及びシリコーン化合物(C)の合計100質量部に対して0.1〜10質量部である請求項13記載のガスケット用樹脂組成物。 Amount of the silicone compound (C), the thermoplastic et elastomer (A), 0.1 to 10 parts by weight per 100 parts by weight of polyarylene sulfide resin (B) and the silicone compound (C) The resin composition for gaskets according to claim 13 . 正極板、負極板、セパレータ、電解液、電池ケース、及び封口体を含む二次電池に用いられるガスケット用樹脂組成物の製造方法であって、前記ガスケットは、前記正極板と電気的に接続されている正極端子との接点又は前記負極板と電気的に接続されている負極端子との接点に設けられており、前記ガスケット用樹脂組成物が、熱可塑性エラストマー(A)及びゲル浸透クロマトグラフィーにより求められる分子量分布のピーク分子量として28,000〜100,000であるポリアリーレンスルフィド樹脂(B)を混合すること、
前記熱可塑性エラストマー(A)の配合量が、前記熱可塑性エラストマー(A)及びポリアリーレンスルフィド樹脂(B)の合計100質量部に対して1〜30質量部であること、
前記樹脂組成物を射出成形して得られる試験片が、一定条件下(23℃、10%歪み、試験片厚さ3mm、圧縮面側表面積60mm)での圧縮応力緩和試験において、100時間後圧縮応力の絶対値が10MPa以上であること、
を特徴とするガスケット用樹脂組成物の製造方法。
A method for producing a resin composition for a gasket used in a secondary battery including a positive electrode plate, a negative electrode plate, a separator, an electrolytic solution, a battery case, and a sealing body , wherein the gasket is electrically connected to the positive electrode plate. Is provided at the contact with the positive electrode terminal or the contact with the negative electrode terminal electrically connected to the negative electrode plate, and the resin composition for gasket is obtained by thermoplastic elastomer (A) and gel permeation chromatography. Mixing a polyarylene sulfide resin (B) having a peak molecular weight of 28,000 to 100,000 as a required molecular weight distribution;
The blending amount of the thermoplastic elastomer (A) is 1 to 30 parts by mass with respect to 100 parts by mass in total of the thermoplastic elastomer (A) and the polyarylene sulfide resin (B),
A test piece obtained by injection molding of the resin composition was tested after 100 hours in a compression stress relaxation test under certain conditions (23 ° C., 10% strain, test piece thickness 3 mm, compression surface side surface area 60 mm 2 ). The absolute value of the compressive stress is 10 MPa or more,
The manufacturing method of the resin composition for gaskets characterized by these.
JP2010142585A 2009-06-23 2010-06-23 Resin composition for gasket, method for producing the same, and gasket for secondary battery Active JP5809783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010142585A JP5809783B2 (en) 2009-06-23 2010-06-23 Resin composition for gasket, method for producing the same, and gasket for secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009148583 2009-06-23
JP2009148583 2009-06-23
JP2010142585A JP5809783B2 (en) 2009-06-23 2010-06-23 Resin composition for gasket, method for producing the same, and gasket for secondary battery

Publications (2)

Publication Number Publication Date
JP2011029167A JP2011029167A (en) 2011-02-10
JP5809783B2 true JP5809783B2 (en) 2015-11-11

Family

ID=43637650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010142585A Active JP5809783B2 (en) 2009-06-23 2010-06-23 Resin composition for gasket, method for producing the same, and gasket for secondary battery

Country Status (1)

Country Link
JP (1) JP5809783B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9494260B2 (en) * 2012-04-13 2016-11-15 Ticona Llc Dynamically vulcanized polyarylene sulfide composition
US9493646B2 (en) * 2012-04-13 2016-11-15 Ticona Llc Blow molded thermoplastic composition
US20130269977A1 (en) * 2012-04-13 2013-10-17 Ticona Llc Polyarylene Sulfide Composition Including a Functionalized Siloxane Polymer and a Non-Aromatic Impact Modifier
JP6228134B2 (en) * 2012-12-27 2017-11-08 ポリプラスチックス株式会社 Resin composition for gasket and gasket for secondary battery
JP7243143B2 (en) * 2018-11-19 2023-03-22 東ソー株式会社 Polyarylene sulfide composition and gasket comprising the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0778603A (en) * 1993-09-07 1995-03-20 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery
US5656392A (en) * 1995-03-20 1997-08-12 Matsushita Electric Industrial Co., Ltd. Organic electrolyte batteries
JPH10302740A (en) * 1997-04-25 1998-11-13 Seiko Instr Inc Nonaqueous electrolytic secondary battery
CN1215579C (en) * 2000-08-09 2005-08-17 松下电器产业株式会社 Coin-shaped battery
JP2003077432A (en) * 2001-10-15 2003-03-14 Kanebo Ltd Organic electrolyte cell
JP2004300270A (en) * 2003-03-31 2004-10-28 Dainippon Ink & Chem Inc Member for fluid piping
JP4961927B2 (en) * 2006-09-22 2012-06-27 Dic株式会社 Polyarylene sulfide resin composition and fluid piping
JP2008218244A (en) * 2007-03-05 2008-09-18 Hitachi Maxell Ltd Battery, and medical electronic apparatus using it

Also Published As

Publication number Publication date
JP2011029167A (en) 2011-02-10

Similar Documents

Publication Publication Date Title
JP6405830B2 (en) Polyphenylene sulfide resin composition
JP5809783B2 (en) Resin composition for gasket, method for producing the same, and gasket for secondary battery
JP4269198B2 (en) Polyarylene sulfide resin composition
JP6233415B2 (en) Resin composition for gasket, method for producing the same, and gasket for secondary battery
JP5655547B2 (en) Polyarylene sulfide resin composition and sealing member for secondary battery sealing plate comprising the same
JP2017155065A (en) Pipework component comprising polyphenylene sulfide resin composition
JP5720125B2 (en) Resin composition for gasket, method for producing the same, and gasket for secondary battery
JP2018065965A (en) Polyarylene sulfide resin composition, molded article and production method
JP5780422B2 (en) Polyarylene sulfide resin composition
JP4277368B2 (en) Polyarylene sulfide resin composition
JP3019107B2 (en) Polyphenylene sulfide resin composition
JP6228134B2 (en) Resin composition for gasket and gasket for secondary battery
EP4082746A1 (en) Composite structure and manufacturing method therefor
JPH02292362A (en) Resin composition and electronic component
JP2001288363A (en) Reinforced polyarylene sulfide resin composition having good tracking resistance
JP2008214383A (en) Polyarylene sulfide resin composition
JP4404205B2 (en) Polyphenylene sulfide resin-silicone rubber composite material, fuel cell separator and fuel cell using the same
JP3484772B2 (en) Polyphenylene sulfide resin composition
JP4873117B2 (en) Polyarylene sulfide composition and case comprising the same
JPH09235467A (en) Electrical component made from polyphenylene sulfide resin
JP2008163221A (en) Polyphenylene sulfide resin composition and molded article therefrom
JP2023068631A (en) Polyphenylene sulfide resin composition and molded article
JPH07224223A (en) Polyphenylene sulfide resin composition
JP2021004351A (en) Polyphenylene sulfide resin composition, and insulation member and gasket for primary or secondary battery comprising the same
WO2023008192A1 (en) Polyarylene sulfide composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140626

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140703

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150914

R150 Certificate of patent or registration of utility model

Ref document number: 5809783

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250