JP5789091B2 - 撮像装置および撮像装置の制御方法 - Google Patents

撮像装置および撮像装置の制御方法 Download PDF

Info

Publication number
JP5789091B2
JP5789091B2 JP2010185578A JP2010185578A JP5789091B2 JP 5789091 B2 JP5789091 B2 JP 5789091B2 JP 2010185578 A JP2010185578 A JP 2010185578A JP 2010185578 A JP2010185578 A JP 2010185578A JP 5789091 B2 JP5789091 B2 JP 5789091B2
Authority
JP
Japan
Prior art keywords
face
distance
scan range
scan
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010185578A
Other languages
English (en)
Other versions
JP2012042833A (ja
JP2012042833A5 (ja
Inventor
佐々木 太
太 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2010185578A priority Critical patent/JP5789091B2/ja
Priority to US13/196,369 priority patent/US8520130B2/en
Publication of JP2012042833A publication Critical patent/JP2012042833A/ja
Publication of JP2012042833A5 publication Critical patent/JP2012042833A5/ja
Application granted granted Critical
Publication of JP5789091B2 publication Critical patent/JP5789091B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/673Focus control based on electronic image sensor signals based on contrast or high frequency components of image signals, e.g. hill climbing method
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/61Control of cameras or camera modules based on recognised objects
    • H04N23/611Control of cameras or camera modules based on recognised objects where the recognised objects include parts of the human body

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)
  • Automatic Focus Adjustment (AREA)
  • Focusing (AREA)

Description

本発明は、撮像装置および撮像装置の制御方法に関し、特に、オートフォーカス機能を備えた撮像装置および撮像装置の制御方法に関する。
従来から、CCDやCMOSイメージセンサといった撮像素子を用い、オートフォーカス(AF)機能を備えた撮像装置が知られている。このような撮像装置で行われるAF方式の1つとして、コントラスト方式がある。コントラスト方式のAFでは、撮像素子にフォーカスレンズを介して入射した被写体光を光電変換した電気信号から、コントラストを示す信号をHPF(ハイパスフィルタ)で抽出して増幅する。そして、この増幅されたコントラスト信号の波形を解析し、解析結果に基づき焦点を被写体に合わせることによりオートフォーカスを実行する。
すなわち、オートフォーカス機能を備えた撮像装置は、焦点が被写体に合っていないときはコントラスト信号の波形がなだらかになり、焦点が被写体に合っているときは急峻になるということを利用して、合焦動作を行う。より具体的には、フォーカスレンズを光軸方向に移動させ、レンズ駆動に合わせて撮像素子から出力された被写体画像により得られたコントラスト信号の波形が最も急峻になるレンズ位置を探索する。なお、この合焦位置を探索するためにフォーカスレンズを移動させる一連の動作を、オートフォーカススキャンと呼ぶ。
一方、特許文献1では、オートフォーカス機能を備えた以下のような撮像装置が開示されている。すなわち、被写体として例えば人物を検出し、検出した被写体までの距離の情報を求め、求めた距離に基づいて、被写体が被写界深度内に入るように、撮影レンズの焦点距離と焦点位置と絞りとを調節する。
また、被写体までの距離を求める方法として、特許文献2には、撮影した被写体の画像が表示画面に占める割合に基づいて、撮像装置から被写体までの距離(被写体距離)を検出する距離検出装置を有する撮像装置が記載されている。
特許文献3には、撮像信号から顔を検出し、顔検出結果と被写体距離及び被写界深度情報とからスキャン領域を狭め、オートフォーカススキャンに要する時間を短縮する技術が提案されている。
ここで、被写界深度とは、図10(a)及び(b)に示すように、合焦点距離、焦点距離、許容錯乱円および絞り値を用いて、下記の式(1)および式(2)に基づき決定された、近点から遠点までの範囲を指す。
近点(手前への深さ)=(過焦点距離(Hd)×合焦点距離)/(過焦点距離(Hd)+合焦点距離) …(1)
遠点(奥側への深さ)=(過焦点距離(Hd)×合焦点距離)/(過焦点距離(Hd)−合焦点距離) …(2)
例えば、図10(b)のように、過焦点が合焦点となった場合、撮像位置(0)と過焦点との中点(Hd/2)から無限遠までの範囲において被写体がほぼ明瞭に写ることになる。過焦点距離は、レンズ焦点距離が長いほど、また、絞り値が小さいほど増大する。撮像位置(0)と過焦点との中点(Hd/2)は、過焦点を合焦点とした場合の被写界深度に入る最短距離地点、すなわち近点でもある。
過焦点距離は、下記の式(3)に基づいて決定される。
過焦点距離=(レンズ焦点距離)/(許容錯乱円×絞り値) …(3)
ここで、許容錯乱円とは、通常の観察距離における肉眼視で認識され得る下限値である「ぼけ許容度」をいう。
さらに、特許文献4には、以下のようにして人物の顔を認定する技術が開示されている。まず、撮像画像領域内から検出した被写体の画像の大きさが表示画面に占める割合に基づいて求めた被写体までの距離D1と、撮影レンズの焦点距離と合焦位置とに基づいて求めた被写体までの距離D2との相関値から、信頼性を求める。そして、信頼性が予め決められた閾値を超えた場合に顔であると認定する。
特開平06−303491号公報 特開2003−75717号公報 特開2004−317699号公報 特開2008−167295号公報
しかしながら、検出した被写体が写真に写り込んだ人物の顔であった場合、上述したようにして、レンズ焦点距離、表示画面の大きさ、及び、検出した顔の大きさの情報から被写体との距離を算出すると、被写体距離を誤検出してしまうことがある。誤検出した被写体距離に基づいて、オートフォーカススキャン範囲を算出し、オートフォーカススキャンを行った場合、検出した顔に合焦できないことがある。あるいは、オートフォーカススキャン範囲を拡げて再度オートフォーカススキャンを行わなければならず、合焦するまでに多大な時間を要してしまうという問題があった。
また、特許文献4の方式による人物の顔を認定する処理は、オートフォーカスにより被写体に合焦した時の撮影レンズの合焦位置が分かった上で行われる処理であるため、オートフォーカススキャン範囲の算出には用いることができない。
また、フラッシュ撮影時においては、誤検出した被写体距離に応じてフラッシュ発光量を決めた場合に、充分な光量が得られなかったり、また明るすぎたりして、適正露出の画像を得ることができないことがあった。
本発明は上記問題点を鑑みてなされたものであり、顔検出を行って検出した顔に合焦するようにオートフォーカスを行う場合に、被写体に顔写真が含まれていてもオートフォーカススキャンに要する時間を短縮することを目的とする。
上記目的を達成するために、撮影レンズを介して入射する被写体からの光を光電変換して得られた画像データに基づいて、コントラスト方式のオートフォーカス制御を行う本発明の撮像装置は、所定周期で被写体を撮像して画像データを取得する撮像手段と、表示手段に前記撮像手段により取得した画像データに基づく画像を逐次表示する際に、前記画像データから人物の顔を検出する顔検出手段と、前記撮像手段から、前記検出した顔までの距離を推定する推定手段と、前記撮影レンズの焦点距離と、絞り値と、前記推定手段により推定された前記距離とに基づいて第1の被写界深度を求め、該第1の被写界深度と前記距離とに基づいて、前記オートフォーカス制御において前記撮影レンズのフォーカスレンズを駆動する第1のスキャン範囲を算出すると共に、前記焦点距離と、前記絞り値と、前記顔の検出に用いられた画像データを取得したときの合焦点までの距離とに基づいて第2の被写界深度を求め、該第2の被写界深度と前記合焦点までの距離とに基づいて、第2のスキャン範囲を算出する算出手段と、前記算出手段により算出した前記第1及び第2のスキャン範囲を含む複数のスキャン範囲のいずれかを選択する選択手段と、前記選択手段により選択されたスキャン範囲において前記フォーカスレンズを駆動しながら取得したコントラスト信号に基づいて、合焦点を検出する検出手段とを有し、前記選択手段は、前記第1及び第2のスキャン範囲の少なくとも一部が重なっている場合に、前記第1のスキャン範囲を選択し、前記1及び第2のスキャン範囲が重なっていない場合に、前記第1のスキャン範囲を選択しない。
本発明によれば、顔検出を行って検出した顔に合焦するようにオートフォーカスを行う場合に、被写体に顔写真が含まれていてもオートフォーカススキャンに要する時間を短縮することができる。
本発明の実施形態に適用可能な撮像装置の一例の構成を示すブロック図。 実施形態における顔検出処理を示すフローチャート。 パターン認識処理を説明するための図。 実施形態における画像上の画素数で示される顔サイズと目の間隔との統計的関係の一例を示す図。 実施形態における顔サイズと被写体距離の関係の例を示す図。 オートフォーカススキャン範囲の決定方法を説明するための図。 実施形態における実際の人物の顔と、顔写真との判別の仕方を説明するための図。 被写体とカメラの位置との関係を示す図。 実施形態におけるライブビュー時の合焦制御処理を示すフローチャート。 被写界深度を説明するための図。
以下、添付図面を参照して本発明を実施するための最良の形態を詳細に説明する。
<撮像装置の構成>
図1は、本発明の実施形態における撮像装置の構成を示すブロック図である。図1に例示される撮像装置は、カメラ本体100にレンズユニット300を装着して撮像を行うものである。
被写体からの光は、撮像光学系を構成するレンズユニット300からカメラ本体100に入射し、ミラー114及びシャッタ115を介して、CCDやCMOSイメージセンサ等の光電変換素子を有する撮像素子101に照射する。撮像素子101は、照射された光を光電変換して電気信号に変換し、さらにゲイン調整、ノイズ除去など所定の処理を施して、アナログ画像信号として出力する。A/D変換器116は、撮像素子101から出力されるアナログ撮像信号をデジタル信号に変換し、画像データとする。画像蓄積バッファ101aは、A/D変換器116から出力された画像データを一時的に蓄積する。
なお、撮像素子101から所定周期で出力された撮像信号による画像データを逐次、カメラ本体100に設けた表示装置113に表示させることで、ライブビューを実現することができる。
顔情報検出回路102は、画像蓄積バッファ101aから画像データを取得し、取得した画像データから被写体の顔の情報(目の位置情報、顔座標など)を検出する。顔サイズ判別部103は、顔情報検出回路102で検出された被写体の顔の情報に基づいて、検出された顔のサイズを判別する。判別された顔サイズは、顔サイズ情報として出力される。
カメラ制御部110は、例えばマイクロプロセッサ、RAM及びROMを備え、マイクロプロセッサは、ROMに予め記憶されたプログラムやデータに従い、RAMをワークメモリにして動作し、カメラ本体100の全体の動作を制御する。カメラ制御部110は、後述するカメラ信号処理回路107から供給されるAF評価値に基づきオートフォーカス制御を実行する。それと共に、カメラ制御部110は、後述するインターフェイス119を介してレンズユニット300と通信を行い、レンズユニット300の焦点距離、フォーカスレンズ位置、絞り値を取得する。被写体距離推定部104は、顔サイズ判別部103により判別された顔のサイズ、撮像素子101のサイズ、及び、レンズユニット300の焦点距離に基づいて、撮像素子101から被写体までの実空間における距離(被写体距離)を推定する。
カメラ制御部110は、レンズユニット300から取得した焦点距離、フォーカスレンズ位置、及び絞り値に基づいて、被写界深度を算出する。また、カメラ制御部110は、フォーカスレンズ位置の代わりに被写体距離推定部104により推定された被写体距離を用いて、検出された顔近辺の被写界深度も算出する。
さらにまた、カメラ制御部110は、後述するようにしてフォーカスレンズを駆動する範囲を決定し、オートフォーカスを制御するAF(オートフォーカス)制御部111を備える。そして、本実施形態におけるAF制御部111は、所謂コントラスト方式のオートフォーカス制御(AF制御)を行う。なお、このフォーカスレンズを駆動する範囲のことを、以下、「オートフォーカススキャン範囲」と呼ぶ。AF制御部111は、カメラ制御部110が有するマイクロプロセッサ上で動作するプログラムであってもよいし、別途、専用のハードウェアとして構成してもよい。
ここで、顔検出可能な範囲をオートフォーカス範囲とすれば、無駄な部分をスキャンしなくても良いことになり、高速に合焦することができる。顔検出は、一定のぼけに対しても認識率が落ちないような処理がなされており、顔検出可能領域は、「許容錯乱円」に顔検出能力定数および画像縮小率に応じた係数を掛け合わせることで算出でき、顔検出可能な被写界深度は、次の式(4)、式(5)であらわすことができる。
顔用過焦点距離=(レンズ焦点距離)/(許容錯乱円×顔検出許容係数×画像変倍係数×絞り値) …(4)
顔検出用被写界深度の前端=被写体の距離×(顔用過焦点距離−焦点距離)/(顔用過焦点距離+被写体の距離−2×焦点距離)
顔検出用被写界深度の後端=被写体の距離×(顔用過焦点距離−焦点距離)/(顔用過焦点距離−被写体の距離) …(5)
上記式で求められた被写界深度に基づいて決定される顔検出可能な範囲を、オートフォーカス範囲とする。
AF制御部111は、例えばAFスイッチ131に対する操作をトリガとし、オートフォーカス制御を行う。例えば、AF制御部111は、AFスイッチ131が操作されると、インターフェイス119を介して後述するレンズユニット300と通信を行い、レンズシステム制御部307に対してフォーカスレンズを駆動するように命令を出す。
なお、シャッタスイッチ130及びAFスイッチ131は、連動して操作される1つのボタンにより構成することもできる。例えば、半押し状態でAFスイッチ131が作動し、全押し状態でシャッタスイッチ130が作動するようなボタンを構成することが考えられる。
カメラ制御部110は、シャッタスイッチ130に対する操作に応じて、シャッタ制御部117に対してシャッタ115の動作を制御するよう命令を出す。シャッタ制御部117は、この命令に応じてシャッタ115の動作を制御する。シャッタ制御部117によるシャッタ115の制御は、後述するレンズユニット300内の絞り制御部304と連携してなされる。
加えて、カメラ制御部110は、露出(AE)制御部(不図示)なども備え、オートフォーカス制御に加えて露出制御も実行し、カメラ本体100全体の撮影制御を行う。なお、露出制御部による露出制御は本発明の主旨とも関連が薄いので、説明を省略する。
カメラ信号処理回路107は、A/D変換器116から出力された画像データに対して、γ補正、ホワイトバランス調整など所定の信号処理を施す。また、カメラ信号処理回路107は、A/D変換器116から出力された画像データに対してハイパスフィルタ処理を施し、コントラスト信号を抽出する処理も行う。そして、抽出されたコントラスト信号を解析し、コントラスト方式のオートフォーカス制御を行う際の評価値であるAF評価値を生成する。生成されたAF評価値は、カメラ制御部110に供給され、オートフォーカス制御時の合焦判定に用いられる。
さらに、カメラ信号処理回路107は、画像データの圧縮符号化処理なども行うことができる。カメラ信号処理回路107から出力された圧縮または非圧縮の画像データは、記録回路108により記録媒体109に記録することができる。記録媒体109は、例えば不揮発性メモリからなり、カメラ本体100に対して脱着可能とされる。また、カメラ信号処理回路107から出力された画像データは、表示回路112により、LCDなどを表示デバイスとして用いた表示装置113に表示される。
一方、レンズユニット300において、レンズユニット300内のズームレンズ及びフォーカスレンズを含む撮影レンズ301に対して、被写体からの光が入射される。この入射した光は、絞り302、レンズマウント303及び106、ミラー114およびシャッタ115を介して導かれ撮像素子101上に、光学像として入射する。
測距制御部305は、カメラ制御部110からの制御信号に基づき、撮影レンズ301のフォーカシングすなわち合焦動作を制御する。ズーム制御部306は、撮影レンズ301のズーミングを制御する。絞り制御部304は、カメラ制御部110からの制御信号や測光情報に基づいて絞り302を制御する。
レンズシステム制御部307は、レンズユニット300全体を制御するもので、動作用の定数、変数、プログラムなどを一時的に記憶するメモリを備える。さらに、レンズシステム制御部307は、レンズユニット300に固有の番号などの識別情報、管理情報、開放絞り値や最小絞り値、焦点距離等の機能情報、現在や過去の各設定値などを保持する不揮発メモリも備える。
インターフェイス308は、カメラ本体100との間でデータ通信を行うためのインターフェイスである。インターフェイス308は、コネクタ309および118により、カメラ本体100側のインターフェイス119に対して電気的に接続される。
<顔検出について>
次に、本実施形態における顔検出について説明する。本実施の形態においては、顔情報検出回路102は、パターン認識処理を実行して画像データから顔の情報を検出するが、このパターン認識処理について図2のフローチャート及び図3を用いて説明する。ここで、パターン認識とは、抽出されたパターンを予め定められた概念(クラス)の1つに対応(マッチング)させる処理である。また、テンプレートマッチングとは、型紙を意味するテンプレートを画像上で移動させながら、画像とテンプレートとを比較する方法である。これらの方法は、例えば、対象物体の位置検出、運動物体の追跡および撮影時期の異なる画像の位置合わせなどに利用することができ、特に、目と鼻といった物理的形状を画像領域から抽出するといった顔の情報の検出に有用な方法である。
図2において、図3に示す画像蓄積バッファ101aから、取得した画像データ33を前処理し(S11)、前処理された画像データ33から特徴的部分のパターンを抽出する(S12)。そして、抽出された特徴的部分のパターンを顔の標準パターンに基づくテンプレート31に対応させ、テンプレートマッチングを行う。このテンプレートマッチングにより認識パターンを取得し(S13)、取得された認識パターンを顔サイズ判別部103に出力して(S14)、パターン認識処理を終了する。
S13で行うテンプレートマッチングの例について、図3を用いてより具体的に説明する。先ず、テンプレート31の中心点32を、取得した画像データ33のある座標点(i,j)に置く。そして、この中心点32を画像データ33内で走査しながら、テンプレート31と画像データ33から抽出した特徴的部分のパターンとの類似度を計算して、類似度が最大になる位置を決定する。顔の画像データ33から抽出されたパターンを、例えば目や耳などの形状を含むテンプレート31にマッチングさせることにより、目の位置情報や顔領域を示す座標情報(顔座標)を取得することができる。
なお、本発明は、上述した顔検出方法に限られるものではなく、顔が検出できるのであれば、どのような方法を用いても構わない。例えば、顔検出方法の別の例として、上述した方法以外にも、ニューラルネットワークなどによる学習を用いる方法や、物理的な形状における特徴のある部位を画像領域から抽出する方法が知られている。また、検出した顔の肌の色や目の形等の画像特徴量を統計的に解析する方法なども知られている。さらに、実用化が検討されている方法としては、ウェーブレット変換と画像特徴量を利用する方法などがある。
<顔サイズ判別について>
顔サイズ判別部103は、顔情報検出回路102によって検出された顔の情報から、顔領域における画素数をカウントし、この画素数に基づいて顔のサイズを判別する。顔領域は、例えば、顔として検出された領域を示す座標情報で表すことができる。
なお、本発明は、上述した顔サイズの判別方法に限られるものではなく、顔サイズが判別できるのであれば、どのような方法を用いても構わない。例えば、顔サイズ判別部103は、顔情報検出回路102によって検出された顔情報のうち、目の位置情報に基づき顔サイズを判別するようにしてもよい。例えば、目の位置情報に基づき画像データ上の目の間隔を算出し、予め求めておいた目の間隔と顔のサイズとの統計的関係を用いてテーブル化し、顔のサイズを判別することが考えられる。図4は、画像上の画素数で示される顔サイズと目の間隔との統計的関係の一例を示す。このように、統計的には、画像上の目の間隔に対して顔サイズを一意に対応付けることができる。
また、検出された顔の所定位置、例えば四隅の座標値から顔領域における画素数をカウントすることにより、顔サイズを判別してもよい。
<被写体距離推定について>
被写体距離推定部104は、顔サイズ判別部103で判別された顔サイズに基づき、カメラ本体100から被写体までの被写体距離を推定する。より具体的には、被写体距離推定部104は、顔サイズ判別部103により判別された顔サイズに基づき、顔サイズと被写体距離との関係から予め作成された、所定の焦点距離のレンズにおける変換テーブルを参照して、被写体距離を推定する。
図5(a)は、画像上の画素数で表される顔サイズと、被写体距離の一例の関係を示す。一例として、この図5(a)に示される関係に基づくテーブルを、レンズ焦点距離が38mmの広角レンズについて作成し、被写体距離を推定する。レンズ焦点距離が38mmと異なる場合には、判別された顔サイズに対して(38mm/実際のレンズ焦点距離(mm))を乗じた値を用いて、上述の変換テーブルを参照する。
これに限らず、図5(b)に例示されるように、顔サイズの代わりに、検出された顔領域の画像に占める割合と、被写体距離との関係をテーブル化して用いてもよい。
なお、撮像素子の大きさ自体や使用領域により被写体距離が変わるので、そのモードに応じて、推定被写体距離を算出するための変換テーブルを生成し直したり、予め複数の変換テーブルを記憶しておいても良い。
<オートフォーカススキャン範囲について>
オートフォーカススキャン範囲の決定方法について、図6を用いて説明する。図6は、フォーカスレンズ位置に対するAF評価値の例を、異なる被写界深度について示した図である。なお、図6において、縦軸がAF評価値、横軸がフォーカスレンズ位置を示し、曲線Aが被写界深度が深い場合の例、曲線Bが被写界深度が浅い場合の例をそれぞれ示す。また、位置Cは、合焦点を示す。
曲線Aに示されるように、被写界深度が深いときは、AF評価値の変化幅が小さくなるため、合焦点Cを見つけるためには、広いオートフォーカススキャン範囲からAF評価値を検出する必要がある。
一方、曲線Bに示されるように、被写界深度が浅いときは、フォーカスレンズの動きに対するオートフォーカス評価値の変化幅が大きくなる。従って、被写界深度が深い場合に比べて、より狭い範囲のオートフォーカススキャン範囲でAF評価値を検出することで、合焦点Cを見つけることができる。
従って、後述する図9のS110において、検出された顔が実際の人物の顔であると判定された場合のオートフォーカススキャン範囲を、上述した(4)、(5)の式から算出すると、推定された被写体距離の周辺に設定する。これにより、被写界深度が深い場合には、オートフォーカススキャン範囲を広くし、被写界深度が浅い場合には、オートフォーカススキャン範囲を狭くすることができる。
<本実施形態による撮像処理について>
次に、図7から図9を用いて、本実施形態による撮像処理について概略的に説明する。なお、図7において、縦軸はAF評価値、横軸はレンズユニット300内におけるフォーカスレンズ位置で合焦される距離(以下、「レンズ距離」と呼ぶ。)をそれぞれ示す。AF評価値が最大値を取る距離に対応するフォーカスレンズ位置が、合焦位置となる。また、図7において、曲線701及び702は、各レンズ距離におけるAF評価値の一例を示している。
図7(a)は、被写体距離推定部104により推定された被写体距離が5.0mの場合に、上述した式(4)、(5)に基づいて決定されたオートフォーカススキャン範囲(第1のスキャン範囲)を示す図である。ここでは、絞り値(a)に対応したオートフォーカススキャン範囲の至近側位置が3.0m、無限側位置が7.0m(以下、「範囲(a)」と記す。)とする。また、絞り値(b)に対応したオートフォーカススキャン範囲の至近側位置が4.0m、無限側位置が6.0m(以下、「範囲(b)」と記す。)とする。通常であれば、このようして決定されたオートフォーカススキャン範囲をスキャンすれば、合焦することができる。
ここで、推定された被写体距離が、実際の人物までの距離ではなく、図8に示すような距離関係に人物を撮影した写真がある場合に、その写真から検出された人物に基づいて求められたものであるとする。この場合、図8に示す例では、実際には1.0mの距離に写真があるにも関わらず、検出された顔のサイズから5.0mの距離に被写体があるものと誤検出し、範囲(a)または範囲(b)をオートフォーカススキャン範囲として決定してしまう。
一方、図7(b)は、レンズユニット300から取得した焦点距離、フォーカスレンズ位置、及び絞り値に基づいて求められる被写体距離が1.0mである場合に上述した(4)、(5)に基づいて決定されたオートフォーカススキャン範囲を示す図である。ここでは、絞り値(c)に対応したオートフォーカススキャン範囲の至近側位置が0.5m、無限側位置が2.0m(以下、「範囲(c)」と記す。)とする。また、絞り値(d)に対応したオートフォーカススキャン範囲の至近側位置が0.75m、無限側位置が1.5m(以下、「範囲(d)」と記す。)とする。この場合、誤検出された被写体に基づいて推定された被写体距離5.0mに対して決定された範囲(a)または範囲(b)には、被写体距離1.0mのフォーカススキャン範囲には含まれないため、範囲(a)または範囲(b)をスキャンしても合焦できないことになる。このようなケースでは、合焦できなかったことを示す表示を行ってオートフォーカス処理を止めるか、引き続き7.0m〜無限端、また無限端から至近端までオートフォーカススキャンを行い、合焦するまで動き続けることになるため、非常に時間がかかってしまう。
そこで、本実施の形態では、ライブビューモードで動作をしている場合に、表示中の画像を撮影した時のレンズ距離に基づいて得られた被写界深度の範囲と、推定された被写体距離に基づいて得られた被写界深度と上述した式(4)、(5)から算出した範囲とを比較してフォーカススキャン範囲を決定し、AF制御を行う。
図9のフローチャートを用いて、本実施形態おける合焦制御処理の概略について説明する。なお、図9のフローチャートにおける各判断及び制御は、カメラ制御部110及び/またはAF制御部111により、所定のプログラムに従って行われる。
図9は、本実施形態におけるライブビュー時の処理を示すフローチャートである。本実施形態では、図9のフローチャートの処理に先立って、カメラ本体100がライブビューモードで動作しており、ミラー114は跳ね上げられた状態とされ、シャッタ115は、開放状態になっているものとする。ライブビューモードでは、撮像素子101から所定の間隔で出力された撮像信号に基づく画像データが、表示回路112を介して表示装置113に逐次表示されることにより、ライブビューが実現される。
まず、カメラ制御部110は、マニュアルまたはAE制御部(不図示)により制御された絞り値を算出する(S101)。なお、絞り値は、ライブビューの表示に支障を来さないように、ライブビューのフレームレートが遅くならず、且つ、ノイズ量を抑制しながら広範囲で顔情報検出回路による顔検出を行えるように選択される。そして、算出された絞り値に基づき、絞り制御部304を制御して絞り302を駆動する。
レンズユニット300を介して照射された光に基づいて、撮像素子101から出力された撮像信号に基づく画像データが画像蓄積バッファ101aに記憶され、顔情報検出回路102は、画像蓄積バッファ101aから画像データを取得する(S102)。次に、取得された画像データから、顔情報検出回路102により顔が検出されたか否かを判定する(S103)。
ここで顔が検出されていないと判定されると(S103でNO)、例えば従来技術による、通常のオートフォーカス制御を行う(S111)。
一方、顔が検出されたと判定されると(S103でYES)、AF制御部111によりレンズユニット300の焦点距離情報を取得する(S104)。そして、更に、現在のフォーカスレンズの位置情報(レンズ距離情報)を取得する(S105)。焦点距離情報およびレンズ距離情報は、例えば、カメラ制御部110によりインターフェイス119などを介してレンズユニット300のレンズシステム制御部307と通信を行って取得する。取得した焦点距離情報及びレンズ距離情報は、AF制御部111に渡される。なお、レンズ距離情報は、フォーカスレンズの現在の位置に対応する合焦点までの距離を示す情報である。勿論、フォーカスレンズの現在の位置のみを取得し、合焦点までの距離をカメラ本体100側で求めるようにしてもよい。
そして、顔サイズ判別部103により、S102で検出された顔の情報に基づいて顔サイズを求め(S106)、得られた顔サイズと、S104で取得した焦点距離情報とに基づいて、被写体距離推定部104により被写体までの距離を推定する(S107)。
次に、S104で取得した焦点距離情報と、S105で取得したレンズ距離情報と、S101で取得した絞り情報とに基づき、現在のフォーカスレンズ位置における、被写界深度(第2の被写界深度)の範囲を求める。そして、求めた被写界深度に基づいて、図6を参照して上述したようにしてオートフォーカススキャン範囲(第2のスキャン範囲)を算出する(S108)。
更に、S108では、S107で顔情報から推定した被写体距離と、S105で取得したレンズ距離情報と、S101で取得した絞り情報とに基づき、被写界深度(第1の被写界深度)の範囲を求める。そして、求めた被写界深度に基づいて、図6を参照して上述したようにしてオートフォーカススキャン範囲(第1のスキャン範囲)を算出する。
次のS109では、レンズ距離情報から求めたオートフォーカススキャン範囲と、推定被写体距離から求めたオートフォーカススキャン範囲の少なくとも一部が重なっているかどうかを判断する。そして、図7(b)を参照して上述したように、2つのオートフォーカススキャン範囲が全く重なっていない場合には、検出された顔が顔写真に写った顔であると判断する(S110でYES)。そして、レンズ距離情報から求めたオートフォーカススキャン範囲(図7(b)の例では、範囲(c)または範囲(d))を選択してオートフォーカススキャンすることで、AF制御を行う(顔写真AF)(S113)。この時、フラッシュ撮影を行う場合には、レンズ距離情報に基づいて不図示のフラッシュのフラッシュ発光量を設定する。なお、フラッシュ発光量は、カメラ制御部110が決定して制御することができる。
一方、一部でも重なっている場合には、検出された顔が実際の人物の顔であると判断する(S110でNO)。そして、推定被写体距離から求めたオートフォーカススキャン範囲(例えば、図7(a)の範囲(a)または範囲(b))を選択してオートフォーカススキャンすることで、AF制御を行う(顔AF)(S112)。また、フラッシュ撮影を行う場合には、推定被写体距離に基づいてフラッシュ発光量を設定する。これは、実際の人物を撮影している状況では、現在のレンズ距離と、S107で推定された推定被写体距離とは大きく離れていないと考えられるからである。つまり、現在のレンズ距離情報から求められたオートフォーカススキャン範囲と、推定被写体距離から求められたオートフォーカススキャン範囲とが重なる可能性が高い。そのため、オートフォーカススキャン範囲が一部でも重なっている場合には、実際の人物の顔であると判断し、推定被写体距離から求められたオートフォーカススキャン範囲をオートフォーカススキャンする。
上記の通り本実施形態によれば、検出した人物の顔が、実際の人物の顔ではなく、顔写真の顔であっても、オートフォーカスを精度よく行うことができると共に、オートフォーカスに要する時間の短縮を図ることができる。
また、フラッシュ撮影時においては、顔写真と判定した場合には、顔検出結果から得られた推定被写体距離を使用せず、レンズ距離情報を使用することで、適正なフラッシュ発光量で撮影を行うことができる。
なお、上記実施形態では、顔写真と判定した場合には、レンズ距離情報に基づいてオートフォーカススキャン範囲を決定するものとして説明した。しかしながら、本発明は是に限るものではなく、顔写真と判定した場合に(S110でYES)、例えば従来技術による、通常のオートフォーカス制御を行う(S111)ように制御しても良い。
また、上記実施形態では、オートフォーカススキャン範囲が一部でも重なっている場合(S110でNO)には、実際の人物の顔であると判断し、推定被写体距離から求められたオートフォーカススキャン範囲を採用することとした。しかしながら、現在のレンズ距離情報から求められたオートフォーカススキャン範囲を採用してもよい。または、推定被写体距離から求められたオートフォーカススキャン範囲と現在のレンズ距離情報から求められたオートフォーカススキャン範囲との両方をカバーする範囲としてもよい。
また、上記実施形態では、S110で実際の人物の顔か顔写真かを判定する際、現在のレンズ距離情報から求められたオートフォーカススキャン範囲と、推定被写体距離から求められたオートフォーカススキャン範囲とを比較した。しかしながら、現在のレンズ距離情報から求められたオートフォーカススキャン範囲に、推定被写体距離が存在する場合には実際の人物の顔、存在しない場合には顔写真と判定してもよい。
<他の実施形態>
また、本発明は、以下の処理を実行することによっても実現される。即ち、上述した実施形態の機能を実現するソフトウェア(プログラム)を、ネットワーク又は各種記憶媒体を介してシステム或いは装置に供給し、そのシステム或いは装置のコンピュータ(またはCPUやMPU等)がプログラムを読み出して実行する処理である。

Claims (7)

  1. 撮影レンズを介して入射する被写体からの光を光電変換して得られた画像データに基づいて、コントラスト方式のオートフォーカス制御を行う撮像装置であって、
    所定周期で被写体を撮像して画像データを取得する撮像手段と、
    表示手段に前記撮像手段により取得した画像データに基づく画像を逐次表示する際に、前記画像データから人物の顔を検出する顔検出手段と、
    前記撮像手段から、前記検出した顔までの距離を推定する推定手段と、
    前記撮影レンズの焦点距離と、絞り値と、前記推定手段により推定された前記距離とに基づいて第1の被写界深度を求め、該第1の被写界深度と前記距離とに基づいて、前記オートフォーカス制御において前記撮影レンズのフォーカスレンズを駆動する第1のスキャン範囲を算出すると共に、前記焦点距離と、前記絞り値と、前記顔の検出に用いられた画像データを取得したときの合焦点までの距離とに基づいて第2の被写界深度を求め、該第2の被写界深度と前記合焦点までの距離とに基づいて、第2のスキャン範囲を算出する算出手段と、
    前記算出手段により算出した前記第1及び第2のスキャン範囲を含む複数のスキャン範囲のいずれかを選択する選択手段と、
    前記選択手段により選択されたスキャン範囲において前記フォーカスレンズを駆動しながら取得したコントラスト信号に基づいて、合焦点を検出する検出手段とを有し、
    前記選択手段は、前記第1及び第2のスキャン範囲の少なくとも一部が重なっている場合に、前記第1のスキャン範囲を選択し、前記第1及び第2のスキャン範囲が重なっていない場合に、前記第1のスキャン範囲を選択しないことを特徴とする撮像装置。
  2. 前記選択手段は、前記第1及び第2のスキャン範囲が重なっていない場合に、前記第2のスキャン範囲を選択することを特徴とする請求項1に記載の撮像装置。
  3. 前記顔検出手段により顔が検出されなかった場合に、予め決められた方法でスキャン範囲を決定する決定手段を更に有し、
    前記決定手段は、更に、前記第1及び第2のスキャン範囲が重なっていない場合に、前記予め決められた方法でスキャン範囲を決定し、
    前記選択手段は、前記顔検出手段により顔が検出されなかった場合、及び、前記第1及び第2のスキャン範囲が重なっていない場合に、前記予め決められた方法で決められたスキャン範囲を選択することを特徴とする請求項1に記載の撮像装置。
  4. フラッシュの発光量を制御する制御手段を更に有し、
    前記制御手段は、前記選択手段により前記第1のスキャン範囲が選択された場合に、前記推定手段により推定された前記距離に基づいて前記発光量を制御し、前記第2のスキャン範囲が選択された場合に、前記表示される画像を撮影したときの前記フォーカスレンズの位置で合焦する距離に基づいて前記発光量を制御することを特徴とする請求項1乃至3のいずれか1項に記載の撮像装置。
  5. 撮影レンズを介して入射する被写体からの光を光電変換して得られた画像データに基づいて、コントラスト方式のオートフォーカス制御を行う撮像装置の制御方法であって、
    撮像手段が、所定周期で被写体を撮像して画像データを取得する撮像ステップと、
    顔検出手段が、表示手段に前記撮像ステップで取得した画像データに基づく画像を逐次表示する際に、前記画像データから人物の顔を検出する顔検出ステップと、
    推定手段が、前記撮像手段から、前記検出した顔までの距離を推定する推定ステップと、
    算出手段が、前記撮影レンズの焦点距離と、絞り値と、前記推定ステップで推定された前記距離とに基づいて第1の被写界深度を求め、該第1の被写界深度と前記距離とに基づいて、前記オートフォーカス制御において前記撮影レンズのフォーカスレンズを駆動する第1のスキャン範囲を算出すると共に、前記焦点距離と、前記絞り値と、前記顔の検出に用いられた画像データを取得したときの合焦点までの距離とに基づいて第2の被写界深度を求め、該第2の被写界深度と前記合焦点までの距離に基づいて、第2のスキャン範囲を算出する算出ステップと、
    選択手段が、前記算出ステップで算出した前記第1及び第2のスキャン範囲を含む複数のスキャン範囲のいずれかを選択する選択ステップと、
    検出手段が、前記選択ステップで選択されたスキャン範囲において前記フォーカスレンズを駆動しながら取得したコントラスト信号に基づいて、合焦点を検出する検出ステップとを有し、
    前記選択ステップでは、前記第1及び第2のスキャン範囲の少なくとも一部が重なっている場合に、前記第1のスキャン範囲を選択し、前記第1及び第2のスキャン範囲が重なっていない場合に、前記第1のスキャン範囲を選択しないことを特徴とする撮像装置の制御方法。
  6. コンピュータに、請求項5に記載の制御方法の各工程を実行させるためのプログラム。
  7. 請求項6に記載のプログラムを格納したコンピュータが読み取り可能な記憶媒体。
JP2010185578A 2010-08-20 2010-08-20 撮像装置および撮像装置の制御方法 Expired - Fee Related JP5789091B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010185578A JP5789091B2 (ja) 2010-08-20 2010-08-20 撮像装置および撮像装置の制御方法
US13/196,369 US8520130B2 (en) 2010-08-20 2011-08-02 Image capturing apparatus and auto-focus control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010185578A JP5789091B2 (ja) 2010-08-20 2010-08-20 撮像装置および撮像装置の制御方法

Publications (3)

Publication Number Publication Date
JP2012042833A JP2012042833A (ja) 2012-03-01
JP2012042833A5 JP2012042833A5 (ja) 2013-10-03
JP5789091B2 true JP5789091B2 (ja) 2015-10-07

Family

ID=45593785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010185578A Expired - Fee Related JP5789091B2 (ja) 2010-08-20 2010-08-20 撮像装置および撮像装置の制御方法

Country Status (2)

Country Link
US (1) US8520130B2 (ja)
JP (1) JP5789091B2 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140225991A1 (en) * 2011-09-02 2014-08-14 Htc Corporation Image capturing apparatus and method for obatining depth information of field thereof
US8941722B2 (en) * 2012-01-03 2015-01-27 Sony Corporation Automatic intelligent focus control of video
KR20140007529A (ko) * 2012-07-09 2014-01-20 삼성전자주식회사 카메라의 이미지 촬영장치 및 방법
JP6103849B2 (ja) * 2012-08-02 2017-03-29 オリンパス株式会社 内視鏡装置及び内視鏡装置の作動方法
TWI588557B (zh) * 2012-11-30 2017-06-21 鴻海精密工業股份有限公司 自動對焦方法
TW201517615A (zh) * 2013-10-16 2015-05-01 Novatek Microelectronics Corp 對焦方法
JP6320105B2 (ja) * 2014-03-25 2018-05-09 キヤノン株式会社 撮像装置およびその制御方法
CN106464783B (zh) * 2014-05-26 2020-01-21 索尼公司 图像拾取控制设备、图像拾取设备和图像拾取控制方法
WO2016091545A1 (en) * 2014-12-09 2016-06-16 Fotonation Limited Image processing method
US9638984B2 (en) 2015-03-10 2017-05-02 Qualcomm Incorporated Search range extension for depth assisted autofocus
US10148943B2 (en) 2016-08-08 2018-12-04 Fotonation Limited Image acquisition device and method based on a sharpness measure and an image acquistion parameter
US10798292B1 (en) 2019-05-31 2020-10-06 Microsoft Technology Licensing, Llc Techniques to set focus in camera in a mixed-reality environment with hand gesture interaction
WO2021064937A1 (ja) * 2019-10-03 2021-04-08 富士通株式会社 情報処理装置、情報処理プログラム、及び情報処理方法
WO2021152877A1 (ja) * 2020-01-30 2021-08-05 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置、電子機器及び撮像システム
JP6970945B1 (ja) * 2021-06-18 2021-11-24 パナソニックIpマネジメント株式会社 撮像装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3164692B2 (ja) 1993-04-19 2001-05-08 京セラ株式会社 電子スチルカメラ
JP5011625B2 (ja) 2001-09-06 2012-08-29 株式会社ニコン 撮像装置
JP2004317699A (ja) 2003-04-15 2004-11-11 Nikon Gijutsu Kobo:Kk デジタルカメラ
CN1716078B (zh) * 2004-06-03 2012-03-28 佳能株式会社 图像拾取设备和图像拾取方法
JP4207980B2 (ja) * 2006-06-09 2009-01-14 ソニー株式会社 撮像装置、および撮像装置制御方法、並びにコンピュータ・プログラム
JP2008052123A (ja) * 2006-08-25 2008-03-06 Eastman Kodak Co 撮像装置
JP4571617B2 (ja) 2006-12-28 2010-10-27 三星デジタルイメージング株式会社 撮像装置及び撮像方法
JP4732397B2 (ja) * 2007-04-11 2011-07-27 富士フイルム株式会社 撮像装置及びその合焦制御方法

Also Published As

Publication number Publication date
JP2012042833A (ja) 2012-03-01
US8520130B2 (en) 2013-08-27
US20120044408A1 (en) 2012-02-23

Similar Documents

Publication Publication Date Title
JP5789091B2 (ja) 撮像装置および撮像装置の制御方法
US8169530B2 (en) Camera having an autofocusing system
US7929042B2 (en) Imaging apparatus, control method of imaging apparatus, and computer program
US7733412B2 (en) Image pickup apparatus and image pickup method
US20080136958A1 (en) Camera having a focus adjusting system and a face recognition function
US8027581B2 (en) Imaging apparatus, imaging apparatus control method, and computer program
US20080143866A1 (en) Camera having a focus adjusting system and a face recognition function
JP5712519B2 (ja) 撮像装置および撮像方法
JP5003529B2 (ja) 撮像装置および対象物の検出方法
US20100157135A1 (en) Passive distance estimation for imaging algorithms
JP4998308B2 (ja) 焦点調節装置および撮像装置
JP2006018246A (ja) 撮像装置及び撮像方法
JP5171468B2 (ja) 撮像装置及び撮像装置の制御方法
US7957633B2 (en) Focus adjusting apparatus and focus adjusting method
US20080100721A1 (en) Method of detecting specific object region and digital camera
EP2166408B1 (en) Imaging device and imaging method using the same
JP5063480B2 (ja) オートフォーカス機構付き撮像システム及びその調整方法
CN108289170B (zh) 能够检测计量区域的拍照装置、方法及计算机可读介质
JP2006208443A (ja) オートフォーカス装置
JP2007133301A (ja) オートフォーカスカメラ
JP4329694B2 (ja) 撮像装置
JP4996568B2 (ja) 撮像装置および撮像装置の制御方法
JP4871691B2 (ja) 撮像装置及びその制御方法
JP4567538B2 (ja) 露出量算出システムならびにその制御方法およびその制御プログラム
JP2007328213A (ja) 撮像装置、および撮像装置制御方法、並びにコンピュータ・プログラム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130820

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150731

LAPS Cancellation because of no payment of annual fees