JP5757673B2 - Substrate with transparent film and paint for forming transparent film - Google Patents

Substrate with transparent film and paint for forming transparent film Download PDF

Info

Publication number
JP5757673B2
JP5757673B2 JP2007199150A JP2007199150A JP5757673B2 JP 5757673 B2 JP5757673 B2 JP 5757673B2 JP 2007199150 A JP2007199150 A JP 2007199150A JP 2007199150 A JP2007199150 A JP 2007199150A JP 5757673 B2 JP5757673 B2 JP 5757673B2
Authority
JP
Japan
Prior art keywords
silica
fine particles
based hollow
hollow fine
transparent film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007199150A
Other languages
Japanese (ja)
Other versions
JP2009035594A (en
Inventor
良 村口
良 村口
光章 熊澤
光章 熊澤
政幸 松田
政幸 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP2007199150A priority Critical patent/JP5757673B2/en
Publication of JP2009035594A publication Critical patent/JP2009035594A/en
Application granted granted Critical
Publication of JP5757673B2 publication Critical patent/JP5757673B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、基材上に透明被膜が形成された透明被膜付基材であって、反射防止性能、強度、耐擦傷性等に優れた透明被膜付基材および該透明被膜形成用塗料に関する。   The present invention relates to a substrate with a transparent film in which a transparent film is formed on the substrate, and relates to a substrate with a transparent film excellent in antireflection performance, strength, scratch resistance, and the like, and the coating material for forming the transparent film.

従来より、ガラス、プラスチックシート、プラスチックレンズ等の基材表面の反射を防止するため、その表面に反射防止膜を形成することが知られており、たとえば、コート法、蒸着法、CVD法等によって、フッ素樹脂、フッ化マグネシウムのような低屈折率の物質の被膜をガラスやプラスチックの基材表面に形成したり、シリカ微粒子等の低屈折率微粒子を含む塗布液を基材表面に塗布して、反射防止被膜を形成する方法が知られている(たとえば、特開平7-133105号公報(特許文献1)など参照)。このとき、反射防止性能を高めるために反射防止被膜の下層に高屈折率の微粒子等を含む高屈折率膜を形成することも知られている。   Conventionally, in order to prevent reflection of the surface of a substrate such as glass, plastic sheet, plastic lens, etc., it is known to form an antireflection film on the surface, for example, by coating method, vapor deposition method, CVD method, etc. A coating of a low refractive index substance such as fluororesin or magnesium fluoride is formed on the surface of a glass or plastic substrate, or a coating liquid containing low refractive index fine particles such as silica fine particles is applied to the surface of the substrate. A method of forming an antireflection coating is known (see, for example, JP-A-7-133105 (Patent Document 1) and the like). At this time, in order to improve the antireflection performance, it is also known to form a high refractive index film containing fine particles of high refractive index under the antireflection coating.

本願出願人は特開2001−23611号公報(特許文献2)において、内部に空洞を有するシリカ系微粒子の製造方法および得られるシリカ系微粒子は屈折率が低く、このシリカ系微粒子を用いて形成された透明被膜は屈折率が低く反射防止性能に優れていることを開示している。   The applicant of the present invention disclosed in Japanese Patent Application Laid-Open No. 2001-23611 (Patent Document 2) is a method for producing silica-based fine particles having cavities therein and the resulting silica-based fine particles have a low refractive index and are formed using the silica-based fine particles. It is disclosed that the transparent film has a low refractive index and excellent antireflection performance.

さらに、特開2002−79616号公報(特許文献3)において、このような透明被膜を表示装置の全面に形成して用いると反射防止性能に優れ表示性能が向上することを開示している。
特開平7-133105号公報 特開2001−23611号公報 特開2002−79616号公報
Furthermore, Japanese Patent Application Laid-Open No. 2002-79616 (Patent Document 3) discloses that when such a transparent film is formed and used on the entire surface of a display device, the antireflection performance is excellent and the display performance is improved.
JP-A-7-133105 JP 2001-23611 A JP 2002-79616 A

しかしながら、従来のシリカ系微粒子は、粒子径が小さいと殻の割合が高く、内部の空洞の割合が低いために屈折率が充分低いとはいえず、他方、粒子径が大きいと屈折率は低いものの得られる透明被膜の強度、耐擦傷性が低下する欠点があった。   However, the conventional silica-based fine particles have a high ratio of shells when the particle size is small, and the refractive index is not sufficiently low because the ratio of internal cavities is low, whereas the refractive index is low when the particle size is large. However, there is a drawback that the strength and scratch resistance of the transparent film obtained are lowered.

本発明者らは、このような問題点に鑑み鋭意検討した結果、平均粒子径が大きくかつ屈折率の低いシリカ系中空微粒子と耐擦傷性に優れた平均粒子径が小さくかつ屈折率が比較的低いシリカ系中空微粒子とを混合して用いることによって、得られる透明被膜の屈折率が高くなることなく、むしろ低下し、膜の表面が平滑で耐擦傷性が向上するとともに透明被膜の強度が向上することを見出して本発明を完成するに至った。   As a result of intensive studies in view of such problems, the present inventors have found that silica-based hollow fine particles having a large average particle diameter and a low refractive index and a small average particle diameter excellent in scratch resistance and a relatively low refractive index. By mixing with low silica-based hollow fine particles, the refractive index of the transparent film obtained does not increase, but rather decreases, the film surface is smooth and the scratch resistance is improved, and the strength of the transparent film is improved. As a result, the present invention has been completed.

これにより、本発明は、基材との密着性、強度、耐擦傷性および反射防止性能等に優れた透明被膜付基材および該透明被膜形成用塗料を提供することが可能となる。
本発明の要旨は、以下の通りである。
[1]基材上に、シリカ系中空微粒子とマトリックス成分とからなる透明被膜が形成された透明被膜付基材であって、
該透明被膜が、平均粒子径(DPA)が60〜200nmの範囲にあり、屈折率が1.10〜
1.35の範囲にあるシリカ系中空微粒子(A)と、平均粒子径(DPB)が5〜60nmの範囲にあり、屈折率が1.15〜1.40の範囲にあるシリカ系中空微粒子(B)とを含んでなる
透明被膜付基材。
[2]前記シリカ系中空微粒子(A)の平均粒子径(DPA)とシリカ系中空微粒子(B)の平均粒子径(DPB)との差(DPA)−(DPB)が5〜195nmの範囲にある[1]の透明被膜付基材。
[3]前記透明被膜中のシリカ系中空微粒子(A)の含有量が20〜70重量%の範囲にあり、シリカ系中空微粒子(B)の含有量が5〜50重量%の範囲にあり、シリカ系中空微粒子(A)とシリカ系中空微粒子(B)の合計の含有量が25〜80重量%の範囲にある[1]または[2]の透明被膜付基材。
[4]前記透明被膜の膜厚が30nm〜300nmの範囲にあり、屈折率が1.20〜1.50の範囲にある[1]〜[3]の透明被膜付基材。
[5]平均粒子径(DPA)が60〜200nmの範囲にあり、屈折率が1.10〜1.35の範囲にあるシリカ系中空微粒子(A)と、平均粒子径(DPB)が5〜60nmの範囲にあり、屈折率が1.15〜1.40の範囲にあるシリカ系中空微粒子(B)とマトリックス形成成分と極性溶媒とからなる透明被膜形成用塗料。
[6]前記シリカ系中空微粒子(A)の平均粒子径(DPA)とシリカ系中空微粒子(B)の平均粒子径(DPB)との差(DPA)−(DPB)が5〜195nmの範囲にある[5]の透明被膜形成用塗料。
[7]塗料中のシリカ系中空微粒子(A)の濃度が固形分として0.5〜35重量%の範囲にあり、シリカ系中空微粒子(B)の濃度が固形分として0.25〜25重量%の範囲にあり、マトリックス形成性分を含めた合計の固形分濃度が1〜50重量%の範囲にある[5]または[6]の透明被膜形成用塗料。
As a result, the present invention can provide a substrate with a transparent coating excellent in adhesion to the substrate, strength, scratch resistance, antireflection performance, and the like, and the coating for forming the transparent coating.
The gist of the present invention is as follows.
[1] A substrate with a transparent coating, on which a transparent coating composed of silica-based hollow fine particles and a matrix component is formed,
The transparent film has an average particle diameter (D PA ) in the range of 60 to 200 nm and a refractive index of 1.10.
Silica-based hollow fine particles (A) in the range of 1.35 and silica-based hollow fine particles in which the average particle diameter (D PB ) is in the range of 5 to 60 nm and the refractive index is in the range of 1.15 to 1.40. A base material with a transparent coating comprising (B).
[2] The difference (D PA ) − (D PB ) between the average particle size (D PA ) of the silica-based hollow fine particles (A) and the average particle size (D PB ) of the silica-based hollow fine particles (B) is 5 to 5 [1] The substrate with a transparent film in the range of 195 nm.
[3] The content of silica-based hollow fine particles (A) in the transparent film is in the range of 20 to 70% by weight, and the content of silica-based hollow fine particles (B) is in the range of 5 to 50% by weight; [1] or [2] The substrate with a transparent coating, wherein the total content of the silica-based hollow fine particles (A) and the silica-based hollow fine particles (B) is in the range of 25 to 80% by weight.
[4] The substrate with a transparent film according to [1] to [3], wherein the film thickness of the transparent film is in the range of 30 nm to 300 nm and the refractive index is in the range of 1.20 to 1.50.
[5] Silica-based hollow fine particles (A) having an average particle size (D PA ) in the range of 60 to 200 nm and a refractive index in the range of 1.10 to 1.35, and an average particle size (D PB ) A paint for forming a transparent film comprising silica-based hollow fine particles (B) having a refractive index of 1.15 to 1.40 in the range of 5 to 60 nm, a matrix-forming component, and a polar solvent.
[6] The difference (D PA ) − (D PB ) between the average particle size (D PA ) of the silica-based hollow fine particles (A) and the average particle size (D PB ) of the silica-based hollow fine particles (B) is 5 to 5 [5] The paint for forming a transparent film in a range of 195 nm.
[7] The concentration of the silica-based hollow fine particles (A) in the paint is in the range of 0.5 to 35% by weight as the solid content, and the concentration of the silica-based hollow fine particles (B) as the solid content is 0.25 to 25% by weight. The coating composition for forming a transparent film according to [5] or [6], wherein the total solid concentration including the matrix-forming component is in the range of 1 to 50% by weight.

本発明によれば、平均粒子径が大きくかつ屈折率の低いシリカ系中空微粒子と透明被膜の表面平滑性、強度、耐擦傷性の向上に寄与する平均粒子径が小さくかつ屈折率が比較的低いシリカ系中空微粒子とを混合して用いるため反射防止性能、強度、耐擦傷性等に優れた透明被膜付基材および該透明被膜形成用塗料を提供することができる。
以下、本発明について具体的に説明する。
[透明被膜付基材]
本発明に係る透明被膜付基材は、基材上に、シリカ系中空微粒子とマトリックス成分とからなる透明被膜が形成されてなる。
According to the present invention, the silica-based hollow fine particles having a large average particle size and a low refractive index and the transparent coating have a small average particle size and a relatively low refractive index that contribute to improving the surface smoothness, strength, and scratch resistance. Since a mixture of silica-based hollow fine particles is used, it is possible to provide a substrate with a transparent coating excellent in antireflection performance, strength, scratch resistance and the like, and the coating for forming the transparent coating.
Hereinafter, the present invention will be specifically described.
[Base material with transparent film]
The substrate with a transparent coating according to the present invention is formed by forming a transparent coating composed of silica-based hollow fine particles and a matrix component on the substrate.

基材
基材としては、従来公知の基材を用いることができ、ガラスの他、トリアセチルセルロースフィルム(TAC)、ジアセチルセルロースフィルム、アセテートブチレートセルロースフィルム等のセルロース系基材、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート等のポリエステル系基材、ポリエチレンフィルム、ポリプロピレンフィルム、環状ポリオレフィンフィルム等のポリオレフィン系基材、ナイロン−6、ナイロン−66等のポリアミド系基材、ポリアクリル系フィルム、ポリウレタン系フィルム、ポリカーボネートフィルム、ポリエーテウフィルム、ポリエーテルサルホンフィルム、ポリスチレンフィルム、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、アクリロニトリルフィルム等の基材が挙げられる。また、このような基材上に、ハードコート膜等他の被膜が形成された被膜付基材を用いこともできる。
As the base material , a conventionally known base material can be used. In addition to glass, cellulose base materials such as triacetyl cellulose film (TAC), diacetyl cellulose film, acetate butyrate cellulose film, polyethylene terephthalate (PET) ), Polyester base materials such as polyethylene naphthalate, polyolefin base materials such as polyethylene film, polypropylene film and cyclic polyolefin film, polyamide base materials such as nylon-6, nylon-66, polyacrylic film, polyurethane film , Polycarbonate film, polyether film, polyethersulfone film, polystyrene film, polymethylpentene film, polyetherketone film, acrylonitrile film, etc. And the like. In addition, a coated substrate in which another coating such as a hard coat film is formed on such a substrate can also be used.

透明被膜
(i)シリカ系中空微粒子
本発明には少なくとも2種以上の平均粒子径が異なるシリカ系中空微粒子を混合して用いる。平均粒子径の大きなシリカ系中空微粒子(A)は平均粒子径(DPA)が60〜200nm、さらには80〜200nmの範囲にあることが好ましい。シリカ系中空微粒子(A)の平均粒子径(DPA)が小さいと、シリカ系中空微粒子の粒子径の割に殻が厚くなったり、中空が充分に存在せず、粒子内部の空洞の割合が小さいために屈折率が高く、屈折率が充分に低い透明被膜が得られない場合がある。シリカ系中空微粒子(A)の平均粒子径(DPA)が大きすぎると、シリカ系中空微粒子の粒子径の割に殻が薄く、粒子内部の空洞の割合が大きいために屈折率が低いものの、得られる透明被膜の強度が不充分になったり、透明被膜表面の平滑性が低下するために耐擦傷性が不充分となることがある。
Transparent coating
(i) Silica-based hollow fine particles In the present invention, at least two kinds of silica-based hollow fine particles having different average particle diameters are mixed and used. The silica-based hollow fine particles (A) having a large average particle size preferably have an average particle size (D PA ) in the range of 60 to 200 nm, more preferably 80 to 200 nm. If the average particle size (D PA ) of the silica-based hollow fine particles (A) is small, the shell becomes thicker than the silica-based hollow fine particles, or the hollows do not exist sufficiently, and the proportion of cavities inside the particles Since it is small, a transparent film having a high refractive index and a sufficiently low refractive index may not be obtained. If the average particle size (D PA ) of the silica-based hollow fine particles (A) is too large, the shell is thin for the particle size of the silica-based hollow fine particles, but the refractive index is low because the ratio of the cavities inside the particles is large, The strength of the resulting transparent coating may be insufficient, or the smoothness of the surface of the transparent coating may be reduced, resulting in insufficient scratch resistance.

シリカ系中空微粒子(A)の屈折率は1.10〜1.35、さらには1.10〜1.30
の範囲にあることが好ましい。
シリカ系中空微粒子(A)の屈折率が前記下限未満のものは得ることが困難であり、得ら
れたとしても粒子強度が低下し、これを用いて得られる透明被膜の強度が不充分となることがある。
シリカ系中空微粒子(A)の屈折率が大きすぎると、所望の低屈折率の透明被膜が得られず
、反射防止性能が不充分となることがある。
The refractive index of the silica-based hollow fine particles (A) is 1.10 to 1.35, more preferably 1.10 to 1.30.
It is preferable that it exists in the range.
It is difficult to obtain a silica-based hollow fine particle (A) having a refractive index less than the lower limit, and even if it is obtained, the particle strength is lowered, and the strength of the transparent coating obtained using this is insufficient. Sometimes.
If the refractive index of the silica-based hollow fine particles (A) is too large, a transparent film having a desired low refractive index cannot be obtained, and the antireflection performance may be insufficient.

シリカ系中空微粒子(A)の外殻層の厚さは、内部に十分な中空を有するものであれば特
に制限されないが、通常2〜50nm、好ましく2〜20nmの範囲にあるものが望ましい。また、平均粒子径(DPA)と外殻層の厚さ(DSA)との比率(DSA/DPA)は0.01〜0.5、好ましくは0.01〜0.3の範囲にあればよい。
The thickness of the outer shell layer of the silica-based hollow fine particles (A) is not particularly limited as long as it has a sufficient hollow inside, but it is usually 2 to 50 nm, preferably 2 to 20 nm. The ratio (D SA / D PA ) between the average particle size (D PA ) and the thickness of the outer shell layer (D SA ) may be in the range of 0.01 to 0.5, preferably 0.01 to 0.3.

平均粒子径の小さなシリカ系中空微粒子(B)は平均粒子径(DPB)が5〜60nm、さらには10〜55nmの範囲にあることが好ましい。
シリカ系中空微粒子(B)の平均粒子径(DPB)が小さい場合は、屈折率が1.40を越えて大きくなることがあり、所望の低屈折率の透明被膜が得られず、反射防止性能が不充分となることがある。シリカ系中空微粒子(B)の平均粒子径(DPB)が大きすぎると、粒子の屈折率は低くなるものの、前記シリカ系中空微粒子(A)の平均粒子径と近接しているために粒
子が密に充填せず、このため得られる透明被膜の強度が不充分となったり、耐擦傷性が不充分となることがある。
The silica-based hollow fine particles (B) having a small average particle diameter preferably have an average particle diameter (D PB ) in the range of 5 to 60 nm, more preferably 10 to 55 nm.
When the average particle diameter (D PB ) of the silica-based hollow fine particles (B) is small, the refractive index may increase beyond 1.40, and a transparent film having a desired low refractive index cannot be obtained, thereby preventing reflection. Performance may be insufficient. If the average particle size (D PB ) of the silica-based hollow fine particles (B) is too large, the refractive index of the particles will be low, but the particles are close to the average particle size of the silica-based hollow fine particles (A). The film is not densely packed, and therefore the strength of the resulting transparent film may be insufficient, and the scratch resistance may be insufficient.

即ち、平均粒子径の異なる2種の低屈折率粒子が密に充填した透明被膜とすることにより効果的に透明被膜の屈折率を低くするとともに強度および耐擦傷性を向上させる硬化が得られないことがある。   That is, by making a transparent coating closely packed with two kinds of low refractive index particles having different average particle diameters, it is not possible to effectively reduce the refractive index of the transparent coating and improve the strength and scratch resistance. Sometimes.

シリカ系中空微粒子(B)の屈折率は1.15〜1.40、さらには1.15〜1.35
の範囲にあることが好ましい。
シリカ系中空微粒子(B)の粒径範囲で、屈折率が前記範囲よりも小さいものは、得るこ
とが困難であり、前記範囲を越えると、所望の低屈折率の透明被膜が得られず、反射防止性能が不充分となることがある。
The refractive index of the silica-based hollow fine particles (B) is 1.15 to 1.40, more preferably 1.15 to 1.35.
It is preferable that it exists in the range.
The silica-based hollow fine particles (B) having a particle size range in which the refractive index is smaller than the above range is difficult to obtain.If the above range is exceeded, a transparent film having a desired low refractive index cannot be obtained. The antireflection performance may be insufficient.

シリカ系中空微粒子(B)の外殻層の厚さは、内部に十分な中空を有するものであれば特
に制限されないが、通常1〜25nm、好ましくは2〜20nmの範囲にあるものが望ましい。また、平均粒子径(DPB)と外殻層の厚さ(DSB)との比率(DSB/DPB)は1〜25、好ましくは2〜20の範囲にあればよい。
The thickness of the outer shell layer of the silica-based hollow fine particles (B) is not particularly limited as long as it has a sufficient hollow inside, but it is usually 1 to 25 nm, preferably 2 to 20 nm. The ratio (D SB / D PB ) between the average particle diameter (D PB ) and the thickness of the outer shell layer (D SB ) may be in the range of 1 to 25, preferably 2 to 20.

シリカ系中空微粒子(A)と(B)とでは、屈折率差はあってもなくてもよく、同じ屈折率であってもよく、また、一方が高く、他方が低いとは限らなくともよい。
本発明に用いるシリカ系中空微粒子の平均粒子径は、電子顕微鏡写真を撮影し、100個の粒子について粒子径を測定し、その平均値として得られる。
The silica-based hollow fine particles (A) and (B) may or may not have a difference in refractive index, and may have the same refractive index, and one may be high and the other may not be low. .
The average particle size of the silica-based hollow fine particles used in the present invention is obtained as an average value obtained by taking an electron micrograph and measuring the particle size of 100 particles.

また、本発明に用いるシリカ系中空微粒子の屈折率は下記の方法によって測定する。
(1)複合酸化物分散液をエバポレーターに取り、分散媒を蒸発させる。
(2)これを120℃で乾燥し、粉末とする。
(3)屈折率が既知の標準屈折液を2、3滴ガラス板上に滴下し、これに上記粉末を混合
する。
(4)上記(3)の操作を種々の標準屈折液で行い、混合液が透明になったときの標準屈折液の屈折率を微粒子の屈折率とする。
The refractive index of the silica-based hollow fine particles used in the present invention is measured by the following method.
(1) Take the composite oxide dispersion in an evaporator and evaporate the dispersion medium.
(2) This is dried at 120 ° C. to obtain a powder.
(3) A standard refraction liquid having a known refractive index is dropped on a glass plate of a few drops, and the above powder is mixed therewith.
(4) The operation of (3) is performed with various standard refractive liquids, and the refractive index of the standard refractive liquid when the mixed liquid becomes transparent is used as the refractive index of the fine particles.

また、シリカ系中空微粒子(A)の平均粒子径(DPA)とシリカ系中空微粒子(B)の平均粒子
径(DPB)との差(DPA)−(DPB)は5〜195nm、さらには20〜100nmの範囲にある
ことが好ましい。
The difference (D PA ) − (D PB ) between the average particle diameter (D PA ) of the silica-based hollow fine particles (A) and the average particle diameter (D PB ) of the silica-based hollow fine particles (B) is 5 to 195 nm, Furthermore, it is preferable that it exists in the range of 20-100 nm.

平均粒子径の差(DPA)−(DPB)が小さいと、粒子径が同じような範囲となるので、透明被膜中で粒子が密に充填せず、透明被膜の屈折率を低下させる効果が充分得られず、平均粒子径の差(DPA)−(DPB)が大きすぎると、シリカ系中空微粒子(A)の粒子間隙をシリカ系中
空微粒子(B)によって埋めることができず、透明被膜の屈折率を低下させる効果が不充分
となり、さらにシリカ系中空微粒子(B)によって透明被膜表面を平滑にする効果が不充分
となることがある。
If the difference in average particle diameter (D PA ) − (D PB ) is small, the particle diameter is in the same range, so the particles are not densely packed in the transparent film, and the effect of reducing the refractive index of the transparent film Is not sufficiently obtained, the difference in average particle diameter (D PA )-(D PB ) is too large, the silica-based hollow fine particles (A) can not be filled with silica-based hollow fine particles (B), The effect of lowering the refractive index of the transparent film may be insufficient, and the effect of smoothing the surface of the transparent film by the silica-based hollow fine particles (B) may be insufficient.

透明被膜中のシリカ系中空微粒子(A)の含有量は20〜70重量%、さらには25〜6
0重量%の範囲にあることが好ましい。透明被膜中のシリカ系中空微粒子(A)の含有量が
少ないと、屈折率の充分に低い透明被膜が得られないことがあり、透明被膜中のシリカ系中空微粒子(A)の含有量が多すぎると、後述するマトリックス成分の含有量が少なくなる
ために透明被膜の強度が不充分となることがあり、またシリカ系中空微粒子(B)の含有量
も少なくなるために前記した平均粒子径の異なる2種以上の粒子を混合して用いる効果(粒子密充填効果、表面平滑化効果)が不充分となることがある。
The content of the silica-based hollow fine particles (A) in the transparent film is 20 to 70% by weight, more preferably 25 to 6%.
It is preferably in the range of 0% by weight. If the content of the silica-based hollow fine particles (A) in the transparent film is small, a transparent film having a sufficiently low refractive index may not be obtained, and the content of the silica-based hollow fine particles (A) in the transparent film is large. If it is too much, the content of the matrix component described later is reduced, so that the strength of the transparent film may be insufficient, and the content of the silica-based hollow fine particles (B) is also reduced, so that the average particle diameter described above is reduced. The effect of using a mixture of two or more different kinds of particles (particle packing effect, surface smoothing effect) may be insufficient.

また、透明被膜中のシリカ系中空微粒子(B)の含有量は5〜50重量%、さらには10
〜30重量%の範囲にあることが好ましい。透明被膜中のシリカ系中空微粒子(B)の含有
量が少ないと、前記粒子密充填効果、表面平滑化効果が不充分となり、透明被膜中のシリカ系中空微粒子(B)の含有量が多いと、シリカ系中空微粒子(A)の含有量が少なくなるために透明被膜の屈折率が不充分となることがある。
Further, the content of the silica-based hollow fine particles (B) in the transparent film is 5 to 50% by weight, more preferably 10%.
It is preferably in the range of ˜30% by weight. When the content of the silica-based hollow fine particles (B) in the transparent film is small, the above-mentioned particle close-packing effect and the surface smoothing effect become insufficient, and when the content of the silica-based hollow fine particles (B) in the transparent film is large In addition, since the content of the silica-based hollow fine particles (A) is decreased, the refractive index of the transparent film may be insufficient.

また、透明被膜中のシリカ系中空微粒子(A)の含有量(WPA)と透明被膜中のシリカ系
中空微粒子(B)の含有量(WPB)との比(WPB)/(WPA)は各粒子の平均粒子径によっ
ても異なるが、0.05/10〜2/1、さらには0.1/10〜1/1の範囲にあることが好ましい。この範囲にあれば、特に粒径の差が前記範囲にあれば、密にシリカ系中空微粒子(A)および(B)が充填する。なお、(WPB)/(WPA)が前記範囲より小さい場合、前記粒子密充填効果、表面平滑化効果が不充分となり、前記範囲を越えると、シリカ系中空微粒子(A)の含有量が少なくなるために透明被膜の屈折率が不充分となることがある。
Further, the ratio (W PB ) / (W PA ) of the content (W PA ) of silica-based hollow fine particles (A) in the transparent coating and the content (W PB ) of silica-based hollow fine particles (B) in the transparent coating ) Varies depending on the average particle diameter of each particle, but is preferably in the range of 0.05 / 10 to 2/1, more preferably 0.1 / 10 to 1/1. Within this range, particularly when the difference in particle size is within the above range, the silica-based hollow fine particles (A) and (B) are packed densely. In addition, when (W PB ) / (W PA ) is smaller than the above range, the particle packing effect and the surface smoothing effect are insufficient, and when the above range is exceeded, the content of the silica-based hollow fine particles (A) is too small. Since it decreases, the refractive index of a transparent film may become inadequate.

らに、透明被膜中のシリカ系中空微粒子(A)とシリカ系中空微粒子(B)との合計の含有量は25〜80重量%、さらには30〜70重量%の範囲にあることが好ましい。
透明被膜中のシリカ系中空微粒子(A)とシリカ系中空微粒子(B)との合計の含有量が25重量%未満の場合は、マトリックス成分の屈折率によっても異なるが、屈折率の低い透明被膜が得られないことがあり、また、透明被膜の強度、耐擦傷性が不充分となることがある。
透明被膜中のシリカ系中空微粒子(A)とシリカ系中空微粒子(B)との合計の含有量が80重量%を越えると、マトリックス成分が少ないために基材との密着性が不充分となったり、耐擦傷性、強度等に優れた透明被膜を得ることが困難であり、さらに透明被膜のヘーズが高くなることがある。
Furthermore, the total content of the silica-based hollow fine particles (A) and the silica-based hollow fine particles (B) in the transparent film is preferably in the range of 25 to 80% by weight, more preferably 30 to 70% by weight.
When the total content of the silica-based hollow fine particles (A) and the silica-based hollow fine particles (B) in the transparent coating is less than 25% by weight, the transparent coating with a low refractive index varies depending on the refractive index of the matrix component. May not be obtained, and the strength and scratch resistance of the transparent film may be insufficient.
If the total content of silica-based hollow fine particles (A) and silica-based hollow fine particles (B) in the transparent coating exceeds 80% by weight, the adhesiveness to the substrate becomes insufficient due to the small amount of matrix components. In addition, it is difficult to obtain a transparent film excellent in scratch resistance, strength and the like, and the haze of the transparent film may be increased.

(シリカ系中空微粒子の製法)
本発明に用いるシリカ系中空微粒子としては、平均粒子径および屈折率が前記した範囲
にあれば特に制限はないが、特開2001−23611号公報、特開2004−203683号公報等に開示したシリカ系微粒子は好適に用いることができる。
(Method for producing silica-based hollow fine particles)
The silica-based hollow fine particles used in the present invention are not particularly limited as long as the average particle diameter and the refractive index are within the above-described ranges, but the silica disclosed in JP-A Nos. 2001-23611, 2004-203683, and the like. System fine particles can be preferably used.

上記シリカ系微粒子は、シリカとシリカ以外の無機酸化物とからなる複合酸化物微粒子を核とし、必要に応じてシリカ被覆層(1)を形成した後、シリカ以外の無機酸化物を除去
し、さらに必要に応じてシリカ被覆層(2)を形成し、必要に応じて高温で水熱処理するこ
とによって得ることができるが、シリカ系中空微粒子(A)はこのとき、平均粒子径が約4
〜55nmの範囲にある核粒子に、シリカ被覆層(1)とシリカ被覆層(2)の合計の厚さが約1〜5nm程度になるようにシリカ被覆層を形成することによって得ることができる。
The silica-based fine particles have composite oxide fine particles composed of silica and an inorganic oxide other than silica as the core, and after forming the silica coating layer (1) as necessary, the inorganic oxides other than silica are removed, Further, if necessary, it can be obtained by forming a silica coating layer (2) and subjecting it to a hydrothermal treatment at a high temperature if necessary. The silica-based hollow fine particles (A) have an average particle diameter of about 4 at this time.
It can be obtained by forming the silica coating layer on the core particles in the range of ˜55 nm so that the total thickness of the silica coating layer (1) and the silica coating layer (2) is about 1 to 5 nm. .

また、シリカ系中空微粒子(B)は、平均粒子径が約60〜190nmの範囲にある核粒子
に、シリカ被覆層(1)とシリカ被覆層(2)の合計の厚さが約1〜10nm程度になるようにシリカ被覆層を形成することによって得ることができる。
The silica-based hollow fine particles (B) have core particles having an average particle diameter in the range of about 60 to 190 nm, and the total thickness of the silica coating layer (1) and the silica coating layer (2) is about 1 to 10 nm. It can be obtained by forming a silica coating layer to a degree.

上記した方法は一例であって、これらの方法に限定するものではない。
シリカ系中空微粒子(A)およびシリカ系中空微粒子(B)はいずれも下記式(1)で表される
有機珪素化合物またはこれらの加水分解物で表面処理されていることが好ましい。
n-SiX4-n (1)
(但し、式中、Rは炭素数1〜10の非置換または置換炭化水素基であって、互いに同一であっても異なっていてもよい。X:炭素数1〜4のアルコキシ基、シラノール基、ハロゲン、水素、n:0〜3の整数)
このような式(1)で表される有機珪素化合物としてはテトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシシラン、テトラブトキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、ジフェニルジエトキシシラン、イソブチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(βメトキシエトキシ)シラン、3,3,3−トリフルオロプロピルトリメトキシシラン、メチル-3,3,3−トリフルオロプ
ロピルジメトキシシラン、β−(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシメチルトリメトキシシラン、γ-グリシドキシメチルトリエキシシラン、γ-グリシドキシエチルトリメトキシシラン、γ-グリシドキシエチルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ−(β−グリシドキシエトキシ)プロピルトリメトキシシラン、γ-(メタ)アクリロオキシメチルトリメトキシシラン、γ-(メタ)アクリロオキシメチルトリエキシシラン、γ-(メタ)アクリロオキシエチルトリメトキシシラン、γ-(メタ)アクリロオキシエチルトリエトキシシラン、γ-(メタ)アクリロオキシプロピルトリメトキシシラン、γ-(メタ)アクリロオキシプロピルトリメトキシシラン、γ-(メタ)アクリロオキシプロピルトリエトキシシラン、γ-(メタ)アクリロオキシプロピルトリエトキシシラン、ブチルトリメトキシシラン、イソブチルトリエトキシシラン、ヘキシルトリエトキシシラオクチルトリエトキシシラン、デシルトリエトキシシラン、ブチルトリエトキシシラン、イソブチルトリエトキシシラン、ヘキシルトリエトキシシラン、オクチルトリエトキシシラン、デシルトリエトキシシラン、3-ウレイドイソプロピルプロピルトリエトキシシラン、パーフルオロオクチルエチルトリメトキシシラン、パーフルオロオクチルエチルトリエトキシシラン、パーフルオロオクチルエチルトリイソプロポキシシラン、トリフルオロプロピルトリメトキシシラン、N−β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、N−β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、トリメチルシラノール、メチルトリクロロシラン、等が挙げられる。
The method described above is an example, and the present invention is not limited to these methods.
Both the silica-based hollow fine particles (A) and the silica-based hollow fine particles (B) are preferably surface-treated with an organosilicon compound represented by the following formula (1) or a hydrolyzate thereof.
R n -SiX 4-n (1 )
(In the formula, R is an unsubstituted or substituted hydrocarbon group having 1 to 10 carbon atoms, and may be the same or different from each other. X: an alkoxy group having 1 to 4 carbon atoms or a silanol group) , Halogen, hydrogen, n: an integer of 0 to 3)
Examples of the organosilicon compound represented by the formula (1) include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, diphenyldimethoxysilane. , Methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, diphenyldiethoxysilane, isobutyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (βmethoxyethoxy) silane, 3,3,3- Trifluoropropyltrimethoxysilane, methyl-3,3,3-trifluoropropyldimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxymethyltrimethoxy Silane, γ-glycidoxymethyltriexisilane, γ-glycidoxyethyltrimethoxysilane, γ-glycidoxyethyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltrimethoxy Silane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropyltriethoxysilane, γ- (β-glycidoxyethoxy) propyltrimethoxysilane, γ- (meth) acrylooxymethyltrimethoxysilane, γ- (meth) acrylooxymethyltriethoxysilane, γ- (meth) acrylooxyethyltrimethoxysilane, γ- (meth) acryloxyethyltriethoxysilane, γ- (meth) acrylooxypropyltrimethoxy Silane, γ- (meth) acrylooxypropyltrimethoxysilane, γ- (meth) a Acryloxypropyltriethoxysilane, γ- (meth) acryloxypropyltriethoxysilane, butyltrimethoxysilane, isobutyltriethoxysilane, hexyltriethoxysilaoctyltriethoxysilane, decyltriethoxysilane, butyltriethoxysilane, isobutyl Triethoxysilane, hexyltriethoxysilane, octyltriethoxysilane, decyltriethoxysilane, 3-ureidoisopropylpropyltriethoxysilane, perfluorooctylethyltrimethoxysilane, perfluorooctylethyltriethoxysilane, perfluorooctylethyltriiso Propoxysilane, trifluoropropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane, N-β ( Minoechiru) .gamma.-aminopropyltrimethoxysilane, N- phenyl--γ- aminopropyltrimethoxysilane, .gamma.-mercaptopropyltrimethoxysilane, trimethylsilanol, methyltrichlorosilane, and the like.

このような有機珪素化合物で表面処理されていると、マトリックス中に均一に分散するとともに密に充填することができ、膜の強度、耐擦傷性に優れた透明被膜を得ることができる。   When the surface treatment is performed with such an organosilicon compound, it can be uniformly dispersed in the matrix and densely filled, and a transparent film excellent in film strength and scratch resistance can be obtained.

シリカ系中空微粒子(A)およびシリカ系中空微粒子(B)の表面処理は、微粒子のアルコール分散液に前記有機珪素化合物を所定量加え、これに水を加え、必要に応じて加水分解用触媒として酸またはアルカリを加えて有機珪素化合物を加水分解する。   The surface treatment of the silica-based hollow fine particles (A) and the silica-based hollow fine particles (B) is performed by adding a predetermined amount of the organosilicon compound to an alcohol dispersion of the fine particles, adding water thereto, and if necessary, as a hydrolysis catalyst. Acid or alkali is added to hydrolyze the organosilicon compound.

このときのシリカ系中空微粒子と有機珪素化合物との量比(有機珪素化合物の固形分としての重量/シリカ系中空微粒子の重量)は、シリカ系中空微粒子の平均粒子径によっても異なるが0.005〜1.0、さらには0.01〜0.3の範囲にあることが好ましい。前記重量比が小さいと有機珪素化合物の量が少なくなり、後述するマトリックス成分との親和性が低く、塗料中での分散性、安定性が不充分となり、塗料中で微粒子が凝集することがあり、緻密な透明被膜が得られないことがあり、基材との密着性、膜の強度、耐擦傷性等が不充分となることがある。前記重量比が多すぎても、塗料中での分散性がさらに向上することもなく、また有機珪素化合物の量が多くなるので、シリカ系中空微粒子の屈折率が高くなり、所望の低屈折率の透明被膜が得られないことがあり、反射防止性能が不充分となることがある。   The amount ratio of the silica-based hollow fine particles to the organosilicon compound (weight as the solid content of the organosilicon compound / weight of the silica-based hollow fine particles) varies depending on the average particle diameter of the silica-based hollow fine particles, but is 0.005. It is preferable to be in the range of -1.0, more preferably 0.01-0.3. If the weight ratio is small, the amount of the organosilicon compound is reduced, the affinity with the matrix component described later is low, the dispersibility and stability in the paint are insufficient, and the fine particles may aggregate in the paint. In some cases, a dense transparent film may not be obtained, and adhesion to the substrate, film strength, scratch resistance, and the like may be insufficient. Even if the weight ratio is too large, the dispersibility in the paint is not further improved, and the amount of the organosilicon compound is increased, so that the refractive index of the silica-based hollow fine particles is increased, and the desired low refractive index. The transparent film may not be obtained, and the antireflection performance may be insufficient.

マトリックス成分
マトリックス成分としては、シリコーン系(ゾルゲル系)マトリックス成分、有機樹脂系マトリックス成分等が用いられる。
As the matrix component , a silicone (sol-gel) matrix component, an organic resin matrix component, or the like is used.

シリコーン系マトリックス成分としては前記式(1)と同様の有機珪素化合物の加水分解
重縮合物が好適に用いられる。
また、有機樹脂系マトリックス成分としては、塗料用樹脂として公知の熱硬化性樹脂、熱可塑性樹脂、電子線硬化樹脂等が挙げられる。
As the silicone matrix component, a hydrolyzed polycondensate of an organosilicon compound similar to the formula (1) is preferably used.
Examples of the organic resin-based matrix component include known thermosetting resins, thermoplastic resins, and electron beam curable resins as coating resins.

このような有機樹脂系マトリックス成分として、たとえば、従来から用いられているポリエステル樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリフェニレンオキサイド樹脂、熱可塑性アクリル樹脂、塩化ビニル樹脂、フッ素樹脂、酢酸ビニル樹脂、シリコーンゴムなどの熱可塑性樹脂、ウレタン樹脂、メラミン樹脂、ケイ素樹脂、ブチラール樹脂、反応性シリコーン樹脂、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、熱硬化性アクリル樹脂、紫外線硬化型アクリル樹脂などの熱硬化性樹脂、紫外線硬化型アクリル樹脂などが挙げられる。さらにはこれら樹脂の2種以上の共重合体や変性体であってもよい。これらの樹脂は、エマルジョン樹脂、水溶性樹脂、親水性樹脂であってもよい。さらに、熱硬化性樹脂の場合、紫外線硬化型のものであっても、電子線硬化型のものであってもよく、熱硬化性樹脂の場合、硬化触媒(重合開始剤)が含まれていてもよい。   As such an organic resin matrix component, for example, conventionally used polyester resin, polycarbonate resin, polyamide resin, polyphenylene oxide resin, thermoplastic acrylic resin, vinyl chloride resin, fluororesin, vinyl acetate resin, silicone rubber, etc. Thermosetting resins such as thermoplastic resin, urethane resin, melamine resin, silicon resin, butyral resin, reactive silicone resin, phenol resin, epoxy resin, unsaturated polyester resin, thermosetting acrylic resin, UV curable acrylic resin And ultraviolet curable acrylic resin. Further, it may be a copolymer or modified body of two or more of these resins. These resins may be emulsion resins, water-soluble resins, and hydrophilic resins. Further, in the case of a thermosetting resin, it may be an ultraviolet curable type or an electron beam curable type, and in the case of a thermosetting resin, a curing catalyst (polymerization initiator) is included. Also good.

被膜付基材の構成
本発明の透明被膜付基材の1態様を図1に模式的に示す。
低屈折率で比較的大きなシリカ系中空微粒子(A)の粒子間に比較的小さなシリカ系中空
微粒子(B)が密に充填しており、基材とシリカ系中空微粒子との接点の増加により密着性
が高く、透明被膜の上部表面は凹凸が小さく平滑になり、このため透明被膜は強度、耐擦傷性に優れ、低屈折率で反射防止性能に優れている。また。図1で粒子間の隙間をマトリックス成分が充填している。
Structure of base material with film One embodiment of the base material with a transparent film of the present invention is schematically shown in FIG.
A relatively small silica-based hollow microparticle (B) is closely packed between particles of a relatively large silica-based hollow microparticle (A) with a low refractive index. The upper surface of the transparent coating is smooth with small irregularities, so that the transparent coating is excellent in strength and scratch resistance, and has a low refractive index and excellent antireflection performance. Also. In FIG. 1, the matrix component fills the gaps between the particles.

透明被膜の膜厚は、透明被膜に付与する目的に応じて適宜選択されるが、通常30nm〜300nm、さらには70〜200nmの範囲にあることが好ましい。この範囲にあれば、反射防止性能が十分に発揮できるとともに、被膜強度も十分に高くなる。   Although the film thickness of a transparent film is suitably selected according to the objective provided to a transparent film, it is preferable to exist in the range of 30 nm-300 nm normally, Furthermore, 70-200 nm. If it exists in this range, while being able to fully exhibit antireflection performance, film strength will also become high enough.

透明被膜の膜厚が薄いと、フレネルの原理から外れた光学膜厚となり充分な反射防止性能が得られない場合がある。透明被膜の膜厚が300nmを越えると、膜にクラックが生じたり膜の強度が低下したりすることがあり、また、膜が厚すぎて反射防止性能が不充分となることがある。   If the film thickness of the transparent coating is thin, the optical film thickness deviates from the Fresnel principle, and sufficient antireflection performance may not be obtained. When the film thickness of the transparent film exceeds 300 nm, the film may be cracked or the film strength may be reduced, and the film may be too thick and the antireflection performance may be insufficient.

また、透明被膜の屈折率は、上記したマトリックス成分とシリカ系中空微粒子の量比や微粒子の屈折率に応じて適宜選択されるが、通常1.20〜1.50、さらには1.20〜1.35の範囲にあると、透明被膜としての効果が顕現する。   The refractive index of the transparent film is appropriately selected according to the amount ratio of the matrix component and the silica-based hollow fine particles and the refractive index of the fine particles, but is usually 1.20 to 1.50, more preferably 1.20. When it is in the range of 1.35, the effect as a transparent film is manifested.

透明被膜の屈折率が小さいものは得ることが困難であり、屈折率が1.50を越えると基材の屈折率あるいは必要に応じて形成される透明被膜の下層に形成される他の膜の屈折率によっても異なるが反射防止性能が不充分となることがある。   It is difficult to obtain a transparent film having a low refractive index. When the refractive index exceeds 1.50, the refractive index of the base material or other films formed under the transparent film formed as necessary. Depending on the refractive index, the antireflection performance may be insufficient.

本発明の透明被膜の屈折率はエリプソメーター(ULVAC社製、EMS−1)により測定される。
このような透明被膜付基材の形成方法としては、前記した成分からなるものが形成されれば特に制限なく、従来公知の方法を採用することができる。
The refractive index of the transparent film of the present invention is measured by an ellipsometer (manufactured by ULVAC, EMS-1).
As a method for forming such a substrate with a transparent coating, a conventionally known method can be adopted without any particular limitation as long as the above-described components are formed.

具体的には、後述する本発明に係る透明被膜形成用塗料を、ディップ法、スプレー法、スピナー法、ロールコート法、バーコート法、スリットコーター印刷法、グラビア印刷法、マイクログラビア印刷法等の周知の方法で基材に塗布し、乾燥し、必要に応じて紫外線照射、電子線照射、加熱処理等の常法によって硬化させることによって透明被膜を形成することができる。本発明ではロールコート法、スリットコーター印刷法、グラビア印刷法、マイクログラビア印刷法が推奨される
なお、本発明の透明被膜付基材には、透明被膜とともにプライマー膜、高屈折率膜、導電性膜等の従来公知の薄膜を設けることができる。この時、プライマー膜を設けると、耐衝撃性、基材との密着性等が向上し、高屈折率膜を設けると反射防止性能がさらに向上し、導電性膜を設けると帯電防止性能、電磁波遮蔽能等を有する透明被膜付基材が得られる。
[透明被膜形成用塗料]
本発明に係る透明被膜形成塗料は、前記したシリカ系中空微粒子(A)と(B)、およびマトリックス形成成分と極性溶媒とからなることを特徴としている。
Specifically, the transparent film-forming paint according to the present invention, which will be described later, includes a dipping method, a spray method, a spinner method, a roll coating method, a bar coating method, a slit coater printing method, a gravure printing method, a micro gravure printing method, and the like. A transparent film can be formed by applying to a substrate by a well-known method, drying, and curing by an ordinary method such as ultraviolet irradiation, electron beam irradiation, or heat treatment, if necessary. In the present invention, a roll coating method, a slit coater printing method, a gravure printing method, and a micro gravure printing method are recommended. In addition, the transparent film-coated substrate of the present invention includes a primer film, a high refractive index film, a conductive film together with a transparent film. A conventionally known thin film such as a film can be provided. At this time, the provision of a primer film improves impact resistance, adhesion to the substrate, etc., the provision of a high refractive index film further improves the antireflection performance, and the provision of a conductive film provides antistatic performance and electromagnetic waves. A substrate with a transparent coating having shielding ability and the like is obtained.
[Paint for forming transparent film]
The transparent film-forming paint according to the present invention is characterized by comprising the above-described silica-based hollow fine particles (A) and (B), a matrix-forming component and a polar solvent.

透明被膜形成用塗料中のシリカ系中空微粒子(A)の濃度(CPA)が固形分として0.5
〜35重量%、さらには1〜30重量%の範囲にあることが好ましい。(CPA)が少ないと、屈折率の充分に低い透明被膜が得られないことがある。(CPA)が高すぎても、塗料の安定性が不充分となることがあり、得られる透明被膜の密着性、強度等が低下することがある。
The concentration (C PA ) of silica-based hollow fine particles (A) in the coating for forming a transparent film is 0.5
It is preferably in the range of -35% by weight, more preferably 1-30% by weight. When (C PA ) is small, a transparent film having a sufficiently low refractive index may not be obtained. Even if (C PA ) is too high, the stability of the paint may be insufficient, and the adhesiveness, strength, etc. of the resulting transparent film may be reduced.

また、透明被膜形成用塗料中のシリカ系中空微粒子(B)の濃度(CPB)が固形分として
0.25〜25重量%、さらには0.5〜15重量%の範囲にあることが好ましい。(CPB)が少ないと、粒子密充填効果、表面平滑化効果が不充分となることがある。また、(CPB)が多すぎると、充填効率を高めるためには、シリカ系中空微粒子(A)の量も少なくせざるを得ないため、所望の低屈折率の透明被膜が得られないことがある。
Further, the concentration (C PB ) of the silica-based hollow fine particles (B) in the coating for forming a transparent film is preferably in the range of 0.25 to 25% by weight, more preferably 0.5 to 15% by weight as the solid content. . When (C PB ) is small, the particle packing effect and the surface smoothing effect may be insufficient. Also, if the amount of (C PB ) is too large, the amount of silica-based hollow fine particles (A) must be reduced in order to increase the filling efficiency, so that a transparent film having a desired low refractive index cannot be obtained. There is.

また、透明被膜形成用塗料中のシリカ系中空微粒子(A)の濃度(CPA)と透明被膜中の
シリカ系中空微粒子(B)の濃度(CPB)との比(CPB)/(CPA)は各粒子の平均粒子径
によっても異なるが、前記した透明被膜中のシリカ系中空微粒子(A)の含有量(WPA)と
透明被膜中のシリカ系中空微粒子(B)の含有量(WPB)との比(WPB)/(WPA)が前記
範囲となるように用いる。
Further, the ratio (C PB ) / (C of the concentration (C PA ) of silica-based hollow fine particles (A) in the coating material for forming a transparent coating and the concentration (C PB ) of silica-based hollow fine particles (B) in the transparent coating. PA ) varies depending on the average particle diameter of each particle, but the content of silica-based hollow fine particles (A) in the transparent coating (W PA ) and the content of silica-based hollow fine particles (B) in the transparent coating ( W PB) ratio of (W PB) / (W PA ) is used such that the range.

マトリックス形成成分としては、シリコーン系(ゾルゲル系)マトリックス形成成分、有機樹脂系マトリックス形成成分等が用いられる。
シリコーン系マトリックス形成成分としては前記式(1)と同様の有機珪素化合物、これ
らの加水分解物、加水分解重縮合物が好適に用いられる。
As the matrix forming component, a silicone (sol-gel) matrix forming component, an organic resin matrix forming component, or the like is used.
As the silicone-based matrix-forming component, the same organosilicon compounds as those of the above formula (1), their hydrolysates, and hydrolyzed polycondensates are preferably used.

また、有機樹脂系マトリックス形成成分としては、塗料用樹脂として公知の熱硬化性樹脂、熱可塑性樹脂、熱硬化樹脂等が挙げられる。熱硬化性樹脂の場合、マトリックス形成成分としては、通常硬化前のプライマー(モノマー)、プレポリマーなどが使用される。さらに、硬化触媒が含まれていてもよい。 Examples of the organic resin matrix forming component include known thermosetting resins, thermoplastic resins, thermosetting resins, and the like as coating resins. In the case of a thermosetting resin, a primer (monomer), a prepolymer and the like before curing are usually used as a matrix forming component. Furthermore, a curing catalyst may be included.

このような樹脂として、たとえば、従来から用いられているポリエステル樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリフェニレンオキサイド樹脂、熱可塑性アクリル樹脂、塩化ビニル樹脂、フッ素樹脂、酢酸ビニル樹脂、シリコーンゴムなどの熱可塑性樹脂、ウレタン樹脂、メラミン樹脂、ケイ素樹脂、ブチラール樹脂、反応性シリコーン樹脂、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、熱硬化性アクリル樹脂、紫外線硬化型アクリル樹脂などの熱硬化性樹脂、紫外線硬化型アクリル樹脂などが挙げられる。さらにはこれら樹脂の2種以上の共重合体や変性体であってもよい。これらの樹脂は、エマルジョン樹脂、水溶性樹脂、親水性樹脂であってもよい。さらに、熱硬化性樹脂の場合、紫外線硬化型のものであっても、電子線硬化型のものであってもよく、熱硬化性樹脂の場合、硬化触媒(重合開始剤)が含まれていてもよい。 Examples of such resins include conventionally used thermoplastic resins such as polyester resins, polycarbonate resins, polyamide resins, polyphenylene oxide resins, thermoplastic acrylic resins, vinyl chloride resins, fluororesins, vinyl acetate resins, and silicone rubbers. , Urethane resin, melamine resin, silicon resin, butyral resin, reactive silicone resin, phenol resin, epoxy resin, unsaturated polyester resin, thermosetting acrylic resin, UV curable acrylic resin, etc., UV curable type An acrylic resin etc. are mentioned. Further, it may be a copolymer or modified body of two or more of these resins. These resins may be emulsion resins, water-soluble resins, and hydrophilic resins. Further, in the case of a thermosetting resin, it may be an ultraviolet curable type or an electron beam curable type, and in the case of a thermosetting resin, a curing catalyst (polymerization initiator) is included. Also good.

透明被膜形成用塗料中のシリカ系中空微粒子(A)、シリカ系中空微粒子(B)およびマトリックス形成性分を含めた合計の固形分濃度が1〜50重量%、さらには2〜40重量%の範囲にあることが好ましい。合計固形分濃度が少ないと、一液で、所望の厚さが形成できず、充分な反射防止性能が得られないことがある。合計固形分濃度が多いと、塗料の粘度が高くなるために塗布性が低下したり、塗料の安定性が不充分となったりすることがあり、得られる透明被膜の密着性、強度等が低下することがある。
極性溶媒
本発明に用いる極性溶媒としてはマトリックス形成成分、必要に応じて用いる重合開始剤を溶解あるいは分散できるとともにシリカ系中空微粒子(A)、シリカ系中空微粒子(B)を均一に分散することができれば特に制限はなく、従来公知の溶媒を用いることができる。
The total solid content including silica-based hollow fine particles (A), silica-based hollow fine particles (B) and matrix-forming components in the coating for forming a transparent film is 1 to 50% by weight, more preferably 2 to 40% by weight. It is preferable to be in the range. When the total solid content concentration is low, a desired thickness cannot be formed with one liquid, and sufficient antireflection performance may not be obtained. If the total solid content is high, the viscosity of the paint will increase and the coatability may decrease, and the stability of the paint may be insufficient. The adhesiveness, strength, etc. of the resulting transparent film will decrease. There are things to do.
Polar solvent The polar solvent used in the present invention can dissolve or disperse the matrix-forming component and, if necessary, the polymerization initiator, and can uniformly disperse the silica-based hollow fine particles (A) and silica-based hollow fine particles (B). If possible, there is no particular limitation, and a conventionally known solvent can be used.

具体的には、水、メタノール、エタノール、プロパノール、2-プロパノール(IPA)、ブタノール、ジアセトンアルコール、フルフリルアルコール、テトラヒドロフルフリルアルコール、エチレングリコール、ヘキシレングリコール、イソプロピルグリコールなどのアルコール類;酢酸メチルエステル、酢酸エチルエステル、酢酸ブチルなどのエステル類;ジエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテルなどのエーテル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン、アセト酢酸エステルなどのケトン類、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、トルエン、シクロヘキサノン、イソホロン等が挙げられる。   Specifically, alcohols such as water, methanol, ethanol, propanol, 2-propanol (IPA), butanol, diacetone alcohol, furfuryl alcohol, tetrahydrofurfuryl alcohol, ethylene glycol, hexylene glycol, isopropyl glycol; acetic acid Esters such as methyl ester, ethyl acetate, butyl acetate; ethers such as diethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol monomethyl ether Acetone, methyl ethyl ketone, methyl isobutyl ketone, acetylacetone, acetone Ketones such as acetate, methyl cellosolve, ethyl cellosolve, butyl cellosolve, toluene, cyclohexanone, isophorone and the like.

なかでも、アルコール類、カルボニル基を有する溶媒は表面処理したシリカ系中空微粒子(A)、表面処理したシリカ系中空微粒子(B)が均一に分散するとともに塗料の安定性がよく、塗工性に優れ、均一性、基材との密着性、強度等にも優れた透明被膜を再現性よく形成することができる。
[実施例]
以下、本発明を実施例により説明するが、本発明はこれら実施例に限定されるものではない。
[実施例1]
シリカ系中空微粒子(A-1)分散液の調製
シリカ・アルミナゾル(触媒化成工業(株)製:USBB−120、平均粒子径25nm、SiO2・Al23濃度20重量%、固形分中Al23含有量27重量%)100g
に純水3900gを加えて98℃に加温し、この温度を保持しながら、SiO2として濃
度1.5重量%の珪酸ナトリウム水溶液1750gとAl23としての濃度0.5重量%のアルミン酸ナトリウム水溶液1750gを添加して、SiO2・Al23一次粒子分散液
(平均粒子径35nm)を得た。このときのMOX/SiO2モル比(A)=0.2、であった。また、このときの反応液のpHは12.0であった。
Among these, alcohols and solvents having a carbonyl group are uniformly dispersed in the surface-treated silica-based hollow fine particles (A) and the surface-treated silica-based hollow fine particles (B), and the paint has good stability and coating properties. A transparent film having excellent reproducibility, uniformity, adhesion to a substrate, strength, and the like can be formed with good reproducibility.
[Example]
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these Examples.
[Example 1]
Preparation of silica -based hollow fine particle (A-1) dispersion Silica-alumina sol (Catalyst Kasei Kogyo Co., Ltd .: USBB-120, average particle size 25 nm, SiO 2 · Al 2 O 3 concentration 20% by weight, Al in solid content 2 O 3 content 27% by weight) 100 g
3900 g of pure water was added and heated to 98 ° C., and while maintaining this temperature, 1750 g of a sodium silicate aqueous solution having a concentration of 1.5% by weight as SiO 2 and an alumina having a concentration of 0.5% by weight as Al 2 O 3. 1750 g of an aqueous sodium acid solution was added to obtain a SiO 2 .Al 2 O 3 primary particle dispersion (average particle size 35 nm). The MO X / SiO 2 molar ratio (A) at this time was 0.2. Further, the pH of the reaction solution at this time was 12.0.

ついで濃度0.5重量%の硫酸ナトリウム6,600gを添加し(モル比1.0)、ついでSiO2として濃度1.5重量%の珪酸ナトリウム水溶液33,000gとAl23としての濃度0.5重量%のアルミン酸ナトリウム水溶液11,000gを添加して複合酸化物微粒子(9)(二次粒子)(平均粒子径78nm)の分散液を得た。 Next, 6,600 g of sodium sulfate having a concentration of 0.5 wt% was added (molar ratio 1.0), then 33,000 g of a 1.5 wt% sodium silicate aqueous solution as SiO 2 and a concentration of 0 as Al 2 O 3 were added. A dispersion of composite oxide fine particles (9) (secondary particles) (average particle size 78 nm) was obtained by adding 11,000 g of a 0.5 wt% aqueous sodium aluminate solution.

このとき、反応液のpHは11.0であり、MOX/SiO2モル比(B)=0.07であった。
ついで、限外濾過膜で洗浄して固形分濃度13重量%になった複合酸化物微粒子(1)の
分散液500gに純水1,125gを加え、さらに濃塩酸(濃度35.5重量%)を滴下してpH1.0とし、脱アルミニウム処理を行った。次いで、pH3の塩酸水溶液10Lと
純水5Lを加えながら限外濾過膜で溶解したアルミニウム塩を分離・洗浄して固形分濃度20重量%のシリカ系微粒子(P-1-1)の水分散液を得た。
At this time, the pH of the reaction solution was 11.0, and the MO X / SiO 2 molar ratio (B) = 0.07.
Next, 1,125 g of pure water was added to 500 g of the dispersion of the composite oxide fine particles (1) having a solid concentration of 13 wt% by washing with an ultrafiltration membrane, and concentrated hydrochloric acid (concentration 35.5 wt%). Was dropped to pH 1.0, and dealumination was performed. Next, an aqueous dispersion of silica-based fine particles (P-1-1) having a solid concentration of 20% by weight by separating and washing the aluminum salt dissolved in the ultrafiltration membrane while adding 10 L of hydrochloric acid aqueous solution of pH 3 and 5 L of pure water. Got.

ついで、シリカ系微粒子(P-1-1)の水分散液150gと、純水500g、エタノール1
,750gおよび濃度28重量%のアンモニア水626gとの混合液を35℃に加温した後、エチルシリケート(SiO濃度28重量%)80gを添加してシリカ被覆層を形成
し、純水5Lを加えながら限外濾過膜で洗浄して固形分濃度20重量%のシリカ被覆層を形成したシリカ系中空微粒子(P-1-1)の水分散液を得た。
Next, 150 g of an aqueous dispersion of silica-based fine particles (P-1-1), 500 g of pure water, ethanol 1
, 750 g and a mixture of 626 g of ammonia water having a concentration of 28% by weight are heated to 35 ° C., then 80 g of ethyl silicate (SiO 2 concentration of 28% by weight) is added to form a silica coating layer, and 5 L of pure water is added. In addition, it was washed with an ultrafiltration membrane to obtain an aqueous dispersion of silica-based hollow fine particles (P-1-1) in which a silica coating layer having a solid content concentration of 20% by weight was formed.

つぎに、シリカ被覆層を形成したシリカ系中空微粒子(P-1-1)分散液にアンモニア水を
添加して分散液のpHを10.5に調整し、ついで150℃にて11時間熟成した後、常温に冷却し、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)400gを用いて3時間イオン交換し、ついで、陰イオン交換樹脂(三菱化学(株)製:ダイヤイオンSA20A)200gを用いて3時間イオン交換し、さらに陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、固形分濃度20重量%のシリカ系中空微粒子(P-1-2)の水分散液を得た。この
とき、シリカ系中空微粒子(P-1-2)の水分散液のNa2O含有量およびNH3含有量はシリカ系微粒子当たり12ppm、1500ppmであった。
Next, aqueous ammonia was added to the silica-based hollow fine particle (P-1-1) dispersion having a silica coating layer to adjust the pH of the dispersion to 10.5, and then aged at 150 ° C. for 11 hours. After cooling to room temperature, ion exchange was performed for 3 hours using 400 g of a cation exchange resin (Mitsubishi Chemical Corporation: Diaion SK1B), and then an anion exchange resin (Mitsubishi Chemical Corporation: Diaion SA20A). ) Ion exchange using 200 g for 3 hours, and further using 200 g of cation exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion SK1B) for ion exchange at 80 ° C. for 3 hours for washing, solid content concentration 20 weight % Aqueous dispersion of silica-based hollow fine particles (P-1-2) was obtained. At this time, the Na 2 O content and NH 3 content of the aqueous dispersion of silica-based hollow fine particles (P-1-2) were 12 ppm and 1500 ppm per silica-based fine particle.

ついで、シリカ系中空微粒子(P-1-2)分散液を150℃にて11時間水熱処理した後、
常温に冷却し、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)400gを用いて3時間イオン交換し、ついで、陰イオン交換樹脂(三菱化学(株)製:ダイヤイオンSA20A)200gを用いて3時間イオン交換し、さらに陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、固形分濃度20重量%のシリカ系微粒子(P-1-3)の水分散液を得た。このと
き、シリカ系中空微粒子(P-1-3)の水分散液のNaO含有量およびNH3含有量はシリカ
系中空微粒子当たり0.9ppm、800ppmであった。
Next, the silica-based hollow fine particle (P-1-2) dispersion was hydrothermally treated at 150 ° C. for 11 hours,
After cooling to room temperature, ion exchange was performed for 3 hours using 400 g of a cation exchange resin (Mitsubishi Chemical Corporation: Diaion SK1B), and then 200 g of anion exchange resin (Mitsubishi Chemical Corporation: Diaion SA20A). And ion exchange at 200 ° C. for 3 hours using 200 g of a cation exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion SK1B). An aqueous dispersion of silica-based fine particles (P-1-3) was obtained. At this time, the Na 2 O content and NH 3 content of the aqueous dispersion of silica-based hollow fine particles (P-1-3) were 0.9 ppm and 800 ppm per silica-based hollow fine particles.

ついで限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20重量%のシリカ系中空微粒子(A-1)のアルコール分散液を調製した。
固形分濃度20重量%のシリカ系中空微粒子(A-1)のアルコール分散液100gにメ
タクリルシランカップリング剤(信越化学(株)製:KBM-503:γ-メタクロリロキシプロピルトリメトキシシラン)3gを添加し、50℃で加熱処理を行い、再び限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20重量%のシリカ系中空微粒子(A-1)の
アルコール分散液を調製した。
Next, an alcohol dispersion of silica-based hollow fine particles (A-1) having a solid content concentration of 20% by weight was prepared by replacing the solvent with ethanol using an ultrafiltration membrane.
3 g of methacrylsilane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503: γ-methacryloyloxypropyltrimethoxysilane) is added to 100 g of an alcohol dispersion of silica-based hollow fine particles (A-1) having a solid content concentration of 20% by weight. Was added, and heat treatment was performed at 50 ° C., and an alcohol dispersion of silica-based hollow fine particles (A-1) having a solid content concentration of 20% by weight was prepared by replacing the solvent with ethanol again using an ultrafiltration membrane.

得られたシリカ系中空微粒子(A-1)の屈折率を測定し、結果を表1に示した。
シリカ系中空微粒子(B-1)分散液の調製
シリカ・アルミナゾル(触媒化成工業(株)製:USBB−120、平均粒子径25nm、SiO2・Al23濃度20重量%、固形分中Al23含有量27重量%)100g
と純水3900gの混合物を98℃に加温し、この温度を保持しながら、SiO2として
濃度1.5重量%の珪酸ナトリウム水溶液405gとAl23としての濃度0.5重量%のアルミン酸ナトリウム水溶液405gを添加して、SiO2・Al23一次粒子分散液を
得た。このときのモル比MOX/SiO2(A)=0.2であった。また、このときの反応液のpHは12.0であった。(平均粒子径28nm)
ついで、SiOとして濃度1.5重量%の珪酸ナトリウム水溶液1607gとAl23としての濃度0.5重量%のアルミン酸ナトリウム水溶液535gを添加して複合酸化物微粒子(1)(二次粒子)の分散液を得た。
The refractive index of the obtained silica-based hollow fine particles (A-1) was measured, and the results are shown in Table 1.
Preparation of silica-based hollow fine particle (B-1) dispersion
Silica-alumina sol (manufactured by Catalyst Kasei Kogyo Co., Ltd .: USBB-120, average particle size 25 nm, SiO 2 · Al 2 O 3 concentration 20 wt%, solid content Al 2 O 3 content 27 wt%) 100 g
A mixture of 3900 g of pure water and 3900 g of pure water was heated to 98 ° C., and while maintaining this temperature, 405 g of a 1.5 wt% sodium silicate aqueous solution as SiO 2 and 0.5 wt% aluminum as Al 2 O 3 405 g of an aqueous sodium acid solution was added to obtain a SiO 2 · Al 2 O 3 primary particle dispersion. The molar ratio at this time was MO x / SiO 2 (A) = 0.2. Further, the pH of the reaction solution at this time was 12.0. (Average particle size 28 nm)
Next, 1607 g of a sodium silicate aqueous solution having a concentration of 1.5% by weight as SiO 2 and 535 g of a sodium aluminate aqueous solution having a concentration of 0.5% by weight as Al 2 O 3 were added to form composite oxide fine particles (1) (secondary particles). ) Dispersion was obtained.

このときのモル比MOX/SiO(B)=0.07であった。また、このときの反応
液のpHは12.0であった。(平均粒子径35nm)
ついで、限外濾過膜で洗浄して固形分濃度13重量%になった複合酸化物微粒子(1)の
分散液500gに純水1,125gを加え、さらに濃塩酸(濃度35.5重量%)を滴下してpH1.0とし、脱アルミニウム処理を行った。次いで、pH3の塩酸水溶液10Lと
純水5Lを加えながら限外濾過膜で溶解したアルミニウム塩を分離・洗浄して固形分濃度20重量%のシリカ系中空微粒子(P-1-2)の水分散液を得た。
The molar ratio at this time was MO X / SiO 2 (B) = 0.07. Further, the pH of the reaction solution at this time was 12.0. (Average particle size 35nm)
Next, 1,125 g of pure water was added to 500 g of the dispersion of the composite oxide fine particles (1) having a solid concentration of 13 wt% by washing with an ultrafiltration membrane, and concentrated hydrochloric acid (concentration 35.5 wt%). Was dropped to pH 1.0, and dealumination was performed. Next, the aluminum salt dissolved in the ultrafiltration membrane is separated and washed while adding 10 L of hydrochloric acid aqueous solution of pH 3 and 5 L of pure water, and water dispersion of silica-based hollow fine particles (P-1-2) having a solid content concentration of 20% by weight is performed. A liquid was obtained.

得られたシリカ系中空微粒子(P-1-2)の水分散液150gと、純水500g、エタノー
ル1,750gおよび濃度28重量%のアンモニア水626gとの混合液を35℃に加温した後、エチルシリケート(SiO濃度28重量%)51gを添加してシリカ被覆層を
形成し、純水5Lを加えながら限外濾過膜で洗浄して固形分濃度20重量%のシリカ被覆層を形成したシリカ系中空微粒子(P-1-2)の水分散液を得た。
After heating a mixed liquid of 150 g of the obtained aqueous dispersion of silica-based hollow fine particles (P-1-2), 500 g of pure water, 1,750 g of ethanol and 626 g of ammonia water having a concentration of 28% by weight to 35 ° C. Then, 51 g of ethyl silicate (SiO 2 concentration 28 wt%) was added to form a silica coating layer, and washed with an ultrafiltration membrane while adding 5 L of pure water to form a silica coating layer having a solid content concentration of 20 wt%. An aqueous dispersion of silica-based hollow fine particles (P-1-2) was obtained.

つぎに、シリカ被覆層を形成したシリカ系中空微粒子(P-1-2)分散液にアンモニア水を
添加して分散液のpHを10.5に調整し、ついで200℃にて11時間熟成した後、常温に冷却し、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)400gを用いて3時間イオン交換し、ついで、陰イオン交換樹脂(三菱化学(株)製:ダイヤイオンSA20A)200gを用いて3時間イオン交換し、さらに陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、固形分濃度20重量%固形分濃度20重量%のシリカ系微粒子(P-1-3)の水分
散液を得た。このとき、シリカ系中空微粒子(P-1-3)の水分散液のNaO含有量およびNH3含有量はシリカ系中空微粒子当たり6ppm、1200ppmであった。
Next, aqueous ammonia was added to the silica-based hollow fine particle (P-1-2) dispersion having a silica coating layer to adjust the pH of the dispersion to 10.5, and then aged at 200 ° C. for 11 hours. After cooling to room temperature, ion exchange was performed for 3 hours using 400 g of a cation exchange resin (Mitsubishi Chemical Corporation: Diaion SK1B), and then an anion exchange resin (Mitsubishi Chemical Corporation: Diaion SA20A). ) Ion exchange using 200 g for 3 hours, and further using 200 g of cation exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion SK1B) for ion exchange at 80 ° C. for 3 hours for washing, solid content concentration 20 weight An aqueous dispersion of silica-based fine particles (P-1-3) having a% solid content concentration of 20% by weight was obtained. At this time, the Na 2 O content and NH 3 content of the aqueous dispersion of silica-based hollow fine particles (P-1-3) were 6 ppm and 1200 ppm per silica-based hollow fine particles.

ついで、シリカ系中空微粒子(P-1-3)分散液を150℃にて11時間水熱処理した後、
常温に冷却し、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)400gを用いて3時間イオン交換し、ついで、陰イオン交換樹脂(三菱化学(株)製:ダイヤイオンSA20A)200gを用いて3時間イオン交換し、さらに陽イオン交換樹脂(三菱
化学(株)製:ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、固形分濃度20重量%のシリカ系中空微粒子(P-1-4)の水分散液を得た。こ
のとき、シリカ系中空微粒子(P-1-4)の水分散液のNaO含有量およびNH3含有量はシ
リカ系中空微粒子当たり0.5ppm、800ppmであった。
Next, the silica-based hollow fine particle (P-1-3) dispersion was hydrothermally treated at 150 ° C. for 11 hours,
After cooling to room temperature, ion exchange was performed for 3 hours using 400 g of a cation exchange resin (Mitsubishi Chemical Corporation: Diaion SK1B), and then 200 g of anion exchange resin (Mitsubishi Chemical Corporation: Diaion SA20A). And ion exchange at 200 ° C. for 3 hours using 200 g of a cation exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion SK1B). An aqueous dispersion of silica-based hollow fine particles (P-1-4) was obtained. At this time, the Na 2 O content and NH 3 content of the aqueous dispersion of silica-based hollow fine particles (P-1-4) were 0.5 ppm and 800 ppm per silica-based hollow fine particles.

ついで限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20重量%のシリカ系中空微粒子(B-1)のアルコール分散液を調製した。
固形分濃度20重量%のシリカ系中空微粒子(B-1)のアルコール分散液100gにメ
タクリルシランカップリング剤(信越化学(株)製:KBM-503)3gを添加し、50℃で
加熱処理を行い、再び限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20重量%のシリカ系中空微粒子(B-1)のアルコール分散液を調製した。
得られたシリカ系中空微粒子(B-1)の屈折率を測定し、結果を表1に示した。
透明被膜形成用塗料(1)の調製
シリカ系中空微粒子(A-1)のアルコール分散液をエタノールで固形分濃度5重量%に
希釈した分散液50gと、シリカ系中空微粒子(B-1)のアルコール分散液をエタノール
で固形分濃度5重量%に希釈した分散液17gと、アクリル樹脂(ヒタロイド1007、日立化成(株)製)3gおよびイソプロパノールとn−ブタノールの1/1(重量比)混合溶媒47gとを充分に混合して透明被膜形成用塗料(1)を調製した。
透明被膜付基材(1)の製造
透明被膜形成用塗料(1)をPETフィルムにバーコーター法で塗布し、80℃で、1分
間乾燥させて、透明被膜の膜厚が100nmの透明被膜付基材(1)を得た。この透明被
膜付基材(1)の全光線透過率、ヘイズ、反射率、被膜の屈折率、密着性および鉛筆硬度
、耐擦傷性を表1に示す。全光線透過率およびヘイズは、ヘーズメーター(スガ試験機(株)製)により、反射率は分光光度計(日本分光社、Ubest-55)により夫々測定した。また、透明被膜の屈折率は、エリプソメーター(ULVAC社製、EMS−1)により測定した。なお、未塗布のPETフィルムは全光線透過率が90. 7%、ヘイズが2.0%、
波長550nmの光線の反射率が6.0%であった。
鉛筆硬度
鉛筆硬度は、JIS K 5400に準じて、鉛筆硬度試験器で測定した。即ち、透明被膜表面に対して45度の角度に鉛筆をセットし、所定の加重を負荷して一定速度で引っ張り、傷の有無を観察した。
Next, an alcohol dispersion of silica-based hollow fine particles (B-1) having a solid content concentration of 20% by weight was prepared by replacing the solvent with ethanol using an ultrafiltration membrane.
3 g of a methacryl silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503) is added to 100 g of an alcohol dispersion of silica-based hollow fine particles (B-1) having a solid content concentration of 20% by weight, followed by heat treatment at 50 ° C. Then, an alcohol dispersion of silica-based hollow fine particles (B-1) having a solid concentration of 20% by weight was prepared by replacing the solvent with ethanol again using an ultrafiltration membrane.
The refractive index of the obtained silica-based hollow fine particles (B-1) was measured, and the results are shown in Table 1.
Preparation of paint for forming transparent film (1) 50 g of a dispersion of an alcohol dispersion of silica-based hollow fine particles (A-1) diluted with ethanol to a solid concentration of 5% by weight, and silica-based hollow fine particles (B-1) 17 g of a dispersion obtained by diluting an alcohol dispersion with ethanol to a solid content concentration of 5% by weight, 3 g of an acrylic resin (Hitaloid 1007, manufactured by Hitachi Chemical Co., Ltd.), and a 1/1 (weight ratio) mixed solvent of isopropanol and n-butanol A transparent coating film-forming paint (1) was prepared by thoroughly mixing 47 g.
Production of substrate with transparent film (1) Paint for transparent film formation (1) is applied to a PET film by a bar coater method and dried at 80 ° C. for 1 minute to provide a transparent film with a transparent film thickness of 100 nm. A substrate (1) was obtained. Table 1 shows the total light transmittance, haze, reflectance, coating refractive index, adhesion, pencil hardness, and scratch resistance of the substrate with transparent coating (1). The total light transmittance and haze were measured with a haze meter (manufactured by Suga Test Instruments Co., Ltd.), and the reflectance was measured with a spectrophotometer (JASCO Corporation, Ubest-55). Moreover, the refractive index of the transparent film was measured with an ellipsometer (manufactured by ULVAC, EMS-1). The uncoated PET film has a total light transmittance of 90.7%, a haze of 2.0%,
The reflectance of light having a wavelength of 550 nm was 6.0%.
Pencil hardness Pencil hardness was measured with a pencil hardness tester in accordance with JIS K 5400. That is, a pencil was set at an angle of 45 degrees with respect to the transparent coating surface, and a predetermined load was applied and pulled at a constant speed, and the presence or absence of scratches was observed.

密着性
透明被膜付基材(A-1)の表面にナイフで縦横1mmの間隔で11本の平行な傷を付け100個の升目を作り、これにセロファンテープを接着し、次いで、セロファンテープを剥離したときに被膜が剥離せず残存している升目の数を、以下の3段階に分類することによって密着性を評価した。結果を表1に示す。
Adhesiveness The surface of the substrate (A-1) with a transparent coating is made of 11 parallel scratches with a knife at intervals of 1 mm in length and width to make 100 squares, and cellophane tape is adhered thereto, The adhesion was evaluated by classifying the number of cells remaining after the cellophane tape was peeled off without the film being peeled into the following three stages. The results are shown in Table 1.

残存升目の数90個以上 :◎
残存升目の数85〜89個:○
残存升目の数84個以下 :△
耐擦傷性の測定
#0000スチールウールを用い、荷重500g/cm2で50回摺動し、膜の表面を
目視観察し、以下の基準で評価し、結果を表1に示した。
Number of remaining squares more than 90: ◎
Number of remaining squares: 85 to 89: ○
Number of remaining squares: 84 or less: △
Measurement of Scratch Resistance Using # 0000 steel wool, sliding 50 times at a load of 500 g / cm 2 , visually observing the surface of the film and evaluating according to the following criteria, the results are shown in Table 1.

評価基準:
筋条の傷が認められない :◎
筋条の傷が僅かに認められる :○
筋条の傷が多数認められる :△
面が全体的に削られている :×
[実施例2]
透明被膜形成用塗料(2)の調製
実施例1と同様にして調製したシリカ系中空微粒子(A-1)のアルコール分散液をエタ
ノールで固形分濃度5重量%に希釈した分散液40gと、シリカ系中空微粒子(B-1)の
アルコール分散液をエタノールで固形分濃度5重量%に希釈した分散液20gと、アクリル樹脂(ヒタロイド1007、日立化成(株)製)3gおよびイソプロパノールとn−ブタノールの1/1(重量比)混合溶媒47gとを充分に混合して透明被膜形成用塗料(2)
を調製した。
透明被膜付基材(2)の製造
実施例1において、透明被膜形成用塗料(2)を用いた以外は同様にして透明被膜の膜厚
が100nmの透明被膜付基材(2)を得た。この透明被膜付基材(2)の膜厚、全光線透過率、ヘイズ、反射率、被膜の屈折率、密着性および鉛筆硬度、耐擦傷性を表1に示す。[実施例3]
透明被膜形成用塗料(3)の調製
実施例1と同様にして調製したシリカ系中空微粒子(A-1)のアルコール分散液をエタ
ノールで固形分濃度5重量%に希釈した分散液50gと、シリカ系中空微粒子(B-1)の
アルコール分散液をエタノールで固形分濃度5重量%に希釈した分散液12.5gと、アクリル樹脂(ヒタロイド1007、日立化成(株)製)3gおよびイソプロパノールとn−ブタノールの1/1(重量比)混合溶媒47gとを充分に混合して透明被膜形成用塗料(3)を調製した。
透明被膜付基材(3)の製造
実施例1において、透明被膜形成用塗料(3)を用いた以外は同様にして透明被膜の膜厚
が100nmの透明被膜付基材(3)を得た。この透明被膜付基材(3)の膜厚、全光線透過率、ヘイズ、反射率、被膜の屈折率、密着性および鉛筆硬度、耐擦傷性を表1に示す。[実施例4]
シリカ系中空微粒子(A-2)分散液の調製
シリカ・アルミナゾル(触媒化成工業(株)製:USBB−120、平均粒子径25nm、SiO2・Al23濃度20重量%、固形分中Al23含有量27重量%)100g
に純水3900gを加えて98℃に加温し、この温度を保持しながら、SiO2として濃
度1.5重量%の珪酸ナトリウム水溶液109,800gとAl23としての濃度0.5重量%のアルミン酸ナトリウム水溶液109,800gを添加して、SiO2・Al23
次粒子分散液(平均粒子径120nm)を得た。このときのMO/SiO2モル比(A
)=0.2、であった。また、このときの反応液のpHは12.0であった。
Evaluation criteria:
No streak injury is found: ◎
Slight flaws are observed: ○
Many streak wounds are found: △
The surface has been cut entirely: ×
[Example 2]
Preparation of paint for forming transparent film (2) 40 g of a dispersion obtained by diluting an alcohol dispersion of silica-based hollow fine particles (A-1) prepared in the same manner as in Example 1 with ethanol to a solid content concentration of 5% by weight, silica 20 g of an alcohol dispersion of the system hollow fine particles (B-1) diluted with ethanol to a solid content concentration of 5% by weight, 3 g of an acrylic resin (Hitaroid 1007, manufactured by Hitachi Chemical Co., Ltd.), isopropanol and n-butanol 1/1 (weight ratio) 47g of mixed solvent is mixed thoroughly and paint for transparent film formation (2)
Was prepared.
Production of transparent film-coated substrate (2) In Example 1, except that the transparent film-forming paint (2) was used, a transparent film-coated substrate (2) having a film thickness of 100 nm was obtained. . Table 1 shows the film thickness, total light transmittance, haze, reflectance, film refractive index, adhesion, pencil hardness, and scratch resistance of the substrate (2) with a transparent coating. [Example 3]
Preparation of paint for forming transparent film (3) 50 g of a dispersion obtained by diluting an alcohol dispersion of silica-based hollow fine particles (A-1) prepared in the same manner as in Example 1 with ethanol to a solid content concentration of 5% by weight, silica 12.5 g of an alcohol dispersion of the system hollow fine particles (B-1) diluted with ethanol to a solid content concentration of 5% by weight, 3 g of an acrylic resin (Hitaroid 1007, manufactured by Hitachi Chemical Co., Ltd.), isopropanol and n- A clear film-forming paint (3) was prepared by thoroughly mixing 47 g of a butanol 1/1 (weight ratio) mixed solvent.
Production of transparent film-coated substrate (3) In Example 1 except that the transparent film-forming paint (3) was used, a transparent film-coated substrate (3) having a film thickness of 100 nm was obtained. . Table 1 shows the film thickness, total light transmittance, haze, reflectance, film refractive index, adhesion, pencil hardness, and scratch resistance of the substrate with transparent film (3). [Example 4]
Preparation of silica-based hollow fine particle (A-2) dispersion
Silica-alumina sol (manufactured by Catalyst Kasei Kogyo Co., Ltd .: USBB-120, average particle size 25 nm, SiO 2 · Al 2 O 3 concentration 20 wt%, solid content Al 2 O 3 content 27 wt%) 100 g
3900 g of pure water was added and heated to 98 ° C., and while maintaining this temperature, 109,800 g of 1.5 wt% sodium silicate aqueous solution as SiO 2 and 0.5 wt% as Al 2 O 3 109,800 g of an aqueous sodium aluminate solution was added to obtain a SiO 2 .Al 2 O 3 primary particle dispersion (average particle size 120 nm). At this time, the MO X / SiO 2 molar ratio (A
) = 0.2. Further, the pH of the reaction solution at this time was 12.0.

ついで、SiOとして濃度1.5重量%の珪酸ナトリウム水溶液251,700gと
Al23としての濃度0.5重量%のアルミン酸ナトリウム水溶液83,900gを添加
して複合酸化物微粒子(3)(二次粒子)(平均粒子径171nm)の分散液を得た。
Next, 251,700 g of a sodium silicate aqueous solution having a concentration of 1.5% by weight as SiO 2 and 83,900 g of a sodium aluminate aqueous solution having a concentration of 0.5% by weight as Al 2 O 3 were added to form composite oxide fine particles (3). A dispersion of (secondary particles) (average particle size 171 nm) was obtained.

このときのMOX/SiOモル比(B)=0.07であった。また、このときの反応
液のpHは12.0であった。
ついで、限外濾過膜で洗浄して固形分濃度13重量%になった複合酸化物微粒子(3)の
分散液500gに純水1,125gを加え、さらに濃塩酸(濃度35.5重量%)を滴下してpH1.0とし、脱アルミニウム処理を行った。次いで、pH3の塩酸水溶液10Lと
純水5Lを加えながら限外濾過膜で溶解したアルミニウム塩を分離・洗浄して固形分濃度20重量%のシリカ系中空微粒子(P-4-1)の水分散液を得た。
The MO X / SiO 2 molar ratio (B) at this time was 0.07. Further, the pH of the reaction solution at this time was 12.0.
Next, 1,125 g of pure water was added to 500 g of the dispersion of the composite oxide fine particles (3) which had been washed with an ultrafiltration membrane to a solid content concentration of 13 wt%, and concentrated hydrochloric acid (concentration 35.5 wt%). Was dropped to pH 1.0, and dealumination was performed. Subsequently, the aluminum salt dissolved in the ultrafiltration membrane is separated and washed while adding 10 L of pH 3 hydrochloric acid aqueous solution and 5 L of pure water to disperse the silica-based hollow fine particles (P-4-1) having a solid content concentration of 20% by weight in water. A liquid was obtained.

ついで、シリカ系微粒子(P-4-1)の水分散液150gと、純水500g、エタノール1
,750gおよび濃度28重量%のアンモニア水626gとの混合液を35℃に加温した後、エチルシリケート(SiO濃度28重量%)33gを添加してシリカ被覆層を形成
し、純水5Lを加えながら限外濾過膜で洗浄して固形分濃度20重量%のシリカ被覆層を
形成したシリカ系中空微粒子(P-4-1)の水分散液を得た。
Next, 150 g of an aqueous dispersion of silica-based fine particles (P-4-1), 500 g of pure water, ethanol 1
, 750 g and a mixture of 626 g of ammonia water having a concentration of 28% by weight were heated to 35 ° C., and then 33 g of ethyl silicate (SiO 2 concentration of 28% by weight) was added to form a silica coating layer. While being added, it was washed with an ultrafiltration membrane to obtain an aqueous dispersion of silica-based hollow fine particles (P-4-1) in which a silica coating layer having a solid content concentration of 20% by weight was formed.

つぎに、シリカ被覆層を形成したシリカ系中空微粒子(P-4-1)分散液にアンモニア水を
添加して分散液のpHを10.5に調整し、ついで200℃にて11時間熟成した後、常温に冷却し、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)400gを用いて3時間イオン交換し、ついで、陰イオン交換樹脂(三菱化学(株)製:ダイヤイオンSA20A)200gを用いて3時間イオン交換し、さらに陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、固形分濃度20重量%のシリカ系中空微粒子(P-4-2)の水分散液を得た。この
とき、シリカ系微粒子(P-4-2)の水分散液のNaO含有量およびNH3含有量はシリカ系
中空微粒子当たり10ppm、1200ppmであった。
Next, ammonia water was added to the silica-based hollow fine particle (P-4-1) dispersion having a silica coating layer to adjust the pH of the dispersion to 10.5, and then aged at 200 ° C. for 11 hours. After cooling to room temperature, ion exchange was performed for 3 hours using 400 g of a cation exchange resin (Mitsubishi Chemical Corporation: Diaion SK1B), and then an anion exchange resin (Mitsubishi Chemical Corporation: Diaion SA20A). ) Ion exchange using 200 g for 3 hours, and further using 200 g of cation exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion SK1B) for ion exchange at 80 ° C. for 3 hours for washing, solid content concentration 20 weight % Aqueous dispersion of silica-based hollow fine particles (P-4-2) was obtained. At this time, the Na 2 O content and NH 3 content of the aqueous dispersion of silica-based fine particles (P-4-2) were 10 ppm and 1200 ppm per silica-based hollow fine particles.

ついで、再び、シリカ系中空微粒子(P-4-2)分散液を150℃にて11時間水熱処理し
た後、常温に冷却し、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)400gを用いて3時間イオン交換し、ついで、陰イオン交換樹脂(三菱化学(株)製:ダイヤイオンSA20A)200gを用いて3時間イオン交換し、さらに陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、固形分濃度20重量%のシリカ系中空微粒子(P-4-3)の水分散液を得た。このとき、シリカ系微粒子(P-4-3)の水分散液のNaO含有量およびNH3含有量はシリカ系中空微粒子当たり0.4pm、600ppmであった。
Next, again, the silica-based hollow fine particle (P-4-2) dispersion was hydrothermally treated at 150 ° C. for 11 hours, cooled to room temperature, and a cation exchange resin (manufactured by Mitsubishi Chemical Corporation: Diaion SK1B). Ion exchange using 400 g for 3 hours, followed by ion exchange for 3 hours using 200 g of anion exchange resin (Mitsubishi Chemical Corporation: Diaion SA20A), and further cation exchange resin (Mitsubishi Chemical Corporation) : Dia ion SK1B) 200 g was used for ion exchange at 80 ° C. for 3 hours for washing to obtain an aqueous dispersion of silica-based hollow fine particles (P-4-3) having a solid content concentration of 20% by weight. At this time, the Na 2 O content and NH 3 content of the aqueous dispersion of silica-based fine particles (P-4-3) were 0.4 pm and 600 ppm per silica-based hollow fine particles.

ついで限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20重量%のシリカ系中空微粒子(A-2)アルコール分散液を調製した。
固形分濃度20重量%のシリカ系中空微粒子(A-2)のアルコール分散液100gにア
クリルシランカップリング剤(信越化学(株)製:KBM-5103)3gを添加し、50℃で加熱処理を行い、再び限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20重量%のシリカ系中空微粒子(A-2)のアルコール分散液を調製した。
Subsequently, a silica-based hollow fine particle (A-2) alcohol dispersion having a solid content of 20% by weight was prepared by replacing the solvent with ethanol using an ultrafiltration membrane.
Add 3 g of acrylic silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-5103) to 100 g of an alcohol dispersion of silica-based hollow fine particles (A-2) having a solid content concentration of 20% by weight, and heat-treat at 50 ° C. Then, an alcohol dispersion of silica-based hollow fine particles (A-2) having a solid concentration of 20% by weight was prepared by replacing the solvent with ethanol again using an ultrafiltration membrane.

得られたシリカ系中空微粒子(A-2)の屈折率を測定し、結果を表1に示した。
透明被膜形成用塗料(4)の調製
シリカ系中空微粒子(A-2)のアルコール分散液をエタノールで固形分濃度5重量%に
希釈した分散液50gと、実施例1と同様にして調製したシリカ系中空微粒子(B-1)の
アルコール分散液をエタノールで固形分濃度5重量%に希釈した分散液17gと、アクリル樹脂(ヒタロイド1007、日立化成(株)製)3gおよびイソプロパノールとn−ブタノールの1/1(重量比)混合溶媒47gとを充分に混合して透明被膜形成用塗料(4)
を調製した。
透明被膜付基材(4)の製造
実施例1において、透明被膜形成用塗料(4)を用い、透明被膜の膜厚を280nmとし
た以外は同様にして透明被膜付基材(4)を得た。この透明被膜付基材(4)の膜厚、全光線透過率、ヘイズ、反射率、被膜の屈折率、密着性および鉛筆硬度、耐擦傷性を表1に示す。
[実施例5]
シリカ系中空微粒子(A-3)分散液の調製
シリカ・アルミナゾル(触媒化成工業(株)製:USBB−120、平均粒子径25nm、SiO2・Al23濃度20重量%、固形分中Al23含有量27重量%)100g
に純水3900gを加えて98℃に加温し、この温度を保持しながら、SiO2として濃
度1.5重量%の珪酸ナトリウム水溶液1750gとAl23としての濃度0.5重量%のアルミン酸ナトリウム水溶液1750gを添加して、SiO2・Al23一次粒子分散液
(平均粒子径35nm)を得た。このときのMOX/SiO2モル比(A)=0.2、であった。また、このときの反応液のpHは12.0であった。
The refractive index of the obtained silica-based hollow fine particles (A-2) was measured, and the results are shown in Table 1.
Preparation of paint for forming transparent film (4) Silica prepared in the same manner as in Example 1 with 50 g of a dispersion of silica-based hollow fine particles (A-2) diluted with ethanol to a solid concentration of 5% by weight. 17 g of an alcohol dispersion of the system hollow fine particles (B-1) diluted with ethanol to a solid content concentration of 5% by weight, 3 g of an acrylic resin (Hitaroid 1007, manufactured by Hitachi Chemical Co., Ltd.), isopropanol and n-butanol 1/1 (weight ratio) Mixing solvent 47g well, transparent coating forming paint (4)
Was prepared.
Production of transparent film-coated substrate (4) In Example 1, a transparent film-coated substrate (4) was obtained in the same manner as in Example 1 except that the transparent film-forming paint (4) was used and the film thickness of the transparent film was 280 nm. It was. Table 1 shows the film thickness, total light transmittance, haze, reflectance, film refractive index, adhesion, pencil hardness, and scratch resistance of the substrate (4) with a transparent film.
[Example 5]
Preparation of silica-based hollow fine particle (A-3) dispersion
Silica-alumina sol (manufactured by Catalyst Kasei Kogyo Co., Ltd .: USBB-120, average particle size 25 nm, SiO 2 · Al 2 O 3 concentration 20 wt%, solid content Al 2 O 3 content 27 wt%) 100 g
3900 g of pure water was added and heated to 98 ° C., and while maintaining this temperature, 1750 g of a sodium silicate aqueous solution having a concentration of 1.5% by weight as SiO 2 and an alumina having a concentration of 0.5% by weight as Al 2 O 3. 1750 g of an aqueous sodium acid solution was added to obtain a SiO 2 .Al 2 O 3 primary particle dispersion (average particle size 35 nm). The MO X / SiO 2 molar ratio (A) at this time was 0.2. Further, the pH of the reaction solution at this time was 12.0.

ついで、SiO2として濃度1.5重量%の珪酸ナトリウム水溶液6,300gとAl2
3としての濃度0.5重量%のアルミン酸ナトリウム水溶液2,100gを添加して複合酸化物微粒子(2)(二次粒子)(平均粒子径50nm)の分散液を得た。
Next, 6,300 g of an aqueous sodium silicate solution having a concentration of 1.5% by weight as SiO 2 and Al 2
A dispersion of composite oxide fine particles (2) (secondary particles) (average particle size 50 nm) was obtained by adding 2,100 g of a 0.5 wt% sodium aluminate aqueous solution as O 3 .

このときのMOX/SiO2モル比(B)=0.07であった。また、このときの反応液のpHは12.0であった。
ついで、限外濾過膜で洗浄して固形分濃度13重量%になった複合酸化物微粒子(2)の
分散液500gに純水1,125gを加え、さらに濃塩酸(濃度35.5重量%)を滴下してpH1.0とし、脱アルミニウム処理を行った。次いで、pH3の塩酸水溶液10Lと
純水5Lを加えながら限外濾過膜で溶解したアルミニウム塩を分離・洗浄して固形分濃度20重量%のシリカ系中空微粒子(P-5-1)の水分散液を得た。
The MO X / SiO 2 molar ratio (B) at this time was 0.07. Further, the pH of the reaction solution at this time was 12.0.
Next, 1,125 g of pure water was added to 500 g of the dispersion of composite oxide fine particles (2) having a solid concentration of 13 wt% by washing with an ultrafiltration membrane, and concentrated hydrochloric acid (concentration 35.5 wt%). Was dropped to pH 1.0, and dealumination was performed. Subsequently, the aluminum salt dissolved in the ultrafiltration membrane was separated and washed while adding 10 L of hydrochloric acid aqueous solution of pH 3 and 5 L of pure water, and the aqueous dispersion of silica-based hollow fine particles (P-5-1) having a solid content concentration of 20% by weight was obtained. A liquid was obtained.

ついで、シリカ系中空微粒子(P-5-1)の水分散液150gと、純水500g、エタノー
ル1,750gおよび濃度28重量%のアンモニア水626gとの混合液を35℃に加温した後、エチルシリケート(SiO濃度28重量%)140gを添加してシリカ被覆層
を形成し、純水5Lを加えながら限外濾過膜で洗浄して固形分濃度20重量%のシリカ被覆層を形成したシリカ系中空微粒子(P-2-1)の水分散液を得た。
Next, after heating a mixed liquid of 150 g of an aqueous dispersion of silica-based hollow fine particles (P-5-1), 500 g of pure water, 1,750 g of ethanol, and 626 g of ammonia water having a concentration of 28% by weight to 35 ° C., A silica coating layer is formed by adding 140 g of ethyl silicate (SiO 2 concentration 28 wt%), and washed with an ultrafiltration membrane while adding 5 L of pure water to form a silica coating layer having a solid content concentration of 20 wt%. An aqueous dispersion of the system hollow fine particles (P-2-1) was obtained.

つぎに、シリカ被覆層を形成したシリカ系中空微粒子(P-5-1)分散液にアンモニア水を
添加して分散液のpHを10.5に調整し、ついで200℃にて11時間熟成した後、常温に冷却し、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)400gを用いて3時間イオン交換し、ついで、陰イオン交換樹脂(三菱化学(株)製:ダイヤイオンSA20A)200gを用いて3時間イオン交換し、さらに陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、固形分濃度20重量%のシリカ系微粒子(P-5-2)の水分散液を得た。このとき
、シリカ系中空微粒子(P-5-2)の水分散液のNaO含有量およびNH3含有量はシリカ系
中空微粒子当たり8ppm、1500ppmであった。
Next, ammonia water was added to the silica-based hollow fine particle (P-5-1) dispersion having a silica coating layer to adjust the pH of the dispersion to 10.5, and then aged at 200 ° C. for 11 hours. After cooling to room temperature, ion exchange was performed for 3 hours using 400 g of a cation exchange resin (Mitsubishi Chemical Corporation: Diaion SK1B), and then an anion exchange resin (Mitsubishi Chemical Corporation: Diaion SA20A). ) Ion exchange using 200 g for 3 hours, and further using 200 g of cation exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion SK1B) for ion exchange at 80 ° C. for 3 hours for washing, solid content concentration 20 weight % Aqueous dispersion of silica-based fine particles (P-5-2) was obtained. At this time, the Na 2 O content and NH 3 content of the aqueous dispersion of silica-based hollow fine particles (P-5-2) were 8 ppm and 1500 ppm per silica-based hollow fine particles.

ついで、再び、シリカ系中空微粒子(P-5-2)分散液を150℃にて11時間水熱処理し
た後、常温に冷却し、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)400gを用いて3時間イオン交換し、ついで、陰イオン交換樹脂(三菱化学(株)製:ダイヤイオンSA20A)200gを用いて3時間イオン交換し、さらに陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、固形分濃度20重量%のシリカ系中空微粒子(P-5-3)の水分散液を得た。このとき、シリカ系中空微粒子(P-5-3)の水分散液のNaO含有量およびNH3含有量はシリカ系中空微粒子当たり0.4pm、60ppmであった。
Next, again, the silica-based hollow fine particle (P-5-2) dispersion was hydrothermally treated at 150 ° C. for 11 hours, cooled to room temperature, and a cation exchange resin (manufactured by Mitsubishi Chemical Corporation: Diaion SK1B). Ion exchange using 400 g for 3 hours, followed by ion exchange for 3 hours using 200 g of anion exchange resin (Mitsubishi Chemical Corporation: Diaion SA20A), and further cation exchange resin (Mitsubishi Chemical Corporation) : Dia ion SK1B) 200 g was used for ion exchange at 80 ° C. for 3 hours for washing to obtain an aqueous dispersion of silica-based hollow fine particles (P-5-3) having a solid concentration of 20% by weight. At this time, the Na 2 O content and NH 3 content of the aqueous dispersion of silica-based hollow fine particles (P-5-3) were 0.4 pm and 60 ppm per silica-based hollow fine particles.

ついで限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20重量%のシリカ系中空微粒子(A-3)アルコール分散液を調製した。
固形分濃度20重量%のシリカ系中空微粒子(A-3)のアルコール分散液100gにア
クリルシランカップリング剤(信越化学(株)製:KBM-5103)3gを添加し、50℃で加熱処理を行い、再び限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20重量%のシリカ系中空微粒子(A-3)のアルコール分散液を調製した。
Subsequently, a silica-based hollow fine particle (A-3) alcohol dispersion liquid having a solid content concentration of 20% by weight was prepared by replacing the solvent with ethanol using an ultrafiltration membrane.
3 g of an acrylic silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-5103) is added to 100 g of an alcohol dispersion of silica-based hollow fine particles (A-3) having a solid content concentration of 20% by weight, followed by heat treatment at 50 ° C. Then, an alcohol dispersion of silica-based hollow fine particles (A-3) having a solid concentration of 20% by weight was prepared by replacing the solvent with ethanol again using an ultrafiltration membrane.

得られたシリカ系中空微粒子(A-3)の屈折率を測定し、結果を表1に示した。
透明被膜形成用塗料(5)の調製
シリカ系中空微粒子(A-3)のアルコール分散液をエタノールで固形分濃度5重量%に
希釈した分散液50gと、実施例1と同様にして調製したシリカ系中空微粒子(B-1)の
アルコール分散液をエタノールで固形分濃度5重量%に希釈した分散液17gと、アクリ
ル樹脂(ヒタロイド1007、日立化成(株)製)3gおよびイソプロパノールとn−ブタノールの1/1(重量比)混合溶媒47gとを充分に混合して透明被膜形成用塗料(5)
を調製した。
透明被膜付基材(5)の製造
実施例1において、透明被膜形成用塗料(5)を用いた以外は同様にして透明被膜の膜厚
が100nmの透明被膜付基材(5)を得た。この透明被膜付基材(5)の膜厚、全光線透過率、ヘイズ、反射率、被膜の屈折率、密着性および鉛筆硬度、耐擦傷性を表1に示す。[実施例6]
シリカ系中空微粒子(B-2)分散液の調製
平均粒子径5nmのシリカゾル(SiO濃度20重量%)100gと純水3,900gの混合物を98℃に加温した。このときの反応母液のpHは10.5であった。ついで、この温度を保持しながら、SiOとして濃度1.5重量%の珪酸ナトリウム水溶液3,096gとAl23としての濃度0.5重量%のアルミン酸ナトリウム水溶液3,096gを添加して、SiO・Al23一次粒子分散液(平均粒子径8nm)を得た。このときのMOX/SiOモル比(A)=0.2、であった。また、このときの反応液のpHは12.0であった。
The refractive index of the obtained silica-based hollow fine particles (A-3) was measured, and the results are shown in Table 1.
Preparation of paint for forming transparent film (5) Silica prepared in the same manner as in Example 1 with 50 g of a dispersion of silica-based hollow fine particles (A-3) diluted with ethanol to a solid concentration of 5% by weight. 17 g of an alcohol dispersion of the system hollow fine particles (B-1) diluted with ethanol to a solid content concentration of 5% by weight, 3 g of an acrylic resin (Hitaroid 1007, manufactured by Hitachi Chemical Co., Ltd.), isopropanol and n-butanol 1/1 (weight ratio) mixed with 47 g of solvent mixture to form a transparent film (5)
Was prepared.
Production of transparent film-coated substrate (5) In Example 1, except that the transparent film-forming paint (5) was used, a transparent film-coated substrate (5) having a film thickness of 100 nm was obtained. . Table 1 shows the film thickness, total light transmittance, haze, reflectance, film refractive index, adhesion, pencil hardness, and scratch resistance of the substrate (5) with a transparent film. [Example 6]
Preparation of silica-based hollow fine particle (B-2) dispersion
A mixture of 100 g of silica sol having an average particle diameter of 5 nm (SiO 2 concentration 20% by weight) and 3,900 g of pure water was heated to 98 ° C. At this time, the pH of the reaction mother liquor was 10.5. Then, while maintaining this temperature, 3,096 g of a 1.5 wt% sodium silicate aqueous solution as SiO 2 and 3,096 g of a 0.5 wt% sodium aluminate aqueous solution as Al 2 O 3 were added. , SiO 2 · Al 2 O 3 primary particle dispersion (average particle size 8 nm) was obtained. The MO X / SiO 2 molar ratio (A) at this time was 0.2. Further, the pH of the reaction solution at this time was 12.0.

ついで、SiOとして濃度1.5重量%の珪酸ナトリウム水溶液23,962gとA
l2O3としての濃度0.5重量%のアルミン酸ナトリウム水溶液71,885gを添加
して複合酸化物微粒子(11)(二次粒子)(平均粒子径20nm)の分散液を得た。このときのMOX/SiOモル比(B)=0.07であった。また、このときの反応液のpH
は12.0であった。
Next, 23,962 g of a sodium silicate aqueous solution having a concentration of 1.5% by weight as SiO 2 and A
71,885 g of sodium aluminate aqueous solution having a concentration of 0.5% by weight as l 2 O 3 was added to obtain a dispersion of composite oxide fine particles (11) (secondary particles) (average particle size 20 nm). The MO X / SiO 2 molar ratio (B) at this time was 0.07. Also, the pH of the reaction solution at this time
Was 12.0.

ついで、限外濾過膜で洗浄して固形分濃度13重量%になった複合酸化物微粒子(6)の
分散液500gに純水1,125gを加え、さらに濃塩酸(濃度35.5重量%)を滴下してpH1.0とし、脱アルミニウム処理を行った。次いで、pH3の塩酸水溶液10Lと
純水5Lを加えながら限外濾過膜で溶解したアルミニウム塩を分離・洗浄して固形分濃度20重量%のシリカ系中空微粒子(P-6-1)の水分散液を得た。
Next, 1,125 g of pure water was added to 500 g of the dispersion of composite oxide fine particles (6) having a solid concentration of 13 wt% by washing with an ultrafiltration membrane, and concentrated hydrochloric acid (concentration 35.5 wt%). Was dropped to pH 1.0, and dealumination was performed. Then, 10 mL of hydrochloric acid aqueous solution of pH 3 and 5 L of pure water are added, and the aluminum salt dissolved in the ultrafiltration membrane is separated and washed to disperse the silica-based hollow fine particles (P-6-1) having a solid concentration of 20% by weight in water. A liquid was obtained.

前記シリカ系中空微粒子(P-6-1)分散液にアンモニア水を添加して分散液のpHを10
.5に調整し、ついで200℃にて11時間熟成した後、常温に冷却し、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)400gを用いて3時間イオン交換し、ついで、陰イオン交換樹脂(三菱化学(株)製:ダイヤイオンSA20A)200gを用いて3時間イオン交換し、さらに陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、固形分濃度20重量%のシリカ系中空微粒子(P-6-2)の水分散液を得た。このとき、シリカ系中空微粒子(P-6-2)の水分散液のNaO含有量およびNH3含有量はシリカ系中空微粒子当たり8ppm、1000ppmであった。
Ammonia water is added to the silica-based hollow fine particle (P-6-1) dispersion to adjust the pH of the dispersion to 10.
. 5 and then aged at 200 ° C. for 11 hours, cooled to room temperature, ion-exchanged with 400 g of cation exchange resin (Made by Mitsubishi Chemical Co., Ltd .: Diaion SK1B) for 3 hours, Ion exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion SA20A) 200 g was used for ion exchange for 3 hours, and cation exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion SK1B) 200 g was used. Washing was performed by ion exchange for a time to obtain an aqueous dispersion of silica-based hollow fine particles (P-6-2) having a solid content concentration of 20% by weight. At this time, the Na 2 O content and NH 3 content of the aqueous dispersion of silica-based hollow fine particles (P-6-2) were 8 ppm and 1000 ppm per silica-based hollow fine particles.

ついで、再び、シリカ系中空微粒子(P-6-2)分散液を150℃にて11時間水熱処理し
た後、常温に冷却し、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)400gを用いて3時間イオン交換し、ついで、陰イオン交換樹脂(三菱化学(株)製:ダイヤイオンSA20A)200gを用いて3時間イオン交換し、さらに陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、固形分濃度20重量%のシリカ系中空微粒子(P-6-3)の水分散液を得た。このとき、シリカ系中空微粒子(P-6-3)の水分散液のNaO含有量およびNH3含有量はシリカ系微粒子当たり0.9ppm、1000ppmであった。
Next, again, the silica-based hollow fine particle (P-6-2) dispersion was hydrothermally treated at 150 ° C. for 11 hours, cooled to room temperature, and a cation exchange resin (manufactured by Mitsubishi Chemical Corporation: Diaion SK1B). Ion exchange using 400 g for 3 hours, followed by ion exchange for 3 hours using 200 g of anion exchange resin (Mitsubishi Chemical Corporation: Diaion SA20A), and further cation exchange resin (Mitsubishi Chemical Corporation) : Dia ion SK1B) 200 g was used for ion exchange at 80 ° C. for 3 hours for washing to obtain an aqueous dispersion of silica-based hollow fine particles (P-6-3) having a solid content concentration of 20% by weight. At this time, the Na 2 O content and NH 3 content of the aqueous dispersion of silica-based hollow fine particles (P-6-3) were 0.9 ppm and 1000 ppm per silica-based fine particle.

ついで限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20重量%のシリカ系中空微粒子(B-2)のアルコール分散液を調製した。
固形分濃度20重量%のシリカ系中空微粒子(B-2)のアルコール分散液100gにア
クリルシランカップリング剤(信越化学(株)製:KBM-5103)3gを添加し、50℃で加熱処理を行い、再び限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20重量%のシリカ系中空微粒子(B-2)のアルコール分散液を調製した。
得られたシリカ系中空微粒子(B-2)の屈折率を測定し、結果を表1に示した。
透明被膜形成用塗料(6)の調製
実施例1と同様にして調製したシリカ系中空微粒子(A-1)のアルコール分散液をエタ
ノールで固形分濃度5重量%に希釈した分散液50gと、シリカ系中空微粒子(B-2)の
アルコール分散液をエタノールで固形分濃度5重量%に希釈した分散液17gと、アクリル樹脂(ヒタロイド1007、日立化成(株)製)3gおよびイソプロパノールとn−ブタノールの1/1(重量比)混合溶媒47gとを充分に混合して透明被膜形成用塗料(6)
を調製した。
透明被膜付基材(6)の製造
実施例1において、透明被膜形成用塗料(6)を用いた以外は同様にして透明被膜の膜厚
が100nmの透明被膜付基材(6)を得た。この透明被膜付基材(6)の膜厚、全光線透過率、ヘイズ、反射率、被膜の屈折率、密着性および鉛筆硬度、耐擦傷性を表1に示す。[実施例7]
シリカ系中空微粒子(B-3)分散液の調製
シリカ・アルミナゾル(触媒化成工業(株)製:USBB−120、平均粒子径25nm、SiO2・Al23濃度20重量%、固形分中Al23含有量27重量%)100g
に純水3900gを加えて98℃に加温し、この温度を保持しながら、SiO2として濃
度1.5重量%の珪酸ナトリウム水溶液1750gとAl23としての濃度0.5重量%のアルミン酸ナトリウム水溶液1750gを添加して、SiO2・Al23一次粒子分散液
(平均粒子径35nm)を得た。このときのMOX/SiO2モル比(A)=0.2、であった。また、このときの反応液のpHは12.0であった。
Next, an alcohol dispersion of silica-based hollow fine particles (B-2) having a solid content concentration of 20% by weight was prepared by replacing the solvent with ethanol using an ultrafiltration membrane.
3 g of an acrylic silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-5103) is added to 100 g of an alcohol dispersion of silica-based hollow fine particles (B-2) having a solid content concentration of 20% by weight, followed by heat treatment at 50 ° C. Then, an alcohol dispersion of silica-based hollow fine particles (B-2) having a solid concentration of 20% by weight was prepared by replacing the solvent with ethanol again using an ultrafiltration membrane.
The refractive index of the obtained silica-based hollow fine particles (B-2) was measured, and the results are shown in Table 1.
Preparation of transparent film-forming coating material (6) 50 g of a dispersion of silica-based hollow fine particles (A-1) prepared in the same manner as in Example 1 diluted with ethanol to a solid concentration of 5% by weight, silica 17 g of an alcohol dispersion of the system hollow fine particles (B-2) diluted with ethanol to a solid content concentration of 5% by weight, 3 g of an acrylic resin (Hitaroid 1007, manufactured by Hitachi Chemical Co., Ltd.), and isopropanol and n-butanol 1/1 (weight ratio) Mixing solvent 47g well and transparent coating forming paint (6)
Was prepared.
Production of transparent film-coated substrate (6) In Example 1, except that the transparent film-forming paint (6) was used, a transparent film-coated substrate (6) having a thickness of 100 nm was obtained. . Table 1 shows the film thickness, total light transmittance, haze, reflectance, film refractive index, adhesion, pencil hardness, and scratch resistance of the substrate with transparent film (6). [Example 7]
Preparation of silica-based hollow fine particle (B-3) dispersion
Silica-alumina sol (manufactured by Catalyst Kasei Kogyo Co., Ltd .: USBB-120, average particle size 25 nm, SiO 2 · Al 2 O 3 concentration 20 wt%, solid content Al 2 O 3 content 27 wt%) 100 g
3900 g of pure water was added and heated to 98 ° C., and while maintaining this temperature, 1750 g of a sodium silicate aqueous solution having a concentration of 1.5% by weight as SiO 2 and an alumina having a concentration of 0.5% by weight as Al 2 O 3. 1750 g of an aqueous sodium acid solution was added to obtain a SiO 2 .Al 2 O 3 primary particle dispersion (average particle size 35 nm). The MO X / SiO 2 molar ratio (A) at this time was 0.2. Further, the pH of the reaction solution at this time was 12.0.

ついで、濃度0.5重量%の硫酸ナトリウム6,600gを添加し(モル比1.0)、ついでSiO2として濃度1.5重量%の珪酸ナトリウム水溶液6,670gとAl23としての濃度0.5重量%のアルミン酸ナトリウム水溶液1,050gを添加して複合酸化物微粒子(7)(二次粒子)(平均粒子径50nm)の分散液を得た。 Next, 6,600 g of sodium sulfate having a concentration of 0.5% by weight was added (molar ratio 1.0), and then 6,670 g of a sodium silicate aqueous solution having a concentration of 1.5% by weight as SiO 2 and the concentration as Al 2 O 3. A dispersion of composite oxide fine particles (7) (secondary particles) (average particle diameter of 50 nm) was obtained by adding 1,050 g of a 0.5% by weight aqueous sodium aluminate solution.

このとき、反応液のpHは11.2であり、MOX/SiO2モル比(B)=0.03であった。
ついで、限外濾過膜で洗浄して固形分濃度13重量%になった複合酸化物微粒子(7)の
分散液500gに純水1,125g、濃度0.5重量%の硫酸ナトリウム100gを添加
し(モル比0.004)を加え、さらに濃塩酸(濃度35.5重量%)を滴下してpH1.0とし、脱アルミニウム処理を行った。次いで、pH3の塩酸水溶液10Lと純水5Lを加えながら限外濾過膜で溶解したアルミニウム塩を分離・洗浄して固形分濃度20重量%のシリカ系中空微粒子(P-7-1)の水分散液を得た。
At this time, the pH of the reaction solution was 11.2, and the MO X / SiO 2 molar ratio (B) = 0.03.
Subsequently, 1,125 g of pure water and 100 g of sodium sulfate having a concentration of 0.5 wt% were added to 500 g of the dispersion of the composite oxide fine particles (7) having a solid concentration of 13 wt% by washing with an ultrafiltration membrane. (Molar ratio 0.004) was added, and concentrated hydrochloric acid (concentration 35.5% by weight) was added dropwise to adjust the pH to 1.0, followed by dealumination. Then, 10 mL of hydrochloric acid aqueous solution of pH 3 and 5 L of pure water are added, and the aluminum salt dissolved in the ultrafiltration membrane is separated and washed to disperse the silica-based hollow fine particles (P-7-1) having a solid concentration of 20 wt% in water. A liquid was obtained.

ついで、シリカ系中空微粒子(P-7-1)の水分散液150gと、純水500g、エタノー
ル1,750gおよび濃度28重量%のアンモニア水626gとの混合液を35℃に加温した後、エチルシリケート(SiO濃度28重量%)140gを添加してシリカ被覆層
を形成し、純水5Lを加えながら限外濾過膜で洗浄して固形分濃度20重量%のシリカ被覆層を形成したシリカ系中空微粒子(P-7-1)の水分散液を得た。
Next, after heating a mixed liquid of 150 g of an aqueous dispersion of silica-based hollow fine particles (P-7-1), 500 g of pure water, 1,750 g of ethanol, and 626 g of ammonia water having a concentration of 28% by weight to 35 ° C., A silica coating layer is formed by adding 140 g of ethyl silicate (SiO 2 concentration 28 wt%), and washed with an ultrafiltration membrane while adding 5 L of pure water to form a silica coating layer having a solid content concentration of 20 wt%. An aqueous dispersion of the system hollow fine particles (P-7-1) was obtained.

つぎに、シリカ被覆層を形成したシリカ系中空微粒子(P-7-1)分散液にアンモニア水を
添加して分散液のpHを10.5に調整し、ついで150℃にて11時間熟成した後、常温に冷却し、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)400gを用いて3時間イオン交換し、ついで、陰イオン交換樹脂(三菱化学(株)製:ダイヤイオ
ンSA20A)200gを用いて3時間イオン交換し、さらに陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、固形分濃度20重量%のシリカ系中空微粒子(P-7-2)の水分散液を得た。この
とき、シリカ系中空微粒子(P-7-2)の水分散液のNaO含有量およびNH3含有量はシリ
カ系中空微粒子当たり8ppm、1200ppmであった。
Next, aqueous ammonia was added to the silica-based hollow fine particle (P-7-1) dispersion having a silica coating layer to adjust the pH of the dispersion to 10.5, and then aged at 150 ° C. for 11 hours. After cooling to room temperature, ion exchange was performed for 3 hours using 400 g of a cation exchange resin (Mitsubishi Chemical Corporation: Diaion SK1B), and then an anion exchange resin (Mitsubishi Chemical Corporation: Diaion SA20A). ) Ion exchange using 200 g for 3 hours, and further using 200 g of cation exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion SK1B) for ion exchange at 80 ° C. for 3 hours for washing, solid content concentration 20 weight % Aqueous dispersion of silica-based hollow fine particles (P-7-2) was obtained. At this time, the Na 2 O content and NH 3 content of the aqueous dispersion of silica-based hollow fine particles (P-7-2) were 8 ppm and 1200 ppm per silica-based hollow fine particles.

ついで、再び、シリカ系微粒子(P-7-2)分散液を150℃にて11時間水熱処理した後
、常温に冷却し、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)400gを用いて3時間イオン交換し、ついで、陰イオン交換樹脂(三菱化学(株)製:ダイヤイオンSA20A)200gを用いて3時間イオン交換し、さらに陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、固形分濃度20重量%のシリカ系中空微粒子(P-7-3)の水分散液を得た。
このとき、シリカ系中空微粒子(P-7-3)の水分散液のNaO含有量およびNH含有量はシリカ系中空微粒子当たり0.9ppm、700ppmであった。
Next, again, the silica-based fine particle (P-7-2) dispersion was hydrothermally treated at 150 ° C. for 11 hours, then cooled to room temperature, and 400 g of a cation exchange resin (manufactured by Mitsubishi Chemical Corporation: Diaion SK1B). Ion exchange for 3 hours, followed by ion exchange for 3 hours using 200 g of anion exchange resin (Mitsubishi Chemical Corporation: Diaion SA20A), and further cation exchange resin (Mitsubishi Chemical Corporation: 200 g of Diaion SK1B) was used for ion exchange at 80 ° C. for 3 hours for washing to obtain an aqueous dispersion of silica-based hollow fine particles (P-7-3) having a solid concentration of 20% by weight.
At this time, the Na 2 O content and the NH 3 content of the aqueous dispersion of silica-based hollow fine particles (P-7-3) were 0.9 ppm and 700 ppm per silica-based hollow fine particles.

ついで限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20重量%のシリカ系中空微粒子(B-3)のアルコール分散液を調製した。
固形分濃度20重量%のシリカ系中空微粒子(B-3)のアルコール分散液100gにア
クリルシランカップリング剤(信越化学(株)製:KBM-5103)3gを添加し、50℃で加熱処理を行い、再び限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20重量%のシリカ系中空微粒子(B-3)のアルコール分散液を調製した。
Next, an alcohol dispersion of silica-based hollow fine particles (B-3) having a solid content concentration of 20% by weight was prepared by replacing the solvent with ethanol using an ultrafiltration membrane.
3 g of an acrylic silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-5103) is added to 100 g of an alcohol dispersion of silica-based hollow fine particles (B-3) having a solid content concentration of 20% by weight, followed by heat treatment at 50 ° C. Then, an alcohol dispersion of silica-based hollow fine particles (B-3) having a solid content concentration of 20% by weight was prepared by replacing the solvent with ethanol again using an ultrafiltration membrane.

得られたシリカ系中空微粒子(B-3)の屈折率を測定し、結果を表1に示した。
透明被膜形成用塗料(7)の調製
実施例1と同様にして調製したシリカ系中空微粒子(A-1)のアルコール分散液をエタ
ノールで固形分濃度5重量%に希釈した分散液50gと、シリカ系中空微粒子(B-3)の
アルコール分散液をエタノールで固形分濃度5重量%に希釈した分散液17gと、アクリル樹脂(ヒタロイド1007、日立化成(株)製)3gおよびイソプロパノールとn−ブタノールの1/1(重量比)混合溶媒47gとを充分に混合して透明被膜形成用塗料(7)
を調製した。
透明被膜付基材(7)の製造
実施例1において、透明被膜形成用塗料(7)を用いた以外は同様にして透明被膜の膜厚
が100nmの透明被膜付基材(7)を得た。この透明被膜付基材(7)の膜厚、全光線透過率、ヘイズ、反射率、被膜の屈折率、密着性および鉛筆硬度、耐擦傷性を表1に示す。[比較例1]
透明被膜形成用塗料(R1)の調製
実施例1と同様にして調製したシリカ系中空微粒子(A-1)のアルコール分散液をエタ
ノールで固形分濃度5重量%に希釈した分散液65gと、アクリル樹脂(ヒタロイド1007、日立化成(株)製)3gおよびイソプロパノールとn−ブタノールの1/1(重量比)混合溶媒47gとを充分に混合して透明被膜形成用塗料(R1)を調製した。
透明被膜付基材(R1)の製造
実施例1において、透明被膜形成用塗料(R1)を用いた以外は同様にして透明被膜の膜厚が100nmの透明被膜付基材(R1)を得た。この透明被膜付基材(R1)の膜厚、全光線透過率、ヘイズ、反射率、被膜の屈折率、密着性および鉛筆硬度、耐擦傷性を表1に示す。
[比較例2]
透明被膜形成用塗料(R2)の調製
実施例5と同様にして調製したシリカ系中空微粒子(A-3)のアルコール分散液をエタ
ノールで固形分濃度5重量%に希釈した分散液60gとアクリル樹脂(ヒタロイド1007、日立化成(株)製)3gおよびイソプロパノールとn−ブタノールの1/1(重量比)混合溶媒47gとを充分に混合して透明被膜形成用塗料(R2)を調製した。
透明被膜付基材(R2)の製造
実施例1において、透明被膜形成用塗料(R2)を用いた以外は同様にして透明被膜の膜厚が100nmの透明被膜付基材(R2)を得た。この透明被膜付基材(R2)の膜厚、全光線透過率、ヘイズ、反射率、被膜の屈折率、密着性および鉛筆硬度、耐擦傷性を表1に示す。
[比較例3]
透明被膜形成用塗料(R3)の調製
実施例4と同様にして調製したシリカ系中空微粒子(A-2)のアルコール分散液をエタ
ノールで固形分濃度5重量%に希釈した分散液50gとアクリル樹脂(ヒタロイド1007、日立化成(株)製)3gおよびイソプロパノールとn−ブタノールの1/1(重量比)混合溶媒47gとを充分に混合して透明被膜形成用塗料(R3)を調製した。
透明被膜付基材(R3)の製造
実施例1において、透明被膜形成用塗料(R3)を用い、透明被膜の膜厚を280nmとした以外は同様にして透明被膜付基材(R3)を得た。この透明被膜付基材(R3)の膜厚、全光線透過率、ヘイズ、反射率、被膜の屈折率、密着性および鉛筆硬度、耐擦傷性を表1に示す。
[比較例4]
透明被膜形成用塗料(R4)の調製
実施例1と同様にして調製したシリカ系中空微粒子(B-1)のアルコール分散液をエタ
ノールで固形分濃度5重量%に希釈した分散液111gとアクリル樹脂(ヒタロイド1007、日立化成(株)製)3gおよびイソプロパノールとn−ブタノールの1/1(重量比)混合溶媒47gとを充分に混合して透明被膜形成用塗料(R4)を調製した。
透明被膜付基材(R4)の製造
実施例1において、透明被膜形成用塗料(R4)を用いた以外は同様にして透明被膜の膜厚が100nmの透明被膜付基材(R4)を得た。この透明被膜付基材(R4)の膜厚、全光線透過率、ヘイズ、反射率、被膜の屈折率、密着性および鉛筆硬度、耐擦傷性を表1に示す。
[比較例5]
透明被膜形成用塗料(R4)の調製
実施例6と同様にして調製したシリカ系中空微粒子(B-2)のアルコール分散液をエタ
ノールで固形分濃度5重量%に希釈した分散液111gとアクリル樹脂(ヒタロイド1007、日立化成(株)製)3gおよびイソプロパノールとn−ブタノールの1/1(重量比)混合溶媒47gとを充分に混合して透明被膜形成用塗料(R5)を調製した。
透明被膜付基材(R5)の製造
実施例1において、透明被膜形成用塗料(R5)を用いた以外は同様にして透明被膜の膜厚が100nmの透明被膜付基材(R5)を得た。この透明被膜付基材(R5)の膜厚、全光線透過率、ヘイズ、反射率、被膜の屈折率、密着性および鉛筆硬度、耐擦傷性を表1に示す。
The refractive index of the obtained silica-based hollow fine particles (B-3) was measured, and the results are shown in Table 1.
Preparation of paint for forming transparent film (7) 50 g of a dispersion obtained by diluting an alcohol dispersion of silica-based hollow fine particles (A-1) prepared in the same manner as in Example 1 with ethanol to a solid content concentration of 5% by weight, silica 17 g of an alcohol dispersion of the system hollow fine particles (B-3) diluted with ethanol to a solid content concentration of 5% by weight, 3 g of an acrylic resin (Hitaroid 1007, manufactured by Hitachi Chemical Co., Ltd.), isopropanol and n-butanol 1/1 (weight ratio) 47g of mixed solvent is mixed thoroughly and paint for transparent film formation (7)
Was prepared.
Production of transparent film-coated substrate (7) In Example 1, except that the transparent film-forming paint (7) was used, a transparent film-coated substrate (7) having a transparent film thickness of 100 nm was obtained. . Table 1 shows the film thickness, total light transmittance, haze, reflectance, film refractive index, adhesion, pencil hardness, and scratch resistance of this substrate with transparent film (7). [Comparative Example 1]
Preparation of paint for forming transparent film (R1) 65 g of a dispersion of silica-based hollow fine particles (A-1) prepared in the same manner as in Example 1 diluted with ethanol to a solid concentration of 5% by weight, and acrylic A transparent film-forming coating material (R1) was prepared by thoroughly mixing 3 g of resin (Hitaroid 1007, manufactured by Hitachi Chemical Co., Ltd.) and 47 g of a 1: 1 (weight ratio) mixed solvent of isopropanol and n-butanol.
Production of substrate with transparent film (R1) In Example 1 except that the coating material for forming a transparent film (R1) was used, a transparent film-coated substrate (R1) having a film thickness of 100 nm was obtained. . Table 1 shows the film thickness, total light transmittance, haze, reflectance, film refractive index, adhesion, pencil hardness, and scratch resistance of the substrate with transparent film (R1).
[Comparative Example 2]
Preparation of paint for forming transparent film (R2) 60 g of a dispersion of silica-based hollow fine particles (A-3) prepared in the same manner as in Example 5 diluted with ethanol to a solid concentration of 5% by weight and acrylic resin A transparent film-forming coating material (R2) was prepared by sufficiently mixing 3 g (Hitaroid 1007, manufactured by Hitachi Chemical Co., Ltd.) and 47 g of a mixed solvent of isopropanol and 1/1 (weight ratio) of n-butanol.
Production of substrate with transparent coating (R2) In Example 1, a transparent coating-coated substrate (R2) having a thickness of 100 nm was obtained in the same manner except that the coating for transparent coating formation (R2) was used. . Table 1 shows the film thickness, total light transmittance, haze, reflectance, film refractive index, adhesion, pencil hardness, and scratch resistance of the substrate with transparent film (R2).
[Comparative Example 3]
Preparation of paint for forming transparent film (R3) 50 g of a dispersion obtained by diluting an alcohol dispersion of silica-based hollow fine particles (A-2) prepared in the same manner as in Example 4 with ethanol to a solid content concentration of 5% by weight and an acrylic resin 3 g (Hitaroid 1007, manufactured by Hitachi Chemical Co., Ltd.) and 47 g of a 1: 1 (weight ratio) mixed solvent of isopropanol and n-butanol were sufficiently mixed to prepare a transparent film-forming paint (R3).
Production of substrate with transparent coating (R3) In Example 1, a substrate with transparent coating (R3) was obtained in the same manner as in Example 1 except that the coating for transparent coating (R3) was used and the thickness of the transparent coating was 280 nm. It was. Table 1 shows the film thickness, total light transmittance, haze, reflectance, film refractive index, adhesion, pencil hardness, and scratch resistance of the substrate with transparent coating (R3).
[Comparative Example 4]
Preparation of paint for forming transparent film (R4) 111 g of an alcohol dispersion of silica-based hollow fine particles (B-1) prepared in the same manner as in Example 1 and diluted with ethanol to a solid concentration of 5% by weight and acrylic resin A transparent film-forming coating material (R4) was prepared by sufficiently mixing 3 g (Hitaroid 1007, manufactured by Hitachi Chemical Co., Ltd.) and 47 g of a 1/1 (weight ratio) mixed solvent of isopropanol and n-butanol.
Production of substrate with transparent film (R4) In Example 1 except that the coating material for forming a transparent film (R4) was used, a transparent film-coated substrate (R4) having a film thickness of 100 nm was obtained. . Table 1 shows the film thickness, total light transmittance, haze, reflectance, film refractive index, adhesion, pencil hardness, and scratch resistance of the substrate with transparent film (R4).
[Comparative Example 5]
Preparation of paint for forming transparent film (R4) 111 g of a dispersion of silica-based hollow fine particles (B-2) prepared in the same manner as in Example 6 and diluted with ethanol to a solid content concentration of 5% by weight and acrylic resin A transparent film-forming coating material (R5) was prepared by thoroughly mixing 3 g (Hitaroid 1007, manufactured by Hitachi Chemical Co., Ltd.) and 47 g of a 1/1 (weight ratio) mixed solvent of isopropanol and n-butanol.
Production of transparent film-coated substrate (R5) In Example 1, a transparent film-coated substrate (R5) having a transparent film thickness of 100 nm was obtained in the same manner except that the transparent film-forming paint (R5) was used. . Table 1 shows the film thickness, total light transmittance, haze, reflectance, film refractive index, adhesion, pencil hardness, and scratch resistance of the substrate with transparent film (R5).

Figure 0005757673
Figure 0005757673

本発明に係る透明被膜付基材の1態様の模式図を示す。The schematic diagram of 1 aspect of the base material with a transparent film which concerns on this invention is shown.

Claims (2)

基材上に、シリカ系中空微粒子とマトリックス成分とからなる透明被膜が形成された透
明被膜付基材であって、
前記透明被膜が、平均粒子径(DPA)が60〜200nmの範囲にあり、屈折率(NA)が1.10〜1.35の範囲にあるシリカ系中空微粒子(A)と、平均粒子径(DPB)が5〜60nmの範囲にあり、屈折率(NB)が1.15〜1.40の範囲にあるシリカ系中空微粒子(B)とを含み、シリカ系中空微粒子(A)の平均粒子径(DPA)とシリカ系中空微粒子(B)の平均粒子径(DPB)との差(DPA)―(DPB)が5〜195nmの範囲にあり、
かつ屈折率(NA)と(NB)とが、屈折率(NA)<(NB)を満足し
前記透明被膜中のシリカ系中空微粒子(A)の含有量(W PA )が20〜70重量%の範囲にあり、シリカ系中空微粒子(B)の含有量(W PB )が5〜50重量%の範囲にあり、シリカ系中空微粒子(A)とシリカ系中空微粒子(B)の合計の含有量が25〜80重量%の範囲で、(W PB )/(W PA )が0.05/10〜2/1の範囲にあって、
前記透明被膜の膜厚が70nm〜200nmの範囲にあり、屈折率が1.20〜1.50の範囲にあることを特徴とする透明被膜付基材。
A substrate with a transparent coating in which a transparent coating composed of silica-based hollow fine particles and a matrix component is formed on a substrate,
Said transparent film has an average particle diameter (D PA) is in the range of 60 to 200 nm, and the refractive index (N A) is silica-based hollow particles in the range of 1.10-1.35 (A), the average particle Silica-based hollow fine particles (A) having a diameter (D PB ) in the range of 5 to 60 nm and a refractive index (N B ) in the range of 1.15 to 1.40. The difference (D PA ) − (D PB ) between the average particle size (D PA ) and the average particle size (D PB ) of the silica-based hollow fine particles (B) is in the range of 5 to 195 nm,
And the refractive indexes (N A ) and (N B ) satisfy the refractive index (N A ) <(N B ) ,
The content (W PA ) of silica-based hollow fine particles (A) in the transparent coating is in the range of 20 to 70% by weight, and the content (W PB ) of silica-based hollow fine particles (B ) is 5 to 50% by weight. The total content of silica-based hollow fine particles (A) and silica-based hollow fine particles (B) is in the range of 25 to 80% by weight, and (W PB ) / (W PA ) is 0.05 / 10. In the range of ~ 2/1,
A substrate with a transparent coating, wherein the transparent coating has a thickness in the range of 70 nm to 200 nm and a refractive index in the range of 1.20 to 1.50 .
シリカ系中空微粒子とマトリックス形成成分と極性溶媒とからなる透明被膜形成用塗料であって、
前記透明被膜形成用塗料が、平均粒子径(DPA)が60〜200nmの範囲にあり、屈折率(NA)が1.10〜1.35の範囲にあるシリカ系中空微粒子(A)と、平均粒子径(DPB)が5〜60nmの範囲にあり、屈折率(NB)が1.15〜1.40の範囲にあるシリカ系中空微粒子(B)とを含み、シリカ系中空微粒子(A)の平均粒子径(DPA)とシリカ系中空微粒子(B)の平均粒子径(DPB)との差(DPA)−(DPB)が5〜195nmの範囲にあり、
かつ屈折率(NA)と(NB)とが、屈折率(NA)<(NB)を満足し
前記透明被膜形成用塗料中のシリカ系中空微粒子(A)の濃度が固形分として0.5〜35重量%の範囲にあり、シリカ系中空微粒子(B)の濃度が固形分として0.25〜25重量%の範囲にあり、マトリックス形成成分を含めた合計の固形分濃度が1〜50重量%の範囲にあることを特徴とする透明被膜形成用塗料。
A coating for forming a transparent film comprising silica-based hollow fine particles, a matrix-forming component, and a polar solvent,
The silica-based hollow fine particles (A) having an average particle diameter (D PA ) in the range of 60 to 200 nm and a refractive index (N A ) in the range of 1.10 to 1.35; is in the range of the average particle diameter (D PB) is 5 to 60 nm, the refractive index (N B) comprises a silica-based hollow particles (B) in the range of 1.15 to 1.40, silica-based hollow microparticles The difference (D PA ) − (D PB ) between the average particle size (D PA ) of (A) and the average particle size (D PB ) of the silica-based hollow fine particles (B) is in the range of 5 to 195 nm,
And the refractive indexes (N A ) and (N B ) satisfy the refractive index (N A ) <(N B ) ,
The concentration of the silica-based hollow fine particles (A) in the transparent film-forming coating material is in the range of 0.5 to 35% by weight as the solid content, and the concentration of the silica-based hollow fine particles (B) is 0.25 to 25% as the solid content. A paint for forming a transparent film, characterized in that it is in the range of 25% by weight and the total solid concentration including the matrix-forming components is in the range of 1 to 50% by weight .
JP2007199150A 2007-07-31 2007-07-31 Substrate with transparent film and paint for forming transparent film Active JP5757673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007199150A JP5757673B2 (en) 2007-07-31 2007-07-31 Substrate with transparent film and paint for forming transparent film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007199150A JP5757673B2 (en) 2007-07-31 2007-07-31 Substrate with transparent film and paint for forming transparent film

Publications (2)

Publication Number Publication Date
JP2009035594A JP2009035594A (en) 2009-02-19
JP5757673B2 true JP5757673B2 (en) 2015-07-29

Family

ID=40437800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007199150A Active JP5757673B2 (en) 2007-07-31 2007-07-31 Substrate with transparent film and paint for forming transparent film

Country Status (1)

Country Link
JP (1) JP5757673B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5501117B2 (en) * 2010-06-28 2014-05-21 日揮触媒化成株式会社 Substrate with transparent film and coating liquid for forming transparent film
JP5680372B2 (en) * 2010-10-29 2015-03-04 日揮触媒化成株式会社 Substrate with transparent film and coating liquid for forming transparent film
JP6268692B2 (en) * 2012-09-14 2018-01-31 大日本印刷株式会社 Optical laminate, polarizing plate, and image display device
JP6089547B2 (en) * 2012-10-03 2017-03-08 大日本印刷株式会社 Optical laminate, polarizing plate, and image display device
JP6326199B2 (en) * 2013-04-08 2018-05-16 旭化成株式会社 Optical coating film, method for producing optical coating film, and antireflection film
JP6437243B2 (en) * 2014-08-25 2018-12-12 旭化成株式会社 Optical coating film, method for producing optical coating film, and antireflection film
JP6425964B2 (en) * 2014-10-22 2018-11-21 旭化成株式会社 Optical coating film and antireflective film
CN104617228B (en) * 2014-12-29 2017-11-28 昆山国显光电有限公司 Anti-reflection film and preparation method thereof, Organnic electroluminescent device and preparation method thereof
KR102257923B1 (en) 2018-01-24 2021-05-27 주식회사 엘지화학 Anti-reflective film, polarizing plate, and display apparatus
KR102267594B1 (en) 2018-01-24 2021-06-18 주식회사 엘지화학 Anti-reflective film, polarizing plate, and display apparatus
KR102280262B1 (en) * 2018-05-18 2021-07-21 주식회사 엘지화학 Anti-reflective film, polarizing plate, and display apparatus
KR102194998B1 (en) 2018-06-26 2020-12-24 주식회사 엘지화학 Anti-reflective film, polarizing plate, and display apparatus
JP2021179452A (en) * 2018-07-31 2021-11-18 日本電産株式会社 Optical member, coating agent, hydrophilic film forming method and hydrophilic recovery method

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000281894A (en) * 1999-04-01 2000-10-10 Toray Thiokol Co Ltd Curable composition
JP4046921B2 (en) * 2000-02-24 2008-02-13 触媒化成工業株式会社 Silica-based fine particles, method for producing the fine particle dispersion, and coated substrate
JP4031624B2 (en) * 2000-06-23 2008-01-09 株式会社東芝 Substrate with transparent coating, coating liquid for forming transparent coating, and display device
JP3712230B2 (en) * 2000-11-30 2005-11-02 株式会社神戸製鋼所 Aluminum alloy clad material and manufacturing method thereof
JP2002265866A (en) * 2001-03-13 2002-09-18 Toppan Printing Co Ltd Low-refractive index coating material and antireflection film
JP2004345278A (en) * 2003-05-23 2004-12-09 Sony Corp Transparent conductive base, resistive film type touch panel and display element
JP4475016B2 (en) * 2003-06-30 2010-06-09 東レ株式会社 Hard coat film, antireflection film and image display device
JP4518237B2 (en) * 2003-08-25 2010-08-04 村田機械株式会社 Image forming apparatus
JP2005274696A (en) * 2004-03-23 2005-10-06 Konica Minolta Opto Inc Antireflective film, polarizing plate, and display device
JP2005307176A (en) * 2004-03-25 2005-11-04 Fuji Photo Film Co Ltd Fine particle dispersion, coating composition, optical film and antireflection film formed from the composition, polarizing plate and image display device using the film
JP2006257402A (en) * 2005-02-21 2006-09-28 Fuji Photo Film Co Ltd Coating composition for forming low refractive-index layer, reflection-preventing film, polarizing plate, and liquid crystal display device
JP4900890B2 (en) * 2005-02-24 2012-03-21 富士フイルム株式会社 Optical film, method for producing optical film, polarizing plate, and image display device using the same
JP5230902B2 (en) * 2005-05-16 2013-07-10 日油株式会社 Fluorine-containing curable coating liquid, fluorine-containing cured film, and anti-reflection material using fluorine-containing cured film
JP5078620B2 (en) * 2005-11-25 2012-11-21 日揮触媒化成株式会社 Hollow silica fine particles, composition for forming transparent film containing the same, and substrate with transparent film
JP2007238675A (en) * 2006-03-06 2007-09-20 Fujifilm Corp Curable composition, method for producing curable composition, optical film, antireflection film, polarizing plate and image display device
JP2008050384A (en) * 2006-08-22 2008-03-06 Nippon Zeon Co Ltd Coating composition
JP2008134394A (en) * 2006-11-28 2008-06-12 Konica Minolta Opto Inc Antireflection film, polarizing plate and display apparatus

Also Published As

Publication number Publication date
JP2009035594A (en) 2009-02-19

Similar Documents

Publication Publication Date Title
JP5757673B2 (en) Substrate with transparent film and paint for forming transparent film
JP5378771B2 (en) Base material with antireflection film and coating liquid for forming antireflection film
JP5700458B2 (en) Silica-based fine particles, coating material for coating formation and substrate with coating
JP5078620B2 (en) Hollow silica fine particles, composition for forming transparent film containing the same, and substrate with transparent film
JP5142617B2 (en) Surface treatment method for metal oxide particles, dispersion containing the surface treated metal oxide particles, coating liquid for forming a transparent film, and substrate with transparent film
JP2009066965A (en) Transparent coat applied base material, and transparent coat forming paint
JP6016548B2 (en) Coating liquid for forming transparent film and substrate with transparent film
JP5686604B2 (en) Chain silica-based hollow fine particles and production method thereof, coating liquid for forming transparent film containing the fine particles, and substrate with transparent film
JP6895760B2 (en) Method for producing silica-based particle dispersion liquid, silica-based particle dispersion liquid, coating liquid for forming a transparent film, and base material with a transparent film
JP5700903B2 (en) Base material with hard coat film and coating liquid for forming hard coat film
JP7360294B2 (en) Particles containing silica and having a cavity inside an outer shell, a method for producing the same, a coating liquid containing the particles, and a substrate with a transparent coating containing the particles
JP5480743B2 (en) Substrate with transparent film and paint for forming transparent film
JP2011136490A (en) Base with hard coated film and coating liquid for forming hard coated film
JP2011137097A (en) Coating liquid for transparent film formation, substrate with transparent film, and method for producing hydrophobic metal oxide particle
JP5642535B2 (en) Novel silica-based hollow fine particles, base material with transparent film, and paint for forming transparent film
JP5680372B2 (en) Substrate with transparent film and coating liquid for forming transparent film
JP6470695B2 (en) Coating liquid for forming transparent film and method for producing substrate with transparent film
JP4731137B2 (en) Method for producing silica-based fine particles
JP5837155B2 (en) Method for producing microring-shaped inorganic oxide particles
JP5766251B2 (en) Method for producing a coating for forming a transparent film
JP5026172B2 (en) Base material with hard coat film and coating liquid for forming hard coat film
JP5404568B2 (en) Silica-based fine particles, coating material for coating formation and substrate with coating
JP5501117B2 (en) Substrate with transparent film and coating liquid for forming transparent film
JP2022089560A (en) Modified hollow particle and method for producing the same
JP5089312B2 (en) Base material with hard coat film and coating liquid for forming hard coat film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100609

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140303

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140410

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150602

R150 Certificate of patent or registration of utility model

Ref document number: 5757673

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250