JP2009066965A - Transparent coat applied base material, and transparent coat forming paint - Google Patents

Transparent coat applied base material, and transparent coat forming paint Download PDF

Info

Publication number
JP2009066965A
JP2009066965A JP2007239090A JP2007239090A JP2009066965A JP 2009066965 A JP2009066965 A JP 2009066965A JP 2007239090 A JP2007239090 A JP 2007239090A JP 2007239090 A JP2007239090 A JP 2007239090A JP 2009066965 A JP2009066965 A JP 2009066965A
Authority
JP
Japan
Prior art keywords
silica
fine particles
weight
dispersion
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007239090A
Other languages
Japanese (ja)
Inventor
Makoto Muraguchi
良 村口
Mitsuaki Kumazawa
光章 熊澤
Masayuki Matsuda
政幸 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2007239090A priority Critical patent/JP2009066965A/en
Publication of JP2009066965A publication Critical patent/JP2009066965A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transparent coat applied base material having improved reflection preventing performance, strength and abrasion resistance, and to provide transparent coat forming paint. <P>SOLUTION: The transparent coat applied base material comprises a transparent coat consisting of silica hollow particulates and a matrix component and formed on the base material, the silica hollow particulates having (i) an average particle size (Dn) of 20-80 nm, (ii) a particle size variation coefficient (a CV value) of 1-50%, and (iii) a refraction index of 1.10-1.40. The transparent coat forming paint comprises the silica hollow particulates having the average particle size (Dn) of 20-80 nm, the particle size variation coefficient (the CV value) of 1-50%, and the refraction index of 1.10-1.40, a matrix forming component, and polar solvent. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、反射防止性能、強度、耐擦傷性等に優れた透明被膜付基材および該透明被膜の形成用塗料に関する。   The present invention relates to a substrate with a transparent coating excellent in antireflection performance, strength, scratch resistance, and the like, and a coating material for forming the transparent coating.

従来より、ガラス、プラスチックシート、プラスチックレンズ等の基材表面の反射を防止するため、その表面に反射防止膜を形成することが知られており、たとえば、コート法、蒸着法、CVD法等によって、フッ素樹脂、フッ化マグネシウムのような低屈折率の物質の被膜をガラスやプラスチックの基材表面に形成したり、シリカ微粒子等の低屈折率微粒子を含む塗布液を基材表面に塗布して、反射防止被膜を形成する方法が知られている(たとえば、特開平7-133105号公報など参照)。このとき、反射防止性能を高めるために反射防止被膜の下層に高屈折率の微粒子等を含む高屈折率膜を形成することも知られている。   Conventionally, in order to prevent reflection of the surface of a substrate such as glass, plastic sheet, plastic lens, etc., it is known to form an antireflection film on the surface, for example, by coating method, vapor deposition method, CVD method, etc. A coating of a low refractive index substance such as fluororesin or magnesium fluoride is formed on the surface of a glass or plastic substrate, or a coating liquid containing low refractive index fine particles such as silica fine particles is applied to the surface of the substrate. A method for forming an antireflection coating is known (for example, see JP-A-7-133105). At this time, in order to improve the antireflection performance, it is also known to form a high refractive index film containing fine particles of high refractive index under the antireflection coating.

本願出願人は特開2001−23611号公報(特許文献1)において、内部に空洞を有するシリカ系微粒子の製造方法および得られるシリカ系微粒子は屈折率が低く、このシリカ系微粒子を用いて形成された透明被膜は屈折率が低く反射防止性能に優れていることを開示している。   The applicant of the present invention disclosed in Japanese Patent Application Laid-Open No. 2001-23611 (Patent Document 1) is a method for producing silica-based fine particles having cavities therein and the resulting silica-based fine particles have a low refractive index and are formed using the silica-based fine particles. It is disclosed that the transparent film has a low refractive index and excellent antireflection performance.

さらに、特開2002−79616号公報(特許文献2)において、このような透明被膜を表示装置の全面に形成して用いると反射防止性能に優れ表示性能が向上することを開示している。
特開2001−23611号公報 特開2002−79616号公報
Furthermore, Japanese Patent Application Laid-Open No. 2002-79616 (Patent Document 2) discloses that when such a transparent coating is formed and used on the entire surface of a display device, the antireflection performance is excellent and the display performance is improved.
JP 2001-23611 A JP 2002-79616 A

しかしながら、特許文献1に開示のシリカ系微粒子は、粒子径分布が広く、粒子径が小さいと殻の割合が高く、内部の空洞の割合が低いために屈折率が充分低いとはいえず、他方、粒子径が大きいと殻の割合が低くなり、内部の空洞の割合が高くなるため、屈折率は低くなるが、粒子強度が低下する傾向があった。   However, the silica-based fine particles disclosed in Patent Document 1 have a wide particle size distribution, and if the particle size is small, the ratio of the shell is high, and the ratio of the internal cavities is low. When the particle size is large, the ratio of the shell is decreased and the ratio of the internal cavity is increased, so that the refractive index is decreased, but the particle strength tends to be decreased.

このため、平均粒子径が小さいシリカ系微粒子を用いた透明被膜は屈折率が十分に低くならず反射防止性能が不十分となることがあった。
他方、平均粒子径が大きいシリカ系微粒子を用いた透明被膜は屈折率が低く、反射防止性能は優れているものの、表面の平滑性が低下し、透明被膜の強度、耐擦傷性が十分でないことがあった。
For this reason, a transparent film using silica-based fine particles having a small average particle diameter may not have a sufficiently low refractive index and may have insufficient antireflection performance.
On the other hand, a transparent coating using silica-based fine particles having a large average particle size has a low refractive index and excellent antireflection performance, but the surface smoothness is lowered, and the strength and scratch resistance of the transparent coating are not sufficient. was there.

また、特許文献1および2に開示されたものでは、粒子径分布が広いために上記粒子径が小さい粒子と平均粒子径が大きな粒子との混合物であり、かならずしも、透明被膜の反射防止性能や耐擦傷性の点で満足のゆくものではなかった。   In addition, the materials disclosed in Patent Documents 1 and 2 are a mixture of particles having a small particle size and particles having a large average particle size because of a wide particle size distribution. It was not satisfactory in terms of scratch resistance.

このような情況のもと、上記問題点を解消すべく、鋭意検討した結果、シリカ系中空微粒子として、平均粒子径が特定の範囲にあるだけではなく、粒子径変動係数(CV値)の小さいものであれば、上記課題をいずれも解消し、反射防止性能に優れ、かつ膜表面が平滑で、耐擦傷性にすぐれた透明被膜付基材が得られることを見出し、本発明を完成するに至
った。
[1]基材上に、シリカ系中空微粒子とマトリックス成分とからなる透明被膜が形成された
透明被膜付基材であって、
シリカ系中空微粒子の(i)平均粒子径(Dn)が20〜80nmの範囲にあり、(ii)粒子径
変動係数(CV値)が1〜50%の範囲にあり、(iii)屈折率が1.10〜1.40の範
囲にあることを特徴とする透明被膜付基材。
[2]前記透明被膜中のシリカ系中空微粒子の含有量が20〜80重量%の範囲にある[1]の透明被膜付基材。
[3]前記透明被膜の膜厚が30nm〜300nmの範囲にあり、屈折率が1.25〜1.
50の範囲にある[1]または[2]の透明被膜付基材。
[4]平均粒子径(Dn)が20〜80nmの範囲にあり、粒子径変動係数(CV値)が1〜5
0%の範囲にあり、屈折率が1.10〜1.40の範囲にあるシリカ系中空微粒子とマトリックス形成成分と極性溶媒とからなることを特徴とする透明被膜形成用塗料。
[5]塗料中のシリカ系中空微粒子の濃度が固形分として0.1〜32重量%の範囲にあり
、マトリックス形成成分を含めた合計の固形分濃度が0.5〜40重量%の範囲にある[4]の透明被膜形成用塗料。
Under such circumstances, as a result of intensive studies to solve the above problems, silica-based hollow fine particles not only have an average particle diameter in a specific range, but also have a small particle diameter variation coefficient (CV value). In order to complete the present invention, it is found that any of the above problems can be solved, an antireflection performance is excellent, a film surface is smooth, and a substrate with a transparent film excellent in scratch resistance is obtained. It came.
[1] A substrate with a transparent coating, on which a transparent coating composed of silica-based hollow fine particles and a matrix component is formed,
The silica-based hollow fine particles (i) have an average particle diameter (Dn) in the range of 20 to 80 nm, (ii) a particle diameter variation coefficient (CV value) in the range of 1 to 50%, and (iii) a refractive index. 1. A substrate with a transparent coating, which is in the range of 1.10 to 1.40.
[2] The substrate with a transparent coating according to [1], wherein the content of the silica-based hollow fine particles in the transparent coating is in the range of 20 to 80% by weight.
[3] The film thickness of the transparent coating is in the range of 30 nm to 300 nm, and the refractive index is 1.25 to 1.
A substrate with a transparent coating according to [1] or [2] in the range of 50.
[4] The average particle diameter (Dn) is in the range of 20 to 80 nm, and the particle diameter variation coefficient (CV value) is 1 to 5
A paint for forming a transparent film, comprising a silica-based hollow fine particle having a refractive index in the range of 0% and a refractive index in the range of 1.10 to 1.40, a matrix-forming component, and a polar solvent.
[5] The concentration of the silica-based hollow fine particles in the paint is in the range of 0.1 to 32% by weight as the solid content, and the total solid content concentration including the matrix forming component is in the range of 0.5 to 40% by weight. A paint for forming a transparent film according to [4].

本発明によれば、基材と透明被膜との密着性が高く、透明被膜の上部表面は凹凸が小さく平滑になる。このため、強度、耐擦傷性に優れ、低屈折率で反射防止性能に優れた透明被膜を形成できる。   According to the present invention, the adhesion between the substrate and the transparent coating is high, and the upper surface of the transparent coating is smooth with small irregularities. For this reason, it is possible to form a transparent film having excellent strength and scratch resistance, low refractive index and excellent antireflection performance.

以下、先ず、本発明について具体的に説明する。
[透明被膜付基材]
本発明に係る透明被膜付基材は、基材上に、シリカ系中空微粒子とマトリックス成分とからなる透明被膜が形成されてなる。
Hereinafter, first, the present invention will be specifically described.
[Base material with transparent coating]
The substrate with a transparent coating according to the present invention is formed by forming a transparent coating composed of silica-based hollow fine particles and a matrix component on the substrate.

基材
基材としては、従来公知の基材を用いることができ、ガラスの他、トリアセチルセルロースフィルム(TAC)、ジアセチルセルロースフィルム、アセテートブチレートセルロースフィルム等のセルロース系基材、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート等のポリエステル系基材、ポリエチレンフィルム、ポリプロピレンフィルム、環状ポリオレフィンフィルム等のポリオレフィン系基材、ナイロン−6、ナイロン−66等のポリアミド系基材、ポリアクリル系フィルム、ポリウレタン系フィルム、ポリカーボネートフィルム、ポリエーテウフィルム、ポリエーテルサルホンフィルム、ポリスチレンフィルム、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、アクリロニトリルフィルム等の基材が挙げられる。
また、このような基材上に、ハードコート膜等他の被膜が形成された被膜付基材を用いこともできる。
As the base material , a conventionally known base material can be used. In addition to glass, cellulose base materials such as triacetyl cellulose film (TAC), diacetyl cellulose film, acetate butyrate cellulose film, polyethylene terephthalate (PET) ), Polyester base materials such as polyethylene naphthalate, polyolefin base materials such as polyethylene film, polypropylene film and cyclic polyolefin film, polyamide base materials such as nylon-6, nylon-66, polyacrylic film, polyurethane film , Polycarbonate film, polyether film, polyethersulfone film, polystyrene film, polymethylpentene film, polyetherketone film, acrylonitrile film, etc. And the like.
In addition, a coated substrate in which another coating such as a hard coat film is formed on such a substrate can also be used.

シリカ系中空微粒子
本発明に用いるシリカ系中空微粒子は平均粒子径(Dn)が20〜80nm、好ましくは30〜75nmの範囲にあるものが望ましい。該中空微粒子は殻層と中芯部からなり、殻層がシリカからなり、中芯部は液体(溶媒や珪酸水溶液など)、気体で充満されている。
Silica-based hollow fine particles Silica-based hollow fine particles used in the present invention have an average particle diameter (Dn) of 20 to 80 nm, preferably 30 to 75 nm. The hollow fine particles are composed of a shell layer and an inner core portion, the shell layer is made of silica, and the inner core portion is filled with a liquid (such as a solvent or an aqueous silicic acid solution) or a gas.

殻は一定の厚さよりも薄くできないので、平均粒子径が小さければ、粒子内部の空洞の割合が小さくなり、粒子の屈折率が高くなってしまう。このため、屈折率が充分に低い透明被膜が得られない場合がある。平均粒子径が大きすぎると、粒子が大きいために透明被膜の強度が不充分で、しかも透明被膜表面の平滑性が低下するために耐擦傷性も不充分と
なる場合がある。
Since the shell cannot be made thinner than a certain thickness, if the average particle size is small, the proportion of cavities inside the particles will be small and the refractive index of the particles will be high. For this reason, a transparent film having a sufficiently low refractive index may not be obtained. When the average particle diameter is too large, the strength of the transparent film is insufficient due to the large particles, and the smoothness of the surface of the transparent film is lowered, and the scratch resistance may be insufficient.

また、シリカ系中空微粒子の粒子径変動係数(CV値)が1〜50%、さらには2〜30%の範囲にあることが好ましい。
粒子径変動係数(CV値)が小さいものは、得ること自体困難であり、粒子径によっても異なるが、得られたとしてもシリカ系中空微粒子の粒子径が均一すぎて密に充填できないために透明被膜の強度が低下したり、屈折率が充分に低い透明被膜が得られない場合がある。粒子径変動係数(CV値)が大きすぎても、シリカ系中空微粒子の粒子径の差が大きく密に充填できないために透明被膜の強度が低下したり、屈折率が充分に低い透明被膜が得られない場合がある。
The silica-based hollow fine particles preferably have a particle diameter variation coefficient (CV value) of 1 to 50%, more preferably 2 to 30%.
Those having a small particle size variation coefficient (CV value) are difficult to obtain and vary depending on the particle size, but even if obtained, the silica-based hollow microparticles are too uniform and cannot be packed densely so that they are transparent. In some cases, the strength of the coating film decreases or a transparent coating film having a sufficiently low refractive index cannot be obtained. Even if the particle diameter variation coefficient (CV value) is too large, the difference in the particle diameter of the silica-based hollow fine particles is so large that it cannot be densely packed, so that the strength of the transparent film is reduced or a transparent film having a sufficiently low refractive index is obtained. It may not be possible.

シリカ系中空微粒子の屈折率は1.10〜1.40、さらには1.10〜1.35の範囲にあることが好ましい。シリカ系中空微粒子の屈折率をこの範囲よりも小さくすることは困難であり、シリカ系中空微粒子の屈折率がこの範囲を越えて大きくすると、実質的にシリカ微粒子と変わるところがないので得られる透明被膜の屈折率が高く、反射防止性能が不充分となる。   The refractive index of the silica-based hollow fine particles is preferably in the range of 1.10 to 1.40, more preferably 1.10 to 1.35. It is difficult to make the refractive index of the silica-based hollow fine particles smaller than this range, and when the refractive index of the silica-based hollow fine particles is larger than this range, there is substantially no change from the silica fine particles, so that a transparent coating can be obtained. Has a high refractive index, resulting in insufficient antireflection performance.

シリカ系中空微粒子の殻層の厚みは、粒子径によっても異なるが、通常1〜20nm、好ましくは2〜15nmの範囲にあることが望ましい。本発明では、平均粒子径に対する殻層の厚みの比率(厚み/平均粒子径)は0.025〜0.25にあることが望ましい。このような殻層の厚み、比率であれば、上記範囲の屈折率に調整できるとともに、粒子自体の強度も強くすることができる。   The thickness of the shell layer of the silica-based hollow fine particles varies depending on the particle diameter, but is usually in the range of 1 to 20 nm, preferably 2 to 15 nm. In the present invention, the ratio of the thickness of the shell layer to the average particle diameter (thickness / average particle diameter) is preferably 0.025 to 0.25. With such a thickness and ratio of the shell layer, the refractive index can be adjusted to the above range, and the strength of the particles themselves can be increased.

なお、中空微粒子の屈折率は、平均粒子径に対する殻層の厚みの比率(厚み/平均粒子
径)を調整することで調節することが可能であり、該比率が高くなると、屈折率も大きく
なり、該比率を小さくすると、屈折率も小さくすることができる。
The refractive index of the hollow fine particles can be adjusted by adjusting the ratio of the thickness of the shell layer to the average particle diameter (thickness / average particle diameter), and the refractive index increases as the ratio increases. If the ratio is reduced, the refractive index can be reduced.

本発明に用いるシリカ系中空微粒子の平均粒子径や殻層の厚さは、電子顕微鏡写真を撮影し、任意の100個の粒子について粒子径を測定し、その平均値として得られる。
本発明に用いるシリカ系中空微粒子の屈折率は下記の方法によって測定する。
The average particle diameter and the shell layer thickness of the silica-based hollow fine particles used in the present invention are obtained as an average value obtained by taking an electron micrograph and measuring the particle diameter of 100 arbitrary particles.
The refractive index of the silica-based hollow fine particles used in the present invention is measured by the following method.

(1)シリカ系中空微粒子の分散液をエバポレーターに採り、分散媒を蒸発させる。
(2)これを120℃で乾燥し、粉末とする。
(3)屈折率が既知の標準屈折液を2、3滴ガラス板上に滴下し、これに上記粉末を混合する。
(4)上記(3)の操作を種々の標準屈折液で行い、混合液が透明になったときの標準屈折液の屈折率をシリカ系中空微粒子の屈折率とする。
本発明に用いるシリカ系中空微粒子の粒子径変動係数(CV値)は下記式によって計算される。
(1) A dispersion of silica-based hollow fine particles is taken in an evaporator and the dispersion medium is evaporated.
(2) This is dried at 120 ° C. to obtain a powder.
(3) A standard refraction liquid having a known refractive index is dropped on a glass plate of a few drops, and the above powder is mixed therewith.
(4) The operation of (3) is performed with various standard refractive liquids, and the refractive index of the standard refractive liquid when the mixed liquid becomes transparent is set as the refractive index of the silica-based hollow fine particles.
The particle diameter variation coefficient (CV value) of the silica-based hollow fine particles used in the present invention is calculated by the following formula.

CV(%)=〔粒子径標準偏差(σ)/平均粒子径(Dn)〕×100 CV (%) = [particle diameter standard deviation (σ) / average particle diameter (D n )] × 100

Figure 2009066965
Figure 2009066965

j:個々の粒子の粒子径
透明被膜中のシリカ系中空微粒子の含有量は20〜80重量%、さらには30〜65重量%の範囲にあることが好ましい。透明被膜中のシリカ系中空微粒子の含有量が20重量%未満の場合は屈折率の充分に低い透明被膜が得られないことがあり、透明被膜中のシリカ系中空微粒子の含有量が80重量%を越えると、後述するマトリックス成分の含有量が少な過ぎるために透明被膜の強度、耐擦傷性が不充分となることがある。
D j : Particle size of individual particles The content of silica-based hollow fine particles in the transparent coating is preferably in the range of 20 to 80% by weight, more preferably 30 to 65% by weight. When the content of silica-based hollow fine particles in the transparent film is less than 20% by weight, a transparent film having a sufficiently low refractive index may not be obtained, and the content of silica-based hollow fine particles in the transparent film is 80% by weight. On the other hand, since the content of the matrix component described later is too small, the strength and scratch resistance of the transparent film may be insufficient.

シリカ系中空微粒子の製法
本発明に用いるシリカ系中空微粒子としては、平均粒子径、屈折率および粒子径変動係数が前記した範囲にあれば特に制限はないが、特開2001−23611号公報、特開2004−203683号公報等に開示したシリカ系微粒子の製造方法に準拠して得られるシリカ系中空微粒子を用いることができる。
Production Method of Silica-Based Hollow Fine Particles Silica-based hollow fine particles used in the present invention are not particularly limited as long as the average particle diameter, refractive index, and particle diameter variation coefficient are within the above-mentioned ranges. Silica-based hollow fine particles obtained in accordance with the method for producing silica-based fine particles disclosed in Japanese Unexamined Patent Application Publication No. 2004-203683 can be used.

例えば、シリカとシリカ以外の無機酸化物とからなる複合酸化物微粒子を核とし、必要に応じてシリカ被覆層(1)を形成した後、シリカ以外の無機酸化物を除去し、さらに必要
に応じてシリカ被覆層(2)を形成し、必要に応じて高温で水熱処理することによって得る
ことができるが、本発明に用いるシリカ系中空微粒子は、このとき平均粒子径が約19〜70nmの範囲にある核粒子に、シリカ被覆層(1)とシリカ被覆層(2)の合計の厚さが約1〜10nm程度になるようにシリカ被覆層を形成し、得られたシリカ系中空微粒子の粒子径変動係数が1〜50%の範囲となるように調整する。
粒子径変動係数を調整する方法としては、例えば、前記したシリカ系中空微粒子の製造方法の主要工程において、以下の(1)〜(6)の方法を組合わせることが挙げられる。
For example, a composite oxide fine particle composed of silica and an inorganic oxide other than silica is used as a core, and after forming the silica coating layer (1) as necessary, the inorganic oxide other than silica is removed, and further if necessary In this case, the silica-based hollow fine particles used in the present invention have an average particle diameter in the range of about 19 to 70 nm. The silica coating layer is formed on the core particles so that the total thickness of the silica coating layer (1) and the silica coating layer (2) is about 1 to 10 nm. The diameter variation coefficient is adjusted to be in the range of 1 to 50%.
As a method for adjusting the particle diameter variation coefficient, for example, the following methods (1) to (6) may be combined in the main steps of the method for producing silica-based hollow fine particles described above.

(1)シリカとシリカ以外の無機酸化物とからなる複合酸化物微粒子を核とする場合、核のCV値が100%以下、好ましくは50%以下の核粒子を用いる。この時の核粒子の調製は種粒子を用いたいわゆるシード法を採用することが好ましく、種粒子の粒子成長を可能な範囲でゆっくり行うことが好ましい。   (1) When a composite oxide fine particle comprising silica and an inorganic oxide other than silica is used as a nucleus, a nucleus particle having a nucleus CV value of 100% or less, preferably 50% or less is used. The so-called seed method using seed particles is preferably used for the preparation of the core particles at this time, and it is preferable that the seed particles are slowly grown as far as possible.

(2)核粒子の粒子成長を行う場合も、シリカ源、アルミナ源の添加を可能な範囲でゆっくり行うことが好ましい。この時の粒子成長速度は、核粒子の粒子径によっても異なるが、概ね0.1〜10nm/時間、さらには0.2〜5nm/時間、特に0.2〜3nm/時間の範囲にあることが好ましい。   (2) Also when carrying out the particle growth of the core particles, it is preferable to slowly add the silica source and the alumina source as much as possible. The particle growth rate at this time varies depending on the particle diameter of the core particle, but is generally in the range of 0.1 to 10 nm / hour, more preferably 0.2 to 5 nm / hour, and particularly 0.2 to 3 nm / hour. Is preferred.

(3)シリカ被覆層を形成する際もシリカ源の添加を可能な範囲でゆっくり行うことが好ましい。この時のシリカ被覆速度は、核粒子の粒子径によっても異なるが、概ね0.1〜10nm/時間、さらには0.2〜5nm/時間、特に0.2〜3nm/時間の範囲にあることが好ましい。   (3) When forming the silica coating layer, it is preferable to slowly add the silica source as much as possible. The silica coating speed at this time varies depending on the particle diameter of the core particle, but is generally in the range of 0.1 to 10 nm / hour, more preferably 0.2 to 5 nm / hour, and particularly 0.2 to 3 nm / hour. Is preferred.

(4)上記製造方法において、少なくとも粒子成長後またはシリカ被覆層形成後、熟成を行うことが好ましい(両方の時点で熟成を行っても良い)。この時の熟成は、固形分濃度が1〜30重量%、温度が30〜100℃、時間が1〜12時間の範囲で行うことが好ましい。   (4) In the above production method, aging is preferably performed at least after grain growth or after formation of the silica coating layer (maturation may be performed at both time points). The aging at this time is preferably carried out in a range of solid content concentration of 1 to 30% by weight, temperature of 30 to 100 ° C., and time of 1 to 12 hours.

(5)上記各工程において、超音波を照射するなどして凝集を防止したり、高分散化することが好ましい。具体的には、(1)〜(4)の各工程後に超音波を照射してもよく、特に(1)と(2)の工程後に超音波を照射することが望ましい。   (5) In each of the above steps, it is preferable to prevent aggregation or achieve high dispersion by irradiating ultrasonic waves. Specifically, ultrasonic waves may be irradiated after each of the steps (1) to (4), and it is particularly desirable that the ultrasonic waves be irradiated after the steps (1) and (2).

(6)分散が困難な凝集粒子、粗大粒子が存在する場合は、カプセルフィルター等でこれを除去することが好ましい。
本発明に用いるシリカ系中空微粒子は下記式(1)で表される有機珪素化合物、これらの
加水分解物で表面処理されていることが好ましい。
(6) When there are aggregated particles and coarse particles that are difficult to disperse, it is preferable to remove them with a capsule filter or the like.
The silica-based hollow fine particles used in the present invention are preferably surface-treated with an organosilicon compound represented by the following formula (1) and a hydrolyzate thereof.

n-SiX4-n (1)
(但し、式中、Rは炭素数1〜10の非置換または置換炭化水素基であって、互いに同一
であっても異なっていてもよい。X:炭素数1〜4のアルコキシ基、シラノール基、ハロゲン、水素、n:0〜3の整数)
このような式(1)で表される有機珪素化合物としてはテトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシシラン、テトラブトキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、ジフェニルジエトキシシラン、イソブチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(βメトキシエトキシ)シラン、3,3,3−トリフルオロプロピルトリメトキシシラン、メチル-3,3,3−トリフルオロプ
ロピルジメトキシシラン、β−(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシメチルトリメトキシシラン、γ-グリシドキシメチルトリエキシシラン、γ-グリシドキシエチルトリメトキシシラン、γ-グリシドキシエチルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ−(β−グリシドキシエトキシ)プロピルトリメトキシシラン、γ-(メタ)アクリロオキシメチルトリメトキシシラン、γ-(メタ)アクリロオキシメチルトリエキシシラン、γ-(メタ)アクリロオキシエチルトリメトキシシラン、γ-(メタ)アクリロオキシエチルトリエトキシシラン、γ-(メタ)アクリロオキシプロピルトリメトキシシラン、γ-(メタ)アクリロオキシプロピルトリメトキシシラン、γ-(メタ)アクリロオキシプロピルトリエトキシシラン、γ-(メタ)アクリロオキシプロピルトリエトキシシラン、ブチルトリメトキシシラン、イソブチルトリエトキシシラン、ヘキシルトリエトキシシラオクチルトリエトキシシラン、デシルトリエトキシシラン、ブチルトリエトキシシラン、イソブチルトリエトキシシラン、ヘキシルトリエトキシシラン、オクチルトリエトキシシラン、デシルトリエトキシシラン、3-ウレイドイソプロピルプロピルトリエトキシシラン、パーフルオロオクチルエチルトリメトキシシラン、パーフルオロオクチルエチルトリエトキシシラン、パーフルオロオクチルエチルトリイソプロポキシシラン、トリフルオロプロピルトリメトキシシラン、N−β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、N−β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、トリメチルシラノール、メチルトリクロロシラン等が挙げられる。
R n -SiX 4-n (1 )
(In the formula, R is an unsubstituted or substituted hydrocarbon group having 1 to 10 carbon atoms, and may be the same or different from each other. X: an alkoxy group having 1 to 4 carbon atoms or a silanol group) , Halogen, hydrogen, n: an integer of 0 to 3)
Examples of the organosilicon compound represented by the formula (1) include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, and diphenyldimethoxysilane. , Methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, diphenyldiethoxysilane, isobutyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (βmethoxyethoxy) silane, 3,3,3- Trifluoropropyltrimethoxysilane, methyl-3,3,3-trifluoropropyldimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxymethyltrimethoxy Silane, γ-glycidoxymethyltriexisilane, γ-glycidoxyethyltrimethoxysilane, γ-glycidoxyethyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltrimethoxy Silane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropyltriethoxysilane, γ- (β-glycidoxyethoxy) propyltrimethoxysilane, γ- (meth) acrylooxymethyltrimethoxysilane, γ- (meth) acrylooxymethyltriethoxysilane, γ- (meth) acrylooxyethyltrimethoxysilane, γ- (meth) acryloxyethyltriethoxysilane, γ- (meth) acryloxypropyltrimethoxy Silane, γ- (meth) acrylooxypropyltrimethoxysilane, γ- (meth) a Acryloxypropyltriethoxysilane, γ- (meth) acryloxypropyltriethoxysilane, butyltrimethoxysilane, isobutyltriethoxysilane, hexyltriethoxysilaoctyltriethoxysilane, decyltriethoxysilane, butyltriethoxysilane, isobutyl Triethoxysilane, hexyltriethoxysilane, octyltriethoxysilane, decyltriethoxysilane, 3-ureidoisopropylpropyltriethoxysilane, perfluorooctylethyltrimethoxysilane, perfluorooctylethyltriethoxysilane, perfluorooctylethyltriiso Propoxysilane, trifluoropropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane, N-β ( Minoechiru) .gamma.-aminopropyltrimethoxysilane, N- phenyl--γ- aminopropyltrimethoxysilane, .gamma.-mercaptopropyltrimethoxysilane, trimethylsilanol, methyl trichlorosilane and the like.

このような有機珪素化合物で表面処理されていると、マトリックス中に均一に分散するとともに密に充填することができ、膜の強度、耐擦傷性に優れた透明被膜を得ることができる。   When the surface treatment is performed with such an organosilicon compound, it can be uniformly dispersed in the matrix and densely filled, and a transparent film excellent in film strength and scratch resistance can be obtained.

シリカ系中空微粒子の表面処理は微粒子のアルコール分散液に前記有機珪素化合物を所定量加え、これに水を加え、必要に応じて加水分解用触媒として酸またはアルカリを加えて有機珪素化合物を加水分解する。このときのシリカ系中空微粒子と有機珪素化合物との重量比(有機珪素化合物の固形分(Rn-SiX(4-n)/2)としての重量/シリカ系中空微粒子の重量)は、シリカ系中空微粒子の平均粒子径によっても異なるが、通常0.3以下、望ましくは0.005〜0.3、さらには0.01〜0.2の範囲にあることが好ましい。 Surface treatment of silica-based hollow fine particles is performed by adding a predetermined amount of the above-mentioned organosilicon compound to an alcohol dispersion of fine particles, adding water thereto, and adding an acid or alkali as a hydrolysis catalyst as necessary to hydrolyze the organosilicon compound. To do. The weight ratio of the silica-based hollow fine particles and the organosilicon compound of this time (solid organosilicon compound component (weight of R n -SiX (4-n) / 2) as weight / silica based hollow fine particles) is silica Although it varies depending on the average particle diameter of the hollow fine particles, it is usually 0.3 or less, preferably 0.005 to 0.3, and more preferably 0.01 to 0.2.

前記重量比が少ないと、実質的に表面処理しないことと何ら変わらず、場合によっては、後述するマトリックス形成成分との親和性が低く、塗料中での分散性、安定性が不充分となり、塗料中で微粒子が凝集することがあり、緻密な透明被膜が得られないことがあり、基材との密着性、膜の強度、耐擦傷性等が不充分となることがある。   If the weight ratio is small, the surface treatment is not substantially changed. In some cases, the affinity with a matrix-forming component described later is low, and the dispersibility and stability in the paint become insufficient. In some cases, the fine particles may aggregate, a dense transparent film may not be obtained, and adhesion to the substrate, film strength, scratch resistance, etc. may be insufficient.

前記重量比が多くしすぎても、塗料中での分散性がさらに向上することもなく、シリカ系中空微粒子の屈折率が高くなり、所望の低屈折率の透明被膜が得られないことがあり、
反射防止性能が不充分となることがある。
Even if the weight ratio is too large, the dispersibility in the paint is not further improved, the refractive index of the silica-based hollow fine particles is increased, and a transparent film having a desired low refractive index may not be obtained. ,
The antireflection performance may be insufficient.

マトリックス成分
マトリックス成分としては、シリコーン系(ゾルゲル系)マトリックス成分、有機樹脂系マトリックス成分等が用いられる。
Matrix component
As the matrix component, a silicone (sol-gel) matrix component, an organic resin matrix component, or the like is used.

シリコーン系マトリックス成分としては前記式(1)で示される有機珪素化合物の加水分
解重縮合物(硬化物)が好適に用いられる。
また、有機樹脂系マトリックス成分としては、塗料用樹脂として公知の熱硬化性樹脂、熱可塑性樹脂、電子線硬化樹脂等が挙げられる。
As the silicone matrix component, a hydrolyzed polycondensate (cured product) of an organosilicon compound represented by the above formula (1) is preferably used.
Examples of the organic resin-based matrix component include known thermosetting resins, thermoplastic resins, and electron beam curable resins as coating resins.

このような樹脂として、たとえば、従来から用いられているポリエステル樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリフェニレンオキサイド樹脂、熱可塑性アクリル樹脂、塩化ビニル樹脂、フッ素樹脂、酢酸ビニル樹脂、シリコーンゴムなどの熱可塑性樹脂、ウレタン樹脂、メラミン樹脂、ケイ素樹脂、ブチラール樹脂、反応性シリコーン樹脂、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、熱硬化性アクリル樹脂、紫外線硬化型アクリル樹脂などの熱硬化性樹脂、紫外線硬化型アクリル樹脂などが挙げられる。さらにはこれら樹脂の2種以上の共重合体や変性体であってもよい。これらの樹脂は、エマルジョン樹脂、水溶性樹脂、親水性樹脂であってもよい。さらに、熱硬化性樹脂の場合、紫外線硬化型のものであっても、電子線硬化型のものであってもよく、熱硬化性樹脂の場合、硬化触媒が含まれていてもよい。なお、熱硬化性樹脂、電子線硬化性樹脂の場合、マトリックス成分は、硬化物(重合体)となっている。   Examples of such resins include conventionally used thermoplastic resins such as polyester resins, polycarbonate resins, polyamide resins, polyphenylene oxide resins, thermoplastic acrylic resins, vinyl chloride resins, fluororesins, vinyl acetate resins, and silicone rubbers. , Urethane resin, melamine resin, silicon resin, butyral resin, reactive silicone resin, phenol resin, epoxy resin, unsaturated polyester resin, thermosetting acrylic resin, UV curable acrylic resin, etc., UV curable type An acrylic resin etc. are mentioned. Further, it may be a copolymer or modified body of two or more of these resins. These resins may be emulsion resins, water-soluble resins, and hydrophilic resins. Further, in the case of a thermosetting resin, it may be an ultraviolet curable type or an electron beam curable type, and in the case of a thermosetting resin, a curing catalyst may be included. In the case of a thermosetting resin or an electron beam curable resin, the matrix component is a cured product (polymer).

透明被膜付基材の構成
透明被膜の膜厚は、特に制限されないが、通常、30nm〜300nm、好適には70〜200nmの範囲にある。膜厚がこの範囲にあると、十分な反射防止性能を有するとともに強度も高い透明皮膜を形成できる。
The film thickness of the transparent coating film is not particularly limited, but is usually in the range of 30 nm to 300 nm, preferably 70 to 200 nm. When the film thickness is within this range, a transparent film having sufficient antireflection performance and high strength can be formed.

膜厚が薄いと、フレネルの原理から外れた光学膜厚となり充分な反射防止性能が得られない場合がある。膜厚が厚すぎると、かえって、膜にクラックが生じたり膜の強度が低下することがあり、また、膜が厚すぎて反射防止性能が不充分となることがある。   If the film thickness is thin, the optical film thickness deviates from the Fresnel principle, and sufficient antireflection performance may not be obtained. If the film thickness is too thick, cracks may occur in the film or the strength of the film may decrease, and the film may be too thick and the antireflection performance may be insufficient.

また、透明被膜の屈折率は、目的に応じて適宜選択されるが、1.20〜1.50、さらには1.20〜1.46の範囲にあることが好ましい。屈折率は、シリカ系中空粒子の量およびその屈折率を調整することで調整可能である。ただし、前記範囲を越えて屈折率を高くしても、基材の屈折率あるいは必要に応じて形成される透明被膜の下層に形成される他の膜の屈折率によっては、反射防止性能が不充分となることがある。本発明の透明被膜の屈折率はエリプソメーター(ULVAC社製、EMS−1)により測定する。   The refractive index of the transparent film is appropriately selected according to the purpose, but is preferably in the range of 1.20 to 1.50, more preferably 1.20 to 1.46. The refractive index can be adjusted by adjusting the amount of silica-based hollow particles and the refractive index. However, even if the refractive index is increased beyond the above range, the antireflection performance is not good depending on the refractive index of the substrate or the refractive index of other films formed below the transparent coating formed as necessary. May be sufficient. The refractive index of the transparent film of the present invention is measured with an ellipsometer (manufactured by ULVAC, EMS-1).

このような透明被膜付基材の形成方法としては、特に制限されるものではないが、具体的には、後述する本発明に係る透明被膜形成用塗料を周知の方法で基材に塗布し、乾燥し、紫外線照射、加熱処理等常法によって硬化させることによって形成することができる。 The method for forming such a substrate with a transparent film is not particularly limited, and specifically, a transparent film-forming paint according to the present invention described later is applied to the substrate by a known method, It can be formed by drying and curing by an ordinary method such as ultraviolet irradiation or heat treatment.

[透明被膜形成用塗料]
本発明に係る透明被膜形成用塗料は、前記シリカ系中空微粒子とマトリックス形成成分と極性溶媒とからなることを特徴としている。
[Transparent coating paint]
The transparent film-forming paint according to the present invention is characterized by comprising the silica-based hollow fine particles, a matrix-forming component, and a polar solvent.

シリカ系中空微粒子
本発明に用いるシリカ系中空微粒子としては前記したと同様のシリカ系中空微粒子が用いられる。透明被膜形成用塗料中のシリカ系中空微粒子の濃度は、塗料の流動性を損なわ
ない範囲であれば特に制限されないが、固形分として0.1〜32重量%、さらには0.5〜25重量%の範囲にあることが好ましい。
Silica-based hollow fine particles As the silica-based hollow fine particles used in the present invention, the same silica-based hollow fine particles as described above are used. The concentration of the silica-based hollow fine particles in the coating for forming a transparent film is not particularly limited as long as the fluidity of the coating is not impaired, but is 0.1 to 32% by weight, more preferably 0.5 to 25% by weight as a solid content. % Is preferable.

透明被膜形成用塗料中のシリカ系中空微粒子の濃度が低すぎると、比率にもよるが、透明被膜中のシリカ系中空微粒子の含有量が少なく、屈折率の充分に低い透明被膜が得られないことがあったり、また、複数回塗布乾燥処理が必要となることがあったりする。透明被膜形成用塗料中のシリカ系中空微粒子の濃度が多すぎると、後述するマトリックス形成成分の含有量が少なくなるために透明被膜の強度が不充分となることがある。   If the concentration of silica-based hollow fine particles in the coating for forming a transparent film is too low, depending on the ratio, the content of silica-based hollow fine particles in the transparent film is small, and a transparent film having a sufficiently low refractive index cannot be obtained. In some cases, it may be necessary to apply and dry multiple times. If the concentration of the silica-based hollow fine particles in the coating for forming a transparent film is too high, the content of the matrix-forming component described later decreases and the strength of the transparent film may be insufficient.

マトリックス形成成分
マトリックス形成成分としては、シリコーン系(ゾルゲル系)マトリックス形成成分、有機樹脂系マトリックス形成成分等が用いられる。シリコーン系マトリックス形成成分としては前記式(1)と同様の有機珪素化合物、これらの加水分解物、加水分解重縮合物(硬
化前のもの)が好適に用いられる。
Matrix forming component
As the matrix forming component, a silicone (sol-gel) matrix forming component, an organic resin matrix forming component, or the like is used. As the silicone-based matrix-forming component, the same organosilicon compounds as in the above formula (1), their hydrolysates, and hydrolyzed polycondensates (before curing) are preferably used.

また、有機樹脂系マトリックス形成成分としては、塗料用樹脂として公知の熱硬化性樹脂、熱可塑性樹脂、電子線硬化樹脂等が挙げられる。具体的には、前記したマトリックス成分で例示した通りである。なお、熱硬化性樹脂の場合、硬化触媒や光増感剤などが含まれていてもよく、このような樹脂の場合、通常樹脂の前駆体(すなわちモノマーやオリゴマー、プレポリマー)が使用される。 Examples of the organic resin matrix forming component include known thermosetting resins, thermoplastic resins, electron beam curable resins, and the like as coating resins. Specifically, it is as exemplified in the matrix component described above. In the case of a thermosetting resin, a curing catalyst, a photosensitizer, or the like may be included. In the case of such a resin, a resin precursor (that is, a monomer, oligomer, or prepolymer) is usually used. .

マトリックス形成成分は、シリカ系中空微粒子とマトリックス形成成分合計を100重量%としたときに、マトリックス形成成分が、20〜80重量%、さらには35〜70重量%の範囲にあることが好ましい。   The matrix-forming component is preferably in the range of 20 to 80% by weight, more preferably 35 to 70% by weight when the total amount of the silica-based hollow fine particles and the matrix-forming component is 100% by weight.

極性溶媒
本発明に用いる極性溶媒としてはマトリックス形成成分、必要に応じて用いる重合開始剤を溶解あるいは分散できるとともにシリカ系中空微粒子を均一に分散することができれば特に制限はなく、従来公知の溶媒を用いることができる。
Polar solvent The polar solvent used in the present invention is not particularly limited as long as it can dissolve or disperse the matrix-forming component, and the polymerization initiator used as necessary, and can uniformly disperse the silica-based hollow fine particles. Can be used.

具体的には、水、メタノール、エタノール、プロパノール、2-プロパノール(IPA)、ブタノール、ジアセトンアルコール、フルフリルアルコール、テトラヒドロフルフリルアルコール、エチレングリコール、ヘキシレングリコール、イソプロピルグリコールなどのアルコール類;酢酸メチルエステル、酢酸エチルエステル、酢酸ブチルなどのエステル類;ジエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテルなどのエーテル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン、アセト酢酸エステルなどのケトン類、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、トルエン、シクロヘキサノン、イソホロン等が挙げられる。   Specifically, alcohols such as water, methanol, ethanol, propanol, 2-propanol (IPA), butanol, diacetone alcohol, furfuryl alcohol, tetrahydrofurfuryl alcohol, ethylene glycol, hexylene glycol, isopropyl glycol; acetic acid Esters such as methyl ester, ethyl acetate, butyl acetate; ethers such as diethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol monomethyl ether Acetone, methyl ethyl ketone, methyl isobutyl ketone, acetylacetone, acetate Ketones such as acetate, methyl cellosolve, ethylcellosolve, butyl cellosolve, toluene, cyclohexanone, isophorone and the like.

なかでも、メタノール、エタノール、プロパノール、2-プロパノール(IPA)等のアルコール類は表面処理したシリカ系中空微粒子を均一に分散することができ、カルボニル基を有する溶媒は表面処理したシリカ系中空微粒子を均一に分散することができるとともに塗料の安定性がよく、均一性、基材との密着性、強度等に優れた透明被膜を再現性よく形成することができるので好適に用いることができる。   Among them, alcohols such as methanol, ethanol, propanol and 2-propanol (IPA) can uniformly disperse the surface-treated silica-based hollow fine particles, and the solvent having a carbonyl group can be obtained by treating the surface-treated silica-based hollow fine particles. Since it can disperse | distribute uniformly and the stability of a coating material is good and can form the transparent film excellent in uniformity, adhesiveness with a base material, intensity | strength, etc. with reproducibility, it can use it conveniently.

透明被膜形成用塗料中のシリカ系中空微粒子およびマトリックス形成成分を含めた合計の固形分濃度が0.5〜40重量%、さらには1〜30重量%の範囲にあることが好まし
い。
The total solid concentration including the silica-based hollow fine particles and the matrix-forming component in the coating for forming a transparent film is preferably in the range of 0.5 to 40% by weight, more preferably 1 to 30% by weight.

固形分濃度が少ないと、透明被膜の膜厚が薄くなってしまい、充分な反射防止性能が得られないことがある。固形分濃度が高すぎると、塗料の粘度が高くなり、塗料の安定性が低下したり、塗布性が低下し、得られる透明被膜の均一性、基材との密着性、強度等が不充分となることがある。   If the solid content concentration is low, the film thickness of the transparent coating becomes thin, and sufficient antireflection performance may not be obtained. If the solid content concentration is too high, the viscosity of the paint will increase and the stability of the paint will decrease or the applicability will decrease, resulting in insufficient uniformity of the transparent film, adhesion to the substrate, strength, etc. It may become.

本発明に係る透明被膜形成用塗料を用いて透明被膜を形成する方法として従来公知の方法を採用することができる。
具体的には、透明被膜形成用塗料をディップ法、スプレー法、スピナー法、ロールコート法、バーコート法、スリットコーター印刷法、グラビア印刷法、マイクログラビア印刷法等の周知の方法で基材に塗布し、乾燥し、紫外線照射、加熱処理等常法によって硬化させることによって透明被膜を形成することができるが、本発明ではロールコート法、スリットコーター印刷法、グラビア印刷法、マイクログラビア印刷法が推奨される。
A conventionally well-known method can be employ | adopted as a method of forming a transparent film using the coating material for transparent film formation which concerns on this invention.
Specifically, the transparent film-forming paint is applied to the substrate by a known method such as dipping, spraying, spinner, roll coating, bar coating, slit coater printing, gravure printing, or micro gravure printing. A transparent film can be formed by applying, drying, and curing by conventional methods such as ultraviolet irradiation, heat treatment, etc.In the present invention, roll coating, slit coater printing, gravure printing, and micro gravure printing are used. Recommended.

[実施例]
以下、本発明を実施例により説明するが、本発明はこれら実施例に限定されるものではない。
[Example]
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these Examples.

[実施例1]
シリカ系中空微粒子(P-1)の調製
シリカ・アルミナゾル(触媒化成工業(株)製:USBB−120、平均粒子径25nm、CV値25%、SiO2・Al23濃度20重量%、固形分中Al23含有量27重量
%)100gに純水3900gを加えて98℃に加温し、この温度を保持しながら、SiO2として濃度1.5重量%の珪酸ナトリウム水溶液730gとAl23としての濃度0.5重量%のアルミン酸ナトリウム水溶液730gを5時間で添加して、SiO2・Al23一次粒子分散液を得た。このときの反応液のpHは12.0であった。また、平均粒子径は30nmであった。
ついで、SiO2として濃度1.5重量%の珪酸ナトリウム水溶液7,530gとAl23としての濃度0.5重量%のアルミン酸ナトリウム水溶液2,510gを5時間で添加して複合酸化物微粒子(1)(二次粒子)の分散液を得た。このとき、反応液のpHは12.2であった。
[Example 1]
Preparation of silica -based hollow fine particles (P-1) Silica-alumina sol (manufactured by Catalyst Kasei Kogyo Co., Ltd .: USBB-120, average particle size 25 nm, CV value 25%, SiO 2 · Al 2 O 3 concentration 20% by weight, solid 3900 g of pure water was added to 100 g of Al 2 O 3 content (27% by weight) and heated to 98 ° C. While maintaining this temperature, 730 g of an aqueous sodium silicate solution having a concentration of 1.5% by weight as SiO 2 and Al were added. 730 g of a sodium aluminate aqueous solution having a concentration of 0.5% by weight as 2 O 3 was added in 5 hours to obtain a SiO 2 .Al 2 O 3 primary particle dispersion. The pH of the reaction solution at this time was 12.0. Moreover, the average particle diameter was 30 nm.
Subsequently, 7,530 g of a sodium silicate aqueous solution having a concentration of 1.5% by weight as SiO 2 and 2,510 g of a sodium aluminate solution having a concentration of 0.5% by weight as Al 2 O 3 were added over 5 hours to form composite oxide fine particles. (1) A dispersion of (secondary particles) was obtained. At this time, the pH of the reaction solution was 12.2.

ついで、限外濾過膜で洗浄して固形分濃度13重量%にした後、目開き1μmのカプセルフィルターで濾過し複合酸化物微粒子(1) 分散液を得た。このとき、平均粒子径は50nm、CV値=29%であった。   Subsequently, after washing with an ultrafiltration membrane to a solid content concentration of 13% by weight, the mixture was filtered through a capsule filter having an opening of 1 μm to obtain a composite oxide fine particle (1) dispersion. At this time, the average particle size was 50 nm and the CV value was 29%.

この複合酸化物微粒子(1)の分散液500gに純水1,125gを加え、さらに濃塩酸(濃度35.5重量%)を滴下してpH1.0とし、脱アルミニウム処理を行った。次いで、pH3の塩酸水溶液10Lと純水5Lを加えながら限外濾過膜で溶解したアルミニウム塩を分離・洗浄して固形分濃度20重量%のシリカ系微粒子(P-1-1)の水分散液を得た。   To 500 g of the dispersion of composite oxide fine particles (1), 1,125 g of pure water was added, and concentrated hydrochloric acid (concentration 35.5 wt%) was added dropwise to adjust the pH to 1.0, followed by dealumination. Next, an aqueous dispersion of silica-based fine particles (P-1-1) having a solid concentration of 20% by weight by separating and washing the aluminum salt dissolved in the ultrafiltration membrane while adding 10 L of hydrochloric acid aqueous solution of pH 3 and 5 L of pure water. Got.

ついで、シリカ系微粒子(P-1-1)の水分散液150gと、純水500g、エタノール1
,750gおよび濃度28重量%のアンモニア水626gとの混合液を35℃に加温した後、エチルシリケート(SiO濃度28重量%)140gを5時間で添加してシリカ被
覆層を形成し、純水5Lを加えながら限外濾過膜で洗浄して固形分濃度20重量%のシリカ被覆層を形成したシリカ系微粒子(P-1-1)の水分散液を得た。
Next, 150 g of an aqueous dispersion of silica-based fine particles (P-1-1), 500 g of pure water, ethanol 1
, 750 g and a mixture of 626 g of ammonia water having a concentration of 28% by weight were heated to 35 ° C., and then 140 g of ethyl silicate (SiO 2 concentration of 28% by weight) was added in 5 hours to form a silica coating layer. An aqueous dispersion of silica-based fine particles (P-1-1) in which a silica coating layer having a solid concentration of 20% by weight was formed by washing with an ultrafiltration membrane while adding 5 L of water was obtained.

つぎに、シリカ被覆層を形成したシリカ系微粒子(P-1-1)分散液にアンモニア水を添加
して分散液のpHを10.5に調整し、ついで200℃にて11時間熟成した後、常温に
冷却し、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)400gを用いて3時間イオン交換し、ついで、陰イオン交換樹脂(三菱化学(株)製:ダイヤイオンSA20A)200gを用いて3時間イオン交換し、さらに陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、固形分濃度20重量%のシリカ系微粒子(P-1-2)の水分散液を得た。
Next, ammonia water was added to the silica-based fine particle (P-1-1) dispersion having a silica coating layer to adjust the pH of the dispersion to 10.5, and then aged at 200 ° C. for 11 hours. After cooling to room temperature, ion exchange was performed for 3 hours using 400 g of cation exchange resin (Mitsubishi Chemical Corporation: Diaion SK1B), and then anion exchange resin (Mitsubishi Chemical Corporation: Diaion SA20A). Using 200 g for ion exchange for 3 hours, and using 200 g of a cation exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion SK1B) for ion exchange at 80 ° C. for 3 hours for washing, solid content concentration 20% by weight An aqueous dispersion of silica-based fine particles (P-1-2) was obtained.

ついで、再び、シリカ系微粒子(P-1-2)分散液を150℃にて11時間水熱処理した後
、常温に冷却し、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)400gを用いて3時間イオン交換し、ついで、陰イオン交換樹脂(三菱化学(株)製:ダイヤイオンSA20A)200gを用いて3時間イオン交換し、さらに陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、固形分濃度20重量%のシリカ系微粒子(P-1-3)の水分散液を得た。
Next, again, the silica-based fine particle (P-1-2) dispersion was hydrothermally treated at 150 ° C. for 11 hours, cooled to room temperature, and 400 g of a cation exchange resin (manufactured by Mitsubishi Chemical Corporation: Diaion SK1B). Ion exchange for 3 hours, followed by ion exchange for 3 hours using 200 g of anion exchange resin (Mitsubishi Chemical Corporation: Diaion SA20A), and further cation exchange resin (Mitsubishi Chemical Corporation: 200 g of Diaion SK1B) was used for ion exchange at 80 ° C. for 3 hours for washing to obtain an aqueous dispersion of silica-based fine particles (P-1-3) having a solid concentration of 20% by weight.

ついで限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20重量%のシリカ系微粒子(P-1)のアルコール分散液を調製した。
固形分濃度20重量%のシリカ系微粒子(P-1)のアルコール分散液100gにメタク
リルシランカップリング剤(信越化学(株)製:KBM-503)3gを添加し、50℃で加熱
処理を行い、再び限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20重量%のシリカ系中空微粒子(P-1)のアルコール分散液を調製した。
このシリカ系中空微粒子(P-1)の平均粒子径、CV値および屈折率を表1に示す。
Next, an alcohol dispersion of silica-based fine particles (P-1) having a solid content concentration of 20% by weight was prepared by replacing the solvent with ethanol using an ultrafiltration membrane.
3 g of methacryl silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503) is added to 100 g of an alcohol dispersion of silica-based fine particles (P-1) having a solid content concentration of 20% by weight, and heat treatment is performed at 50 ° C. Then, an alcohol dispersion of silica-based hollow fine particles (P-1) having a solid content concentration of 20% by weight was prepared by replacing the solvent with ethanol again using an ultrafiltration membrane.
Table 1 shows the average particle diameter, CV value, and refractive index of the silica-based hollow fine particles (P-1).

透明被膜形成用塗料(1)の製造
シリカ系中空微粒子(P-1)のアルコール分散液をエタノールで固形分濃度5重量%に
希釈した分散液50gと、アクリル樹脂(ヒタロイド1007、日立化成(株)製)3gおよびイソプロパノールとn−ブタノールの1/1(重量比)混合溶媒47gとを充分に混合して透明被膜形成用塗料(1)を調製した。
Manufacture of coating material for forming transparent film (1) Silica-based hollow fine particles (P-1) in an alcohol dispersion diluted with ethanol to a solid content concentration of 5% by weight and acrylic resin (Hitaroid 1007, Hitachi Chemical Co., Ltd.) 3) and 47 g of a 1/1 (weight ratio) mixed solvent of isopropanol and n-butanol were thoroughly mixed to prepare a transparent film-forming paint (1).

透明被膜付基材(1)の製造
透明被膜形成用塗料(1)をPETフィルムにバーコーター法で塗布し、80℃で、1分
間乾燥させて、透明被膜の膜厚が約100nmの透明被膜付基材(1)を得た。この透明
被膜付基材(1)の全光線透過率、ヘイズ、波長550nmの光線の反射率、被膜の屈折
率、密着性および鉛筆硬度、耐擦り傷性を表2に示す。全光線透過率およびヘイズは、ヘーズメーター(スガ試験機(株)製)により、反射率は分光光度計(日本分光社、Ubest-55)により夫々測定した。また、被膜の屈折率は、エリプソメーター(ULVAC社製、EMS−1)により測定した。なお、未塗布のPETフィルムは全光線透過率が90.7%、ヘイズが2. 0%、波長550nmの光線の反射率が7. 0%であった。
Production of substrate with transparent film (1) Transparent film-forming paint (1) is applied to a PET film by a bar coater method and dried at 80 ° C. for 1 minute to form a transparent film having a transparent film thickness of about 100 nm. A base material (1) was obtained. Table 2 shows the total light transmittance, haze, reflectance of light having a wavelength of 550 nm, refractive index of the coating, adhesion, pencil hardness, and scratch resistance of the substrate with transparent coating (1). The total light transmittance and haze were measured with a haze meter (manufactured by Suga Test Instruments Co., Ltd.), and the reflectance was measured with a spectrophotometer (JASCO Corporation, Ubest-55). Moreover, the refractive index of the film was measured with an ellipsometer (manufactured by ULVAC, EMS-1). The uncoated PET film had a total light transmittance of 90.7%, a haze of 2.0%, and a reflectance of light having a wavelength of 550 nm of 7.0%.

鉛筆硬度
鉛筆硬度は、JIS K 5400に準じて、鉛筆硬度試験器で測定した。即ち、透明被膜表面に対して45度の角度に鉛筆をセットし、所定の加重を負荷して一定速度で引っ張り、傷の有無を観察した。
Pencil hardness Pencil hardness was measured with a pencil hardness tester in accordance with JIS K 5400. That is, a pencil was set at an angle of 45 degrees with respect to the transparent coating surface, and a predetermined load was applied and pulled at a constant speed, and the presence or absence of scratches was observed.

密着性
透明被膜付基材(A-1)の表面にナイフで縦横1mmの間隔で11本の平行な傷を付け100個の升目を作り、これにセロファンテープを接着し、次いで、セロファンテープを剥離したときに被膜が剥離せず残存している升目の数を、以下の3段階に分類することによって密着性を評価した。結果を表に示す。
残存升目の数90個以上 :◎
残存升目の数85〜89個 :○
残存升目の数84個以下 :△
Adhesive transparent film-coated substrate (A-1) on the surface of the substrate (A-1) with 11 parallel scratches at intervals of 1 mm in length and width to make 100 squares, cellophane tape is adhered to this, then cellophane tape is attached Adhesion was evaluated by classifying the number of cells remaining without peeling off when the film was peeled into the following three stages. The results are shown in the table.
Number of remaining squares more than 90: ◎
Number of remaining squares: 85-89: ○
Number of remaining squares: 84 or less: △

耐擦傷性の測定
#0000スチールウールを用い、荷重500g/cm2で50回摺動し、膜の表面を
目視観察し、以下の基準で評価し、結果を表1に示した。
Measurement of Scratch Resistance Using # 0000 steel wool, sliding 50 times at a load of 500 g / cm 2 , visually observing the surface of the film and evaluating according to the following criteria, the results are shown in Table 1.

評価基準:
筋条の傷が認められない :◎
筋条の傷が僅かに認められる :○
筋条の傷が多数認められる :△
面が全体的に削られている :×
Evaluation criteria:
No streak injury is found: ◎
Slight flaws are observed: ○
Many streak wounds are found: △
The surface has been cut entirely: ×

[実施例2]
シリカ系中空微粒子(P-2)の調製
シリカ・アルミナゾル(触媒化成工業(株)製:USBB−120、平均粒子径25nm、CV値:25%、SiO2・Al23濃度20重量%、固形分中Al23含有量27重
量%)100gに純水3900gを加えて98℃に加温し、この温度を保持しながら、SiO2として濃度1.5重量%の珪酸ナトリウム水溶液730gとAl23としての濃度0.5重量%のアルミン酸ナトリウム水溶液730gを2時間で添加して、SiO2・Al23一次粒子分散液を得た。このときの反応液のpHは12.0であった。また、平均粒子径は31nmであった。
ついで、SiO2として濃度1.5重量%の珪酸ナトリウム水溶液7,530gとAl23としての濃度0.5重量%のアルミン酸ナトリウム水溶液2,510gを2時間で添加して複合酸化物微粒子(2)(二次粒子)の分散液を得た。このとき、反応液のpHは12.2であった。
[Example 2]
Preparation of silica -based hollow fine particles (P-2) Silica-alumina sol (manufactured by Catalyst Kasei Kogyo Co., Ltd .: USBB-120, average particle size 25 nm, CV value: 25%, SiO 2 · Al 2 O 3 concentration 20% by weight, 3900 g of pure water was added to 100 g of Al 2 O 3 content (solid content 27 wt%) and heated to 98 ° C., and while maintaining this temperature, 730 g of a sodium silicate aqueous solution having a concentration of 1.5 wt% as SiO 2 730 g of a sodium aluminate aqueous solution having a concentration of 0.5% by weight as Al 2 O 3 was added in 2 hours to obtain a SiO 2 · Al 2 O 3 primary particle dispersion. The pH of the reaction solution at this time was 12.0. Moreover, the average particle diameter was 31 nm.
Next, 7,530 g of a sodium silicate aqueous solution having a concentration of 1.5% by weight as SiO 2 and 2,510 g of a sodium aluminate solution having a concentration of 0.5% by weight as Al 2 O 3 were added in 2 hours to form composite oxide fine particles. (2) A dispersion of (secondary particles) was obtained. At this time, the pH of the reaction solution was 12.2.

ついで、限外濾過膜で洗浄して固形分濃度13重量%にした後、目開き1μmのカプセルフィルターで濾過し複合酸化物微粒子(2)分散液を得た。このとき、平均粒子径53n
m、CV値=45%であった。
Subsequently, after washing with an ultrafiltration membrane to a solid content concentration of 13% by weight, the mixture was filtered through a capsule filter having an opening of 1 μm to obtain a composite oxide fine particle (2) dispersion. At this time, the average particle size 53n
m, CV value = 45%.

この複合酸化物微粒子(2)分散液500gに純水1,125gを加え、さらに濃塩酸(濃度35.5重量%)を滴下してpH1.0とし、脱アルミニウム処理を行った。次いで、pH3の塩酸水溶液10Lと純水5Lを加えながら限外濾過膜で溶解したアルミニウム塩を分離・洗浄して固形分濃度20重量%のシリカ系微粒子(P-2-1)の水分散液を得た。   To 500 g of the composite oxide fine particle (2) dispersion, 1,125 g of pure water was added, and concentrated hydrochloric acid (concentration 35.5 wt%) was added dropwise to adjust the pH to 1.0, followed by dealumination. Next, an aqueous dispersion of silica-based fine particles (P-2-1) having a solid content of 20% by weight by separating and washing the aluminum salt dissolved in the ultrafiltration membrane while adding 10 L of hydrochloric acid aqueous solution of pH 3 and 5 L of pure water. Got.

ついで、シリカ系微粒子(P-2-1)の水分散液150gと、純水500g、エタノール1
,750gおよび濃度28重量%のアンモニア水626gとの混合液を35℃に加温した後、エチルシリケート(SiO濃度28重量%)140gを5時間で添加してシリカ被
覆層を形成し、純水5Lを加えながら限外濾過膜で洗浄して固形分濃度20重量%のシリカ被覆層を形成したシリカ系微粒子(P-2-1)の水分散液を得た。
Next, 150 g of an aqueous dispersion of silica-based fine particles (P-2-1), 500 g of pure water, ethanol 1
, 750 g and a mixture of 626 g of ammonia water having a concentration of 28% by weight were heated to 35 ° C., and then 140 g of ethyl silicate (SiO 2 concentration of 28% by weight) was added in 5 hours to form a silica coating layer. An aqueous dispersion of silica-based fine particles (P-2-1) in which a silica coating layer having a solid content concentration of 20% by weight was formed by washing with an ultrafiltration membrane while adding 5 L of water was obtained.

つぎに、シリカ被覆層を形成したシリカ系微粒子(P-2-1)分散液にアンモニア水を添加
して分散液のpHを10.5に調整し、ついで200℃にて11時間熟成した後、常温に冷却し、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)400gを用いて3時間イオン交換し、ついで、陰イオン交換樹脂(三菱化学(株)製:ダイヤイオンSA20A)200gを用いて3時間イオン交換し、さらに陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、固形分濃度20重量%のシリカ系微粒子(P-2-2)の水分散液を得た。
Next, ammonia water is added to the silica-based fine particle (P-2-1) dispersion having a silica coating layer to adjust the pH of the dispersion to 10.5, and then aged at 200 ° C. for 11 hours. After cooling to room temperature, ion exchange was performed for 3 hours using 400 g of cation exchange resin (Mitsubishi Chemical Corporation: Diaion SK1B), and then anion exchange resin (Mitsubishi Chemical Corporation: Diaion SA20A). Using 200 g for ion exchange for 3 hours, and using 200 g of a cation exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion SK1B) for ion exchange at 80 ° C. for 3 hours for washing, solid content concentration 20% by weight An aqueous dispersion of silica-based fine particles (P-2-2) was obtained.

ついで、再び、シリカ系微粒子(P-2-2)分散液を150℃にて11時間水熱処理した後
、常温に冷却し、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)400
gを用いて3時間イオン交換し、ついで、陰イオン交換樹脂(三菱化学(株)製:ダイヤイオンSA20A)200gを用いて3時間イオン交換し、さらに陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、固形分濃度20重量%のシリカ系微粒子(P-2-3)の水分散液を得た。
Next, again, the silica-based fine particle (P-2-2) dispersion was hydrothermally treated at 150 ° C. for 11 hours, then cooled to room temperature, and a cation exchange resin (manufactured by Mitsubishi Chemical Corporation: Diaion SK1B) 400
ion exchange for 3 hours using g, followed by ion exchange for 3 hours using 200 g of anion exchange resin (Mitsubishi Chemical Corporation: Diaion SA20A), and further cation exchange resin (Mitsubishi Chemical Corporation) : Dia ion SK1B) 200 g was used for ion exchange at 80 ° C. for 3 hours for washing to obtain an aqueous dispersion of silica-based fine particles (P-2-3) having a solid content concentration of 20% by weight.

ついで限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20重量%のシリカ系微粒子(P-2)のアルコール分散液を調製した。
固形分濃度20重量%のシリカ系微粒子(P-1)のアルコール分散液100gにメタク
リルシランカップリング剤(信越化学(株)製:KBM-503)3gを添加し、50℃で加熱
処理を行い、再び限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20重量%のシリカ系中空微粒子(P-2)のアルコール分散液を調製した。
このシリカ系中空微粒子(P-2)の平均粒子径、CV値および屈折率を表1に示す。
Next, an alcohol dispersion of silica-based fine particles (P-2) having a solid concentration of 20% by weight was prepared by replacing the solvent with ethanol using an ultrafiltration membrane.
3 g of methacryl silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503) is added to 100 g of an alcohol dispersion of silica-based fine particles (P-1) having a solid content concentration of 20% by weight, and heat treatment is performed at 50 ° C. Then, an alcohol dispersion of silica-based hollow fine particles (P-2) having a solid content concentration of 20% by weight was prepared by replacing the solvent with ethanol again using an ultrafiltration membrane.
Table 1 shows the average particle diameter, CV value, and refractive index of the silica-based hollow fine particles (P-2).

透明被膜形成用塗料(2)の製造
実施例1において、シリカ系中空微粒子(P-2)のアルコール分散液をエタノールで固
形分濃度5重量%に希釈した分散液50gを用いた以外は同様にして透明被膜形成用塗料(2)を調製した。
Production of transparent film-forming paint (2) In Example 1, except that 50 g of a silica-based hollow fine particle (P-2) alcohol dispersion was diluted with ethanol to a solid content concentration of 5% by weight was used. Thus, a transparent film-forming paint (2) was prepared.

透明被膜付基材(2)の製造
実施例1において、透明被膜形成用塗料(2)を用いた以外は同様にして透明被膜の膜厚
が約100nmの透明被膜付基材(2)を得た。この透明被膜付基材(2)の全光線透過率、ヘイズ、反射率、屈折率、密着性、鉛筆硬度および耐擦傷性を表1に示す。
Production of transparent film-coated substrate (2) In Example 1, except that the transparent film-forming paint (2) was used, a transparent film-coated substrate (2) having a film thickness of about 100 nm was obtained. It was. Table 1 shows the total light transmittance, haze, reflectance, refractive index, adhesion, pencil hardness and scratch resistance of the substrate (2) with a transparent coating.

[実施例3]
シリカ系中空微粒子(P-3)の調製
シリカ・アルミナゾル(触媒化成工業(株)製:USBB−120、平均粒子径25nm、CV値:25%、SiO2・Al23濃度20重量%、固形分中Al23含有量27重
量%)100gに純水3900gを加えて98℃に加温し、この温度を保持しながら、SiO2として濃度1.5重量%の珪酸ナトリウム水溶液730gとAl23としての濃度0.5重量%のアルミン酸ナトリウム水溶液730gを10時間で添加して、SiO2・Al23一次粒子分散液を得た。このときの反応液のpHは12.0であった。また、平均粒子径は31nmであった。
ついで、SiO2として濃度1.5重量%の珪酸ナトリウム水溶液7,530gとAl23としての濃度0.5重量%のアルミン酸ナトリウム水溶液2,510gを10時間で添加して複合酸化物微粒子(3)(二次粒子)の分散液を得た。このとき、反応液のpHは12.2であった。
[Example 3]
Preparation of silica -based hollow fine particles (P-3) Silica-alumina sol (Catalyst Chemical Industries, Ltd .: USBB-120, average particle size 25 nm, CV value: 25%, SiO 2 · Al 2 O 3 concentration 20% by weight, 3900 g of pure water was added to 100 g of Al 2 O 3 content (solid content 27 wt%) and heated to 98 ° C., and while maintaining this temperature, 730 g of a sodium silicate aqueous solution having a concentration of 1.5 wt% as SiO 2 730 g of a sodium aluminate aqueous solution having a concentration of 0.5% by weight as Al 2 O 3 was added in 10 hours to obtain a SiO 2 · Al 2 O 3 primary particle dispersion. The pH of the reaction solution at this time was 12.0. Moreover, the average particle diameter was 31 nm.
Next, 7,530 g of a sodium silicate aqueous solution having a concentration of 1.5% by weight as SiO 2 and 2,510 g of a sodium aluminate solution having a concentration of 0.5% by weight as Al 2 O 3 were added over 10 hours to form composite oxide fine particles. (3) A dispersion of (secondary particles) was obtained. At this time, the pH of the reaction solution was 12.2.

ついで、限外濾過膜で洗浄して固形分濃度13重量%にした後、目開き1μmのカプセルフィルターで濾過し複合酸化物微粒子(3)分散液を得た。このとき、平均粒子径53n
m、CV値=23%であった。
Subsequently, after washing with an ultrafiltration membrane to a solid content concentration of 13% by weight, the mixture was filtered through a capsule filter having an opening of 1 μm to obtain a composite oxide fine particle (3) dispersion. At this time, the average particle size 53n
m, CV value = 23%.

この複合酸化物微粒子(3)の分散液500gに純水1,125gを加え、さらに濃塩酸(濃度35.5重量%)を滴下してpH1.0とし、脱アルミニウム処理を行った。次いで、pH3の塩酸水溶液10Lと純水5Lを加えながら限外濾過膜で溶解したアルミニウム塩を分離・洗浄して固形分濃度20重量%のシリカ系微粒子(P-3-1)の水分散液を得た。   To 500 g of the composite oxide fine particle (3) dispersion, 1,125 g of pure water was added, and concentrated hydrochloric acid (concentration 35.5 wt%) was added dropwise to adjust the pH to 1.0, followed by dealumination. Next, an aqueous dispersion of silica-based fine particles (P-3-1) having a solid content of 20% by weight by separating and washing the aluminum salt dissolved in the ultrafiltration membrane while adding 10 L of hydrochloric acid aqueous solution of pH 3 and 5 L of pure water. Got.

ついで、シリカ系微粒子(P-3-1)の水分散液150gと、純水500g、エタノール1
,750gおよび濃度28重量%のアンモニア水626gとの混合液を35℃に加温した後、エチルシリケート(SiO濃度28重量%)140gを5時間で添加してシリカ被
覆層を形成し、純水5Lを加えながら限外濾過膜で洗浄して固形分濃度20重量%のシリ
カ被覆層を形成したシリカ系微粒子(P-2-1)の水分散液を得た。
Next, 150 g of an aqueous dispersion of silica-based fine particles (P-3-1), 500 g of pure water, ethanol 1
, 750 g and a mixture of 626 g of ammonia water having a concentration of 28% by weight were heated to 35 ° C., and then 140 g of ethyl silicate (SiO 2 concentration of 28% by weight) was added in 5 hours to form a silica coating layer. An aqueous dispersion of silica-based fine particles (P-2-1) in which a silica coating layer having a solid content concentration of 20% by weight was formed by washing with an ultrafiltration membrane while adding 5 L of water was obtained.

つぎに、シリカ被覆層を形成したシリカ系微粒子(P-3-1)分散液にアンモニア水を添加
して分散液のpHを10.5に調整し、ついで200℃にて11時間熟成した後、常温に冷却し、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)400gを用いて3時間イオン交換し、ついで、陰イオン交換樹脂(三菱化学(株)製:ダイヤイオンSA20A)200gを用いて3時間イオン交換し、さらに陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、固形分濃度20重量%のシリカ系微粒子(P-3-2)の水分散液を得た。
Next, aqueous ammonia is added to the dispersion of silica-based fine particles (P-3-1) on which the silica coating layer has been formed to adjust the pH of the dispersion to 10.5, followed by aging at 200 ° C. for 11 hours. After cooling to room temperature, ion exchange was performed for 3 hours using 400 g of cation exchange resin (Mitsubishi Chemical Corporation: Diaion SK1B), and then anion exchange resin (Mitsubishi Chemical Corporation: Diaion SA20A). Using 200 g for ion exchange for 3 hours, and using 200 g of a cation exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion SK1B) for ion exchange at 80 ° C. for 3 hours for washing, solid content concentration 20% by weight An aqueous dispersion of silica-based fine particles (P-3-2) was obtained.

ついで、再び、シリカ系微粒子(P-3-2)分散液を150℃にて11時間水熱処理した後
、常温に冷却し、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)400gを用いて3時間イオン交換し、ついで、陰イオン交換樹脂(三菱化学(株)製:ダイヤイオンSA20A)200gを用いて3時間イオン交換し、さらに陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、固形分濃度20重量%のシリカ系微粒子(P-3-3)の水分散液を得た。
Next, the silica-based fine particle (P-3-2) dispersion was again hydrothermally treated at 150 ° C. for 11 hours, cooled to room temperature, and 400 g of cation exchange resin (Made by Mitsubishi Chemical Corporation: Diaion SK1B). Ion exchange for 3 hours, followed by ion exchange for 3 hours using 200 g of anion exchange resin (Mitsubishi Chemical Corporation: Diaion SA20A), and further cation exchange resin (Mitsubishi Chemical Corporation: 200 g of Diaion SK1B) was used for ion exchange at 80 ° C. for 3 hours for washing to obtain an aqueous dispersion of silica-based fine particles (P-3-3) having a solid content concentration of 20% by weight.

ついで限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20重量%のシリカ系微粒子(P-3)のアルコール分散液を調製した。
固形分濃度20重量%のシリカ系微粒子(P-3)のアルコール分散液100gにメタクリ
ルシランカップリング剤(信越化学(株)製:KBM-503)3gを添加し、50℃で加熱処
理を行い、再び限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20重量%のシリカ系中空微粒子(P-3)のアルコール分散液を調製した。
このシリカ系微粒子(P-3)の平均粒子径、CV値および屈折率を表1に示す。
Then, an alcohol dispersion of silica-based fine particles (P-3) having a solid content concentration of 20% by weight was prepared by replacing the solvent with ethanol using an ultrafiltration membrane.
3 g of methacryl silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503) is added to 100 g of an alcohol dispersion of silica-based fine particles (P-3) having a solid content concentration of 20% by weight, followed by heat treatment at 50 ° C. Then, an alcohol dispersion of silica-based hollow fine particles (P-3) having a solid content concentration of 20% by weight was prepared by replacing the solvent with ethanol again using an ultrafiltration membrane.
Table 1 shows the average particle diameter, CV value, and refractive index of the silica-based fine particles (P-3).

透明被膜形成用塗料(3)の製造
実施例1において、シリカ系中空微粒子(P-3)のアルコール分散液をエタノールで固
形分濃度5重量%に希釈した分散液50gを用いた以外は同様にして透明被膜形成用塗料(3)を調製した。
Production of Transparent Film Forming Paint (3) In Example 1, except that 50 g of a silica-based hollow fine particle (P-3) alcohol dispersion was diluted with ethanol to a solid concentration of 5% by weight. Thus, a transparent film-forming paint (3) was prepared.

透明被膜付基材(3)の製造
実施例1において、透明被膜形成用塗料(3)を用いた以外は同様にして透明被膜の膜厚
が約100nmの透明被膜付基材(3)を得た。この透明被膜付基材(3)の全光線透過率、ヘイズ、反射率、屈折率、密着性、鉛筆硬度および耐擦傷性を表1に示す。
Production of transparent film-coated substrate (3) In Example 1, except that the transparent film-forming paint (3) was used, a transparent film-coated substrate (3) having a film thickness of about 100 nm was obtained. It was. Table 1 shows the total light transmittance, haze, reflectance, refractive index, adhesion, pencil hardness and scratch resistance of the substrate with transparent coating (3).

[実施例4]
シリカ系中空微粒子(P-4)の調製
シリカ・アルミナゾル(触媒化成工業(株)製:USBB−120、平均粒子径25nm、CV値:25%、SiO2・Al23濃度20重量%、固形分中Al23含有量27重
量%)100gに純水3900gを加えて98℃に加温し、この温度を保持しながら、SiO2として濃度1.5重量%の珪酸ナトリウム水溶液7,000gとAl23としての濃
度0.5重量%のアルミン酸ナトリウム水溶液7,000gを5時間で添加して、SiO2・Al23一次粒子分散液を得た。このときの反応液のpHは12.0であった。また、
平均粒子径は50nmであった。
ついで、SiO2として濃度1.5重量%の珪酸ナトリウム水溶液16,740gとAl23としての濃度0.5重量%のアルミン酸ナトリウム水溶液5,580gを5時間で添加して複合酸化物微粒子(4)(二次粒子)の分散液を得た。このとき、反応液のpHは12.2であった。
[Example 4]
Preparation of silica -based hollow fine particles (P-4) Silica / alumina sol (manufactured by Catalytic Chemical Industry Co., Ltd .: USBB-120, average particle size 25 nm, CV value: 25%, SiO 2 · Al 2 O 3 concentration 20% by weight, 3900 g of pure water was added to 100 g of Al 2 O 3 content (solid content 27 wt%) and heated to 98 ° C., and while maintaining this temperature, an aqueous sodium silicate solution having a concentration of 1.5 wt% as SiO 2 , 000 g and 7,000 g of a sodium aluminate aqueous solution having a concentration of 0.5% by weight as Al 2 O 3 were added over 5 hours to obtain a SiO 2 · Al 2 O 3 primary particle dispersion. The pH of the reaction solution at this time was 12.0. Also,
The average particle size was 50 nm.
Next, 16,740 g of a sodium silicate aqueous solution having a concentration of 1.5% by weight as SiO 2 and 5,580 g of a sodium aluminate solution having a concentration of 0.5% by weight as Al 2 O 3 were added in 5 hours to form composite oxide fine particles. (4) A dispersion of (secondary particles) was obtained. At this time, the pH of the reaction solution was 12.2.

ついで、限外濾過膜で洗浄して固形分濃度13重量%にした後、目開き1μmのカプセ
ルフィルターで濾過し複合酸化物微粒子(4)分散液を得た。このとき、平均粒子径70n
m、CV値=27%であった。
この複合酸化物微粒子(4)の分散液500gに純水1,125gを加え、さらに濃塩酸(濃度35.5重量%)を滴下してpH1.0とし、脱アルミニウム処理を行った。次いで、pH3の塩酸水溶液10Lと純水5Lを加えながら限外濾過膜で溶解したアルミニウム塩を分離・洗浄して固形分濃度20重量%のシリカ系微粒子(P-4-1)の水分散液を得た。
Subsequently, after washing with an ultrafiltration membrane to a solid content concentration of 13% by weight, the mixture was filtered through a capsule filter having an opening of 1 μm to obtain a composite oxide fine particle (4) dispersion. At this time, the average particle diameter is 70 n
m, CV value = 27%.
To 500 g of the dispersion of composite oxide fine particles (4), 1,125 g of pure water was added, and concentrated hydrochloric acid (concentration 35.5% by weight) was added dropwise to adjust the pH to 1.0, followed by dealumination. Next, an aqueous dispersion of silica-based fine particles (P-4-1) having a solid content concentration of 20% by weight by separating and washing the aluminum salt dissolved in the ultrafiltration membrane while adding 10 L of hydrochloric acid aqueous solution of pH 3 and 5 L of pure water. Got.

ついで、シリカ系微粒子(P-4-1)の水分散液150gと、純水500g、エタノール1
,750gおよび濃度28重量%のアンモニア水626gとの混合液を35℃に加温した後、エチルシリケート(SiO濃度28重量%)117gを5時間で添加してシリカ被
覆層を形成し、純水5Lを加えながら限外濾過膜で洗浄して固形分濃度20重量%のシリカ被覆層を形成したシリカ系微粒子(P-4-1)の水分散液を得た。
Next, 150 g of an aqueous dispersion of silica-based fine particles (P-4-1), 500 g of pure water, ethanol 1
, 750 g and a mixture of 626 g of ammonia water having a concentration of 28 wt% were heated to 35 ° C., and then 117 g of ethyl silicate (SiO 2 concentration of 28 wt%) was added over 5 hours to form a silica coating layer. An aqueous dispersion of silica-based fine particles (P-4-1) in which a silica coating layer having a solid content concentration of 20% by weight was formed by washing with an ultrafiltration membrane while adding 5 L of water was obtained.

つぎに、シリカ被覆層を形成したシリカ系微粒子(P-4-1)分散液にアンモニア水を添加
して分散液のpHを10.5に調整し、ついで200℃にて11時間熟成した後、常温に冷却し、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)400gを用いて3時間イオン交換し、ついで、陰イオン交換樹脂(三菱化学(株)製:ダイヤイオンSA20A)200gを用いて3時間イオン交換し、さらに陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、固形分濃度20重量%のシリカ系微粒子(P-4-2)の水分散液を得た。
Next, ammonia water was added to the silica-based fine particle (P-4-1) dispersion having a silica coating layer to adjust the pH of the dispersion to 10.5, and then aged at 200 ° C. for 11 hours. After cooling to room temperature, ion exchange was performed for 3 hours using 400 g of cation exchange resin (Mitsubishi Chemical Corporation: Diaion SK1B), and then anion exchange resin (Mitsubishi Chemical Corporation: Diaion SA20A). Using 200 g for ion exchange for 3 hours, and using 200 g of a cation exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion SK1B) for ion exchange at 80 ° C. for 3 hours for washing, solid content concentration 20% by weight An aqueous dispersion of silica-based fine particles (P-4-2) was obtained.

ついで、再び、シリカ系微粒子(P-4-2)分散液を150℃にて11時間水熱処理した後
、常温に冷却し、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)400gを用いて3時間イオン交換し、ついで、陰イオン交換樹脂(三菱化学(株)製:ダイヤイオンSA20A)200gを用いて3時間イオン交換し、さらに陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、固形分濃度20重量%のシリカ系微粒子(P-4-3)の水分散液を得た。
Next, again, the silica-based fine particle (P-4-2) dispersion was hydrothermally treated at 150 ° C. for 11 hours, then cooled to room temperature, and 400 g of cation exchange resin (manufactured by Mitsubishi Chemical Corporation: Diaion SK1B). Ion exchange for 3 hours, followed by ion exchange for 3 hours using 200 g of anion exchange resin (Mitsubishi Chemical Corporation: Diaion SA20A), and further cation exchange resin (Mitsubishi Chemical Corporation: 200 g of Diaion SK1B) was used for ion exchange at 80 ° C. for 3 hours for washing to obtain an aqueous dispersion of silica-based fine particles (P-4-3) having a solid concentration of 20% by weight.

ついで限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20重量%のシリカ系微粒子(P-4)のアルコール分散液を調製した。
固形分濃度20重量%のシリカ系微粒子(P-4)のアルコール分散液100gにメタクリルシランカップリング剤(信越化学(株)製:KBM-503)3gを添加し、50℃で加熱処理を行い、再び限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20重量%のシリカ系中空微粒子(P-4)のアルコール分散液を調製した。
このシリカ系微粒子(P-4)の平均粒子径、CV値および屈折率を表1に示す。
Then, an alcohol dispersion of silica-based fine particles (P-4) having a solid content concentration of 20% by weight was prepared by replacing the solvent with ethanol using an ultrafiltration membrane.
3 g of methacrylsilane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503) is added to 100 g of an alcohol dispersion of silica-based fine particles (P-4) having a solid content concentration of 20% by weight, and heat treatment is performed at 50 ° C. Then, an alcohol dispersion of silica-based hollow fine particles (P-4) having a solid content concentration of 20% by weight was prepared by replacing the solvent with ethanol again using an ultrafiltration membrane.
Table 1 shows the average particle diameter, CV value, and refractive index of the silica-based fine particles (P-4).

透明被膜形成用塗料(4)の製造
実施例1において、シリカ系中空微粒子(P-4)のアルコール分散液をエタノールで固
形分濃度5重量%に希釈した分散液50gを用いた以外は同様にして透明被膜形成用塗料(4)を調製した。
Production of transparent film-forming coating material (4) In Example 1, except that 50 g of a dispersion of silica-based hollow fine particles (P-4) diluted with ethanol to a solid concentration of 5% by weight was used. Thus, a transparent film-forming paint (4) was prepared.

透明被膜付基材(4)の製造
実施例1において、透明被膜形成用塗料(4)を用いた以外は同様にして透明被膜の膜厚
が約100nmの透明被膜付基材(4)を得た。この透明被膜付基材(4)の全光線透過率、ヘイズ、反射率、屈折率、密着性、鉛筆硬度および耐擦傷性を表1に示す。
Production of transparent film-coated substrate (4) In Example 1, except that the transparent film-forming paint (4) was used, a transparent film-coated substrate (4) having a film thickness of about 100 nm was obtained. It was. Table 1 shows the total light transmittance, haze, reflectance, refractive index, adhesion, pencil hardness, and scratch resistance of the substrate (4) with a transparent coating.

[実施例5]
シリカ系中空微粒子(P-5)の調製
シリカ・アルミナゾル(触媒化成工業(株)製:USBB−120、平均粒子径25nm、CV値:25%、SiO2・Al23濃度20重量%、固形分中Al23含有量27重
量%)100gに純水3900gを加えて98℃に加温し、この温度を保持しながら、SiO2として濃度1.5重量%の珪酸ナトリウム水溶液2,090gとAl23としての濃
度0.5重量%のアルミン酸ナトリウム水溶液700gを10時間で添加して、SiO2・Al23複合酸化物微粒子(5)(二次粒子)の分散液を得た。このとき、反応液のpHは12.2であった。
[Example 5]
Preparation of silica -based hollow fine particles (P-5) Silica / alumina sol (manufactured by Catalytic Chemical Industry Co., Ltd .: USBB-120, average particle size 25 nm, CV value: 25%, SiO 2 · Al 2 O 3 concentration 20% by weight, 3900 g of pure water was added to 100 g of Al 2 O 3 content (solid content 27 wt%) and heated to 98 ° C., and while maintaining this temperature, an aqueous solution of sodium silicate having a concentration of 1.5 wt% as SiO 2 A dispersion of SiO 2 · Al 2 O 3 composite oxide fine particles (5) (secondary particles) by adding 090 g and 700 g of 0.5% by weight sodium aluminate aqueous solution as Al 2 O 3 in 10 hours. Got. At this time, the pH of the reaction solution was 12.2.

ついで、限外濾過膜で洗浄して固形分濃度13重量%にした後、目開き1μmのカプセルフィルターで濾過し複合酸化物微粒子(5)分散液を得た。このとき、平均粒子径33n
m、CV値=29%であった。
Subsequently, after washing with an ultrafiltration membrane to a solid content concentration of 13% by weight, the mixture was filtered through a capsule filter having an opening of 1 μm to obtain a composite oxide fine particle (5) dispersion. At this time, the average particle size 33n
m, CV value = 29%.

この複合酸化物微粒子(5)の分散液500gに純水1,125gを加え、さらに濃塩酸(濃度35.5重量%)を滴下してpH1.0とし、脱アルミニウム処理を行った。次いで、pH3の塩酸水溶液10Lと純水5Lを加えながら限外濾過膜で溶解したアルミニウム塩を分離・洗浄して固形分濃度20重量%のシリカ系微粒子(P-5-1)の水分散液を得た。   1,500 g of pure water was added to 500 g of the dispersion of the composite oxide fine particles (5), and concentrated hydrochloric acid (concentration 35.5 wt%) was added dropwise to adjust the pH to 1.0, followed by dealumination. Next, an aqueous dispersion of silica-based fine particles (P-5-1) having a solid content of 20% by weight by separating and washing the aluminum salt dissolved in the ultrafiltration membrane while adding 10 L of hydrochloric acid aqueous solution of pH 3 and 5 L of pure water. Got.

ついで、シリカ系微粒子(P-5-1)の水分散液150gと、純水500g、エタノール1
,750gおよび濃度28重量%のアンモニア水626gとの混合液を35℃に加温した後、エチルシリケート(SiO濃度28重量%)55gを5時間で添加してシリカ被覆
層を形成し、純水5Lを加えながら限外濾過膜で洗浄して固形分濃度20重量%のシリカ被覆層を形成したシリカ系微粒子(P-5-1)の水分散液を得た。
Next, 150 g of an aqueous dispersion of silica-based fine particles (P-5-1), 500 g of pure water, ethanol 1
, 750 g and a mixture of 626 g of ammonia water having a concentration of 28% by weight were heated to 35 ° C., and then 55 g of ethyl silicate (SiO 2 concentration of 28% by weight) was added over 5 hours to form a silica coating layer. An aqueous dispersion of silica-based fine particles (P-5-1) in which a silica coating layer having a solid content concentration of 20% by weight was formed by washing with an ultrafiltration membrane while adding 5 L of water was obtained.

つぎに、シリカ被覆層を形成したシリカ系微粒子(P-5-1)分散液にアンモニア水を添加
して分散液のpHを10.5に調整し、ついで200℃にて11時間熟成した後、常温に冷却し、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)400gを用いて3時間イオン交換し、ついで、陰イオン交換樹脂(三菱化学(株)製:ダイヤイオンSA20A)200gを用いて3時間イオン交換し、さらに陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、固形分濃度20重量%のシリカ系微粒子(P-5-2)の水分散液を得た。
Next, ammonia water was added to the silica-based fine particle (P-5-1) dispersion having a silica coating layer to adjust the pH of the dispersion to 10.5, and then aged at 200 ° C. for 11 hours. After cooling to room temperature, ion exchange was performed for 3 hours using 400 g of cation exchange resin (Mitsubishi Chemical Corporation: Diaion SK1B), and then anion exchange resin (Mitsubishi Chemical Corporation: Diaion SA20A). Using 200 g for ion exchange for 3 hours, and using 200 g of a cation exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion SK1B) for ion exchange at 80 ° C. for 3 hours for washing, solid content concentration 20% by weight An aqueous dispersion of silica-based fine particles (P-5-2) was obtained.

ついで、再び、シリカ系微粒子(P-4-2)分散液を150℃にて11時間水熱処理した後
、常温に冷却し、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)400gを用いて3時間イオン交換し、ついで、陰イオン交換樹脂(三菱化学(株)製:ダイヤイオンSA20A)200gを用いて3時間イオン交換し、さらに陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、固形分濃度20重量%のシリカ系微粒子(P-5-3)の水分散液を得た。
Next, again, the silica-based fine particle (P-4-2) dispersion was hydrothermally treated at 150 ° C. for 11 hours, then cooled to room temperature, and 400 g of cation exchange resin (manufactured by Mitsubishi Chemical Corporation: Diaion SK1B). Ion exchange for 3 hours, followed by ion exchange for 3 hours using 200 g of anion exchange resin (Mitsubishi Chemical Corporation: Diaion SA20A), and further cation exchange resin (Mitsubishi Chemical Corporation: 200 g of Diaion SK1B) was used for ion exchange at 80 ° C. for 3 hours for washing to obtain an aqueous dispersion of silica-based fine particles (P-5-3) having a solid concentration of 20% by weight.

ついで限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20重量%のシリカ系微粒子(P-5)のアルコール分散液を調製した。
固形分濃度20重量%のシリカ系微粒子(P-5)のアルコール分散液100gにメタクリルシランカップリング剤(信越化学(株)製:KBM-503)3gを添加し、50℃で加熱処理を行い、再び限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20重量%のシリカ系中空微粒子(P-5)のアルコール分散液を調製した。
このシリカ系中空微粒子(P-5)の平均粒子径、CV値および屈折率を表1に示す。
Next, an alcohol dispersion of silica-based fine particles (P-5) having a solid content concentration of 20% by weight was prepared by replacing the solvent with ethanol using an ultrafiltration membrane.
3 g of methacryl silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503) is added to 100 g of an alcohol dispersion of silica-based fine particles (P-5) with a solid content concentration of 20% by weight, and heat treatment is performed at 50 ° C. Then, an alcohol dispersion of silica-based hollow fine particles (P-5) having a solid content concentration of 20% by weight was prepared by replacing the solvent with ethanol again using an ultrafiltration membrane.
Table 1 shows the average particle diameter, CV value, and refractive index of the silica-based hollow fine particles (P-5).

透明被膜形成用塗料(5)の製造
実施例1において、シリカ系中空微粒子(P-5)のアルコール分散液をエタノールで固
形分濃度5重量%に希釈した分散液50gを用いた以外は同様にして透明被膜形成用塗料(5)を調製した。
Production of transparent film-forming paint (5) In Example 1, except that 50 g of a silica-based hollow fine particle (P-5) alcohol dispersion was diluted to 5% by weight with ethanol to obtain a solid content of 5% by weight. Thus, a transparent film-forming paint (5) was prepared.

透明被膜付基材(5)の製造
実施例1において、透明被膜形成用塗料(5)を用いた以外は同様にして透明被膜の膜厚
が約100nmの透明被膜付基材(5)を得た。この透明被膜付基材(5)の全光線透過率、ヘイズ、反射率、屈折率、密着性、鉛筆硬度および耐擦傷性を表1に示す。
Production of transparent film-coated substrate (5) In Example 1, except that the transparent film-forming paint (5) was used, a transparent film-coated substrate (5) having a film thickness of about 100 nm was obtained. It was. Table 1 shows the total light transmittance, haze, reflectance, refractive index, adhesion, pencil hardness and scratch resistance of the substrate (5) with a transparent coating.

[実施例6]
透明被膜形成用塗料(6)の製造
実施例1と同様にして調製したシリカ系中空微粒子(P-1)のアルコール分散液をエタ
ノールで固形分濃度5重量%に希釈した分散液40gと、アクリル樹脂(ヒタロイド1007、日立化成(株)製)4gおよびイソプロパノールとn−ブタノールの1/1(重量比)混合溶媒56gとを充分に混合して透明被膜形成用塗料(6)を調製した。
[Example 6]
Production of transparent film-forming coating material (6) 40 g of a dispersion of silica-based hollow fine particles (P-1) prepared in the same manner as in Example 1, diluted with ethanol to a solid content concentration of 5% by weight, and acrylic 4 g of resin (Hitaroid 1007, manufactured by Hitachi Chemical Co., Ltd.) and 56 g of a 1/1 (weight ratio) mixed solvent of isopropanol and n-butanol were sufficiently mixed to prepare a transparent film forming paint (6).

透明被膜付基材(6)の製造
実施例1において、透明被膜形成用塗料(6)を用いた以外は同様にして透明被膜の膜厚
が約100nmの透明被膜付基材(6)を得た。この透明被膜付基材(6)の全光線透過率、ヘイズ、反射率、屈折率、密着性、鉛筆硬度および耐擦傷性を表1に示す。
Production of transparent film-coated substrate (6) In Example 1, except that the transparent film-forming paint (6) was used, a transparent film-coated substrate (6) having a transparent film thickness of about 100 nm was obtained. It was. Table 1 shows the total light transmittance, haze, reflectance, refractive index, adhesion, pencil hardness and scratch resistance of the substrate (6) with a transparent coating.

[実施例7]
透明被膜形成用塗料(7)の製造
実施例1と同様にして調製したシリカ系中空微粒子(P-1)のアルコール分散液をエタ
ノールで固形分濃度5重量%に希釈した分散液60gと、アクリル樹脂(ヒタロイド1007、日立化成(株)製)2gおよびイソプロパノールとn−ブタノールの1/1(重量比)混合溶媒38gとを充分に混合して透明被膜形成用塗料(7)を調製した。
[Example 7]
Production of transparent film-forming coating material (7) 60 g of a dispersion obtained by diluting an alcohol dispersion of silica-based hollow fine particles (P-1) prepared in the same manner as in Example 1 with ethanol to a solid content concentration of 5% by weight, and acrylic 2 g of resin (Hitaroid 1007, manufactured by Hitachi Chemical Co., Ltd.) and 38 g of a 1/1 (weight ratio) mixed solvent of isopropanol and n-butanol were sufficiently mixed to prepare a transparent film forming paint (7).

透明被膜付基材(7)の製造
実施例1において、透明被膜形成用塗料(7)を用いた以外は同様にして透明被膜の膜厚
が約100nmの透明被膜付基材(7)を得た。この透明被膜付基材(7)の全光線透過率、ヘイズ、反射率、屈折率、密着性、鉛筆硬度および耐擦傷性を表1に示す。
Production of transparent film-coated substrate (7) In Example 1, except that the transparent film-forming paint (7) was used, a transparent film-coated substrate (7) having a film thickness of about 100 nm was obtained. It was. Table 1 shows the total light transmittance, haze, reflectance, refractive index, adhesion, pencil hardness, and scratch resistance of the substrate with transparent film (7).

[比較例1]
シリカ系中空微粒子(RP-1)の調製
シリカ・アルミナゾル(触媒化成工業(株)製:USBB−120、平均粒子径25nm、CV値:25%、SiO2・Al23濃度20重量%、固形分中Al23含有量27重
量%)100gに純水3900gを加えて98℃に加温し、この温度を保持しながら、SiO2として濃度1.5重量%の珪酸ナトリウム水溶液730gとAl23としての濃度0.5重量%のアルミン酸ナトリウム水溶液730gを0.5時間で添加して、SiO2・Al23一次粒子分散液を得た。このときの反応液のpHは12.0であった。また、平均粒子径は30nmであった。
ついで、SiO2として濃度1.5重量%の珪酸ナトリウム水溶液7,530gとAl23としての濃度0.5重量%のアルミン酸ナトリウム水溶液2,510gを0.5時間で添加して複合酸化物微粒子(1)(二次粒子)の分散液を得た。このとき、反応液のpHは12.2であった。
[Comparative Example 1]
Preparation of silica-based hollow fine particles (RP-1)
Silica / Alumina sol (Catalyst Kasei Kogyo Co., Ltd .: USBB-120, average particle size 25 nm, CV value: 25%, SiO 2 · Al 2 O 3 concentration 20 wt%, solid content Al 2 O 3 content 27 wt% %) 3900 g of pure water was added to 100 g and heated to 98 ° C. While maintaining this temperature, 730 g of a sodium silicate aqueous solution having a concentration of 1.5% by weight as SiO 2 and 0.5% by weight as Al 2 O 3 % Aqueous solution of sodium aluminate 730 g was added in 0.5 hours to obtain a SiO 2 .Al 2 O 3 primary particle dispersion. The pH of the reaction solution at this time was 12.0. Moreover, the average particle diameter was 30 nm.
Then, 5,530 g of 1.5 wt% sodium silicate aqueous solution as SiO 2 and 2,510 g of 0.5 wt% sodium aluminate aqueous solution as Al 2 O 3 were added in 0.5 hour to form a composite oxide. A dispersion liquid of physical fine particles (1) (secondary particles) was obtained. At this time, the pH of the reaction solution was 12.2.

ついで、限外濾過膜で洗浄して固形分濃度13重量%にした複合酸化物微粒子(1)分散
液を得た。このとき、平均粒子径は50nm、CV値は65%であった。
ついで、限外濾過膜で洗浄して固形分濃度13重量%になった複合酸化物微粒子(1)の
分散液500gに純水1,125gを加え、さらに濃塩酸(濃度35.5重量%)を滴下してpH1.0とし、脱アルミニウム処理を行った。次いで、pH3の塩酸水溶液10Lと
純水5Lを加えながら限外濾過膜で溶解したアルミニウム塩を分離・洗浄して固形分濃度20重量%のシリカ系微粒子(RP-1-1)の水分散液を得た。
Subsequently, it was washed with an ultrafiltration membrane to obtain a dispersion of composite oxide fine particles (1) having a solid content concentration of 13% by weight. At this time, the average particle size was 50 nm, and the CV value was 65%.
Next, 1,125 g of pure water was added to 500 g of the dispersion of the composite oxide fine particles (1) having a solid concentration of 13 wt% by washing with an ultrafiltration membrane, and concentrated hydrochloric acid (concentration 35.5 wt%). Was dropped to pH 1.0, and dealumination was performed. Next, an aqueous dispersion of silica-based fine particles (RP-1-1) having a solid content of 20% by weight by separating and washing the aluminum salt dissolved in the ultrafiltration membrane while adding 10 L of hydrochloric acid aqueous solution of pH 3 and 5 L of pure water. Got.

ついで、シリカ系微粒子(RP-1-1)の水分散液150gと、純水500g、エタノール1,750gおよび濃度28重量%のアンモニア水626gとの混合液を35℃に加温した後、エチルシリケート(SiO濃度28重量%)140gを5時間で添加してシリカ被覆層を形成し、純水5Lを加えながら限外濾過膜で洗浄して固形分濃度20重量%のシリカ被覆層を形成したシリカ系微粒子(RP-1-1)の水分散液を得た。 Next, a mixture of 150 g of an aqueous dispersion of silica-based fine particles (RP-1-1), 500 g of pure water, 1,750 g of ethanol, and 626 g of ammonia water having a concentration of 28% by weight was heated to 35 ° C. 140 g of silicate (SiO 2 concentration 28 wt%) is added in 5 hours to form a silica coating layer, and washed with an ultrafiltration membrane while adding 5 L of pure water to form a silica coating layer with a solid content concentration of 20 wt% An aqueous dispersion of silica-based fine particles (RP-1-1) was obtained.

つぎに、シリカ被覆層を形成したシリカ系微粒子(RP-1-1)分散液にアンモニア水を添加して分散液のpHを10.5に調整し、ついで200℃にて11時間熟成した後、常温に冷却し、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)400gを用いて3時間イオン交換し、ついで、陰イオン交換樹脂(三菱化学(株)製:ダイヤイオンSA20A)200gを用いて3時間イオン交換し、さらに陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、固形分濃度20重量%のシリカ系微粒子(RP-1-2)の水分散液を得た。   Next, ammonia water was added to the silica-based fine particle (RP-1-1) dispersion having a silica coating layer to adjust the pH of the dispersion to 10.5, and then aged at 200 ° C. for 11 hours. After cooling to room temperature, ion exchange was performed for 3 hours using 400 g of cation exchange resin (Mitsubishi Chemical Corporation: Diaion SK1B), and then anion exchange resin (Mitsubishi Chemical Corporation: Diaion SA20A). Using 200 g for ion exchange for 3 hours, and using 200 g of a cation exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion SK1B) for ion exchange at 80 ° C. for 3 hours for washing, solid content concentration 20% by weight An aqueous dispersion of silica-based fine particles (RP-1-2) was obtained.

ついで、再び、シリカ系微粒子(RP-1-2)分散液を150℃にて11時間水熱処理した後、常温に冷却し、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)400gを用いて3時間イオン交換し、ついで、陰イオン交換樹脂(三菱化学(株)製:ダイヤイオンSA20A)200gを用いて3時間イオン交換し、さらに陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、固形分濃度20重量%のシリカ系微粒子(RP-1-3)の水分散液を得た。   Next, again, the silica-based fine particle (RP-1-2) dispersion was hydrothermally treated at 150 ° C. for 11 hours, cooled to room temperature, and 400 g of a cation exchange resin (manufactured by Mitsubishi Chemical Corporation: Diaion SK1B). Ion exchange for 3 hours, followed by ion exchange for 3 hours using 200 g of anion exchange resin (Mitsubishi Chemical Corporation: Diaion SA20A), and further cation exchange resin (Mitsubishi Chemical Corporation: 200 g of Diaion SK1B) was ion-exchanged at 80 ° C. for 3 hours for washing to obtain an aqueous dispersion of silica-based fine particles (RP-1-3) having a solid concentration of 20% by weight.

ついで限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20重量%のシリカ系微粒子(RP-1)のアルコール分散液を調製した。
固形分濃度20重量%のシリカ系微粒子(RP-1)のアルコール分散液100gにメタクリルシランカップリング剤(信越化学(株)製:KBM-503)3gを添加し、50℃で加熱
処理を行い、再び限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20重量%のシリカ系中空微粒子(RP-1)のアルコール分散液を調製した。
このシリカ系中空微粒子(RP-1)の平均粒子径、CV値および屈折率を表1に示す。
Next, an alcohol dispersion of silica-based fine particles (RP-1) having a solid content concentration of 20% by weight was prepared by replacing the solvent with ethanol using an ultrafiltration membrane.
3 g of methacrylsilane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503) is added to 100 g of an alcohol dispersion of silica-based fine particles (RP-1) with a solid content concentration of 20% by weight, and heat treatment is performed at 50 ° C. Then, an alcohol dispersion of silica-based hollow fine particles (RP-1) having a solid content concentration of 20% by weight was prepared by replacing the solvent with ethanol again using an ultrafiltration membrane.
Table 1 shows the average particle diameter, CV value, and refractive index of the silica-based hollow fine particles (RP-1).

透明被膜形成用塗料(R1)の製造
実施例1において、シリカ系中空微粒子(RP-1)のアルコール分散液をエタノールで固形分濃度5重量%に希釈した分散液50gを用いた以外は同様にして透明被膜形成用塗料(R1)を調製した。
Production of transparent coating film forming paint (R1) In Example 1, except that 50 g of a dispersion of silica-based hollow fine particles (RP-1) in which the alcohol dispersion was diluted with ethanol to a solid content concentration of 5% by weight was used. Thus, a transparent film-forming paint (R1) was prepared.

透明被膜付基材(R1)の製造
実施例1において、透明被膜形成用塗料(R1)を用いた以外は同様にして透明被膜の膜厚が約100nmの透明被膜付基材(R1)を得た。この透明被膜付基材(R1)の全光線透過率、ヘイズ、反射率、屈折率、密着性、鉛筆硬度および耐擦傷性を表1に示す。
Production of transparent film-coated substrate (R1) In Example 1, except that the transparent film-forming paint (R1) was used, a transparent film-coated substrate (R1) having a film thickness of about 100 nm was obtained. It was. Table 1 shows the total light transmittance, haze, reflectance, refractive index, adhesion, pencil hardness, and scratch resistance of the substrate with transparent coating (R1).

[比較例2]
シリカ系中空微粒子(RP-2)の調製
シリカ・アルミナゾル(触媒化成工業(株)製:USBB−120、平均粒子径25nm、CV値:25%、SiO2・Al23濃度20重量%、固形分中Al23含有量27重
量%)100gに純水3900gを加えて98℃に加温し、この温度を保持しながら、SiO2として濃度1.5重量%の珪酸ナトリウム水溶液2,090gとAl23としての濃
度0.5重量%のアルミン酸ナトリウム水溶液700gを1時間で添加して、SiO2・Al23複合酸化物微粒子(RP2)(二次粒子)の分散液を得た。このとき、反応液のpHは12.2であった。
[Comparative Example 2]
Preparation of silica-based hollow fine particles (RP-2)
Silica / Alumina sol (Catalyst Kasei Kogyo Co., Ltd .: USBB-120, average particle size 25 nm, CV value: 25%, SiO 2 · Al 2 O 3 concentration 20 wt%, solid content Al 2 O 3 content 27 wt% %) 3900 g of pure water was added to 100 g and heated to 98 ° C., and while maintaining this temperature, 2,090 g of a 1.5 wt% sodium silicate aqueous solution as SiO 2 and a concentration as Al 2 O 3 of 0. 700 g of 5% by weight aqueous sodium aluminate solution was added in 1 hour to obtain a dispersion of fine particles of SiO 2 · Al 2 O 3 composite oxide (RP2) (secondary particles). At this time, the pH of the reaction solution was 12.2.

ついで、限外濾過膜で洗浄して固形分濃度13重量%にした複合酸化物微粒子(RP2)分
散液を得た。このとき、平均粒子径は33nm、CV値は58%であった。
この複合酸化物微粒子(RP2)の分散液500gに純水1,125gを加え、さらに濃塩酸(濃度35.5重量%)を滴下してpH1.0とし、脱アルミニウム処理を行った。次いで、pH3の塩酸水溶液10Lと純水5Lを加えながら限外濾過膜で溶解したアルミニウム塩を分離・洗浄して固形分濃度20重量%のシリカ系微粒子(P-5-1)の水分散液を得た。
Subsequently, it was washed with an ultrafiltration membrane to obtain a composite oxide fine particle (RP2) dispersion having a solid content concentration of 13% by weight. At this time, the average particle size was 33 nm, and the CV value was 58%.
To 500 g of this composite oxide fine particle (RP2) dispersion, 1,125 g of pure water was added, and concentrated hydrochloric acid (concentration 35.5 wt%) was added dropwise to adjust the pH to 1.0, followed by dealumination. Next, an aqueous dispersion of silica-based fine particles (P-5-1) having a solid content of 20% by weight by separating and washing the aluminum salt dissolved in the ultrafiltration membrane while adding 10 L of hydrochloric acid aqueous solution of pH 3 and 5 L of pure water. Got.

ついで、シリカ系微粒子(RP-2-1)の水分散液150gと、純水500g、エタノール1,750gおよび濃度28重量%のアンモニア水626gとの混合液を35℃に加温した後、エチルシリケート(SiO濃度28重量%)55gを2時間で添加してシリカ被覆層を形成し、純水5Lを加えながら限外濾過膜で洗浄して固形分濃度20重量%のシリカ被覆層を形成したシリカ系微粒子(RP-2-1)の水分散液を得た。 Next, a mixture of 150 g of an aqueous dispersion of silica-based fine particles (RP-2-1), 500 g of pure water, 1,750 g of ethanol and 626 g of ammonia water having a concentration of 28% by weight was heated to 35 ° C. A silica coating layer is formed by adding 55 g of silicate (SiO 2 concentration 28 wt%) in 2 hours, and washed with an ultrafiltration membrane while adding 5 L of pure water to form a silica coating layer with a solid content concentration of 20 wt%. An aqueous dispersion of silica-based fine particles (RP-2-1) was obtained.

つぎに、シリカ被覆層を形成したシリカ系微粒子(P-5-1)分散液にアンモニア水を添加
して分散液のpHを10.5に調整し、ついで200℃にて11時間熟成した後、常温に冷却し、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)400gを用いて3時間イオン交換し、ついで、陰イオン交換樹脂(三菱化学(株)製:ダイヤイオンSA20A)200gを用いて3時間イオン交換し、さらに陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、固形分濃度20重量%のシリカ系微粒子(P-5-2)の水分散液を得た。
Next, ammonia water was added to the silica-based fine particle (P-5-1) dispersion having a silica coating layer to adjust the pH of the dispersion to 10.5, and then aged at 200 ° C. for 11 hours. After cooling to room temperature, ion exchange was performed for 3 hours using 400 g of cation exchange resin (Mitsubishi Chemical Corporation: Diaion SK1B), and then anion exchange resin (Mitsubishi Chemical Corporation: Diaion SA20A). Using 200 g for ion exchange for 3 hours, and using 200 g of a cation exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion SK1B) for ion exchange at 80 ° C. for 3 hours for washing, solid content concentration 20% by weight An aqueous dispersion of silica-based fine particles (P-5-2) was obtained.

ついで、再び、シリカ系微粒子(RP-2-2)分散液を150℃にて11時間水熱処理した後、常温に冷却し、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)400gを用いて3時間イオン交換し、ついで、陰イオン交換樹脂(三菱化学(株)製:ダイヤイオンSA20A)200gを用いて3時間イオン交換し、さらに陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、固形分濃度20重量%のシリカ系微粒子(RP-2-3)の水分散液を得た。   Next, again, the silica-based fine particle (RP-2-2) dispersion was hydrothermally treated at 150 ° C. for 11 hours, cooled to room temperature, and 400 g of a cation exchange resin (manufactured by Mitsubishi Chemical Corporation: Diaion SK1B). Ion exchange for 3 hours, followed by ion exchange for 3 hours using 200 g of anion exchange resin (Mitsubishi Chemical Corporation: Diaion SA20A), and further cation exchange resin (Mitsubishi Chemical Corporation: 200 g of Diaion SK1B) was ion-exchanged at 80 ° C. for 3 hours for washing to obtain an aqueous dispersion of silica-based fine particles (RP-2-3) having a solid content concentration of 20% by weight.

ついで限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20重量%のシリカ系微粒子(RP-2)のアルコール分散液を調製した。
固形分濃度20重量%のシリカ系微粒子(RP-2)のアルコール分散液100gにメタクリルシランカップリング剤(信越化学(株)製:KBM-503)3gを添加し、50℃で加熱
処理を行い、再び限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20重量%のシリカ系中空微粒子(RP-2)のアルコール分散液を調製した。
このシリカ系中空微粒子(RP-2)の平均粒子径、CV値および屈折率を表1に示す。
Next, an alcohol dispersion of silica-based fine particles (RP-2) having a solid concentration of 20% by weight was prepared by replacing the solvent with ethanol using an ultrafiltration membrane.
3 g of methacrylsilane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503) is added to 100 g of an alcohol dispersion of silica-based fine particles (RP-2) having a solid content concentration of 20% by weight, and heat treatment is performed at 50 ° C. Then, an alcohol dispersion of silica-based hollow fine particles (RP-2) having a solid content concentration of 20% by weight was prepared by replacing the solvent with ethanol again using an ultrafiltration membrane.
Table 1 shows the average particle diameter, CV value, and refractive index of the silica-based hollow fine particles (RP-2).

透明被膜形成用塗料(R2)の製造
実施例1において、シリカ系中空微粒子(RP-2)のアルコール分散液をエタノールで固形分濃度5重量%に希釈した分散液50gを用いた以外は同様にして透明被膜形成用塗料(R2)を調製した。
Production of transparent film-forming paint (R2) In Example 1, except that 50 g of a dispersion of silica-based hollow fine particles (RP-2) in which the alcohol dispersion was diluted with ethanol to a solid content concentration of 5% by weight was used. Thus, a transparent film-forming paint (R2) was prepared.

透明被膜付基材(R2)の製造
実施例1において、透明被膜形成用塗料(R2)を用いた以外は同様にして透明被膜の膜厚が約100nmの透明被膜付基材(R2)を得た。この透明被膜付基材(R2)の全光線透過率、ヘイズ、反射率、屈折率、密着性、鉛筆硬度および耐擦傷性を表1に示す。
Production of transparent film-coated substrate (R2) In Example 1, a transparent film-coated substrate (R2) having a transparent film thickness of about 100 nm was obtained in the same manner except that the transparent film-forming paint (R2) was used. It was. Table 1 shows the total light transmittance, haze, reflectance, refractive index, adhesion, pencil hardness, and scratch resistance of the substrate with transparent coating (R2).

[比較例3]
シリカ系中空微粒子(RP-3)の調製
シリカ・アルミナゾル(触媒化成工業(株)製:USBB−120、平均粒子径25nm、CV値:25%、SiO2・Al23濃度20重量%、固形分中Al23含有量27重
量%)100gに純水3900gを加えて98℃に加温し、この温度を保持しながら、S
iO2として濃度1.5重量%の珪酸ナトリウム水溶液7,000gとAl23としての濃
度0.5重量%のアルミン酸ナトリウム水溶液7,000gを0.5時間で添加して、S
iO2・Al23一次粒子分散液を得た。このときの反応液のpHは12.0であった。また、平均粒子径は50nmであった。
[Comparative Example 3]
Preparation of silica-based hollow fine particles (RP-3)
Silica / Alumina sol (Catalyst Kasei Kogyo Co., Ltd .: USBB-120, average particle size 25 nm, CV value: 25%, SiO 2 · Al 2 O 3 concentration 20 wt%, solid content Al 2 O 3 content 27 wt% %) 3900 g of pure water was added to 100 g and heated to 98 ° C., while maintaining this temperature, S
7000 g of a 1.5 wt% sodium silicate aqueous solution as iO 2 and 7,000 g of a 0.5 wt% sodium aluminate aqueous solution as Al 2 O 3 were added in 0.5 hour.
An iO 2 · Al 2 O 3 primary particle dispersion was obtained. The pH of the reaction solution at this time was 12.0. Moreover, the average particle diameter was 50 nm.

ついで、SiO2として濃度1.5重量%の珪酸ナトリウム水溶液16,740gとAl23としての濃度0.5重量%のアルミン酸ナトリウム水溶液5,580gを0.5時間で
添加して複合酸化物微粒子(4)(二次粒子)の分散液を得た。このとき、反応液のpHは
12.2であった。
Next, 16,740 g of a 1.5 wt% sodium silicate aqueous solution as SiO 2 and 5,580 g of a 0.5 wt% sodium aluminate aqueous solution as Al 2 O 3 were added in 0.5 hour to form a composite oxide. A dispersion of fine particles (4) (secondary particles) was obtained. At this time, the pH of the reaction solution was 12.2.

ついで、限外濾過膜で洗浄して固形分濃度13重量%にした複合酸化物微粒子(4)分散
液を得た。このとき、平均粒子径は70nm、CV値は63%であった。
この複合酸化物微粒子(4)の分散液500gに純水1,125gを加え、さらに濃塩酸(濃度35.5重量%)を滴下してpH1.0とし、脱アルミニウム処理を行った。次いで、pH3の塩酸水溶液10Lと純水5Lを加えながら限外濾過膜で溶解したアルミニウム塩を分離・洗浄して固形分濃度20重量%のシリカ系微粒子(RP-3-1)の水分散液を得た。
Subsequently, it was washed with an ultrafiltration membrane to obtain a composite oxide fine particle (4) dispersion having a solid concentration of 13% by weight. At this time, the average particle size was 70 nm, and the CV value was 63%.
To 500 g of the dispersion of composite oxide fine particles (4), 1,125 g of pure water was added, and concentrated hydrochloric acid (concentration 35.5% by weight) was added dropwise to adjust the pH to 1.0, followed by dealumination. Next, an aqueous dispersion of silica-based fine particles (RP-3-1) having a solid content concentration of 20% by weight by separating and washing the aluminum salt dissolved in the ultrafiltration membrane while adding 10 L of hydrochloric acid aqueous solution of pH 3 and 5 L of pure water. Got.

ついで、シリカ系微粒子(RP-3-1)の水分散液150gと、純水500g、エタノール1,750gおよび濃度28重量%のアンモニア水626gとの混合液を35℃に加温した後、エチルシリケート(SiO濃度28重量%)117gを5時間で添加してシリカ被覆層を形成し、純水5Lを加えながら限外濾過膜で洗浄して固形分濃度20重量%のシリカ被覆層を形成したシリカ系微粒子(RP-3-1)の水分散液を得た。 Next, a mixture of 150 g of an aqueous dispersion of silica-based fine particles (RP-3-1), 500 g of pure water, 1,750 g of ethanol, and 626 g of ammonia water having a concentration of 28% by weight was heated to 35 ° C. A silica coating layer is formed by adding 117 g of silicate (SiO 2 concentration 28 wt%) in 5 hours, and washed with an ultrafiltration membrane while adding 5 L of pure water to form a silica coating layer with a solid content concentration of 20 wt%. An aqueous dispersion of silica-based fine particles (RP-3-1) was obtained.

つぎに、シリカ被覆層を形成したシリカ系微粒子(RP-3-1)分散液にアンモニア水を添加して分散液のpHを10.5に調整し、ついで200℃にて11時間熟成した後、常温に冷却し、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)400gを用いて3時間イオン交換し、ついで、陰イオン交換樹脂(三菱化学(株)製:ダイヤイオンSA20A)200gを用いて3時間イオン交換し、さらに陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、固形分濃度20重量%のシリカ系微粒子(RP-3-2)の水分散液を得た。   Next, ammonia water is added to the silica-based fine particle (RP-3-1) dispersion having a silica coating layer to adjust the pH of the dispersion to 10.5, and then aged at 200 ° C. for 11 hours. After cooling to room temperature, ion exchange was performed for 3 hours using 400 g of cation exchange resin (Mitsubishi Chemical Corporation: Diaion SK1B), and then anion exchange resin (Mitsubishi Chemical Corporation: Diaion SA20A). Using 200 g for ion exchange for 3 hours, and using 200 g of a cation exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion SK1B) for ion exchange at 80 ° C. for 3 hours for washing, solid content concentration 20% by weight An aqueous dispersion of silica-based fine particles (RP-3-2) was obtained.

ついで、再び、シリカ系微粒子(RP-3-2)分散液を150℃にて11時間水熱処理した後、常温に冷却し、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)400gを用いて3時間イオン交換し、ついで、陰イオン交換樹脂(三菱化学(株)製:ダイヤイオンSA20A)200gを用いて3時間イオン交換し、さらに陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、固形分濃度20重量%のシリカ系微粒子(RP-3-3)の水分散液を得た。   Next, again, the silica-based fine particle (RP-3-2) dispersion was hydrothermally treated at 150 ° C. for 11 hours, cooled to room temperature, and 400 g of a cation exchange resin (manufactured by Mitsubishi Chemical Corporation: Diaion SK1B). Ion exchange for 3 hours, followed by ion exchange for 3 hours using 200 g of anion exchange resin (Mitsubishi Chemical Corporation: Diaion SA20A), and further cation exchange resin (Mitsubishi Chemical Corporation: 200 g of Diaion SK1B) was used for ion exchange at 80 ° C. for 3 hours for washing to obtain an aqueous dispersion of silica-based fine particles (RP-3-3) having a solid concentration of 20% by weight.

ついで限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20重量%のシリカ系微粒子(RP-3)のアルコール分散液を調製した。
固形分濃度20重量%のシリカ系微粒子(RP-3)のアルコール分散液100gにメタクリルシランカップリング剤(信越化学(株)製:KBM-503)3gを添加し、50℃で加熱処理を行い、再び限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20重量%のシリカ系中空微粒子(RP-3)のアルコール分散液を調製した。
このシリカ系中空微粒子(RP-3)の平均粒子径、CV値および屈折率を表1に示す。
Next, an alcohol dispersion of silica-based fine particles (RP-3) having a solid content concentration of 20% by weight was prepared by replacing the solvent with ethanol using an ultrafiltration membrane.
3 g of a methacryl silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503) is added to 100 g of an alcohol dispersion of silica-based fine particles (RP-3) having a solid content concentration of 20% by weight, followed by heat treatment at 50 ° C. Then, an alcohol dispersion of silica-based hollow fine particles (RP-3) having a solid content concentration of 20% by weight was prepared by replacing the solvent with ethanol again using an ultrafiltration membrane.
Table 1 shows the average particle diameter, CV value, and refractive index of the silica-based hollow fine particles (RP-3).

透明被膜形成用塗料(R3)の製造
実施例1において、シリカ系中空微粒子(RP-3)のアルコール分散液をエタノールで固形分濃度5重量%に希釈した分散液50gを用いた以外は同様にして透明被膜形成用塗料(R3)を調製した。
Production of transparent coating film forming paint (R3) In Example 1, except that 50 g of a dispersion of silica-based hollow fine particles (RP-3) in an alcohol dispersion diluted to 5% by weight with ethanol was used. Thus, a transparent film-forming paint (R3) was prepared.

透明被膜付基材(R3)の製造
実施例1において、透明被膜形成用塗料(R3)を用いた以外は同様にして透明被膜の膜厚が約100nmの透明被膜付基材(R3)を得た。この透明被膜付基材(R3)の全光線透過率、ヘイズ、反射率、屈折率、密着性、鉛筆硬度および耐擦傷性を表に示す。
Production of transparent film-coated substrate (R3) In Example 1, a transparent film-coated substrate (R3) having a film thickness of about 100 nm was obtained in the same manner except that the transparent film-forming paint (R3) was used. It was. The total light transmittance, haze, reflectance, refractive index, adhesion, pencil hardness and scratch resistance of the substrate with transparent coating (R3) are shown in the table.

[比較例4]
シリカ系中空微粒子(RP-4)の調製
シリカ・アルミナゾル(触媒化成工業(株)製:USBB−120、平均粒子径25nm、CV値:25%、SiO2・Al23濃度20重量%、固形分中Al23含有量27重
量%)10gに純水390gを加えて98℃に加温し、この温度を保持しながら、SiO2として濃度1.5重量%の珪酸ナトリウム水溶液3,180gとAl23としての濃度0.5重量%のアルミン酸ナトリウム水溶液3,180gを10時間で添加して、SiO2・Al23一次粒子分散液を得た。このときの反応液のpHは12.0であった。また、平均粒子径は80nmであった。
[Comparative Example 4]
Preparation of silica-based hollow fine particles (RP-4)
Silica / Alumina sol (Catalyst Kasei Kogyo Co., Ltd .: USBB-120, average particle size 25 nm, CV value: 25%, SiO 2 · Al 2 O 3 concentration 20 wt%, solid content Al 2 O 3 content 27 wt% %) 390 g of pure water was added to 10 g and heated to 98 ° C., and while maintaining this temperature, 3,180 g of a 1.5 wt% aqueous sodium silicate solution as SiO 2 and a concentration of 0.1 2 as Al 2 O 3 . 3,180 g of 5 wt% sodium aluminate aqueous solution was added in 10 hours to obtain a SiO 2 .Al 2 O 3 primary particle dispersion. The pH of the reaction solution at this time was 12.0. Moreover, the average particle diameter was 80 nm.

ついで、SiO2として濃度1.5重量%の珪酸ナトリウム水溶液3,750gとAl23としての濃度0.5重量%のアルミン酸ナトリウム水溶液1,250gを10時間で添加
して複合酸化物微粒子(4)(二次粒子)の分散液を得た。このとき、反応液のpHは12
.2であった。
Subsequently, 3,750 g of a 1.5 wt% sodium silicate aqueous solution as SiO 2 and 1,250 g of a 0.5 wt% sodium aluminate aqueous solution as Al 2 O 3 were added over 10 hours to form composite oxide fine particles. (4) A dispersion of (secondary particles) was obtained. At this time, the pH of the reaction solution is 12
. 2.

ついで、限外濾過膜で洗浄して固形分濃度13重量%にした後、目開き1μmのカプセルフィルターで濾過し複合酸化物微粒子(4)分散液を得た。このとき、平均粒子径は10
0nm、CV値は27%であった。
Subsequently, after washing with an ultrafiltration membrane to a solid content concentration of 13% by weight, the mixture was filtered through a capsule filter having an opening of 1 μm to obtain a composite oxide fine particle (4) dispersion. At this time, the average particle size is 10
0 nm, CV value was 27%.

この複合酸化物微粒子(4)の分散液500gに純水1,125gを加え、さらに濃塩酸(濃度35.5重量%)を滴下してpH1.0とし、脱アルミニウム処理を行った。次いで、pH3の塩酸水溶液10Lと純水5Lを加えながら限外濾過膜で溶解したアルミニウム塩を分離・洗浄して固形分濃度20重量%のシリカ系微粒子(RP-4-1)の水分散液を得た。   To 500 g of the dispersion of composite oxide fine particles (4), 1,125 g of pure water was added, and concentrated hydrochloric acid (concentration 35.5% by weight) was added dropwise to adjust the pH to 1.0, followed by dealumination. Next, an aqueous dispersion of silica fine particles (RP-4-1) having a solid content concentration of 20% by weight by separating and washing the aluminum salt dissolved in the ultrafiltration membrane while adding 10 L of hydrochloric acid aqueous solution of pH 3 and 5 L of pure water. Got.

ついで、シリカ系微粒子(RP-4-1)の水分散液150gと、純水500g、エタノール1,750gおよび濃度28重量%のアンモニア水626gとの混合液を35℃に加温した後、エチルシリケート(SiO濃度28重量%)76gを3時間で添加してシリカ被覆層を形成し、純水5Lを加えながら限外濾過膜で洗浄して固形分濃度20重量%のシリカ被覆層を形成したシリカ系微粒子(RP-4-1)の水分散液を得た。 Next, a mixture of 150 g of an aqueous dispersion of silica-based fine particles (RP-4-1), 500 g of pure water, 1,750 g of ethanol, and 626 g of ammonia water having a concentration of 28% by weight was heated to 35 ° C. A silica coating layer is formed by adding 76 g of silicate (SiO 2 concentration 28 wt%) in 3 hours, and washed with an ultrafiltration membrane while adding 5 L of pure water to form a silica coating layer with a solid content concentration of 20 wt%. An aqueous dispersion of silica-based fine particles (RP-4-1) was obtained.

つぎに、シリカ被覆層を形成したシリカ系微粒子(RP-4-1)分散液にアンモニア水を添加して分散液のpHを10.5に調整し、ついで200℃にて11時間熟成した後、常温に冷却し、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)400gを用いて3時間イオン交換し、ついで、陰イオン交換樹脂(三菱化学(株)製:ダイヤイオンSA20A)200gを用いて3時間イオン交換し、さらに陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、固形分濃度20重量%のシリカ系微粒子(RP-4-2)の水分散液を得た。   Next, ammonia water was added to the silica-based fine particle (RP-4-1) dispersion having a silica coating layer to adjust the pH of the dispersion to 10.5, and then aged at 200 ° C. for 11 hours. After cooling to room temperature, ion exchange was performed for 3 hours using 400 g of cation exchange resin (Mitsubishi Chemical Corporation: Diaion SK1B), and then anion exchange resin (Mitsubishi Chemical Corporation: Diaion SA20A). Using 200 g for ion exchange for 3 hours, and using 200 g of a cation exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion SK1B) for ion exchange at 80 ° C. for 3 hours for washing, solid content concentration 20% by weight An aqueous dispersion of silica-based fine particles (RP-4-2) was obtained.

ついで、再び、シリカ系微粒子(RP-4-2)分散液を150℃にて11時間水熱処理した後、常温に冷却し、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)400gを用いて3時間イオン交換し、ついで、陰イオン交換樹脂(三菱化学(株)製:ダイヤイオンSA20A)200gを用いて3時間イオン交換し、さらに陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、固形分濃度20重量%のシリカ系微粒子(RP-4-3)の水分散液を得た。   Next, the silica-based fine particle (RP-4-2) dispersion was again hydrothermally treated at 150 ° C. for 11 hours, cooled to room temperature, and 400 g of cation exchange resin (Made by Mitsubishi Chemical Corporation: Diaion SK1B). Ion exchange for 3 hours, followed by ion exchange for 3 hours using 200 g of anion exchange resin (Mitsubishi Chemical Corporation: Diaion SA20A), and further cation exchange resin (Mitsubishi Chemical Corporation: 200 g of Diaion SK1B) was used for ion exchange at 80 ° C. for 3 hours for washing to obtain an aqueous dispersion of silica-based fine particles (RP-4-3) having a solid concentration of 20% by weight.

ついで限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20重量%のシリカ系微粒子(RP-4)のアルコール分散液を調製した。
固形分濃度20重量%のシリカ系微粒子(RP-4)のアルコール分散液100gにメタクリルシランカップリング剤(信越化学(株)製:KBM-503)3gを添加し、50℃で加熱
処理を行い、再び限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20重量%のシリカ系中空微粒子(RP-4)のアルコール分散液を調製した。
このシリカ系中空微粒子(RP-4)の平均粒子径、CV値および屈折率を表1に示す。
Next, an alcohol dispersion of silica-based fine particles (RP-4) having a solid concentration of 20% by weight was prepared by replacing the solvent with ethanol using an ultrafiltration membrane.
3 g of methacryl silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503) is added to 100 g of an alcohol dispersion of silica-based fine particles (RP-4) having a solid content concentration of 20% by weight, and heat treatment is performed at 50 ° C. Then, an alcohol dispersion of silica-based hollow fine particles (RP-4) having a solid content concentration of 20% by weight was prepared by replacing the solvent with ethanol again using an ultrafiltration membrane.
Table 1 shows the average particle diameter, CV value, and refractive index of the silica-based hollow fine particles (RP-4).

透明被膜形成用塗料(R4)の製造
実施例1において、シリカ系中空微粒子(RP-4)のアルコール分散液をエタノールで固形分濃度5重量%に希釈した分散液50gを用いた以外は同様にして透明被膜形成用塗料(R4)を調製した。
Production of transparent film-forming paint (R4) In Example 1, except that 50 g of a dispersion of silica-based hollow fine particles (RP-4) in which the alcohol dispersion was diluted with ethanol to a solid content concentration of 5% by weight was used. Thus, a transparent film-forming paint (R4) was prepared.

透明被膜付基材(R4)の製造
実施例1において、透明被膜形成用塗料(R4)を用いた以外は同様にして透明被膜の膜厚が100nmの透明被膜付基材(R4)を得た。この透明被膜付基材(R4)の全光線透過率、ヘイズ、反射率、屈折率、密着性、鉛筆硬度および耐擦傷性を表1に示す。
Production of transparent film-coated substrate (R4) In Example 1, a transparent film-coated substrate (R4) having a transparent film thickness of 100 nm was obtained except that the transparent film-forming paint (R4) was used. . Table 1 shows the total light transmittance, haze, reflectance, refractive index, adhesion, pencil hardness, and scratch resistance of the substrate with transparent coating (R4).

Figure 2009066965
Figure 2009066965

Claims (5)

基材上に、シリカ系中空微粒子とマトリックス成分とからなる透明被膜が形成された透明被膜付基材であって、
シリカ系中空微粒子の(i)平均粒子径(Dn)が20〜80nmの範囲にあり、(ii)粒子径
変動係数(CV値)が1〜50%の範囲にあり、(iii)屈折率が1.10〜1.40の範
囲にあることを特徴とする透明被膜付基材。
A substrate with a transparent coating in which a transparent coating composed of silica-based hollow fine particles and a matrix component is formed on a substrate,
The silica-based hollow fine particles (i) have an average particle diameter (Dn) in the range of 20 to 80 nm, (ii) a particle diameter variation coefficient (CV value) in the range of 1 to 50%, and (iii) a refractive index. 1. A substrate with a transparent coating, which is in the range of 1.10 to 1.40.
前記透明被膜中のシリカ系中空微粒子の含有量が20〜80重量%の範囲にあることを特徴とする請求項1に記載の透明被膜付基材。   The substrate with a transparent coating according to claim 1, wherein the content of the silica-based hollow fine particles in the transparent coating is in the range of 20 to 80% by weight. 前記透明被膜の膜厚が30nm〜300nmの範囲にあり、屈折率が1.25〜1.50の範囲にあることを特徴とする請求項1または2に記載の透明被膜付基材。   The substrate with a transparent coating according to claim 1 or 2, wherein the thickness of the transparent coating is in the range of 30 nm to 300 nm and the refractive index is in the range of 1.25 to 1.50. 平均粒子径(Dn)が20〜80nmの範囲にあり、粒子径変動係数(CV値)が1〜50%の範囲にあり、屈折率が1.10〜1.40の範囲にあるシリカ系中空微粒子とマトリックス形成成分と極性溶媒とからなることを特徴とする透明被膜形成用塗料。   Silica-based hollow having an average particle diameter (Dn) in the range of 20 to 80 nm, a particle diameter variation coefficient (CV value) in the range of 1 to 50%, and a refractive index in the range of 1.10 to 1.40. A paint for forming a transparent film, comprising fine particles, a matrix-forming component, and a polar solvent. 塗料中のシリカ系中空微粒子の濃度が固形分として0.1〜32重量%の範囲にあり、マトリックス形成成分を含めた合計の固形分濃度が0.5〜40重量%の範囲にあることを特徴とする請求項4に記載の透明被膜形成用塗料。   The concentration of silica-based hollow fine particles in the paint is in the range of 0.1 to 32% by weight as the solid content, and the total solid content concentration including the matrix forming component is in the range of 0.5 to 40% by weight. The paint for forming a transparent film according to claim 4, wherein
JP2007239090A 2007-09-14 2007-09-14 Transparent coat applied base material, and transparent coat forming paint Pending JP2009066965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007239090A JP2009066965A (en) 2007-09-14 2007-09-14 Transparent coat applied base material, and transparent coat forming paint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007239090A JP2009066965A (en) 2007-09-14 2007-09-14 Transparent coat applied base material, and transparent coat forming paint

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013225253A Division JP5766251B2 (en) 2013-10-30 2013-10-30 Method for producing a coating for forming a transparent film

Publications (1)

Publication Number Publication Date
JP2009066965A true JP2009066965A (en) 2009-04-02

Family

ID=40603739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007239090A Pending JP2009066965A (en) 2007-09-14 2007-09-14 Transparent coat applied base material, and transparent coat forming paint

Country Status (1)

Country Link
JP (1) JP2009066965A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011043750A (en) * 2009-08-24 2011-03-03 Nof Corp Antireflection film
WO2011059081A1 (en) * 2009-11-16 2011-05-19 日揮触媒化成株式会社 Process for production of silica-alumina sol, silica-alumina sol, coating agent for formation of transparent coating film which comprises the sol, and substrate having transparent coating film attached thereto
JP2011137097A (en) * 2009-12-28 2011-07-14 Jgc Catalysts & Chemicals Ltd Coating liquid for transparent film formation, substrate with transparent film, and method for producing hydrophobic metal oxide particle
JP2012030489A (en) * 2010-07-30 2012-02-16 Jgc Catalysts & Chemicals Ltd Substrate with transparent film and coating to form transparent film
JP2013127065A (en) * 2011-12-16 2013-06-27 Eternal Chemical Co Ltd Anti-reflection coating composition and method for preparing the same
JP2013160799A (en) * 2012-02-01 2013-08-19 Asahi Glass Co Ltd Manufacturing method of article with low reflection film
JP2014001294A (en) * 2012-06-18 2014-01-09 Hitachi Chemical Co Ltd Low refractive index resin film, and composite film using the same
JP2014073614A (en) * 2012-10-03 2014-04-24 Nof Corp Color tone correction film and transparent conductive film using the same, and transparent conductive adhesive film laminating transparent adhesive layer
JP2014073613A (en) * 2012-10-03 2014-04-24 Nof Corp Color tone correction film and transparent conductive film using the same
US10678091B2 (en) 2017-10-25 2020-06-09 Samsung Display Co., Ltd. Color conversion element and display device including the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001233611A (en) * 2000-02-24 2001-08-28 Catalysts & Chem Ind Co Ltd Silica-based microparticle, method for producing dispersion with the same, and base material with coating film
JP2006208991A (en) * 2005-01-31 2006-08-10 Fuji Photo Film Co Ltd Antireflection film, polarizing plate and image display device
JP2006215096A (en) * 2005-02-01 2006-08-17 Fuji Photo Film Co Ltd Antireflection film, polarizing plate using the same and image display unit
JP2007193323A (en) * 2005-12-22 2007-08-02 Fujifilm Corp Antireflection film, front plate for plasma display panel using the same, plasma display panel-display device, and image display device
WO2008117652A1 (en) * 2007-03-28 2008-10-02 Konica Minolta Opto, Inc. Anti-reflection film, method for production of anti-reflection film, polarizing plate using the anti-reflection film, and display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001233611A (en) * 2000-02-24 2001-08-28 Catalysts & Chem Ind Co Ltd Silica-based microparticle, method for producing dispersion with the same, and base material with coating film
JP2006208991A (en) * 2005-01-31 2006-08-10 Fuji Photo Film Co Ltd Antireflection film, polarizing plate and image display device
JP2006215096A (en) * 2005-02-01 2006-08-17 Fuji Photo Film Co Ltd Antireflection film, polarizing plate using the same and image display unit
JP2007193323A (en) * 2005-12-22 2007-08-02 Fujifilm Corp Antireflection film, front plate for plasma display panel using the same, plasma display panel-display device, and image display device
WO2008117652A1 (en) * 2007-03-28 2008-10-02 Konica Minolta Opto, Inc. Anti-reflection film, method for production of anti-reflection film, polarizing plate using the anti-reflection film, and display device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011043750A (en) * 2009-08-24 2011-03-03 Nof Corp Antireflection film
WO2011059081A1 (en) * 2009-11-16 2011-05-19 日揮触媒化成株式会社 Process for production of silica-alumina sol, silica-alumina sol, coating agent for formation of transparent coating film which comprises the sol, and substrate having transparent coating film attached thereto
JP5839993B2 (en) * 2009-11-16 2016-01-06 日揮触媒化成株式会社 Method for producing silica / alumina sol, silica / alumina sol, transparent film-forming coating material containing the sol, and substrate with transparent film
JP2011137097A (en) * 2009-12-28 2011-07-14 Jgc Catalysts & Chemicals Ltd Coating liquid for transparent film formation, substrate with transparent film, and method for producing hydrophobic metal oxide particle
JP2012030489A (en) * 2010-07-30 2012-02-16 Jgc Catalysts & Chemicals Ltd Substrate with transparent film and coating to form transparent film
US9102836B2 (en) 2011-12-16 2015-08-11 Eternal Materials Co., Ltd. Anti-reflection coating composition and process for preparing the same
JP2013127065A (en) * 2011-12-16 2013-06-27 Eternal Chemical Co Ltd Anti-reflection coating composition and method for preparing the same
JP2013160799A (en) * 2012-02-01 2013-08-19 Asahi Glass Co Ltd Manufacturing method of article with low reflection film
JP2014001294A (en) * 2012-06-18 2014-01-09 Hitachi Chemical Co Ltd Low refractive index resin film, and composite film using the same
JP2014073614A (en) * 2012-10-03 2014-04-24 Nof Corp Color tone correction film and transparent conductive film using the same, and transparent conductive adhesive film laminating transparent adhesive layer
JP2014073613A (en) * 2012-10-03 2014-04-24 Nof Corp Color tone correction film and transparent conductive film using the same
US10678091B2 (en) 2017-10-25 2020-06-09 Samsung Display Co., Ltd. Color conversion element and display device including the same
US11042059B2 (en) 2017-10-25 2021-06-22 Samsung Display Co., Ltd. Color conversion element and display device including the same
US11281045B2 (en) 2017-10-25 2022-03-22 Samsung Display Co., Ltd. Color conversion element and display device including the same

Similar Documents

Publication Publication Date Title
JP5757673B2 (en) Substrate with transparent film and paint for forming transparent film
JP2009066965A (en) Transparent coat applied base material, and transparent coat forming paint
JP5700458B2 (en) Silica-based fine particles, coating material for coating formation and substrate with coating
JP5378771B2 (en) Base material with antireflection film and coating liquid for forming antireflection film
JP5247753B2 (en) Fine particles, fine particle dispersed sol, and coated substrate
JP5078620B2 (en) Hollow silica fine particles, composition for forming transparent film containing the same, and substrate with transparent film
JP4428923B2 (en) Method for producing silica-based hollow fine particles
JP5686604B2 (en) Chain silica-based hollow fine particles and production method thereof, coating liquid for forming transparent film containing the fine particles, and substrate with transparent film
JP6895760B2 (en) Method for producing silica-based particle dispersion liquid, silica-based particle dispersion liquid, coating liquid for forming a transparent film, and base material with a transparent film
JP2008163205A (en) Coating for forming transparent coating film and substrate with transparent coating film
JP6016548B2 (en) Coating liquid for forming transparent film and substrate with transparent film
JP5480743B2 (en) Substrate with transparent film and paint for forming transparent film
JP7360294B2 (en) Particles containing silica and having a cavity inside an outer shell, a method for producing the same, a coating liquid containing the particles, and a substrate with a transparent coating containing the particles
JP2009035573A (en) Surface treatment method for metal oxide particle, dispersion liquid containing the surface treated metal oxide particle, coating liquid for forming transparent coating film, and substrate with transparent coating film
JP5642535B2 (en) Novel silica-based hollow fine particles, base material with transparent film, and paint for forming transparent film
JP5680372B2 (en) Substrate with transparent film and coating liquid for forming transparent film
JP5084122B2 (en) Film-coated substrate and coating solution for film formation
JP5159265B2 (en) Substrate with transparent film and coating liquid for forming transparent film
JP5766251B2 (en) Method for producing a coating for forming a transparent film
JP4731137B2 (en) Method for producing silica-based fine particles
JP5837155B2 (en) Method for producing microring-shaped inorganic oxide particles
JP5404568B2 (en) Silica-based fine particles, coating material for coating formation and substrate with coating
JP5501117B2 (en) Substrate with transparent film and coating liquid for forming transparent film
JP2022089560A (en) Modified hollow particle and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100616

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130730