JP5591188B2 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
JP5591188B2
JP5591188B2 JP2011155547A JP2011155547A JP5591188B2 JP 5591188 B2 JP5591188 B2 JP 5591188B2 JP 2011155547 A JP2011155547 A JP 2011155547A JP 2011155547 A JP2011155547 A JP 2011155547A JP 5591188 B2 JP5591188 B2 JP 5591188B2
Authority
JP
Japan
Prior art keywords
voltage
inverter
command
pulse
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011155547A
Other languages
English (en)
Other versions
JP2013021891A (ja
Inventor
真一 古谷
喜久夫 泉
達也 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011155547A priority Critical patent/JP5591188B2/ja
Publication of JP2013021891A publication Critical patent/JP2013021891A/ja
Application granted granted Critical
Publication of JP5591188B2 publication Critical patent/JP5591188B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inverter Devices (AREA)

Description

本発明は、電力変換装置、特に3レベル方式のインバータの交流端子にさらに単相インバータを直列に接続する構成を有する電力変換装置に関するものである。
3レベル方式のインバータは、2レベル方式のインバータよりも交流端子側に出力できる電圧レベル数が増加する。このためスイッチング周波数を上げることなく出力電圧に含まれる高調波成分を抑制できるなどの特徴を持ち、大容量インバータの主回路方式として多く採用されている。3レベルインバータは正・零・負の電圧パルスを出力するため、直流母線側の電圧Vdcを分圧するための分圧コンデンサが2個直列に接続される。上記分圧コンデンサによって分圧された電圧Vc0は上記電圧Vdcに対して0.5Vdcとなる。この分圧された電圧0.5Vdcを基準(零)に取ると、Vdc出力時に正、0出力時に負の電圧が出力されることになる。
ところで、交流端子側に正・零・負の電圧パルスを発生させる3レベル方式のインバータを含み、さらに交流側出力電圧のレベル数を増加させるように、3レベル方式のインバータの交流側出力端子にさらに単相インバータを接続する構成を有するインバータ装置(以後、3レベル階調制御インバータと記載する)が知られている。このような3レベル階調制御インバータにおいては、3レベルインバータでは1パルスや3パルスといった低いパルスモードのスイッチングを行い、単相インバータでは、電圧指令と3レベルインバータ出力電圧との差分を出力すべく高速スイッチングを行い、インバータ装置全体として比較的精度の良い出力電圧を出力することができる。
またその構成としては、3レベルインバータでは高耐圧のスイッチング素子を用い、単相インバータでは耐圧が低いもののスイッチング損失が少なく高速スイッチング可能なスイッチング素子を用いる。高耐圧のスイッチング素子は比較的スイッチング損失が大きいため、1パルス、3パルスといった低いパルスモードのパルス指令で動作させ、正弦波状の電圧指令との差分を単相インバータに出力させることで、主回路部全体での損失低減と、交流側出力電圧の精度及び更新速度の向上が可能である。単純な3レベルインバータでは交流側出力電圧精度向上のためには、スイッチング周波数を上げる必要があるため、3レベル階調制御インバータでは、同一容量でかつ同一の出力電圧精度の3レベルインバータと比較すると電力の変換効率が高いと言った特徴を持つ。
以後、分圧コンデンサによって分圧された電位を中性点電圧Vc0と記載する。この分圧コンデンサ同士の接続点(中性点)の電圧は、スイッチングパルスのアンバランスや分圧コンデンサ容量のバラつきなど様々な要因により、両コンデンサの電圧バランスが崩れ中性点電圧Vc0の変動が発生する。これによりインバータ装置の出力電圧に歪みが生じる。また分圧コンデンサやスイッチング素子の耐圧を越えた電圧が印加されることになるなど望ましいものではなく、両方の分圧コンデンサの電圧が均等化するような対策がとられる。これは単純な3レベルインバータのみならず、3レベル階調制御インバータも同様である。この対策として例えばこの具体的な方式として、3レベルインバータの出力電流の極性を検出し、分圧コンデンサ電圧の差電圧情報と合わせて、3レベルインバータへの1パルス指令を調整し、その中性点電圧(零電圧パルス)出力区間を調整することで、中性点電圧Vc0の制御を行い、分圧コンデンサの電圧負担を均等化するものがある(例えば、特許文献1参照)。
また、同様に3レベルインバータの中性点電圧制御を目的とするものとして、各分圧コンデンサと並列にスイッチと放電抵抗とからなるバランス回路を接続し、両分圧コンデンサのうち、電圧負担が大きい側のバランス回路のスイッチをオンして放電を行い、電圧負担の均等化を図るものがある。この技術では、3レベルインバータへの1パルス指令とは独立に中性点電圧制御が実施でき、分圧コンデンサの電圧負担の均等化を速やかに達成できる(例えば、特許文献2参照)。
特開平7−75345号公報 特開平5−244702号公報
従来の特許文献1が示されたものは以上のように構成され、3レベルインバータの出力電流の極性を検出し、分圧コンデンサ電圧の差電圧情報と合わせて、3レベルインバータへのスイッチング指令を調整することにより中性点電圧の制御を行うものであるので、分圧コンデンサの電圧分担が均等化され、3レベルインバータの出力電圧の歪みの抑制や、スイッチング素子に耐圧以上の電圧の印加防止を実現できる。しかし、3レベルインバータの出力電流の極性を検出する方式を3レベル階調制御インバータに適用すると以下に述べるような問題があった。例えば出力電流の極性を基準とすると検出電流に含まれるノイズにより電流極性の判別を誤り、3レベルインバータへのパルス指令を乱してしまい、中性点電圧制御が良好になされない場合があった。従って、分圧コンデンサの電圧分担が等しくなるように安定して制御できず、電力変換装置が安定して動作しない場合があった。特に3レベル階調制御インバータでは単相インバータにおいて高速スイッチング動作を行うため、スイッチングノイズが顕著となり影響が大きくなる。
また、上記特許文献2に示す分圧コンデンサと並列にスイッチと放電抵抗とからなるバランス回路を接続し、両分圧コンデンサのうち、電圧負担が大きい側のバランス回路のスイッチをオンして放電を行うものを3レベル階調制御インバータに適用した場合は、上述した電流制御系やその応答特性に関わらず、安定して中性点電圧制御が実現できるが、中性点電圧制御用のバランス回路において放電抵抗による損失が発生し、3レベル階調制御インバータのメリットである電力変換効率の高さが損なわれてしまうという問題があった。
この発明は上記のような問題点を解決するためになされたものであり、分圧コンデンサの電圧分担が等しくなるよう安定して制御でき、電力損失が少なくかつ安定して動作する電力変換装置を得ることを目的とする。
この発明に係る電力変換装置においては、
3レベルインバータ及び単相インバータの交流側発生電圧の合計電圧を交流側に発生する階調制御インバータと、上記階調制御インバータを制御する制御装置とを備えた電力変換装置であって、
上記3レベルインバータは、第1及び第2の分圧コンデンサにて分圧された直流電源に接続され直流電力を交流電力に変換するものであり、
上記単相インバータは、コンデンサと単相インバータ回路とを有し、上記単相インバータ回路の直流側が上記コンデンサに接続され交流側が上記3レベルインバータの交流側に直列に接続されたものであり、
上記制御装置は、上記3レベルインバータの出力する電力と上記第1及び第2の分圧コンデンサの電圧とに基づき、上記第1及び第2の分圧コンデンサの電圧分担が等しくなるように、上記3レベルインバータへスイッチング指令を発するものである。
この発明は、
3レベルインバータ及び単相インバータの交流側発生電圧の合計電圧を交流側に発生する階調制御インバータと、上記階調制御インバータを制御する制御装置とを備えた電力変換装置であって、
上記3レベルインバータは、第1及び第2の分圧コンデンサにて分圧された直流電源に接続され直流電力を交流電力に変換するものであり、
上記単相インバータは、コンデンサと単相インバータ回路とを有し、上記単相インバータ回路の直流側が上記コンデンサに接続され交流側が上記3レベルインバータの交流側に直列に接続されたものであり、
上記制御装置は、上記3レベルインバータの出力する電力と上記第1及び第2の分圧コンデンサの電圧とに基づき、上記第1及び第2の分圧コンデンサの電圧分担が等しくなるように、上記3レベルインバータへスイッチング指令を発するものであるので、
電力損失が少なく安定して動作する電力変換装置を得ることができる。
この発明の実施の形態1である3レベル階調制御インバータの構成を示す構成図である。 図1の3レベルインバータの1相分の詳細構成を示す構成図である。 図1の単相インバータの詳細構成を示す構成図である。 中性点電圧制御部の構成を示すブロック図である。 1パルススイッチング制御部の構成を示すブロック図である。 1パルス指令を生成する過程を説明するための説明図である。 3レベルインバータと単相インバータとの出力電圧分担を説明するための説明図である。 3レベルインバータと単相インバータとの出力電圧分担を説明するための説明図である。 パルス幅制御とパルス位相制御を説明するための説明図である。 実施の形態2である3レベル階調制御インバータの構成を示す構成図である。 バランス回路制御部の構成を示す構成図である。 バランス回路の構成を示す構成図である。
実施の形態1.
図1〜図9は、この発明を実施するための実施の形態1を示すものであり、図1は3レベル階調制御インバータの構成を示す構成図、図2は3レベルインバータの1相分の詳細構成詳細構成を示す構成図である。図3は単相インバータの詳細構成を示す構成図、図4は中性点電圧制御部の構成を示すブロック図、図5は1パルススイッチング制御部の構成を示すブロック図である。図6は1パルス指令を生成する過程を説明するための説明図である。図7及び図8は3レベルインバータと単相インバータとの出力電圧分担を説明するための説明図、図9はパルス幅制御とパルス位相制御を説明するための説明図である。図1において、電力変換装置としての3レベル階調制御インバータ100は、次のように構成されている。3レベル階調制御インバータ100は、大きく分けて電力変換動作を司る主回路部200と制御装置としてのインバータ制御部300とで構成される。主回路部200は3レベルインバータ1と、単相インバータ2と、分圧コンデンサ装置3を有する。3レベル階調制御インバータ100は、3レベルインバータ1および単相インバータ2の交流側発生電圧の合計電圧を交流側に発生する。分圧コンデンサ装置3は、容量等の仕様が同じ第1及び第2の分圧コンデンサとしてのP側及びN側コンデンサ3a,3bが接続点3c(以下、中性点3cと呼ぶ場合もある)において直列に接続されて構成されている。直列接続されたP側及びN側コンデンサ3a,3bは直流母線39を介して直流電源4に並列に接続され、直流電源4の直流電圧を接続点3cとの間で約1/2ずつに分圧する。なお、プラス側の直流母線39に「+」の符号を、マイナス側の直流母線39に「−」の符号を付している。
3レベルインバータ1は、1アーム分が例えば図2(a)や図2(b)に示すような回路構成を有し(図は1相分を示している)、半導体開閉素子にて構成された各スイッチA〜Dが図示のように接続されている。すなわち、図2(a)においてはスイッチA〜Dの直列回路が分圧コンデンサ装置3に並列に接続され、直流側端子1aが分圧コンデンサ装置3を構成するコンデンサ3a,3bの接続点3cに接続されている。スイッチBとスイッチCとの直列回路に並列にダイオードD1とD2との直列回路が接続されている。また、ダイオードD1とD2との接続点が直流側端子1aに接続され、スイッチBとスイッチCとの接続点が交流側端子1bに接続されている。
図2(b)においては、スイッチAとスイッチBとの直列回路が分圧コンデンサ装置3に並列に接続され、スイッチAとスイッチBとの接続点が交流側端子1bに接続されている。また、スイッチAとスイッチBとの接続点がスイッチCとスイッチDとの直列回路を介して直流側端子1aに接続されている。直流側端子1aは、分圧コンデンサ装置3を構成するP側及びN側コンデンサ3a,3b同士の接続点3cに接続されている。ここで、直流母線39の電圧をVdcとすると、正(Vdc)、零(0.5Vdc)、負(0)の電圧を出力するための各スイッチA〜Dを図2(a)の回路の場合は図2(c)のようにオン・オフし、図2(b)の回路の場合は図2(d)のようにオン・オフする。この3レベルインバータ1の零電圧出力時の電流で中性点電圧(接続点3cと負極側の直流母線39との間の電圧)Vc0が変動する。例えば図2(a)に示すように交流側端子1bから電流が出力される場合は、図2(a)中の矢印の経路で電流が流れ中性点電圧Vc0が下降する。電流の極性が逆になると中性点電圧Vc0は上昇する。
3レベルインバータ1の3つの交流側端子1b(図2)には単相インバータ2の一方の交流端子2a(図3)が接続され、単相インバータ2は3レベルインバータ1の出力電圧を補償するべく動作する(詳細後述)。各単相インバータ2の他方の交流端子2bに負荷としての3相交流電源8が接続される。なお、直流電源4はバッテリやキャパシタユニット、太陽電池などの蓄電・発電装置と、それらを接続するために電圧レベルを調整するDC/DCコンバータからなる。また、接続用のトランスやリアクトルなどその他機器が設けられているが図示を省略する。単相インバータ2は、図1に示す例では1相あたり1台接続するので3相で合計3台となるが、交流側出力電圧の精度向上及び出力電圧範囲の拡大を目的に1相あたり複数台の単相インバータを直列接続する場合もある。単相インバータ2は図3に示すように構成されている。すなわち、単相インバータ2は、半導体開閉素子にて構成された4個のスイッチング素子A〜Dが図示のように単相フルブリッジに接続された単相インバータ回路およびコンデンサとしての内蔵コンデンサ2cによって構成されている。単相インバータ回路の直流側に内蔵コンデンサ2cが接続され、単相インバータ回路の交流側が交流端子2a及び交流端子2bに接続されている。内蔵コンデンサ2cが図3に示すような極性(図の上側が+極性)で充電されているとすると、単相インバータ2への出力電圧指令が正の場合に図3のスイッチング素子Aをオン、スイッチング素子Bをオフし、スイッチング素子CとDとはPWMにより高速にオン・オフを繰り返す。出力電圧指令が負の場合には、スイッチング素子AとBのオン・オフの関係が反転する。
なお、単相インバータ2への出力電圧指令とは、単相インバータ2が出力すべき電圧指令V2(図6のV2参照)のことであり、後述の3レベル階調制御インバータ100の出力すべき電圧Vref(電圧指令S14)から、3レベルインバータ1が出力する1パルス波形V1(後述の1パルス指令S16に等しい)を差し引いた値である。主回路部200にはその他に、3レベル階調制御インバータ100の出力電流を検出する電流検出部5、P側及びN側コンデンサ3a,3bの電圧VcP及び電圧VcNを検出する電圧検出部6が設けられている。また、図示しないが単相インバータ2の内蔵の内蔵コンデンサ2c(図3)の電圧を検出する電圧検出部も設けられている。このような3レベル階調制御インバータ100の制御には3相交流電源8の電圧検出なども必要となるが、図示を省略する。
次に、図1に戻ってインバータ制御部300の構成について説明する。図1において、インバータ制御部300は、電流制御部11、電流指令部12、1パルススイッチング制御部15、単相インバータスイッチング制御部17、スイッチング指令調整部としての中性点電圧制御部21、リミット値計算部23を有する。電流制御部11では、3レベル階調制御インバータ100の入出力電流が電流指令部12から出力される電流指令S13と一致するよう、検出電流信号S10も用いて処理がなされ、電圧指令S14(Vref)が出力される。本実施の形態では3レベルインバータ1は1パルススイッチングを行うものとするが、他のパルスモードにおいても本質的には同じである。1パルススイッチング制御部15は、電圧指令S14と電圧信号S19(P側及びN側コンデンサ3a,3bの電圧)に基づいて3レベルインバータ1へのスイッチング指令としての3レベルインバータ1パルス指令S16(以下、1パルス指令S16と称する)を生成し3レベルインバータ1へ出力する。
1パルス指令S16は、図6に示すように電圧がV1であって、タイミング(時間)t1において立ち上がり、タイミングt2において立ち下がり、タイミングt3において立ち上がり、タイミングt4において立ち下がる、半サイクルごとに出力される1パルスであり、この1パルス指令S16により3レベルインバータ1のスイッチA〜Dがオン・オフ制御される。すなわち、正弦波の交流出力電圧指令である電圧指令S14(Vref)が所定値よりも大きくなったとき立ち上がり電圧指令S14が上記所定値以下になったとき立ち下がる1パルスの電圧を上記交流出力電圧指令の半周期毎に1電圧パルスとして出力するように1パルス指令S16が発信され上記3レベルインバータ1が制御される。この1パルス指令S16は、期間T1において正、期間T2において負となる電圧パルスである。電圧V1については、後述する。なお、詳細は後述するが実際の1パルス指令S16の生成においては前述のような振幅比較ではなく、タイミングの参照によって実施する。
また、単相インバータスイッチング制御部17においては、図6に示すように電圧指令S14と1パルス指令S16との差ΔVrefを求め、差ΔVrefに基づいて単相インバータ2に対する電圧指令V2(=ΔVref)を計算し、さらにキャリア比較によるPWM処理によってPWM制御信号を生成し、単相インバータスイッチング指令S18として出力する。3レベルインバータ1の出力電圧と単相インバータ2の出力電圧V2(ΔVref)とを加算することにより、電圧指令S14に対応した正弦波の出力電圧Vout(=Vref)が3レベル階調制御インバータ100から出力される。3レベル階調制御インバータ100では単相インバータ2の内蔵コンデンサ2cの電圧は、3レベルインバータ1より供給される電力で維持される。このため3相交流電源8とやり取りする有効電力と単相インバータ2が必要とする電力との合計値が、3レベルインバータの入力あるいは出力電力と等しくなるよう1パルススイッチング制御部15から出力する1パルス指令S16の幅が決定される。
さらに、中性点電圧制御部21について図4を用いて説明する。図4において、中性点電圧制御部21は、減算器21a、LPF(ローパスフィルタ)21b、増幅器21cを有する。P側コンデンサ3aの電圧VcPとN側コンデンサ3bの電圧VcNとが電圧信号S19として減算器21aに入力され差分を取り、LPF21bを経て増幅器21cにて比例制御により1パルス指令調整信号S22が1パルススイッチング制御部15(図1)へ出力され、1パルススイッチング制御部15はこの1パルス指令調整信号S22に基づき1パルス指令S16を調整する(詳細後述)。中性点電圧Vc0が母線電圧Vdcの1/2より低い場合には1パルス指令調整信号S22は正となる。なお、中性点電圧Vc0は平均的には一定値となっているが瞬時値としては脈動しており、LPF21bはこの脈動を除去する働きをもつ。この脈動は、3レベルインバータ1の出力電流に同期する場合が多く、電流の極性反転や相ごとの大小反転のタイミングでサンプルホールドを行ってもよい。分圧コンデンサ装置3の電圧はそのP側及びN側コンデンサ3a,3bの通過電流に対し積分相当の特性となる。3レベルインバータ1への1パルス指令S16を1パルス指令調整信号S22にて調整することにより3レベルインバータ1のスイッチA〜Dの中性点電圧Vc0の変化に寄与する通電期間を変更する。
3レベルインバータ1の制御上、中性点電圧Vc0の変化に寄与しない区間も存在するため純粋な積分特性とは言えないが、P側及びN側コンデンサ3a,3bの差電圧は積分相当の特性を有すると見做すことができる。このため中性点電圧制御部21にて比例制御を行うと、中性点電圧制御系の閉ループ伝達関数は一次遅れ系となり安定した制御が達成できる。またP側及びN側コンデンサ3a,3bの電圧変化はその通電電流が大きいほど大きくなる。このため電流の大きさにより比例制御のゲインを変化させることで、この中性点電圧制御の制御応答の変動を抑制できる。具体的には通電電流が大きいほど上記ゲインを小さく設定する。このため、電流指令部12からの電流指令S13(図1)を中性点電圧制御部21の増幅器21c(図4)へ入力し、電流指令S13の大きさに応じてゲインを調整するようにしている。
次にリミット値計算部23(図1)の動作について図7を用いて説明する。電圧指令S14が正で、3レベルインバータ1への1パルス指令S16の正電圧立ち上がり部を例にとり説明を行う。スイッチA〜Dでの電圧降下を無視すると、3レベルインバータ1の出力電圧パルス(正)の電圧の振幅V1p(電圧信号S19に相当)はP側コンデンサ3aの電圧VcPとなる。単相インバータ2の出力電圧の振幅V2p(電圧信号S20に相当)が3レベルインバータの出力電圧(正)の振幅V1pに対して加算されることとなる。すなわち3レベル階調制御インバータ100として出力可能な電圧範囲は3レベルインバータ1の零電圧0に対して単相インバータ2の出力電圧の振幅V2pを加算または減算した範囲、あるいは3レベルインバータ1の正の電圧の振幅V1pに対して単相インバータ2の出力電圧の振幅V2pを加算または減算した範囲となる。電圧指令S14を満たすためには、図7に示したタイミングtaとタイミングtb(後述)との範囲T11内にて1パルス指令S16を立ち上げる。なお、リミット値計算部23において、電圧(振幅)V2pと電圧指令S14(Vref)との交点におけるタイミングをタイミングta、電圧(振幅)V1pから電圧V2pを減算した電圧と電圧指令S14(Vref)との交点におけるタイミングをタイミングtbとして求め、リミット信号S24として出力する。
次に1パルススイッチング制御部15について図5によって説明する。1パルススイッチング制御部15は、電力計算部15a、1パルス位相タイミング制御部15b、各R,S,T相のパルス生成部15cを有する。各パルス生成部15cは、それぞれリミッタ15eと1パルススイッチング波形生成部15fとを有する。電力計算部15aでは電流指令部12からの電流指令S13(図1)と電流制御部11からの電圧指令S14とを入力して、3レベルインバータ1が入出力する有効電力と無効電力を求める。1パルス位相タイミング制御部15bでは上記のように、単相インバータ2が必要とする電力と3相交流電源8とやり取りする有効電力との合計値が3レベルインバータ1の入力あるいは出力電力と等しくなるように、P側及びN側コンデンサ3a,3bの電圧信号S19(VcP,VcN)から1パルス指令S16の立ち上げ、立ち下げタイミングとなる1パルススイッチング基準タイミングS33(t1,t2等)を出力する。
これは電流指令S13と1パルスの出力電圧V1(1パルス指令S16)との積を電圧指令一周期にわたり積分して平均値を計算した結果が、3レベルインバータ1が入力あるいは出力する有効電力に等しいという原理に基づいている。このため1パルス位相タイミング制御部15bへは電流指令S13やP側及びN側コンデンサ3a,3bの電圧信号S19(VcP,VcN)、有効電力を入力とする。中性点電圧Vc0が0.5Vdcである場合には後に示す1パルス指令S16の調整は不要であり、上記1パルススイッチング基準タイミングS33(t1,t2等)をそのまま用いて制御がなされる。中性点電圧制御が必要な場合、1パルス位相タイミング制御部15bではさらに1パルス指令S16のパルス幅あるいはパルス位相を変更するよう、上記の1パルススイッチング基準タイミングS33(t1,t2等)を調整する。
図9を用いてこれを説明する。なお、図9では矢印Fや矢印Gで示した調整方向は中性点電圧Vc0を上昇させる方向に記載している。図9(a)は力率1の場合における1パルス指令S16により制御される3レベルインバータ1の出力電圧波形V1outである。上記の電力の釣り合いで導出された元々の1パルス指令S16に対してパルス幅の調整を行った場合の中性点電圧Vc0の変化を折線Vc11で、調整しないときの変化を折線Vc10で、パルス位相の調整を行った場合の中性点電圧Vc0の変化を折線Vc12で示している。なお、パルス幅の調整を行った場合は、図9(a)に示すように元のタイミングが矢印Fの方向に移動し、タイミングt1がt11に、t2がt21に、t3がt31に、t4がt41に変化する。また、パルス位相の調整を行った場合は、元のタイミングが矢印Gの方向に移動し、タイミングt1がt12に、t2がt21に、t3がt32に、t4がt41に変化する。例えばこのパルス幅の矢印Fで示した調整方向への調整により電流が負極性かつ零電圧出力となる区間が増加し、中性点電圧Vc0が上昇する。図9(b)も同様の図であるがここでは力率は0でありパルス位相の調整により中性点電圧Vc0の上昇が起こる。すなわち、力率によって中性点電圧Vc0の制御に有効な1パルス指令の調整方法が異なる。1パルス位相タイミング制御部15b(図5)では3レベルインバータ1の力率に応じて1パルス指令の調整方式を選択する。より簡易な方式として力率の代わりに有効電力と無効電力との比較によって判断を実施してもよい。具体的には有効電力が無効電力より大きい場合にはパルス幅制御を、逆の場合にはパルス位相制御を実施する。また、上記パルス幅あるいはパルス位相の調整量は1パルス指令調整信号S22に従う。
なお、単純にこれらのパルス幅あるいはパルス位相調整により1パルススイッチング基準タイミングを求めると元々の有効電力の釣り合いがとれなくなる。例えば3レベルインバータ1から出力する電力が不足される場合は、さらに正電圧パルスと負電圧パルスを広げるよう1パルススイッチング基準タイミングS33を調整する。図9(b)に示す力率0の条件では有効電力の授受はないため、上記の有効電力の釣り合いは無視でき、単にパルス位相制御のみとなる。なお力率が0でない場合には、すなわち有効電力の授受を行う場合には上記の有効電力の釣り合いを考慮する必要がある。1パルス位相タイミング制御部15bでは以上の動作を行い、1パルススイッチング基準タイミングS33(t1,t2等)を出力する。
またリミッタ15eでは1パルス指令S16の立ち上がりタイミングをリミット値計算部23で計算されたリミット信号S24内に制限を行う。すなわち1パルス指令S16の立ち上げタイミングt1を図7に示すタイミングta,tbの範囲T11内にあるように制限を行う。1パルス指令S16の立ち下げタイミングt2についても図示しないが同様に所定のタイミングの範囲内にあるように制限を行う。以上の手順でリミッタ15eにより調整・制限された1パルススイッチング基準タイミングS33に基づいて、1パルススイッチング波形生成部15fは1パルス指令の波形を生成し、1パルス指令S16として出力する。また、図8に示すように、3レベルインバータ1の出力電圧の振幅V1pと単相インバータ2が出力可能な負方向の最大電圧(振幅)(−V2p)とを加算した電圧(V1p−V2p)が3レベル階調制御インバータ100が出力すべき指令電圧S14(Vref)を越える場合(立ち上がりタイミングt1が図8におけるタイミングtaよりも早い(小さい)場合)は、タイミングtaよりも早くならないように立ち上げタイミングt1を制限する。あるいは、タイミングt1とタイミングtaとの間(期間T12)においては単相インバータ2の出力電圧V2を0とするとともに3レベルインバータ1の1パルス指令S16を図8の期間T12の間PWM制御に変更し3レベルインバータ1の出力電圧が3レベル階調制御インバータ100が出力すべき指令電圧S14になるように制御する。また、このとき上記リミッタ15eでは、制限が発生していることをリミット制限指示信号S25として出力する。
なお、本実施例では3相の3レベルインバータを用いて説明したが、単相の3レベルインバータであっても同様の効果を奏する。なお相ごとに中性点電圧制御部を設けて中性点電圧制御を行っても同様の効果が得られるが、特に3相以上の多相インバータでは相間の短絡を防止する必要があり、また相の平衡のため線間電圧をバランスさせる必要があるため、全ての相で同じ1パルス指令調整信号S22にて1パルス指令S16の調整を行うことが望ましい。特に階調制御インバータでは、全ての相で同じ1パルス指令調整信号S22にて1パルス指令S16の調整を行い、1パルス指令調整信号S22の更新を電圧指令一周期に1回に限定することで、結果として単相インバータの出力電圧負担が各相で均等化されるようにする。これは、単相インバータ2の内蔵コンデンサ2cの電圧の不均衡化を抑制する効果があり、これにより、3レベル階調制御インバータの出力電圧精度低下の抑制をより一層図ることが可能となる。
以上により、P側及びN側コンデンサ3a,3bの分担電圧が等しくなるように安定して制御することができ、3レベルインバータ1ひいては3レベル階調制御インバータ100を安定して動作させることができる。3レベルインバータが出力する電力は、インバータ装置(例えば、特許文献1の電力変換装置)の出力電流の極性の変化と異なり、比較的緩やかに変化する。このため検出信号のノイズ除去にカットオフ周波数の低いフィルタを用いても、フィルタによる位相遅れは電流検出の場合と比較して相対的に小さくなる。この結果、検出ノイズの影響を受けにくい。このため3レベルインバータへの1パルス指令の調整を安定して実施でき、結果として安定かつ速やかな中性点電圧制御を行うことができる。特に、3レベル階調制御インバータにて電流制御系を構築した場合に顕在化する問題点である中性点電圧制御により電流に乱れが生じ、さらに中性点電圧制御が乱れると言った悪循環を回避することができ、インバータ装置全体の安定性及び信頼性を向上することができる。
また、次のような問題点を解決することができる。3レベル階調制御インバータに限らず、インバータ装置を特に電気時定数の短い負荷に接続した場合は、スイッチングパルスによる電流リプルが顕著となる。3レベルインバータを低いパルスモード(例えば1パルスモード)で動作させ、特許文献1に記載されたような3レベルインバータの出力電流の極性を検出して中性点電圧Vc0の制御を行う場合、1パルス指令のオン・オフ切り替え近傍での電流極性を予想する必要があるが、上記の電流リプルの問題により、その予想が困難となり中性点電圧制御が良好になされなくなる場合がある。特に、3レベル階調制御インバータでは単相インバータにおいて、高速スイッチング動作を行うため、スイッチングノイズが顕著となり影響が大きくなる。また3レベル階調制御インバータでは単相インバータの動作により、同一出力で、同一の変換効率の単純な3レベルインバータと比較すると、背景技術の項にて述べたように出力電圧の精度と更新速度が向上し高応答の電流制御系の構築が可能となるが、3レベルインバータ1の比較的低いパルスモードのパルス指令に対して電流指令も比較的高速に変動する場合が多く、この場合、単純に当該電流指令を検出電流信号の代用としようとしても、前記と同じく3レベルインバータへの1パルス指令を乱すことになる。
その他の課題として、中性点電圧制御により3レベルインバータへの1パルス指令の調整を実施すると、条件によっては単相インバータが出力すべき電圧が、同単相インバータの出力可能範囲を越え、インバータ装置全体として交流側出力電圧精度が低下する問題があった。また3レベル階調制御インバータでは高応答の電流制御系の構築が可能となるが、このとき前記の中性点電圧制御に起因する出力電圧精度低下によりインバータ装置出力電流が乱れ、電流制御動作により電圧指令にも大きな乱れが生じる。その結果、3レベルインバータへの1パルス指令にも乱れが生じ、中性点電圧制御が良好になされないばかりか、電流制御性能も低下すると言う悪循環を生じる場合があった。この課題は電流制御系を持つ単純な3レベルインバータでも発生し得るが、より高い電流制御応答が実現可能な3レベル階調制御インバータでは、この問題が顕在化する。
以上説明したような構成とすることで、以上のよう問題点を解決することができる。そして、検出電流の極性判別を回避でき、検出電流に含まれるノイズやリプルに影響を抑制して、1パルス指令S16を安定して出力可能であり、中性点電圧を安定して制御することができる。また1パルススイッチング制御部15とリミット値計算部23による制限動作とを組合わせて、1パルス指令S16を調整するため、電圧指令に対して誤差の少ないインバータ出力電圧が確保できる。1パルス指令S16の立ち上がり・立ち下がりタイミングを制限することで中性点電圧Vc0の制御応答は若干低下するが、3レベル階調制御インバータで特に顕著となる問題点であるインバータ出力電圧の誤差により電流の乱れを招き、電流制御系の動作により電圧指令が乱れるといった悪循環を抑制することができ、3レベル階調制御インバータ全体として安定性を向上することが可能となる。
また、文頭の背景技術の項でも説明したが、3レベル階調制御インバータは高い変換効率を特徴とするため、無停電電源装置や太陽光パワーコンディショナーといった運転時間が非常に長い装置へ適用すると省エネルギー量は莫大なものとなる。このような装置類は数kW〜数百kW以上の容量を持つものが多く、分圧コンデンサも大容量の種類のものが用いられる。このような大容量のコンデンサは実際の静電容量のばらつきが大きく、中性点電圧変動を生じやすい問題があり、部品の選別組合わせなどの手間やコストを生じていたが、本実施の形態に示した中性点電圧Vc0の制御により、そのばらつき許容値が緩和されるため、上記の部品の選別組合わせなど手間やコストの削減につながる。
実施の形態2.
図10〜12は、実施の形態2を示すものであり、図10はレベル階調制御インバータの構成を示す構成図、図11はバランス回路制御部の構成を示す構成図、図12はバランス回路の構成を示す構成図である。図10において、3レベル階調制御インバータ500は主回路部600とバランス回路動作判定部26とバランス回路制御部28とインバータ制御部300とを有する。主回路部600は、中性点電圧制御のため、分圧コンデンサ装置3に対して並列に接続されたバランス回路7を有する。バランス回路7は同じ仕様のP側及びN側バランス回路7a、7bにて構成され、それぞれP側及びN側コンデンサ3a,3bに並列に接続されている。P側及びN側バランス回路7a、7bは図12(a)に示すように、放電抵抗71とその放電抵抗71をオン・オフするために放電抵抗71と直列に接続された放電スイッチ72とを有するが、その他の構成を含む詳細な構成は後述する。なお、インバータ制御部300は、一部の構成の図示を省略しているが図1に示したものと同様のものである。その他の構成については、図1に示した実施の形態1と同様のものであるので、相当するものに同じ符号を付して説明を省略する。
一般に3レベル階調制御インバータでは中性点電圧制御のために3レベルインバータへの1パルス指令の調整を行う際に、その調整可能量は単相インバータの内蔵コンデンサ(例えば図3の内蔵コンデンサ2c)の電圧により制約を受ける。本実施の形態2に説明するように1パルス指令S16の調整可能範囲を越えた場合にのみバランス回路7(例えば図12(a))を動作させる。このようにするとバランス回路7の動作が、必要な場合にのみに限定されるため、内蔵された放電抵抗71での電力損失が低減でき、3レベル階調制御インバータの高効率な電力変換のメリットを損なうことがない。放電抵抗71での損失削減によりインバータ装置の効率向上や冷却部の小型化などの効果があり、放電抵抗の電力容量も小さくできる。また実施の形態1にて説明したように、3レベルインバータ1への1パルス指令S16の調整範囲を制限することで、中性点電圧制御の応答性が若干低下するが、バランス回路7やバランス回路制御部28の付加により応答性の低下を抑制できる。
まず、図10を用いて全体の動作を説明する。図10において、バランス回路7は、主としてバランス回路制御部28の動作による放電スイッチ指令S31に従って動作する。インバータ制御部300の1パルススイッチング制御部15では、図7に示したように1パルス指令S16の立ち上がりt1及び立下りタイミング(図示しない)に制限を行う。あるいは図8に示したように1パルス指令S16の立ち上がりタイミングt1(あるいは立ち下がりタイミング)が制限を越える領域例えば図8のタイミングt1とタイミングtaとの間においては単相インバータ2の出力電圧を0とするとともに3レベルインバータ1の1パルス指令S16をPWM制御に変更し3レベルインバータ1の出力電圧V1がインバータが出力すべき電圧Vout(Vref)になるようにPWM制御制御する。また、このような制限動作の有無をリミット制限指示信号S25として出力する。
バランス回路動作判定部26ではリミット制限指示信号S25が入力され、切替信号S27を出力する。切替信号S27は上記の制限動作が発生している場合はバランス回路制御部28の動作を有効とする指示信号となる。またバランス回路動作判定部26では、電流制御系の動作不良を検知して、バランス回路制御部28の動作を有効とするよう切替信号S27を出力する。電流制御系の動作不良としては次のような場合がある。電圧指令S14の振幅は電流制御系の動作によって変化するが、3相交流電源8やその間のインピーダンスによって概ね決定され、電圧指令S14の振幅が所定値以上あるいは所定値以下になった場合に何らかの異常と判定できる。またそれに伴い検出電流信号S10の振幅や電流指令S13との制御偏差によっても判定でき、これらの信号が所定値以上あるいは所定値以下となった場合は何らかの異常と判定でき、バランス回路動作判定部26はバランス回路制御部28の動作を有効とするように切替信号S27を出力する。このバランス回路動作判定部26により、発明が解決しようとする課題の項でも述べた中性点電圧制御により電流に乱れが生じ、さらに中性点電圧制御が乱れると言った悪循環の更なる抑制が実現できる。
次にバランス回路制御部28について図11を用いて詳細に説明する。バランス回路制御部28は、放電スイッチ指令生成部29とゲートブロック信号生成部30とを有する。P側コンデンサ3aの電圧VcPからN側コンデンサ3bの電圧VcNを減算して差分ΔVcを求め、上記差分ΔVcが正ならばP側のP側コンデンサ3aに並列接続されたP側バランス回路7aの放電動作を行うよう放電スイッチ指令S31を出力する。逆に上記差分ΔVcが負ならばN側コンデンサ3bの放電動作を行うよう放電スイッチ指令S31を出力する。すなわち、電圧が高い方のコンデンサにて放電動作を行うよう構成する。これにより、P側及びN側コンデンサ3a,3bの電圧分担が等しくなるようにできる。P側バランス回路7a及びN側バランス回路7bで同時に放電抵抗71に通電を行っても中性点電圧制御は可能であるが、P側バランス回路7aに内蔵の放電抵抗71によって分圧された直流母線39の電圧が、放電を妨げる向きに働くため放電速度が低下する。上記のように相補的な動作とすることで、高速なコンデンサ放電動作、すなわち中性点電圧制御が実現できる。
なお、放電スイッチ指令生成部29は、不要なスイッチングやチャタリングを避けるため、閾値Vth1を設け、ヒステリシス特性を持たせて放電スイッチ指令S31を出力する。ヒステリシス特性を持たせた放電スイッチ指令S31により、閾値Vth1を基準にして所定幅の電圧ΔVすなわち電圧Vth1+ΔVでP側バランス回路7aの放電スイッチ72(図11では、P側スイッチと略記している)がオンし、電圧Vth1−ΔVでP側の放電スイッチ72がオフする。N側バランス回路の放電スイッチ(図11では、N側スイッチと略記している)についても同様である。放電スイッチ指令生成部29は、3レベルインバータ1のスイッチA〜D(図3)や分圧コンデンサ装置3の許容電圧、P側及びN側コンデンサ3a,3bの放電スイッチ72(図12)の電力負担などを考慮し上記閾値Vth1を決定する。また3レベル階調制御インバータ500の出力電圧の出力可能な最大振幅は、P側及びN側コンデンサ3a,3bの電圧Vcp,VcNと単相インバータ2の内蔵コンデンサ2cの電圧Vc2(図3参照)の加算で決定される。このインバータ装置全体(3レベル階調制御インバータ500)として出力可能な最大振幅が電圧指令S14の最大振幅Vdcを下回り電圧指令S14に追随する電圧を出力できなくなることがないように、中性点電圧制御を行う必要がある。従って電圧指令S14の最大振幅Vdcから単相インバータの内蔵コンデンサ2cの電圧Vc2を減算して得られる3レベルインバータ1の出力電圧の下限許容振幅をVLとすると閾値Vth1は「Vdc−VL×2」となる。これらの値を予め見積もり、閾値Vth1を決定する。あるいは、実運転中に上記閾値VTh1の計算を行いオンラインで閾値Vth1を調整することによりバランス回路によって中性点電圧制御の動作を限定することができ、放電抵抗71による損失の抑制が可能となる。
さらにバランス回路制御部28は、バランス回路動作判定部26からの切替信号S27を受けて、バランス回路動作が不要な場合は、P側及びN側バランス回路7a,7bの各放電スイッチ72がオフとなるように指令内容切替スイッチ35にて放電スイッチ指令S31の内容を切り替えて出力する。またP側及びN側コンデンサ3a,3bの両電圧VcP,VcNの偏りが顕著となった場合には、何らかの異常な状態を示すと想定されるため、3レベル階調制御インバータ装置全体の動作を停止する必要がある。このため、P側及びN側コンデンサ3a,3bの電圧VcPと電圧VcNの差分ΔVcがある閾値Vth2を越えた場合には、ゲートブロック信号を出力して、3レベルインバータ1と単相インバータ2の動作を停止する。この動作を行うのが、ゲートブロック信号生成部30であり、ゲートブロック信号S32を3レベルインバータ1と単相インバータ2へ出力し、その動作を停止させる。また上記の閾値Vth2は閾値Vth1より大きな値となる。放電スイッチ指令生成部29と異なりゲートブロック信号生成部30では、一度でも閾値Vth2を越えた場合には状態を保持してゲートブロック状態を継続すべくゲートブロック信号S32を出力し続ける。3レベル階調制御インバータ装置保護のため3レベルインバータ1と単相インバータ2では、それぞれの1パルス指令S16または単相インバータスイッチング指令S18よりゲートブロック信号S32を優先して動作を行う。
次にバランス回路7の詳細を図12により説明する。図12(a)ではP側コンデンサ3aとP側バランス回路7aを示しているが、N側についても同様の構成である。P側バランス回路7aは前述したように放電抵抗71とその放電をオン・オフするための放電スイッチ72とを有する。放電スイッチ72はIGBTやMOSFETなどの半導体素子であり、放電スイッチ指令S31を受けて開閉動作する。また、放電スイッチ72にはセルフドライブ回路73が接続されている。このセルフドライブ回路73は、3レベル階調制御インバータ500を例えば停止させたときあるいは異常発生時に、P側コンデンサ3aを例えば20[V]と言った人間が触れても安全な電圧まで速やかに放電させるための回路である。分圧抵抗73aと分圧抵抗73bとは放電停止時のP側コンデンサ3aの電圧を規定する。例えば、上記の20[V]まで放電させ、放電スイッチ72の駆動電圧が15[V]の場合、分圧抵抗73aと分圧抵抗73bとの抵抗値の比率を1:3とすると、分圧コンデンサの電圧が20[V]以上では放電スイッチ72のゲート部に15[V]以上が印加され放電スイッチ72がオンし続ける。P側コンデンサ3aの電圧が20[V]を下回ると放電スイッチ72のゲート部に十分な電圧が印加されず放電スイッチ72はオフとなる。なお、このときは直流電源4からP側及びN側コンデンサ3a,3bへの電力の供給は停止されている。
この分圧抵抗73a,73bでの電力消費を防ぐため、直流母線39の電圧を考慮し、また放電抵抗71の抵抗値に対して十分大きな抵抗値例えば10倍の抵抗値を設定する。分圧抵抗73bに並列接続されたツェナーダイオード73cは、放電スイッチ72の駆動電圧以上かつ放電スイッチ72のゲート部許容電圧以下の降伏電圧を持つものが選定され、放電スイッチ72のゲート部に過大な電圧が印加されるのを防ぐ。フォトカプラ74は放電スイッチ指令S31に従って動作する。放電スイッチ指令S31がオン指令の場合は、フォトカプラ74は動作せず、上記のセルフドライブ回路73により放電スイッチ72がオンする。逆に放電スイッチ指令S31がオフ指令の場合にはフォトカプラ74が動作し分圧抵抗73bの両端は短絡に近い状態となり、放電スイッチ72のゲート部には十分な電圧が印加されず放電スイッチ72はオフとなる。インバータ装置停止時や何らかの異常により制御電源が停止した際にはフォトカプラ74の動作は停止し、上記のセルフドライブ回路73により放電スイッチ72がオンして放電動作が行われる。このような回路構成とすると放電スイッチ72に対しPWM制御のような高速動作は望めないが図11に示すような放電スイッチ72の開閉のヒステリシス動作を行うには十分である。
あるいは、バランス回路は図12(b)のように構成することもできる。図12(b)において、P側コンデンサ3aとP側バランス回路87aを示しているが、N側についても同様の構成である。P側バランス回路87aは図12(a)のP側バランス回路7aと同様の放電抵抗71とその放電をオン・オフするための放電スイッチ72を有する。放電スイッチ72のゲートにゲートドライブ回路81を接続して放電スイッチ72を動作させる。セルフドライブ回路83は、分圧抵抗83a、ダイオード83b、分圧抵抗83c,ツェナーダイオード83d、フォトモスリレーなどのb接点リレー83eを有する。分圧抵抗83aとダイオード83bと分圧抵抗83cとが直列に接続され、分圧抵抗83cにツェナーダイオード83dが並列に接続されている。ダイオード83bと分圧抵抗83cとの接続点がb接点リレー83eを介して放電スイッチ72のゲートに接続されている。セルフドライブ回路83は、b接点リレー83eを介して放電スイッチ72のゲートに接続され、セルフドライブ回路83中のダイオード83bはインバータ装置起動時などP側及びN側コンデンサ3a,3bへの充電が十分でない場合にゲートドライブ回路81などからP側及びN側コンデンサ3a,3bへの電流流入を阻止する。分圧抵抗83a、分圧抵抗83c、ツェナーダイオード83dの動作は図12(a)に示したP側バランス回路7aの分圧抵抗73a、分圧抵抗73b、ツェナーダイオード73cと同様である。
以上のように、P側及びN側コンデンサ3a,3bと並列にP側及びN側バランス回路7a,7bを設け、電圧指令S14が3レベルインバータ1の1パルス指令の調整可能範囲を越えた場合にP側及びN側バランス回路7a,7bを動作させることで、上記実施の形態1における1パルス指令調整信号S22と合わせて、より高精度かつ高応答の中性点電圧制御を達成できるとともに、P側及びN側バランス回路7a,7bの放電抵抗71の動作を必要最小限に抑えることで電力変換効率の低下を抑制できる。セルフドライブ回路73あるいはセルフドライブ回路83を接続することで、3レベル階調制御インバータの停止時や何らかの異常により制御電源が停電した際に、速やかにP側及びN側コンデンサ3a,3bの放電を行うことができる。また中性点電圧制御用の放電抵抗71と放電スイッチ72を、上記のような放電用に兼用できるため、3レベル階調制御インバータの部品点数の削減が可能となる。すなわち、3レベル階調制御インバータの中性点電圧制御を安定して行うことができるとともに、バランス回路での損失を抑制して高効率な電力変換装置としての3レベル階調制御インバータを得ることができる。
1 3レベルインバータ、1a 直流側端子、1b 交流側端子、
2 単相インバータ、2a,2b 交流端子、2c 内蔵コンデンサ、
3 分圧コンデンサ、3a,3b P側及びN側コンデンサ、4 直流電源、
5 電流検出部、6 電圧検出部、7 バランス回路、7a P側バランス回路、
7b N側バランス回路、8 3相交流電源、12 電流指令部、
15 1パルススイッチング制御部、15a 電力計算部、
15b 1パルス位相タイミング制御部、15c パルス生成部、15e リミッタ、
15f 1パルススイッチング波形生成部、17 単相インバータスイッチング制御部、21 中性点電圧制御部、21a 減算器、21b LPF、21c 増幅器、
23 リミット値計算部、26 バランス回路動作判定部、28 バランス回路制御部、29 放電スイッチ指令生成部、30 ゲートブロック信号生成部、39 直流母線、
3a P側コンデンサ、3b N側コンデンサ、71 放電抵抗、
72 放電スイッチ、73 セルフドライブ回路、73a 分圧抵抗、
73b 分圧抵抗、73c ツェナーダイオード、81 ゲートドライブ回路、
83 セルフドライブ回路、87a P側バランス回路、
100 3レベル階調制御インバータ、200 主回路部、300 インバータ制御部、500 3レベル階調制御インバータ、600 主回路部。

Claims (4)

  1. 3レベルインバータ及び単相インバータの交流側発生電圧の合計電圧を交流側に発生する階調制御インバータと、上記階調制御インバータを制御する制御装置とを備えた電力変換装置であって、
    上記3レベルインバータは、第1及び第2の分圧コンデンサにて分圧された直流電源に接続され直流電力を交流電力に変換するものであり、
    上記単相インバータは、コンデンサと単相インバータ回路とを有し、上記単相インバータ回路の直流側が上記コンデンサに接続され交流側が上記3レベルインバータの交流側に直列に接続されたものであり、
    上記制御装置は、上記3レベルインバータの出力する電力と上記第1及び第2の分圧コンデンサの電圧とに基づき、上記第1及び第2の分圧コンデンサの電圧分担が等しくなるように、上記3レベルインバータへスイッチング指令を発するものである
    電力変換装置。
  2. 上記制御装置は、上記単相インバータの上記コンデンサの電圧に基づき上記スイッチング指令の立ち上がり及び立ち下がりのタイミングを調整するものである請求項1に記載の電力変換装置。
  3. 上記第1及び第2の分圧コンデンサに接続され、上記第1及び第2の分圧コンデンサを放電させることにより、上記第1及び第2の分圧コンデンサの電圧分担が等しくなるようにするバランス回路と、
    上記3レベルインバータへのスイッチング指令の調整において、上記スイッチング指令の調整可能範囲を越える場合に、上記バランス回路を動作させるバランス回路制御部と
    を設けたものである請求項2に記載の電力変換装置。
  4. 上記バランス回路制御部は、上記3レベルインバータの停止時または異常発生時に上記バランス回路に上記第1及び第2の分圧コンデンサの放電を行わせるものである請求項3に記載の電力変換装置。
JP2011155547A 2011-07-14 2011-07-14 電力変換装置 Active JP5591188B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011155547A JP5591188B2 (ja) 2011-07-14 2011-07-14 電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011155547A JP5591188B2 (ja) 2011-07-14 2011-07-14 電力変換装置

Publications (2)

Publication Number Publication Date
JP2013021891A JP2013021891A (ja) 2013-01-31
JP5591188B2 true JP5591188B2 (ja) 2014-09-17

Family

ID=47692770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011155547A Active JP5591188B2 (ja) 2011-07-14 2011-07-14 電力変換装置

Country Status (1)

Country Link
JP (1) JP5591188B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160109745A (ko) * 2015-03-13 2016-09-21 삼성전자주식회사 모터 구동 장치

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6129650B2 (ja) * 2013-06-06 2017-05-17 株式会社東芝 車両用電力変換装置
US9685884B2 (en) * 2013-07-01 2017-06-20 Toshiba Mitsubishi-Electric Industrial Systems Corporation Seven-level inverter apparatus
JP6260506B2 (ja) * 2014-09-25 2018-01-17 株式会社富士通ゼネラル 空気調和機
JP6003970B2 (ja) * 2014-12-02 2016-10-05 富士電機株式会社 無停電電源装置の制御装置
JP6538544B2 (ja) * 2015-12-22 2019-07-03 東芝三菱電機産業システム株式会社 自励式無効電力補償装置
JP6827881B2 (ja) * 2017-05-11 2021-02-10 田淵電機株式会社 電力変換装置
WO2018229857A1 (ja) * 2017-06-13 2018-12-20 三菱電機株式会社 電力変換システム
JP7105216B2 (ja) * 2018-09-19 2022-07-22 東芝三菱電機産業システム株式会社 電力変換装置
US20240063730A1 (en) * 2021-02-25 2024-02-22 Mitsubishi Electric Corporation Power converter

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3933974B2 (ja) * 2001-03-30 2007-06-20 三菱電機株式会社 電圧変動補償装置
JP2007097051A (ja) * 2005-09-30 2007-04-12 Saxa Inc 電話制御装置およびプログラム
JP2007267435A (ja) * 2006-03-27 2007-10-11 Toshiba Mitsubishi-Electric Industrial System Corp 電力変換装置
JP2010058536A (ja) * 2008-09-01 2010-03-18 Advics Co Ltd 駐車ブレーキ制御装置
CN102460932B (zh) * 2009-06-19 2014-12-10 三菱电机株式会社 电力变换装置
JP5593660B2 (ja) * 2009-09-25 2014-09-24 富士電機株式会社 5レベルインバータ
JP5374336B2 (ja) * 2009-12-01 2013-12-25 三菱電機株式会社 電力変換装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160109745A (ko) * 2015-03-13 2016-09-21 삼성전자주식회사 모터 구동 장치
KR102437471B1 (ko) * 2015-03-13 2022-09-01 삼성전자주식회사 모터 구동 장치

Also Published As

Publication number Publication date
JP2013021891A (ja) 2013-01-31

Similar Documents

Publication Publication Date Title
JP5591188B2 (ja) 電力変換装置
US8730691B2 (en) Power conversion apparatus and methods employing variable-level inverters
Tashakor et al. Modular multilevel converter with sensorless diode-clamped balancing through level-adjusted phase-shifted modulation
JPH0965658A (ja) 電力変換装置
KR101973676B1 (ko) 3 레벨 유닛 인버터
JP2010517496A (ja) マルチレベル電力変換器の相モジュールアームの制御方法
JP5939411B2 (ja) 電力変換装置
JPWO2008108147A1 (ja) 電力変換装置
JP6666058B2 (ja) 系統連系インバータ装置及びその運転方法
KR20200030581A (ko) 교류 스위치 그리고 그것을 구비하는 무정전 전원 장치 및 순저 보상 장치
US20150357939A1 (en) Cascaded h-bridge inverter capable of operating in bypass mode
US11201497B2 (en) Apparatus and methods to reduce current transient during power mode transfer in uninterruptible power supply
JP5362657B2 (ja) 電力変換装置
JP5294759B2 (ja) 系統連系インバータ装置
JP4968465B2 (ja) 電力変換装置
JP5490263B2 (ja) 電力変換装置
JP2016063687A (ja) 電力変換装置
JP5302905B2 (ja) 電力変換装置
Davis et al. A hybrid multilevel inverter using single source neutral-point clamped front end and cascaded H-bridge with flying capacitor based structures
US11984816B2 (en) Power conversion device and press apparatus
CN112236931B (zh) 电力变换装置的缺相检测装置
JP2013046431A (ja) チョッパ装置
JP2011229347A (ja) 電力変換装置
JP5400956B2 (ja) 電力変換装置
RU2254658C1 (ru) Трёхфазный транзисторный источник реактивных токов

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140729

R150 Certificate of patent or registration of utility model

Ref document number: 5591188

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250