JP5582346B2 - Prepreg and method for producing molded body - Google Patents

Prepreg and method for producing molded body Download PDF

Info

Publication number
JP5582346B2
JP5582346B2 JP2010199771A JP2010199771A JP5582346B2 JP 5582346 B2 JP5582346 B2 JP 5582346B2 JP 2010199771 A JP2010199771 A JP 2010199771A JP 2010199771 A JP2010199771 A JP 2010199771A JP 5582346 B2 JP5582346 B2 JP 5582346B2
Authority
JP
Japan
Prior art keywords
lignin
prepreg
curing agent
mass
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010199771A
Other languages
Japanese (ja)
Other versions
JP2011219723A (en
Inventor
郁子 菊地
直之 小山
美香 小舩
昭人 後藤
智史 助川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2010199771A priority Critical patent/JP5582346B2/en
Publication of JP2011219723A publication Critical patent/JP2011219723A/en
Application granted granted Critical
Publication of JP5582346B2 publication Critical patent/JP5582346B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Chemical & Material Sciences (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Reinforced Plastic Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Laminated Bodies (AREA)
  • Epoxy Resins (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Cosmetics (AREA)
  • Finished Plywoods (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical And Physical Treatments For Wood And The Like (AREA)
  • Paints Or Removers (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dry Formation Of Fiberboard And The Like (AREA)

Description

本発明は、プリプレグおよび成形体の製造方法に関するものである。   The present invention relates to a method for producing a prepreg and a molded body.

SMC(Sheet Molding Compound)成形法は、強化繊維、樹脂、硬化剤、充填剤等を配合してシート状にした成形材料(以下SMCとする)を金型内で加熱加圧成形する方法である。SMCプレス成形は、優れた成形性から形状の自由度が大きく、外観が良好である、成形サイクルが短く生産性が高い、材料の取扱い性が良く作業環境が良好等の特徴から、FRP成形品の機械成形法の中で最も主要な技術に発展し、住宅関連部品、自動車部品や工業部品等の広範囲な分野に展開されている。   The SMC (Sheet Molding Compound) molding method is a method in which a molding material (hereinafter referred to as SMC) formed by mixing reinforcing fibers, resin, curing agent, filler and the like into a sheet is heated and pressed in a mold. . SMC press molding is an FRP molded product because of its excellent moldability, large degree of freedom in shape, good appearance, short molding cycle, high productivity, good material handling, and good working environment. It has developed into the most important technology among the machine molding methods in Japan and has been developed in a wide range of fields such as housing-related parts, automobile parts and industrial parts.

FRP成形品に用いる樹脂としては、一般的に不飽和ポリエステル樹脂やエポキシ樹脂など化石資源由来の原料が用いられてきた(特許文献1参照)。しかし、化石資源を焼却することで発生する二酸化炭素量の増加に伴い、地球温暖化の問題が関心を集めるようになった。そこで地球温暖化防止の観点からバイオマス(生物資源)の有効活用が見直されており、近年、包装資材、家電製品の部材、自動車用部材などのプラスチックを植物由来樹脂(バイオプラスチック)に置き換える動きが活発化している。   As a resin used for an FRP molded product, a raw material derived from a fossil resource such as an unsaturated polyester resin or an epoxy resin has been generally used (see Patent Document 1). However, with the increase in the amount of carbon dioxide generated by incineration of fossil resources, the issue of global warming has attracted attention. Therefore, the effective use of biomass (biological resources) has been reviewed from the viewpoint of preventing global warming, and in recent years there has been a movement to replace plastics such as packaging materials, household appliances and automotive parts with plant-derived resins (bioplastics). It is becoming active.

植物由来の熱硬化性樹脂として注目される原料の1つにリグニンがある。リグニンは主に樹木から得られる樹脂で、スギ、竹、稲わらなど非可食部から得られる。そのため、植物資源を有効利用することができ、また食料との競争もない。樹木は親水性の線状高分子の多糖類(セルロースとヘミセルロース)と疎水性の架橋構造リグニンの交互侵入網目(IPN)構造を形成している。リグニンは樹木の約25質量%を占め、不規則かつ極めて複雑なポリフェノールの化学構造をしている。リグニンの基本骨格はヒドロキシフェニルプロパン単位を基本単位とする構造である。   One of the raw materials that attract attention as a plant-derived thermosetting resin is lignin. Lignin is a resin mainly obtained from trees and is obtained from non-edible parts such as cedar, bamboo and rice straw. Therefore, plant resources can be used effectively and there is no competition with food. Trees form an alternating intrusion network (IPN) structure of hydrophilic linear polymer polysaccharides (cellulose and hemicellulose) and hydrophobic cross-linked lignin. Lignin accounts for about 25% by weight of trees and has an irregular and extremely complex chemical structure of polyphenols. The basic skeleton of lignin has a structure having a hydroxyphenylpropane unit as a basic unit.

現在大量に製造されているリグニンの多くは、紙やバイオエタノールの原料であるセルロース製造時に残渣として得られる。入手可能なリグニンとしては、主に硫酸法により副生するリグニンスルホン酸塩があげられる。他にもアルカリリグニン、オルガノソルブリグニン、ソルボリシスリグニン、糸状菌処理木材、ジオキサンリグニン及びミルドウッドリグニンなどがある。   Many of the lignins currently produced in large quantities are obtained as residues during the production of cellulose, which is a raw material for paper and bioethanol. Examples of lignin that can be obtained include lignin sulfonate that is produced as a by-product mainly by the sulfuric acid method. Other examples include alkali lignin, organosolv lignin, solvolicis lignin, wood treated with filamentous fungi, dioxane lignin and milled wood lignin.

しかしながら、リグニンスルホン酸塩は水溶性であり、有機溶媒に難溶である。そのため、硬化剤及び硬化促進剤との相溶性が悪く、均質な硬化物が得られなかった。   However, lignin sulfonate is water-soluble and hardly soluble in organic solvents. Therefore, compatibility with a hardening | curing agent and a hardening accelerator was bad, and the homogeneous hardened | cured material was not obtained.

また、包装資材、家電製品の部材、自動車用部材などの難燃化、抗菌化に関してはこれまでにも、種々の試みがなされてきた。しかし、前記物性を向上させるために、石油系樹脂を用いており、その含有量を増やす分、環境負荷を低減化させる観点からの、化石資源使用削減や二酸化炭素排出量削減の効果が低下してしまうという課題があった。   In addition, various attempts have been made so far regarding flame retardancy and antibacterial properties of packaging materials, members of home appliances, automobile members, and the like. However, in order to improve the physical properties, petroleum-based resins are used, and the effect of reducing the use of fossil resources and reducing carbon dioxide emissions from the viewpoint of reducing the environmental burden is reduced by increasing the content. There was a problem that it would end up.

公知の難燃剤としては、臭素系・ハロゲン系難燃剤、リン系難燃剤、窒素化合物系難燃剤、シリコーン系難燃剤、無機系難燃剤が挙げられる(特許文献2参照)。従来においても各種難燃剤が知られているが、上記の難燃剤は、有効に機能を発揮させるための添加量が多く、樹脂100質量部に対して10〜30質量部、多いものでは50質量部程度必要とする場合もある。これらの難燃剤は、化石資源を原料として合成されているものであるから、主材料として植物由来樹脂を用いたとしても、環境負荷削減効果は低いものとなっていた。   Known flame retardants include bromine / halogen flame retardants, phosphorus flame retardants, nitrogen compound flame retardants, silicone flame retardants, and inorganic flame retardants (see Patent Document 2). Conventionally, various flame retardants are known, but the above-mentioned flame retardant has a large amount of addition for effectively exhibiting the function, and 10 to 30 parts by mass with respect to 100 parts by mass of the resin, and 50 masses in many cases. Some parts may be required. Since these flame retardants are synthesized using fossil resources as raw materials, even if plant-derived resin is used as the main material, the effect of reducing environmental burden has been low.

また、難燃剤自体の有害性も検討しなければならない。例えば、臭素系難燃剤は、焼却時に熱分解によりダイオキシン類が発生する。またリン系難燃剤は、化学物質過敏症(アレルギー)を引き起こす恐れもあり、今後において、難燃剤は、生体に無害かつ安全で、かつ少量であっても実用上充分な難燃効果が得られるものであることの要望が高まっている。   Also, the hazards of the flame retardant itself must be considered. For example, brominated flame retardants generate dioxins by thermal decomposition during incineration. Phosphorus flame retardants may cause chemical sensitivity (allergies), and in the future, flame retardants are harmless and safe for living bodies, and even if they are used in a small amount, a practically sufficient flame retardant effect can be obtained. There is a growing demand for things.

一方、抗菌性を付与する抗菌剤としては、銀などの金属で置換されたゼオライトのような無機系抗菌剤や、クロロヘキシジンなどの有機系抗菌剤が一般に用いられている。しかしながら、無機系抗菌剤は塩素、イオウ等が共存する環境下では不活性化したり、アレルギー症状の誘因作用、金属化合物の変色による成型品の経時着色を生ずる等の問題点がある。また、有機化学合成により得られる有機系抗菌剤類は極めて少量で強力な抗菌効果を発揮する反面、人体に対する安全性が低く、食品包装をはじめとする生活関連用途についての使用は困難である。   On the other hand, as antibacterial agents imparting antibacterial properties, inorganic antibacterial agents such as zeolite substituted with metals such as silver and organic antibacterial agents such as chlorohexidine are generally used. However, inorganic antibacterial agents have problems such as inactivation in an environment where chlorine, sulfur, etc. coexist, inducing action of allergic symptoms, and coloration of molded products over time due to discoloration of metal compounds. In addition, organic antibacterial agents obtained by organic chemical synthesis exhibit a strong antibacterial effect in a very small amount, but have low safety for the human body and are difficult to use for life-related uses such as food packaging.

一方、有機系抗菌剤の中でも天然由来の抗菌成分は安全性が高いとされており、様々な天然由来抗菌成分が検討され始めている。天然物由来の有機系抗菌剤としては、ヒノキチオール、ワサオーロ(有効成分;アリルイソチオシアネート)、わさび、しょうが、等各種ある。しかし、天然物由来で安全であるという長所はあるものの、耐熱性が弱いため一般的に樹脂の加工温度に耐えないという欠点があった。また、供給が限られて入手困難、樹脂との相溶性を改善するために他の添加剤を加えなければならない等の問題点もあった。   On the other hand, among organic antibacterial agents, naturally-derived antibacterial components are considered to have high safety, and various naturally-derived antibacterial components are being studied. As organic antibacterial agents derived from natural products, there are various kinds such as hinokitiol, wasaolo (active ingredient: allyl isothiocyanate), wasabi, ginger, and the like. However, although there is an advantage that it is derived from a natural product and is safe, it has a drawback that it generally cannot withstand the processing temperature of the resin due to its low heat resistance. In addition, there are problems such as difficulty in obtaining due to limited supply, and addition of other additives in order to improve compatibility with the resin.

特開2005−225910号公報JP 2005-225910 A 特開2007−002120号公報JP 2007-002120 A

本発明においては、環境負荷低減化の観点から、植物由来の木質系材料を利用したプリプレグを提供することを目的とする。特に植物由来であるリグニンを主原料とし、難燃性、抗菌性を付与した成形体の製造方法を提供することにある。   In this invention, it aims at providing the prepreg using the woody material derived from a plant from a viewpoint of environmental load reduction. In particular, an object of the present invention is to provide a method for producing a molded article using lignin derived from a plant as a main raw material and imparting flame retardancy and antibacterial properties.

本発明は以下の通りである。
(1) 樹脂組成物を繊維に含浸してなる、プリプレグであって、前記樹脂組成物がリグニン、硬化剤及び硬化促進剤を含み、前記繊維が植物繊維、炭素繊維、合成繊維、無機繊維のうち1つないし2つ以上選択されるものであり、前記リグニンが有機溶媒に可溶である、プリプレグ。
(2) 繊維を除いた全樹脂量に対してリグニンを5〜90質量%含むことを特徴とする前記(1)に記載のプリプレグ。
(3) リグニンの重量平均分子量が100〜7000である前記(1)又は(2)に記載のプリプレグ。
(4) リグニン中の硫黄原子の含有率が2質量%以下である前記(1)〜(3)のいずれかに記載のプリプレグ。
(5) リグニンが、水のみを用いた処理方法によりセルロース成分、ヘミセルロース成分から分離し、有機溶媒に溶解させることにより得たリグニンである前記(1)〜(4)のいずれかに記載のプリプレグ。
(6) リグニンが、植物原料に水蒸気を圧入し、瞬時に圧力を開放することで植物原料を爆砕する水蒸気爆砕法によりセルロース成分、ヘミセルロース成分から分離し、有機溶媒に溶解させることにより得たリグニンである前記(1)〜(4)のいずれかに記載のプリプレグ。
(7) 硬化剤がエポキシ樹脂である前記(1)〜(6)のいずれかに記載のプリプレグ。
(8) 硬化剤がイソシアネートである前記(1)〜(6)のいずれかに記載のプリプレグ。
(9) 硬化剤がアルデヒド又はホルムアルデヒドを生成する化合物である前記(1)〜(6)のいずれかに記載のプリプレグ。
(10) 硬化剤が多価カルボン酸または多価カルボン酸無水物から1つないし2つ以上選択されたものである前記(1)〜(6)のいずれかに記載のプリプレグ。
(11) 硬化剤が不飽和基を含む多価カルボン酸または多価カルボン酸無水物から1つないし2つ以上選択されたものである前記(1)〜(6)のいずれかに記載のプリプレグ。
(12)前記(1)〜(11)のいずれかに記載のプリプレグを加熱加圧成形することを特徴とする、成形体の製造方法。
The present invention is as follows.
(1) A prepreg obtained by impregnating a fiber with a resin composition, wherein the resin composition contains lignin, a curing agent, and a curing accelerator, and the fibers are vegetable fibers, carbon fibers, synthetic fibers, inorganic fibers One or more of them are selected, and the lignin is soluble in an organic solvent.
(2) The prepreg according to (1) above, which contains 5 to 90% by mass of lignin with respect to the total resin amount excluding the fibers.
(3) The prepreg as described in said (1) or (2) whose weight average molecular weights of lignin are 100-7000.
(4) The prepreg according to any one of (1) to (3), wherein the content of sulfur atoms in lignin is 2% by mass or less.
(5) The prepreg according to any one of the above (1) to (4), wherein the lignin is a lignin obtained by separating from a cellulose component and a hemicellulose component by a treatment method using only water and dissolving it in an organic solvent. .
(6) Lignin is obtained by separating water from a cellulose component and hemicellulose component by a steam explosion method in which water vapor is injected into the plant raw material and the plant raw material is exploded by instantaneously releasing the pressure, and dissolved in an organic solvent. The prepreg according to any one of (1) to (4).
(7) The prepreg according to any one of (1) to (6), wherein the curing agent is an epoxy resin.
(8) The prepreg according to any one of (1) to (6), wherein the curing agent is isocyanate.
(9) The prepreg according to any one of (1) to (6), wherein the curing agent is a compound that generates aldehyde or formaldehyde.
(10) The prepreg according to any one of (1) to (6), wherein the curing agent is one or more selected from polyvalent carboxylic acid or polyvalent carboxylic acid anhydride.
(11) The prepreg according to any one of (1) to (6), wherein the curing agent is selected from one or more polyvalent carboxylic acids or polyvalent carboxylic anhydrides containing an unsaturated group. .
(12) A method for producing a molded body, wherein the prepreg according to any one of (1) to (11) is subjected to heat and pressure molding.

本発明によれば、化石資源使用量の削減、及び二酸化炭素の排出量の低減効果が得られ、加工性に優れたプリプレグ及び成形体の製造方法を提供できた。
本発明によれば、リグニンを主原料としたことにより、前記効果に加え、難燃性に優れたプリプレグ及び成形体の製造方法を提供できた。
本発明によれば、リグニンを主原料としたことにより、前記効果に加え、抗菌効果を付与したプリプレグ及び成形体の製造方法を提供できた。
ADVANTAGE OF THE INVENTION According to this invention, the reduction effect of the fossil resource usage amount and the reduction | decrease effect of the discharge | emission amount of a carbon dioxide was acquired, and the manufacturing method of the prepreg and the molded object which were excellent in workability could be provided.
According to the present invention, by using lignin as a main raw material, in addition to the above effects, a prepreg excellent in flame retardancy and a method for producing a molded body can be provided.
According to the present invention, by using lignin as a main raw material, it was possible to provide a method for producing a prepreg and a molded body imparted with an antibacterial effect in addition to the above effects.

以下、本発明をさらに詳細に説明する。
本発明は、リグニン、硬化剤及び硬化促進剤を含む樹脂組成物と、植物繊維、炭素繊維、合成繊維、無機繊維のうち1つないし2つ以上選択される繊維とからなるプリプレグであって、当該リグニンが有機溶媒に可溶であり、好ましくは不揮発分としてのリグニンを、繊維を除いた全樹脂量に対して5〜90質量%含むプリプレグである。不揮発分としてリグニンを、より好ましくは20〜80質量%、また、さらに40〜70質量%含むプリプレグが好ましい。リグニン含有量が90質量%を超えるとプリプレグを用いた成形体の強度が劣化するおそれがある。また、5質量%未満であると、化石資源使用量の削減効果、難燃性効果、抗菌性効果が得られないおそれがある。なお、本発明のプリプレグは、前記樹脂組成物を繊維に含浸してなる、プリプレグである。また、前記リグニンは、有機溶媒に可溶であれば、リグニン化合物でもよい。
Hereinafter, the present invention will be described in more detail.
The present invention is a prepreg comprising a resin composition containing lignin, a curing agent and a curing accelerator, and a fiber selected from one or more of plant fiber, carbon fiber, synthetic fiber and inorganic fiber, The lignin is soluble in an organic solvent, and is preferably a prepreg containing 5 to 90% by mass of lignin as a nonvolatile content with respect to the total resin amount excluding fibers. A prepreg containing lignin as a nonvolatile content, more preferably 20 to 80% by mass, and further 40 to 70% by mass is preferable. If the lignin content exceeds 90% by mass, the strength of the molded body using the prepreg may be deteriorated. Moreover, there exists a possibility that the reduction effect of a fossil resource usage-amount, a flame retardance effect, and an antimicrobial effect may not be acquired as it is less than 5 mass%. The prepreg of the present invention is a prepreg formed by impregnating fibers with the resin composition. The lignin may be a lignin compound as long as it is soluble in an organic solvent.

リグニンの重量平均分子量は、ポリスチレン換算値において、100〜7000が好ましく、さらに200〜5000が好ましく、500〜4000であることが特に好ましい。リグニンの重量平均分子量が7000を超えると有機溶媒への溶解性が低下する。重量平均分子量が100未満であるとリグニンの構造を活かした成形体を得ることができないおそれがある。
なお、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定し、標準ポリスチレン換算した値を使用した。
The weight average molecular weight of lignin is preferably 100 to 7000, more preferably 200 to 5000, and particularly preferably 500 to 4000 in terms of polystyrene. When the weight average molecular weight of lignin exceeds 7000, the solubility to an organic solvent will fall. If the weight average molecular weight is less than 100, there is a possibility that a molded body utilizing the structure of lignin cannot be obtained.
The weight average molecular weight was measured by gel permeation chromatography (GPC), and a value converted to standard polystyrene was used.

リグニンの基本骨格は一般的にヒドロキシフェニルプロパン単位を基本単位とする架橋構造の高分子である。樹木は親水性の線状高分子の多糖類(セルロースとヘミセルロース)と疎水性の架橋構造リグニンの相互侵入網目(IPN)構造を形成している。リグニンは樹木の約25質量%を占め、不規則かつ極めて複雑なポリフェノールの化学構造をしている。   The basic skeleton of lignin is generally a crosslinked polymer having a hydroxyphenylpropane unit as a basic unit. Trees form an interpenetrating network (IPN) structure of hydrophilic linear polymer polysaccharides (cellulose and hemicellulose) and hydrophobic cross-linked lignin. Lignin accounts for about 25% by weight of trees and has an irregular and extremely complex chemical structure of polyphenols.

本発明はリグニンを主原料とし、リグニンが有する複雑な化学構造を活かすことにある。植物からリグニンを取り出す際に、低分子量としてしまうと、複雑なポリフェノール構造を活かすことができず、高い耐熱性が得られない。また、リグニンが有するフェノール性水酸基及びアルコール性水酸基を利用し、硬化剤を用いて3次元架橋構造を形成することにある。これにより、高いガラス転移温度を有する樹脂材料を得ることが可能となった。また、硫酸等を用いた処理方法により得たリグニンは水酸基がスルホン酸塩に置換されているため、硬化剤との反応が低く剛直な骨格が得られにくい。   The present invention consists in using lignin as a main raw material and taking advantage of the complex chemical structure of lignin. When taking out lignin from a plant, if the molecular weight is low, a complicated polyphenol structure cannot be utilized, and high heat resistance cannot be obtained. Another object is to use a phenolic hydroxyl group and an alcoholic hydroxyl group possessed by lignin to form a three-dimensional crosslinked structure using a curing agent. Thereby, it became possible to obtain a resin material having a high glass transition temperature. In addition, since the lignin obtained by the treatment method using sulfuric acid or the like has a hydroxyl group substituted with a sulfonate, the reaction with the curing agent is low and it is difficult to obtain a rigid skeleton.

また、フェノール類は燃焼の際、黒鉛を形成し易いため難燃性に優れる。また、フェノール性水酸基を多数有するという特徴的な構造により強力に細菌に吸着し、それらの増殖を抑制することで抗菌活性を示す。本発明は植物から得られたこの複雑な構造をそのまま活かし、樹脂原料とすることで、環境負荷が少なく、難燃性、抗菌性を有する成形体を提供するものである。   In addition, phenols are excellent in flame retardancy because they easily form graphite during combustion. In addition, it has a characteristic structure of having many phenolic hydroxyl groups and is strongly adsorbed to bacteria and exhibits antibacterial activity by suppressing their growth. The present invention provides a molded article having low environmental impact, flame retardancy and antibacterial properties by utilizing this complicated structure obtained from plants as it is and using it as a resin raw material.

リグニンの原料に特に制限は無い。スギ、マツ、ヒノキ等の針葉樹、ブナ等の広葉樹、タケ、イネワラ、バガス等が使用される。樹木からリグニンを分離し取り出す方法としては、クラフト法、硫酸法、爆砕法などが挙げられる。現在多量に製造されているリグニンの多くは、紙やバイオエタノールの原料であるセルロース製造時に残渣として得られる。入手可能なリグニンとしては、主に硫酸法により副生するリグニンスルホン酸塩があげられる。他にもアルカリリグニン、オルガノソルブリグニン、ソルボリシスリグニン、糸状菌処理木材、ジオキサンリグニン及びミルドウッドリグニン、爆砕リグニンなどがある。本発明に用いるリグニンは取り出す方法によらず、上記記載のリグニンを用いることができる。   There are no particular restrictions on the raw material of lignin. Conifers such as cedar, pine and cypress, broad-leaved trees such as beech, bamboo, rice straw, bagasse and the like are used. Examples of methods for separating and taking out lignin from trees include kraft method, sulfuric acid method, and explosion method. Many of the lignins currently produced in large quantities are obtained as residues during the production of cellulose, which is a raw material for paper and bioethanol. Examples of lignin that can be obtained include lignin sulfonate that is produced as a by-product mainly by the sulfuric acid method. Other examples include alkaline lignin, organosolv lignin, solvolysis lignin, filamentous fungus treated wood, dioxane lignin and milled wood lignin, and explosive lignin. The lignin described above can be used regardless of the method of taking out the lignin used in the present invention.

取りだした際、リグニン以外の例えばセルロースやヘミセルロースのような成分が、多少含まれていても良い。また、これらのリグニンをアセチル化、メチル化、ハロゲン化、ニトロ化、スルホン化、硫化ナトリウムや硫化水素との反応等によって作製されたリグニン誘導体も含む。   When taking out, components other than lignin, such as cellulose and hemicellulose, may be contained to some extent. Also included are lignin derivatives prepared by acetylation, methylation, halogenation, nitration, sulfonation, reaction with sodium sulfide or hydrogen sulfide, and the like.

主原料とするリグニンを取得する方法として、水を用いた分離技術を用いた方法が好ましい。使用するリグニンが、水のみを用いた処理方法により、セルロース成分、ヘミセルロース成分から分離し、有機溶媒に溶解させることにより得たリグニンであることが好ましい。また特に、リグニンを取得する方法としては、水蒸気爆砕法がより好ましい。水蒸気爆砕法は高温高圧の水蒸気による加水分解と、圧力を瞬時に開放することによる物理的破砕効果により、植物を短時間に破砕するものである。この方法は硫酸法、クラフト法など他の分離方法と比較し、硫酸、亜硫酸塩等を用いることなく、水のみを使用するので、クリーンな分離方法である。
水蒸気爆砕の条件は特に限定しないが、通常、原料を水蒸気爆砕装置用の耐圧容器に入れ、3〜4MPaの水蒸気を圧入し、1〜15分間放置した後、瞬時に圧力を開放することにより爆砕する。なお、前記有機溶媒可溶リグニンは、水蒸気爆砕リグニンとも表す。また、原料としては、リグニンが抽出できれば特に限定しないが、例えば、スギ、竹、稲わら、麦わら、ひのき、アカシア、ヤナギ、ポプラ、バガス、とうもろこし、サトウキビ、米穀、ユーカリ、エリアンサスなどが挙げられる。
この方法では、リグニン中に硫黄原子を含まないリグニン、又は、硫黄原子の含有率が少ないリグニンが得られる。通常、リグニン中の硫黄原子の含有率は、2質量%以下が好ましく、1質量%以下であることがより好ましく、0.5質量%以下であることが特に好ましい。硫黄原子の含有量が2質量%を超えると親水性のスルホン酸基が増加するため、有機溶剤への溶解性が低下するおそれがある。本発明者らは、さらに、爆砕物から有機溶媒による抽出により、リグニンの分子量を制御し得ることを見出した。
As a method for obtaining lignin as a main raw material, a method using a separation technique using water is preferable. The lignin used is preferably a lignin obtained by separating it from a cellulose component and a hemicellulose component by a treatment method using only water and dissolving it in an organic solvent. In particular, the steam explosion method is more preferable as a method for obtaining lignin. The steam explosion method crushes plants in a short time by hydrolysis with high-temperature and high-pressure steam and a physical crushing effect by instantaneously releasing the pressure. This method is a clean separation method because only water is used without using sulfuric acid, sulfite or the like, compared with other separation methods such as sulfuric acid method and kraft method.
The conditions for steam explosion are not particularly limited. Usually, the raw material is placed in a pressure vessel for a steam explosion apparatus, 3-4 MPa of steam is injected, left to stand for 1-15 minutes, and then the pressure is instantaneously released for explosion. To do. The organic solvent-soluble lignin is also referred to as steam explosion lignin. The raw material is not particularly limited as long as lignin can be extracted. .
In this method, lignin containing no sulfur atom in the lignin or lignin having a low content of sulfur atoms can be obtained. Usually, the content of sulfur atoms in lignin is preferably 2% by mass or less, more preferably 1% by mass or less, and particularly preferably 0.5% by mass or less. If the sulfur atom content exceeds 2% by mass, hydrophilic sulfonic acid groups increase, so that the solubility in organic solvents may be reduced. The present inventors have further found that the molecular weight of lignin can be controlled from the blasted product by extraction with an organic solvent.

本発明で用いるリグニンの抽出に用いる有機溶媒は、1種又は2種以上複数の混合のアルコール溶媒、アルコールと水を混合した含水アルコール溶媒、そのほかの有機溶媒または、水と混合した含水有機溶媒を使用することができる。水にはイオン交換水を使用することが好ましい。水との混合溶媒の含水率は0質量%〜70質量%が好ましい。リグニンは水への溶解度が低いため、水のみを溶媒とするとリグニンを抽出することが困難である。また、用いる溶媒を選択することにより、得られるリグニンの重量平均分子量を制御することが可能である。   The organic solvent used in the extraction of lignin used in the present invention is one or a mixture of two or more kinds of alcohol solvents, a hydrous alcohol solvent in which alcohol and water are mixed, another organic solvent, or a hydrous organic solvent in which water is mixed. Can be used. It is preferable to use ion exchange water as water. The water content of the mixed solvent with water is preferably 0% by mass to 70% by mass. Since lignin has low solubility in water, it is difficult to extract lignin using only water as a solvent. Moreover, it is possible to control the weight average molecular weight of the lignin obtained by selecting the solvent to be used.

前記プリプレグは、例えば、リグニン、硬化剤、硬化促進剤、有機溶媒を混合した樹脂組成物を繊維に含浸し、両面をフィルムで覆ってシート状としたものである。これを所定の温度に一定時間置き、化学反応によって増粘させ粘着性のない状態とする。   The prepreg is, for example, a sheet formed by impregnating fibers with a resin composition in which lignin, a curing agent, a curing accelerator, and an organic solvent are mixed, and covering both surfaces with a film. This is placed at a predetermined temperature for a certain period of time, and is thickened by a chemical reaction to make it non-sticky.

前記プリプレグに含まれる有機溶媒、あるいは、リグニンの抽出に用いられる有機溶媒としてはアルコール、トルエン、ベンゼン、N−メチルピロリドン、メチルエチルケトン、メチルイソブチルケトン、ジエチルエーテル、メチルセロソルブ(エチレングリコールモノメチルエーテル)、シクロヘキサノン、ジメチルホルムアミド、酢酸メチル、酢酸エチル、アセトン、テトラヒドロフランなどがあり、これらは二種類以上、混合して用いることができる。   The organic solvent contained in the prepreg or the organic solvent used for the extraction of lignin is alcohol, toluene, benzene, N-methylpyrrolidone, methyl ethyl ketone, methyl isobutyl ketone, diethyl ether, methyl cellosolve (ethylene glycol monomethyl ether), cyclohexanone. , Dimethylformamide, methyl acetate, ethyl acetate, acetone, tetrahydrofuran and the like, and two or more of these can be used in combination.

アルコールには、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、tert−ブタノール、n−ヘキサノール、ベンジルアルコール、シクノヘキサノールなどのモノオール系とエチレングリコール、ジエチレングリコール、1,4−ブタンジオール、1,6−ヘキサンジオール、トリメチロールプロパン、グリセリン、トリエタノールアミンなどのポリオールが挙げられる。また、さらに好ましくは、天然物質から得られるアルコールであることが、環境負荷低減化の観点で好ましい。具体的には、天然物質から得たメタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、tert−ブタノール、1,3−プロパンジオール、1,3−ブタンジオール、1,4−ブタンジオール、エチレングリコール、グリセリン、ヒドロキシメチルフルフラールなどが挙げられる。   Alcohols include monools such as methanol, ethanol, n-propanol, isopropanol, n-butanol, tert-butanol, n-hexanol, benzyl alcohol, cynohexanol, ethylene glycol, diethylene glycol, 1,4-butanediol, Examples include polyols such as 1,6-hexanediol, trimethylolpropane, glycerin, and triethanolamine. Further, an alcohol obtained from a natural substance is more preferable from the viewpoint of reducing environmental load. Specifically, methanol, ethanol, n-propanol, isopropanol, n-butanol, tert-butanol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, ethylene obtained from natural substances Examples include glycol, glycerin, and hydroxymethylfurfural.

本発明で用いる硬化剤としてエポキシ樹脂が挙げられる。エポキシ樹脂にはビスフェノールAグリシジルエーテル型エポキシ、ビスフェノールFグリシジルエーテル型エポキシ、ビスフェノールSグリシジルエーテル型エポキシ、ビスフェノールADグリシジルエーテル型エポキシ、フェノールノボラック型エポキシ、ビフェニル型エポキシ、クレゾールノボラック型エポキシがある。また、さらに天然由来物質から得られたエポキシ樹脂であることが環境負荷低減化の観点で好ましい。具体的には、エポキシ化大豆油、エポキシ化脂肪酸エステル類、エポキシ化アマニ油、ダイマー酸変性エポキシ樹脂などが挙げられる。   An epoxy resin is mentioned as a hardening | curing agent used by this invention. Epoxy resins include bisphenol A glycidyl ether type epoxy, bisphenol F glycidyl ether type epoxy, bisphenol S glycidyl ether type epoxy, bisphenol AD glycidyl ether type epoxy, phenol novolac type epoxy, biphenyl type epoxy, and cresol novolac type epoxy. Further, an epoxy resin obtained from a naturally-derived substance is preferable from the viewpoint of reducing the environmental load. Specific examples include epoxidized soybean oil, epoxidized fatty acid esters, epoxidized linseed oil, and dimer acid-modified epoxy resin.

本発明で用いる硬化剤としてイソシアネートが挙げられる。イソシアネートには、脂肪族系イソシアネート、脂環族系イソシアネートおよび芳香族系イソシアネートの他、それらの変性体が挙げられる。脂肪族系イソシアネートとしては、例えば、ヘキサメチレンジイソシアネート、リジンジイソシアネート、リジントリイソシアネート等が挙げられ、脂環族系イソシアネートとしては、例えば、イソホロンジイソシアネートが挙げられる。芳香族系イソシアネートとしては、例えば、トリレンジイソシアネート、キシリレンジイソシアネート、ジフェニルメタンジイソシアネート、ポリメリックジフェニルメタンジイソシアネート、トリフェニルメタントリイソシアネート、トリス(イソシアネートフェニル)チオホスフェート等が挙げられる。イソシアネート変性体としては、例えば、ウレタンプレポリマー、ヘキサメチレンジイソシアネートビューレット、ヘキサメチレンジイソシアネートトリマー、イソホロンジイソシアネートトリマー等が挙げられる。   An isocyanate is mentioned as a hardening | curing agent used by this invention. Isocyanates include aliphatic isocyanates, alicyclic isocyanates and aromatic isocyanates, as well as modified products thereof. Examples of the aliphatic isocyanate include hexamethylene diisocyanate, lysine diisocyanate, and lysine triisocyanate. Examples of the alicyclic isocyanate include isophorone diisocyanate. Examples of the aromatic isocyanate include tolylene diisocyanate, xylylene diisocyanate, diphenylmethane diisocyanate, polymeric diphenylmethane diisocyanate, triphenylmethane triisocyanate, tris (isocyanatephenyl) thiophosphate, and the like. Examples of the modified isocyanate include urethane prepolymer, hexamethylene diisocyanate burette, hexamethylene diisocyanate trimer, and isophorone diisocyanate trimer.

本発明で用いる硬化剤としてアルデヒド又はホルムアルデヒドを生成する化合物が挙げられる。アルデヒドとしては、特に限定されず、例えば、ホルムアルデヒド、パラホルムアルデヒド、トリオキサン、アセトアルデヒド、プロピオンアルデヒド、クロラール、フルフラール、グリオキザール、n−ブチルアルデヒド、カプロアルデヒド、アリルアルデヒド、ベンズアルデヒド、クロトンアルデヒド、アクロレイン、フェニルアセトアルデヒド、o−トルアルデヒド、サリチルアルデヒド等が挙げられる。また、ホルムアルデヒドを生成する化合物としてはヘキサメチレンテトラミンが挙げられる。特にヘキサメチレンテトラミンが好ましい。これらを単独または2種類以上組み合わせて使用することもできる。また、硬化性、耐熱性の面からヘキサメチレンテトラミンが好ましい。   Examples of the curing agent used in the present invention include compounds that generate aldehyde or formaldehyde. The aldehyde is not particularly limited. For example, formaldehyde, paraformaldehyde, trioxane, acetaldehyde, propionaldehyde, chloral, furfural, glyoxal, n-butyraldehyde, caproaldehyde, allylaldehyde, benzaldehyde, crotonaldehyde, acrolein, phenylacetaldehyde , O-tolualdehyde, salicylaldehyde and the like. Moreover, hexamethylenetetramine is mentioned as a compound which produces | generates formaldehyde. Hexamethylenetetramine is particularly preferable. These may be used alone or in combination of two or more. Moreover, hexamethylenetetramine is preferable from the viewpoint of curability and heat resistance.

本発明で用いる硬化剤としてアクリル樹脂が挙げられる。アクリル樹脂としてはアクリル酸、メタクリル酸、スチレン、アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、メタクリル酸エチル、アクリル酸ブチル、メタクリル酸ブチル、脂肪酸ビニルエステルから選ばれる一つ以上のモノマーを単独または共重合したものが使用できる。   An acrylic resin is mentioned as a hardening | curing agent used by this invention. As the acrylic resin, one or more monomers selected from acrylic acid, methacrylic acid, styrene, methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate, and fatty acid vinyl ester are used alone or Copolymerized products can be used.

本発明で用いる硬化剤として多価カルボン酸または多価カルボン酸無水物が挙げられる。多価カルボン酸の具体例としては、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸等の脂肪族多価カルボン酸や、トリメリット酸、ピロメリット酸、イソフタル酸、テレフタル酸、フタル酸、2,6−ナフタレンジカルボン酸等の芳香族多価カルボン酸が挙げられる。多価カルボン酸無水物の具体例としては、例えば、マロン酸無水物、コハク酸無水物、グルタル酸無水物、アジピン酸無水物、ピメリン酸無水物、スベリン酸無水物、アゼライン酸無水物、エチルナジック酸無水物、アルケニルコハク酸無水物、ヘキサヒドロフタル酸無水物等の脂肪族多価カルボン酸無水物や、トリメリット酸無水物、ピロメリット酸無水物、ベンゾフェノンテトラカルボン酸無水物、フタル酸無水物等の芳香族多価カルボン酸無水物が挙げられる。多価カルボン酸または多価カルボン酸無水物が、リグニンが有する水酸基と反応させることにより得られるものであることが好ましい。   Examples of the curing agent used in the present invention include polyvalent carboxylic acids or polyvalent carboxylic acid anhydrides. Specific examples of the polycarboxylic acid include aliphatic polycarboxylic acids such as malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, trimellitic acid, and pyromellitic acid. And aromatic polyvalent carboxylic acids such as isophthalic acid, terephthalic acid, phthalic acid, and 2,6-naphthalenedicarboxylic acid. Specific examples of the polyvalent carboxylic acid anhydride include, for example, malonic acid anhydride, succinic acid anhydride, glutaric acid anhydride, adipic acid anhydride, pimelic acid anhydride, suberic acid anhydride, azelaic acid anhydride, ethyl Aliphatic polycarboxylic acid anhydrides such as nadic acid anhydride, alkenyl succinic acid anhydride, hexahydrophthalic acid anhydride, trimellitic acid anhydride, pyromellitic acid anhydride, benzophenone tetracarboxylic acid anhydride, phthalic acid Aromatic polyvalent carboxylic acid anhydrides such as anhydrides may be mentioned. It is preferable that the polyvalent carboxylic acid or polyvalent carboxylic acid anhydride is obtained by reacting with the hydroxyl group of lignin.

本発明で用いる硬化剤として不飽和多価カルボン酸または不飽和多価カルボン酸無水物が挙げられる。不飽和多価カルボン酸の具体例としては、アクリル酸、クロトン酸、α−エチルアクリル酸、α−n−プロピルアクリル酸、α−n−ブチルアクリル酸、マレイン酸、フマル酸、シトラコン酸、メサコン酸、イタコン酸などが挙げられる。また、不飽和多価カルボン酸無水物の具体例としては、無水マレイン酸、無水イタコン酸、無水シトラコン酸、シス−1,2,3,4−テトラヒドロフタル酸無水物などが挙げられる。不飽和多価カルボン酸または不飽和多価カルボン酸無水物が、リグニンが有する水酸基と反応させることにより得られるものであることが好ましい。   Examples of the curing agent used in the present invention include unsaturated polyvalent carboxylic acid or unsaturated polyvalent carboxylic acid anhydride. Specific examples of the unsaturated polycarboxylic acid include acrylic acid, crotonic acid, α-ethylacrylic acid, α-n-propylacrylic acid, α-n-butylacrylic acid, maleic acid, fumaric acid, citraconic acid, and mesacone. An acid, itaconic acid, etc. are mentioned. Specific examples of the unsaturated polyvalent carboxylic acid anhydride include maleic anhydride, itaconic anhydride, citraconic anhydride, cis-1,2,3,4-tetrahydrophthalic anhydride. It is preferable that the unsaturated polyvalent carboxylic acid or unsaturated polyvalent carboxylic acid anhydride is obtained by reacting with the hydroxyl group of lignin.

本発明で用いる繊維として、植物繊維、炭素繊維、合成繊維、無機繊維などがあげられる。植物繊維には、綿、竹、苧麻(ラミー)、亜麻(リネン)、マニラ麻(アバカ)、サイザル麻、黄麻(ジュート)、ケナフ、バナナ、ココナッツ、わら、砂糖黍、スギ、ヒノキ、トウヒ、松、モミ、カラマツの繊維が挙げられる。   Examples of fibers used in the present invention include plant fibers, carbon fibers, synthetic fibers, and inorganic fibers. Plant fibers include cotton, bamboo, ramie, flax (linen), Manila hemp (avaca), sisal hemp, jute, kenaf, banana, coconut, straw, sugar cane, cedar, cypress, spruce, pine, Fir and larch fibers.

炭素繊維にはピッチ系とPAN(ポリアクリロニトリル)系があるが、強度、弾性率、熱伝導率の面ではPAN系の方が好ましく、軽量、耐薬品性、耐熱性、摺動性の特性からはピッチ系の方が好ましい。また、環境の面からはCFRP(炭素繊維強化プラスチック)より取り出したリサイクル炭素繊維であることが好ましい。   There are pitch and PAN (polyacrylonitrile) types of carbon fiber, but PAN is preferred in terms of strength, elastic modulus, and thermal conductivity, because of its light weight, chemical resistance, heat resistance, and sliding properties. Is preferably a pitch system. In view of the environment, recycled carbon fiber taken out from CFRP (carbon fiber reinforced plastic) is preferable.

合成繊維には、ポリエステル繊維、ポリアミド繊維、アクリル繊維、ウレタン繊維、ポリ塩化ビニル繊維、ポリ塩化ビニリデン繊維、アセテート繊維、アラミド繊維、ナイロン繊維、ビニロン繊維が挙げられる。   Synthetic fibers include polyester fibers, polyamide fibers, acrylic fibers, urethane fibers, polyvinyl chloride fibers, polyvinylidene chloride fibers, acetate fibers, aramid fibers, nylon fibers, and vinylon fibers.

無機繊維には、ガラス繊維、ロックウール等の非晶質繊維とアルミナ繊維、酸化亜鉛等の多結晶繊維とウォラストナイトやチタン酸カリウム繊維等の単結晶繊維が挙げられる。   Examples of inorganic fibers include amorphous fibers such as glass fibers and rock wool, alumina fibers, polycrystalline fibers such as zinc oxide, and single crystal fibers such as wollastonite and potassium titanate fibers.

プリプレグの構成としては、前記リグニンと硬化剤の他、硬化促進剤、増粘剤、離型剤、無機充填材、有機充填材、可塑剤(鉱油、シリコンオイル等)、滑剤、安定剤、酸化防止剤、紫外線吸収剤、防黴(かび)剤、着色剤などの各種添加剤成分を樹脂組成物に配合することもできる。また、紙粉、木粉、セルロース粉末、籾殻粉末、果実殻粉末、キチン粉末、キトサン粉末、タンパク質、澱粉等の粉末を樹脂組成物に添加しても良い。
また、本発明のプリプレグは、前記添加剤成分を適宜配合することにより、SMC用のプリプレグとしても、好適に使用できる。
The composition of the prepreg includes the above lignin and curing agent, curing accelerator, thickener, mold release agent, inorganic filler, organic filler, plasticizer (mineral oil, silicone oil, etc.), lubricant, stabilizer, oxidation Various additive components such as an inhibitor, an ultraviolet absorber, an antifungal agent, and a colorant can also be blended in the resin composition. In addition, powders such as paper powder, wood powder, cellulose powder, rice husk powder, fruit shell powder, chitin powder, chitosan powder, protein, and starch may be added to the resin composition.
In addition, the prepreg of the present invention can be suitably used as a prepreg for SMC by appropriately blending the additive component.

硬化促進剤としては、シクロアミジン化合物、キノン化合物、三級アミン類、有機ホスフィン類、1−シアノエチル−2−フェニルイミダゾール、2−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、2−ヘプタデシルイミダゾール等のイミダゾール類などが挙げられる。   As the curing accelerator, cycloamidine compounds, quinone compounds, tertiary amines, organic phosphines, 1-cyanoethyl-2-phenylimidazole, 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, Examples thereof include imidazoles such as 2-heptadecylimidazole.

増粘剤としては、酸化マグネシウム、水酸化マグネシウム、酸化カリウム、水酸化カリウム等が用いられる。増粘剤の量は、成形材の作業性に応じて決定されるが、前記樹脂組成物の総量に対して、0.5〜5質量%が好ましく、より好ましくは0.7〜2質量%である。増粘剤が0.5質量%未満であると樹脂組成物の粘度が上昇しない場合がある。また増粘剤が5質量%を超えると粘度が上昇し過ぎて制御できなくなる場合がある。   As the thickener, magnesium oxide, magnesium hydroxide, potassium oxide, potassium hydroxide and the like are used. The amount of the thickener is determined according to the workability of the molding material, but is preferably 0.5 to 5% by mass, more preferably 0.7 to 2% by mass, based on the total amount of the resin composition. It is. If the thickener is less than 0.5% by mass, the viscosity of the resin composition may not increase. Moreover, when a thickener exceeds 5 mass%, a viscosity will rise too much and it may become impossible to control.

離型剤としては、ステアリン酸亜鉛、ステアリン酸カルシウム等が使用される。前記樹脂組成物の総量に対して、1〜10質量%が好ましく、より好ましくは2〜4質量%である。離型剤の量が1質量%未満であると成形品が型に付いて脱型しづらく、成形品にクラック等が入る場合がある。また、離型剤が10質量%を超えると成形品強度が低下する傾向にある。   As the mold release agent, zinc stearate, calcium stearate or the like is used. 1-10 mass% is preferable with respect to the total amount of the said resin composition, More preferably, it is 2-4 mass%. If the amount of the release agent is less than 1% by mass, the molded product may stick to the mold and it is difficult to remove the mold, and the molded product may be cracked. Moreover, when a mold release agent exceeds 10 mass%, it exists in the tendency for a molded article strength to fall.

無機充填剤としては、水酸化アルミニウム、珪砂、炭酸カルシウム、タルク、クレー等が挙げられる。添加量は、前記樹脂組成物の総量に対して、好ましくは25〜75質量%であり、30〜70質量%がより好ましい。無機充填剤が75質量%を超えると繊維基材への含浸性、成形時の作業性、成型品の外観特性、軽量化特性等が低下するなど、本発明の効果を奏することが困難になり、25質量%未満であると成形時の作業性の低下、成形体強度が低下するなどのおそれがある。   Examples of the inorganic filler include aluminum hydroxide, silica sand, calcium carbonate, talc, and clay. The addition amount is preferably 25 to 75% by mass and more preferably 30 to 70% by mass with respect to the total amount of the resin composition. If the inorganic filler exceeds 75% by mass, it becomes difficult to achieve the effects of the present invention, such as impregnation into the fiber base material, workability during molding, appearance characteristics of the molded product, weight reduction characteristics, and the like. If it is less than 25% by mass, the workability during molding and the strength of the molded product may be reduced.

成形体は、通常の製造装置を用いて通常の方法により製造することができる。例えば、前記リグニン、硬化剤、硬化促進剤及び各種添加剤を含む樹脂組成物を、上下に配置されたキャリアフィルムに厚さ10〜3000μmとなるように塗布し、乾燥炉で乾燥させる。その後、巻きだし装置から巻き出された所定の大きさの繊維を上記した上下に配置されたキャリアフィルムの樹脂組成物に挾み込み、次いで、全体を含浸ロールの間に通して、圧力を加えて繊維を樹脂組成物に含浸させた後、ロール状に巻き取るか、つづら折りに畳む。この後、必要に応じて加熱により熟成等を行う。熟成温度としては、20〜80℃が好ましく、30〜70℃がより好ましく、40〜60℃がさらに好ましい。離型フィルムとしては、ポリエチレンフィルム、ポリプロピレンフィルム等を用いることができる。   A molded object can be manufactured by a normal method using a normal manufacturing apparatus. For example, the resin composition containing the lignin, the curing agent, the curing accelerator, and various additives is applied to a carrier film disposed above and below so as to have a thickness of 10 to 3000 μm and dried in a drying furnace. Then, the fibers of a predetermined size unwound from the unwinding device are squeezed into the above-described carrier film resin composition arranged above and below, and then the whole is passed between impregnating rolls to apply pressure. Then, after impregnating the fiber with the resin composition, the fiber is wound into a roll or folded in a zigzag manner. Thereafter, aging is performed by heating as necessary. The aging temperature is preferably 20 to 80 ° C, more preferably 30 to 70 ° C, and further preferably 40 to 60 ° C. A polyethylene film, a polypropylene film, etc. can be used as a release film.

プリプレグの粘度は、40℃において1,000〜18,000Pa・sとなるように調整するのが好ましい。粘度が1,000Pa・s未満であると、成形品表面にスカミングが発生し易く、また粘度が18,000Pa・sを超えると型締め時間が長くなって成形サイクルが長くなる傾向を示す。   The viscosity of the prepreg is preferably adjusted to be 1,000 to 18,000 Pa · s at 40 ° C. When the viscosity is less than 1,000 Pa · s, scumming tends to occur on the surface of the molded product, and when the viscosity exceeds 18,000 Pa · s, the mold clamping time tends to be long and the molding cycle tends to be long.

本発明で得られるプリプレグは、任意の形に成形加工が可能である。例えば、パネル組立式貯水槽、浄化槽等の大型容器、大型成形品等幅広い分野の成形品に使用できる。   The prepreg obtained by the present invention can be molded into an arbitrary shape. For example, it can be used for molded products in a wide range of fields such as panel-assembled water storage tanks, large containers such as septic tanks, and large molded products.

プリプレグは、圧縮成形、トランスファー成形等により成形され、広範囲な成形品を得ることができる。成形温度は100〜200℃であることが好ましく、120〜190℃であることがより好ましく、140〜180℃であることがさらに好ましい。100℃より低い場合には成形体の硬化に時間を要し、200℃より高くなると成形時の流動性が低下するとともに成形品の表面性が損なわれる。また、成形圧力は0.1〜10MPaであることが好ましく、0.5〜9MPaであることが好ましく、1〜8MPaであることがより好ましい。0.1MPaより小さいと流動性が低下し、欠肉を生じやすくなり、逆に10MPaより大きくなると成形品の表面性が損なわれるからである。成形時間は、上型を閉じた後、2〜5分間保持し、プリプレグを硬化させた後、型をあけ脱型する。   The prepreg is molded by compression molding, transfer molding, or the like, and a wide range of molded products can be obtained. The molding temperature is preferably 100 to 200 ° C, more preferably 120 to 190 ° C, and further preferably 140 to 180 ° C. When the temperature is lower than 100 ° C., it takes time to cure the molded body. When the temperature is higher than 200 ° C., the fluidity at the time of molding is lowered and the surface property of the molded product is impaired. The molding pressure is preferably 0.1 to 10 MPa, preferably 0.5 to 9 MPa, and more preferably 1 to 8 MPa. This is because if the pressure is less than 0.1 MPa, the fluidity is lowered, and thinning is likely to occur. Conversely, if the pressure is greater than 10 MPa, the surface property of the molded product is impaired. For the molding time, after closing the upper mold, the mold is held for 2 to 5 minutes, the prepreg is cured, and then the mold is opened and removed.

以下、実施例により本発明を具体的に説明するが、本発明の範囲はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, the scope of the present invention is not limited to these Examples.

(実施例1)
(リグニンの抽出)
リグニン抽出原料としては、竹を使用した。適当な大きさにカットした竹材を水蒸気爆砕装置の3Lの耐圧容器に入れ、3.5MPaの水蒸気を圧入し、4分間保持した。その後バルブを急速に開放することで爆砕処理物を得た。洗浄液のpHが6以上になるまで得られた爆砕処理物を水により洗浄して水溶性成分を除去した。その後、真空乾燥機で残存水分を除去した。得られた乾燥体100gにアセトン1000mlを加え、3時間攪拌した後、ろ過により繊維物質を取り除いた。得られた濾液から抽出溶媒(アセトン)を除去し、リグニンを得た。得られたリグニンは常温(25℃)で茶褐色の粉末であった。
Example 1
(Extraction of lignin)
Bamboo was used as a lignin extraction raw material. Bamboo material cut to an appropriate size was placed in a 3 L pressure-resistant container of a steam explosion apparatus, 3.5 MPa of steam was injected, and held for 4 minutes. Thereafter, the valve was rapidly opened to obtain an explosion-treated product. The explosion-treated product obtained until the pH of the cleaning solution reached 6 or more was washed with water to remove water-soluble components. Thereafter, residual moisture was removed with a vacuum dryer. After adding 1000 ml of acetone to 100 g of the obtained dried product and stirring for 3 hours, the fiber material was removed by filtration. The extraction solvent (acetone) was removed from the obtained filtrate to obtain lignin. The obtained lignin was a brown powder at room temperature (25 ° C.).

(リグニンの分析)
溶媒溶解性としては、前記リグニン1gを、溶媒10mlに加えて評価した。常温(25℃)で容易に溶解した場合は○、50〜70℃で溶解した場合は△、加熱しても溶解しなかった場合を×として、評価した。溶媒群1としてアセトン、シクロヘキサノン、テトラヒドロフラン、溶媒群2としてメタノール、エタノール、メチルエチルケトンとして溶解性を評価した結果、溶媒群1では、いずれも○、溶媒群2では、いずれも△の判定であった。
(Lignin analysis)
The solvent solubility was evaluated by adding 1 g of the lignin to 10 ml of the solvent. When it melt | dissolved easily at normal temperature (25 degreeC), it evaluated as (circle), when it melt | dissolved at 50-70 degreeC, (triangle | delta), and when it did not melt | dissolve even if heated, it evaluated as x. As a result of evaluating the solubility as acetone, cyclohexanone, tetrahydrofuran as the solvent group 1 and methanol, ethanol, and methyl ethyl ketone as the solvent group 2, the solvent group 1 was evaluated as ◯ and the solvent group 2 as △.

リグニン中の硫黄原子の含有率は燃焼分解−イオンクロマトグラフ法により定量した。装置は株式会社三菱化学アナリテック製自動試料燃焼装置(AQF−100)及び日本ダイオネクス株式会社製イオンクロマトグラフ(ICS−1600)を用いた。上記リグニン中の硫黄原子の含有率は0.2質量%であった。さらに示差屈折計を備えたゲルパーミエイションクロマトグラフィー(GPC)にてリグニンの分子量を測定した。多分散度の小さいポリスチレンを標準試料として用い、移動相をテトラヒドロフランとして使用し、カラムとして株式会社日立ハイテクノロジーズ製ゲルパックGL−A120SとGL−A170Sとを直列に接続して分子量測定を行った。その重量平均分子量は2400であった。   The content of sulfur atoms in lignin was quantified by combustion decomposition-ion chromatography. As the apparatus, an automatic sample combustion apparatus (AQF-100) manufactured by Mitsubishi Chemical Analytech Co., Ltd. and an ion chromatograph (ICS-1600) manufactured by Nippon Dionex Co., Ltd. were used. The content rate of the sulfur atom in the said lignin was 0.2 mass%. Furthermore, the molecular weight of lignin was measured by gel permeation chromatography (GPC) equipped with a differential refractometer. Polystyrene having a low polydispersity was used as a standard sample, the mobile phase was used as tetrahydrofuran, and gel packs GL-A120S and GL-A170S manufactured by Hitachi High-Technologies Corporation were connected in series as columns to perform molecular weight measurement. Its weight average molecular weight was 2400.

上記で得られたリグニン(有機溶媒可溶リグニン)の水酸基当量は無水酢酸−ピリジン法により水酸基価、電位差滴定法により酸価を測定し求めた(下記の水酸基当量及びエポキシ当量の単位は、グラム/当量であって以下g/eq.で表わす。)。
アセトン抽出竹由来リグニンの水酸基当量は140g/eq.であった。リグニンのフェノール性水酸基とアルコール性水酸基のモル比(以下P/A比)を以下の方法で決定した。リグニン2gのアセチル化処理を行い、未反応のアセチル化剤を留去し、乾燥させたものを、重クロロホルムに溶解させ、1H−NMR(BRUKER社製、V400M、プロトン基本周波数400.13MHz)により測定した。アセチル基由来のプロトンの積分比(フェノール性水酸基に結合したアセチル基由来:2.2〜3.0ppm、アルコール性水酸基に結合したアセチル基由来:1.5〜2.2ppm)からモル比を決定したところ、P/A比は2.2/1.0であった。
The hydroxyl equivalent of the lignin (organic solvent soluble lignin) obtained above was determined by measuring the hydroxyl value by acetic anhydride-pyridine method and the acid value by potentiometric titration (the units of hydroxyl equivalent and epoxy equivalent below are gram). / Equivalent and hereinafter expressed as g / eq.).
The hydroxyl equivalent of acetone-extracted bamboo-derived lignin is 140 g / eq. Met. The molar ratio (hereinafter P / A ratio) of the phenolic hydroxyl group and alcoholic hydroxyl group of lignin was determined by the following method. An acetylation treatment of 2 g of lignin was performed, the unreacted acetylating agent was distilled off, and the dried product was dissolved in deuterated chloroform and analyzed by 1H-NMR (manufactured by BRUKER, V400M, proton fundamental frequency 400.13 MHz). It was measured. Determine the molar ratio from the integral ratio of protons derived from acetyl groups (derived from acetyl groups bonded to phenolic hydroxyl groups: 2.2 to 3.0 ppm, derived from acetyl groups bonded to alcoholic hydroxyl groups: 1.5 to 2.2 ppm). As a result, the P / A ratio was 2.2 / 1.0.

(プリプレグの製造)
攪拌羽根のついた100mlの4ツ口セパラブルフラスコに、前記リグニン100g、アセトン100gを入れ攪拌した。硬化剤としてビスフェノールF型エポキシ樹脂(YDF−8170c、東都化成株式会社製、エポキシ当量156g/eq.)77.2gを加え、十分に相溶した後、硬化促進剤としてキュアゾール2PZ−CN(四国化成工業株式会社製、1−シアノエチル−2−フェニルイミダゾール)0.77gを加え、混合脱胞し、樹脂組成物を得た。
この樹脂組成物を、製造装置を用いてプリプレグとした。樹脂組成物を上下のキャリアフィルムに厚さ200μmとなるように塗布し、乾燥炉に通して乾燥させた。その後、巻き出し装置から巻き出された植物由来の苧麻(ラミー)繊維織布(厚さ0.25mm、ユニチカ株式会社製)を上下に配置されたキャリアフィルムの樹脂組成物に挟み込み、次いで、温度80℃で全体を含浸ロールの間に通して、圧力0.2MPaを加えて繊維を樹脂組成物に含浸させた後、ロール状に巻き取った。繊維は、全樹脂量に対して50質量%となるようにした。また、プリプレグ中のリグニン含有量は、繊維を除いた全樹脂量に対して56質量%であった。この後、40℃で1日間(24時間)熟成させた。また、プリプレグの粘度は、40℃において9000Pa・sであった。
(Manufacture of prepreg)
In a 100 ml four-necked separable flask equipped with a stirring blade, 100 g of the lignin and 100 g of acetone were added and stirred. After adding 77.2 g of a bisphenol F type epoxy resin (YDF-8170c, manufactured by Tohto Kasei Co., Ltd., epoxy equivalent 156 g / eq.) As a curing agent and sufficiently dissolving it, Curazole 2PZ-CN (Shikoku Chemicals) is used as a curing accelerator. 0.77 g of 1-cyanoethyl-2-phenylimidazole (manufactured by Kogyo Co., Ltd.) was added, and the mixture was deflated to obtain a resin composition.
This resin composition was made into a prepreg using a production apparatus. The resin composition was applied to the upper and lower carrier films so as to have a thickness of 200 μm, and passed through a drying furnace and dried. Thereafter, plant-derived ramie fiber woven fabric (thickness: 0.25 mm, manufactured by Unitika Co., Ltd.) unwound from the unwinding device is sandwiched between the resin compositions of the carrier films arranged above and below, and then the temperature The whole was passed between impregnating rolls at 80 ° C., pressure 0.2 MPa was applied to impregnate the fiber with the resin composition, and then wound into a roll. The fiber was adjusted to 50 mass% with respect to the total resin amount. The lignin content in the prepreg was 56% by mass with respect to the total resin amount excluding the fibers. This was followed by aging at 40 ° C. for 1 day (24 hours). The viscosity of the prepreg was 9000 Pa · s at 40 ° C.

(プレス成形)
180℃に加熱したコンプレッション成形機の金型へ、前記プリプレグを複数枚重ねて入れ、温度180℃、1MPa、5分加圧し、硬化させ、厚さ5mmの成形体を得た。さらに200℃で4時間硬化処理し、硬化させた。
(Press molding)
A plurality of the prepregs were put in a mold of a compression molding machine heated to 180 ° C., and were heated at a temperature of 180 ° C., 1 MPa for 5 minutes to be cured to obtain a molded body having a thickness of 5 mm. Further, it was cured by curing at 200 ° C. for 4 hours.

(環境負荷度の評価)
リグニン、植物繊維を植物由来原料とし、成形体全量に対する質量%として植物由来成分比を算出した。植物由来成分比20質量%以上を環境負荷低減効果あり、20質量%未満を効果なしとした。
上記で得られた実施例1の成形体は、リグニン含量が成形体全量に対して28.1質量%、植物繊維含量が50質量%、全体で植物由来成分比78.1質量%であり、環境負荷低減効果ありであった。
(Evaluation of environmental impact)
Lignin and plant fiber were used as plant-derived materials, and the plant-derived component ratio was calculated as mass% based on the total amount of the molded body. A plant-derived component ratio of 20% by mass or more has an effect of reducing the environmental load, and less than 20% by mass has no effect.
The molded product of Example 1 obtained above has a lignin content of 28.1% by mass relative to the total mass of the molded product, a plant fiber content of 50% by mass, and a total plant-derived component ratio of 78.1% by mass, There was an environmental load reduction effect.

(難燃性試験)
難燃性の評価としては、UL耐炎試験規格(UL94)に準じて行った。試験片として上記プリプレグを重ねて上記と同様の条件でプレス成形し、厚さ3mm、長さ130mm、幅13mmの形に切り取ったものを使用した。水平燃焼試験にてHBレベル以上を難燃性ありとした。評価の結果、HBレベルを満たしていた。
(Flame retardancy test)
The evaluation of flame retardancy was performed according to UL flame resistance test standard (UL94). As the test piece, the prepreg was stacked and press-molded under the same conditions as described above, and the sample was cut into a shape having a thickness of 3 mm, a length of 130 mm, and a width of 13 mm. In the horizontal combustion test, the HB level or higher was regarded as flame retardant. As a result of the evaluation, the HB level was satisfied.

(抗菌性試験)
JIS Z2801に準じて、黄色ぶどう球菌、大腸菌に対する抗菌性を評価した。上記成形体を5cm×5cmに切り取り、試験片とした。試験片(成形体)上に菌液(生菌数2.5〜10×10の5乗個/mL)0.4mLを播き、フィルムをかぶせ35℃±1℃、24時間培養した。試験片(成形体)上の生菌数を測定するため、サンプリングし、サンプルを適宜希釈し、寒天平板培養にて35℃±1℃、48時間培養して生菌数を得た。
R=[Log(B/A)−log(C/A)]=[Log(B/C)]
R:抗菌活性値
A:無加工試験片における接種直後の生菌数の平均値(個)
B:無加工試験片における24時間後の生菌数の平均値(個)
C:抗菌加工試験片における24時間後の生菌数の平均値(個)
抗菌活性値2以上を抗菌性ありとした。成形した抗菌性樹脂組成物の抗菌活性値は大腸菌、黄色ブドウ球菌に対して、それぞれ5.5、6.0であり、抗菌性ありの判定であった。
(Antimicrobial test)
According to JIS Z2801, antibacterial activity against Staphylococcus aureus and Escherichia coli was evaluated. The said molded object was cut out to 5 cm x 5 cm, and it was set as the test piece. On a test piece (molded body), 0.4 mL of a bacterial solution (viable cells of 2.5 to 10 × 10 5 cells / mL) was seeded, covered with a film, and cultured at 35 ° C. ± 1 ° C. for 24 hours. In order to measure the number of viable bacteria on the test piece (molded body), sampling was performed, the sample was appropriately diluted, and cultured in an agar plate culture at 35 ° C. ± 1 ° C. for 48 hours to obtain the viable cell count.
R = [Log (B / A) -log (C / A)] = [Log (B / C)]
R: antibacterial activity value A: average number of viable bacteria immediately after inoculation in unprocessed test pieces (pieces)
B: Average number of viable cells after 24 hours in unprocessed test piece
C: Average number of viable bacteria after 24 hours in antibacterial processed test piece
An antibacterial activity value of 2 or more was considered to be antibacterial. The antibacterial activity value of the molded antibacterial resin composition was 5.5 and 6.0 for Escherichia coli and Staphylococcus aureus, respectively.

(実施例2)
実施例1の硬化剤をクレゾールノボラック型エポキシ樹脂(YDCN−700−10、東都化成株式会社製、エポキシ当量210g/eq.)98g、硬化促進剤(キュアゾール2PZ−CN)0.98g、繊維をガラス繊維(厚さ0.4mm)とした以外は、実施例1と同様にし、プリプレグを作製した。
また、繊維は、全樹脂量に対して50質量%となるようにした。また、プリプレグ中のリグニン含有量は、繊維を除いた全樹脂量に対して50質量%であった。また、プリプレグの粘度は、40℃において10000Pa・sであった。
さらに、実施例1と同様にし、厚さ5mmの成形体を得た。
実施例1と同様に環境負荷度を評価した結果、実施例2の成形体は、リグニン含量が成形体全量に対して25.1質量%、植物繊維含量が0質量%、全体で植物由来成分比25.1質量%であり、環境負荷低減効果ありであった。水平燃焼試験では、HBレベルを満たしており、難燃性ありの判定であった。また、抗菌活性値は大腸菌、黄色ブドウ球菌に対して、それぞれ5.0、4.9であり、抗菌性ありの判定であった。
(Example 2)
The curing agent of Example 1 was 98 g of a cresol novolac type epoxy resin (YDCN-700-10, manufactured by Tohto Kasei Co., Ltd., epoxy equivalent 210 g / eq.), 0.98 g of a curing accelerator (Curesol 2PZ-CN), and the fiber was glass. A prepreg was produced in the same manner as in Example 1 except that the fiber (thickness 0.4 mm) was used.
Further, the fiber was 50% by mass with respect to the total resin amount. The lignin content in the prepreg was 50% by mass with respect to the total resin amount excluding the fibers. The viscosity of the prepreg was 10,000 Pa · s at 40 ° C.
Furthermore, it carried out similarly to Example 1, and obtained the molded object of thickness 5mm.
As a result of evaluating the degree of environmental burden in the same manner as in Example 1, the molded product of Example 2 had a lignin content of 25.1% by mass and a plant fiber content of 0% by mass with respect to the total mass of the molded product. The ratio was 25.1% by mass, and there was an effect of reducing the environmental load. In the horizontal combustion test, the HB level was satisfied and it was determined that there was flame retardancy. The antibacterial activity values were 5.0 and 4.9 for Escherichia coli and Staphylococcus aureus, respectively.

(実施例3)
実施例1の硬化剤をヘキサメチレンジイソシアネート(和光純薬工業株式会社)17.5g、硬化促進剤としてジラウリン酸ジブチルすず(IV)(和光純薬工業株式会社)1g、繊維をポリエステル繊維(厚さ0.4mm)とした以外は、実施例1と同様にし、プリプレグを作製した。
また、繊維は、全樹脂量に対して50質量%となるようにした。また、プリプレグ中のリグニン含有量は、繊維を除いた全樹脂量に対して84質量%であった。また、プリプレグの粘度は、40℃において8000Pa・sであった。
さらに、実施例1と同様にし、厚さ5mmの成形体を得た。
実施例1と同様に環境負荷度を評価した結果、実施例3の成形体は、リグニン含量が成形体全量に対して42.2質量%、植物繊維含量が0質量%、全体で植物由来成分比42.2質量%であり、環境負荷低減効果ありであった。水平燃焼試験では、HBレベルを満たしており、難燃性ありの判定であった。また、抗菌活性値は大腸菌、黄色ブドウ球菌に対して、それぞれ5.3、5.6であり、抗菌性ありの判定であった。
(Example 3)
17.5 g of hexamethylene diisocyanate (Wako Pure Chemical Industries, Ltd.) as the curing agent of Example 1, 1 g of dibutyltin dilaurate (IV) (Wako Pure Chemical Industries, Ltd.) as a curing accelerator, and polyester fibers (thickness) A prepreg was produced in the same manner as in Example 1 except that the thickness was 0.4 mm.
Further, the fiber was 50% by mass with respect to the total resin amount. The lignin content in the prepreg was 84% by mass with respect to the total resin amount excluding the fibers. The viscosity of the prepreg was 8000 Pa · s at 40 ° C.
Furthermore, it carried out similarly to Example 1, and obtained the molded object of thickness 5mm.
As a result of evaluating the degree of environmental burden in the same manner as in Example 1, the molded product of Example 3 has a lignin content of 42.2% by mass and a plant fiber content of 0% by mass with respect to the total mass of the molded product. The ratio was 42.2% by mass, and there was an environmental load reduction effect. In the horizontal combustion test, the HB level was satisfied and it was determined that there was flame retardancy. The antibacterial activity values were 5.3 and 5.6 for Escherichia coli and Staphylococcus aureus, respectively.

(比較例1)
(リグニンスルホン酸塩の分析)
実施例1のリグニンの代わりにリグニンスルホン酸塩(バニレックスN、日本製紙株式会社製)を用いた。元素分析法によって測定された上記リグニンスルホン酸塩中の硫黄原子の含有率は3質量%であった。重量平均分子量を株式会社島津製作所製高速液体クロマトグラフィー(C−R4A)により測定し、標準ポリスチレンを用いた検量線により換算して求めた。移動相をDMF+LiBr(0.06mol/L)+リン酸(0.06mol/L)として使用し、カラムとして株式会社日立ハイテクノロジーズ製ゲルパックGL−S300MDT−5を2つ直列に接続して分子量測定を行った。その重量平均分子量は11000であった。また、実施例1と同様に有機溶剤への溶解性を評価した。溶媒としてアセトン、シクロヘキサノン、テトラヒドロフラン、メタノール、エタノール、メチルエチルケトンを用いて溶解性を評価した結果、すべての溶媒に不溶であった。
(Comparative Example 1)
(Analysis of lignin sulfonate)
Instead of the lignin of Example 1, lignin sulfonate (Vanilex N, manufactured by Nippon Paper Industries Co., Ltd.) was used. The content of sulfur atoms in the lignin sulfonate measured by elemental analysis was 3% by mass. The weight average molecular weight was measured by high performance liquid chromatography (C-R4A) manufactured by Shimadzu Corporation and calculated by a calibration curve using standard polystyrene. The mobile phase was used as DMF + LiBr (0.06 mol / L) + phosphoric acid (0.06 mol / L), and two gel packs GL-S300MDT-5 manufactured by Hitachi High-Technologies Corporation were connected in series as a column for molecular weight measurement. went. Its weight average molecular weight was 11,000. Further, the solubility in organic solvents was evaluated in the same manner as in Example 1. As a result of evaluating the solubility using acetone, cyclohexanone, tetrahydrofuran, methanol, ethanol, and methyl ethyl ketone as the solvent, it was insoluble in all the solvents.

(プリプレグの製造)
実施例1記載のリグニンの代わりに前記リグニンスルホン酸塩を用いた以外は、実施例1と同様にした。リグニンスルホン酸塩は有機溶媒及び硬化剤との相溶性が悪く、プリプレグ及び成形体を作製できなかった。
(Manufacture of prepreg)
The procedure was the same as Example 1 except that the lignin sulfonate was used in place of the lignin described in Example 1. Lignin sulfonate was poorly compatible with organic solvents and curing agents, and prepregs and molded articles could not be produced.

(比較例2)
実施例1のリグニンの代わりにリグニンスルホン酸塩(バニレックスN、日本製紙株式会社製)を用い、硬化剤をクレゾールノボラック型エポキシ樹脂(YDCN−700−10、東都化成株式会社製、エポキシ当量210g/eq.)98g、硬化促進剤(キュアゾール2PZ−CN)を0.98g、繊維をガラス繊維とした以外は、実施例1と同様にした。リグニンスルホン酸塩は有機溶媒及び硬化剤との相溶性が悪く、プリプレグ及び成形体を作製できなかった。
(Comparative Example 2)
Instead of the lignin of Example 1, lignin sulfonate (Vanilex N, manufactured by Nippon Paper Industries Co., Ltd.) was used, and the curing agent was a cresol novolac type epoxy resin (YDCN-700-10, manufactured by Toto Kasei Co., Ltd., epoxy equivalent 210 g / eq.) 98 g, 0.98 g of curing accelerator (Cureazole 2PZ-CN), and the same procedure as in Example 1 except that the fiber was glass fiber. Lignin sulfonate was poorly compatible with organic solvents and curing agents, and prepregs and molded articles could not be produced.

(比較例3)
リグニンまたはリグニン化合物を配合せず、プリプレグに用いる樹脂組成物を、作製した。不飽和ポリエステル樹脂100g、硬化剤としてターシャリーブチルパーオキシベンゾエート(パーブチルZ,日本油脂株式会社,商品名)1.0g、重合禁止剤としてパラベンゾキノン(精工化学株式会社,商品名)0.05g、増粘材として酸化マグネシウム1.0gとした以外は、実施例1と同様にし、プリプレグを作製した。
さらに、実施例1と同様の方法で成形体を得た。
実施例1と同様に環境負荷度を評価した結果、比較例3の成形体は、リグニン含量が成形体全量に対して0質量%、植物繊維含量が0質量%、全体で植物由来成分比0質量%であり、環境負荷低減効果なしであった。水平燃焼試験では、HBレベルを満たしており、難燃性ありの判定であった。また、抗菌活性値は大腸菌、黄色ブドウ球菌に対して、それぞれ1.2、1.4であり、抗菌性なしの判定であった。
(Comparative Example 3)
A resin composition used for a prepreg was prepared without blending lignin or a lignin compound. 100 g of unsaturated polyester resin, 1.0 g of tertiary butyl peroxybenzoate (Perbutyl Z, Nippon Oil & Fats Co., Ltd., trade name) as a curing agent, 0.05 g of parabenzoquinone (Seiko Chemical Co., Ltd., trade name) as a polymerization inhibitor, A prepreg was produced in the same manner as in Example 1 except that 1.0 g of magnesium oxide was used as the thickener.
Further, a molded body was obtained in the same manner as in Example 1.
As a result of evaluating the degree of environmental burden in the same manner as in Example 1, the molded product of Comparative Example 3 had a lignin content of 0% by mass and a plant fiber content of 0% by mass with respect to the total mass of the molded product. It was mass%, and there was no effect of reducing environmental impact. In the horizontal combustion test, the HB level was satisfied and it was determined that there was flame retardancy. The antibacterial activity values were 1.2 and 1.4 for E. coli and Staphylococcus aureus, respectively.

Claims (8)

樹脂組成物を繊維に含浸してなる、プリプレグであって、前記樹脂組成物が、リグニン、硬化剤及び硬化促進剤を含み、前記繊維が、植物繊維、炭素繊維、合成繊維、無機繊維のうち1つないし2つ以上選択されるものであり、
前記リグニンが、植物原料に水蒸気を圧入し、瞬時に圧力を開放することで植物原料を爆砕する水蒸気爆砕法によりセルロース成分、ヘミセルロース成分から分離し、有機溶媒に溶解させることにより得たリグニンであり、
重量平均分子量が100〜7000であり、
硫黄原子の含有率が0.5質量%以下であり、
有機溶媒に可溶であって、その溶媒溶解性は、前記リグニン1gを、溶媒10mlに加えて溶解させた場合にアセトン、シクロヘキサノン及びテトラヒドロフランには25℃で溶解し、メタノール、エタノール及びメチルエチルケトンには50〜70℃で溶解するものであるプリプレグ。
A prepreg formed by impregnating a fiber with a resin composition, wherein the resin composition includes lignin, a curing agent, and a curing accelerator, and the fiber is a plant fiber, a carbon fiber, a synthetic fiber, or an inorganic fiber. One or more are selected,
The lignin is a lignin obtained by injecting water vapor into the plant material and separating it from the cellulose component and the hemicellulose component by a steam explosion method that explodes the plant material by instantaneously releasing the pressure and dissolving it in an organic solvent. ,
The weight average molecular weight is 100-7000,
The sulfur atom content is 0.5 mass% or less,
What soluble der in an organic solvent, the solvent solubility, the lignin 1g, when dissolved in addition to a solvent 10ml of acetone, in cyclohexanone and tetrahydrofuran were dissolved at 25 ° C., methanol, ethanol and methyl ethyl ketone Is a prepreg that dissolves at 50-70 ° C.
繊維を除いた全樹脂量に対してリグニンを5〜90質量%含むことを特徴とする請求項1に記載のプリプレグ。   The prepreg according to claim 1, comprising 5 to 90% by mass of lignin with respect to the total amount of resin excluding fibers. 硬化剤がエポキシ樹脂である請求項1又は2に記載のプリプレグ。 The prepreg according to claim 1 or 2, wherein the curing agent is an epoxy resin. 硬化剤がイソシアネートである請求項1又は2に記載のプリプレグ。 The prepreg according to claim 1 or 2, wherein the curing agent is an isocyanate. 硬化剤がアルデヒド又はホルムアルデヒドを生成する化合物である請求項1又は2に記載のプリプレグ。 The prepreg according to claim 1 or 2, wherein the curing agent is a compound that generates aldehyde or formaldehyde. 硬化剤が多価カルボン酸または多価カルボン酸無水物から1つないし2つ以上選択されたものである請求項1又は2に記載のプリプレグ。 The prepreg according to claim 1 or 2, wherein the curing agent is one or more selected from polyvalent carboxylic acids or polyvalent carboxylic anhydrides. 硬化剤が不飽和基を含む多価カルボン酸または多価カルボン酸無水物から1つないし2つ以上選択されたものである請求項1又は2に記載のプリプレグ。 The prepreg according to claim 1 or 2, wherein the curing agent is one or more selected from a polyvalent carboxylic acid or polyvalent carboxylic anhydride containing an unsaturated group. 請求項1〜のいずれかに記載のプリプレグを加熱加圧成形することを特徴とする、成形体の製造方法。 A method for producing a molded body, wherein the prepreg according to any one of claims 1 to 7 is subjected to heat and pressure molding.
JP2010199771A 2010-02-10 2010-09-07 Prepreg and method for producing molded body Expired - Fee Related JP5582346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010199771A JP5582346B2 (en) 2010-02-10 2010-09-07 Prepreg and method for producing molded body

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2010027547 2010-02-10
JP2010027547 2010-02-10
JP2010065953 2010-03-23
JP2010065953 2010-03-23
JP2010199771A JP5582346B2 (en) 2010-02-10 2010-09-07 Prepreg and method for producing molded body

Publications (2)

Publication Number Publication Date
JP2011219723A JP2011219723A (en) 2011-11-04
JP5582346B2 true JP5582346B2 (en) 2014-09-03

Family

ID=45036344

Family Applications (11)

Application Number Title Priority Date Filing Date
JP2010168053A Pending JP2011219715A (en) 2010-02-10 2010-07-27 Resin compound material for molding
JP2010170394A Expired - Fee Related JP5641302B2 (en) 2010-02-10 2010-07-29 Antibacterial resin composition
JP2010173536A Expired - Fee Related JP5861856B2 (en) 2010-02-10 2010-08-02 Manufacturing method of adhesive
JP2010173535A Pending JP2011219717A (en) 2010-02-10 2010-08-02 Woody coating
JP2010175306A Pending JP2011218775A (en) 2010-02-10 2010-08-04 Woody building material
JP2010192127A Expired - Fee Related JP5618136B2 (en) 2010-02-10 2010-08-30 Resin composition and molded body
JP2010199770A Expired - Fee Related JP5720924B2 (en) 2010-02-10 2010-09-07 Wood-based decorative board
JP2010199771A Expired - Fee Related JP5582346B2 (en) 2010-02-10 2010-09-07 Prepreg and method for producing molded body
JP2010205501A Expired - Fee Related JP5652646B2 (en) 2010-02-10 2010-09-14 Wood-based film
JP2010223725A Pending JP2011219728A (en) 2010-02-10 2010-10-01 Tacky adhesive
JP2011020614A Expired - Fee Related JP5741904B2 (en) 2010-02-10 2011-02-02 Wooden foam

Family Applications Before (7)

Application Number Title Priority Date Filing Date
JP2010168053A Pending JP2011219715A (en) 2010-02-10 2010-07-27 Resin compound material for molding
JP2010170394A Expired - Fee Related JP5641302B2 (en) 2010-02-10 2010-07-29 Antibacterial resin composition
JP2010173536A Expired - Fee Related JP5861856B2 (en) 2010-02-10 2010-08-02 Manufacturing method of adhesive
JP2010173535A Pending JP2011219717A (en) 2010-02-10 2010-08-02 Woody coating
JP2010175306A Pending JP2011218775A (en) 2010-02-10 2010-08-04 Woody building material
JP2010192127A Expired - Fee Related JP5618136B2 (en) 2010-02-10 2010-08-30 Resin composition and molded body
JP2010199770A Expired - Fee Related JP5720924B2 (en) 2010-02-10 2010-09-07 Wood-based decorative board

Family Applications After (3)

Application Number Title Priority Date Filing Date
JP2010205501A Expired - Fee Related JP5652646B2 (en) 2010-02-10 2010-09-14 Wood-based film
JP2010223725A Pending JP2011219728A (en) 2010-02-10 2010-10-01 Tacky adhesive
JP2011020614A Expired - Fee Related JP5741904B2 (en) 2010-02-10 2011-02-02 Wooden foam

Country Status (1)

Country Link
JP (11) JP2011219715A (en)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5158008B2 (en) 2009-04-28 2013-03-06 トヨタ自動車株式会社 All solid battery
CN102859066B (en) 2010-01-19 2016-01-13 瑞恩麦特克斯股份有限公司 Supercritical fluid is used to produce fermentable sugar and lignin from living beings
JP5618153B2 (en) * 2011-02-02 2014-11-05 日立化成株式会社 Resin composition and molded body
JP2013035885A (en) * 2011-08-03 2013-02-21 Asahi Organic Chemicals Industry Co Ltd Lignin, composition containing lignin and method for producing the lignin
US8759498B2 (en) * 2011-12-30 2014-06-24 Renmatix, Inc. Compositions comprising lignin
PL2807212T3 (en) * 2012-01-24 2017-09-29 Lenzing Aktiengesellschaft Foams composed of lignin-furan derivative polymers and production method therefor
JP2013170245A (en) * 2012-02-22 2013-09-02 Hitachi Chemical Co Ltd Novel polyurethane
JP2013221113A (en) * 2012-04-18 2013-10-28 Hitachi Ltd Lignin-derived epoxy resin composition and application thereof
CA2874970A1 (en) * 2012-06-01 2013-12-05 Henri J.M. Grunbauer A composition in the form of a dispersion comprising a lignin, a method for the manufacturing thereof and use thereof
JP2014024933A (en) * 2012-07-26 2014-02-06 Hitachi Chemical Co Ltd Self-curable resin using lignin
JP2014077107A (en) 2012-09-19 2014-05-01 Fuji Xerox Co Ltd Resin composition and resin molded article
JP2014065825A (en) * 2012-09-26 2014-04-17 Hitachi Chemical Co Ltd Resin material for injection molding and molded body
JP6163761B2 (en) * 2013-01-16 2017-07-19 住友ベークライト株式会社 Resin composition and resin molded body
DE102013002573A1 (en) * 2013-02-11 2014-08-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Thermoplastic polymer compounds with low molecular weight lignins, process for their preparation, moldings and uses
DE102013002574A1 (en) 2013-02-11 2014-08-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Microstructured composite material, process for its production, moldings thereof and uses
JP2014160710A (en) * 2013-02-19 2014-09-04 Hitachi Chemical Co Ltd Printed circuit board
WO2014136762A1 (en) * 2013-03-06 2014-09-12 日立化成株式会社 Coated sand
CN103112072B (en) * 2013-03-20 2014-08-13 南京林业大学 Method for improving product surface properties by pennisetum man-made board processing residues
FI125416B (en) * 2013-06-28 2015-10-15 Upm Kymmene Corp Nonwoven reinforced composite resin
AU2014336965A1 (en) * 2013-10-18 2016-06-02 Queensland University Of Technology Lignin-based waterproof coating
WO2015067362A1 (en) * 2013-11-06 2015-05-14 Wood Innovations Ltd. Core layer having wood elements, in particular wood elements having a corrugated structure
KR101514899B1 (en) * 2013-12-30 2015-04-23 최미희 Composition and Manufacturing Method of self-exitinguishing fire-retardant wood by free carbon, metallic salts and micro-fibril by Modifide of Wood
JP6296285B2 (en) * 2014-02-21 2018-03-20 清水建設株式会社 How to protect concrete
JP6296284B2 (en) * 2014-02-21 2018-03-20 清水建設株式会社 Concrete member and manufacturing method thereof
JP6384717B2 (en) * 2014-02-21 2018-09-05 清水建設株式会社 Concrete coloring agent, concrete coloring method, concrete and concrete structure
CN103910850B (en) * 2014-04-02 2019-11-01 合肥杰事杰新材料股份有限公司 A kind of fire-retardant enhancing hard polyurethane foam of phosphatization lignin-base and preparation method thereof
JP6296293B2 (en) * 2014-05-19 2018-03-20 清水建設株式会社 Concrete coloring agent and method for producing the same, concrete coloring method, and concrete
KR101716142B1 (en) * 2014-09-05 2017-03-15 연세대학교 산학협력단 Insoluble lignin nanofiber and method for menufactruing the insoluble lignin nanofiber
JP6406948B2 (en) * 2014-09-12 2018-10-17 日本製紙株式会社 Lignin derivative for rubber reinforcement, method for producing lignin derivative for rubber reinforcement, lignin resin composition and rubber composition
JP6422708B2 (en) * 2014-09-12 2018-11-14 日本製紙株式会社 Method for producing lignin derivative for rubber reinforcement, method for producing lignin resin composition, and method for producing rubber composition
CN104449501A (en) * 2014-12-26 2015-03-25 宁波中加低碳新技术研究院有限公司 Furfural/lignin/isocyanate adhesive
KR101713438B1 (en) * 2015-09-15 2017-03-07 권혁이 Producing method of eco-friendly lightweight tiles using waste coal tailings
JP2017066259A (en) * 2015-09-30 2017-04-06 株式会社ファインテック Bamboo fiber composite plant-derived resin composition and method for producing the same
JP6730043B2 (en) * 2016-02-22 2020-07-29 積水化学工業株式会社 Fiber reinforced resin prepreg sheet
CN115503066B (en) * 2017-04-10 2024-06-11 马里兰大学派克分院 Tough structure wood material and manufacturing method and application thereof
JP2020533436A (en) * 2017-09-07 2020-11-19 レンマティックス, インコーポレイテッドRenmatix, Inc. Polymer antioxidant stabilizer
JP6964251B2 (en) 2017-11-14 2021-11-10 パナソニックIpマネジメント株式会社 Biomass composition and biomass molding
JP6964881B2 (en) * 2018-02-28 2021-11-10 国立研究開発法人産業技術総合研究所 Lignin clay composite membrane and its manufacturing method
JP7001317B2 (en) * 2018-04-10 2022-01-19 トヨタ車体株式会社 Manufacturing method of molded products
CN112334560A (en) * 2018-07-02 2021-02-05 斯道拉恩索公司 Preparation process of adhesive resin
EP3632949A1 (en) * 2018-10-02 2020-04-08 Vito NV Process for the production of epoxy resins
JP7457256B2 (en) * 2019-08-08 2024-03-28 株式会社スリーボンド Adhesive compositions, cured products and bonded products
CN110900778B (en) * 2019-12-16 2021-05-14 清华大学 Plant fiber artificial board and preparation method and application thereof
CN111073325A (en) * 2019-12-31 2020-04-28 华南理工大学 Lignin/fiber thermoplastic composite material and preparation method thereof
WO2022092343A1 (en) * 2020-10-28 2022-05-05 주식회사 리그넘 Method for preparing antibacterial bio-filler to be added to plastics, and antibacterial bio-filler to be added to plastics, prepared thereby
WO2022200974A1 (en) * 2021-03-24 2022-09-29 Stora Enso Oyj Biobased adhesive mixture and the use of said adhesive mixture
CN113637245B (en) * 2021-08-16 2023-02-17 深圳市峰源化工新材料股份有限公司 Lignin modified styrene butadiene rubber thermoplastic elastomer and preparation method thereof
WO2023219158A1 (en) * 2022-05-12 2023-11-16 スーパーレジン工業株式会社 Foamed body and layered structure
WO2024106457A1 (en) * 2022-11-18 2024-05-23 出光興産株式会社 Resin composition, fiber-reinforced resin composition and molded body

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61171744A (en) * 1985-01-24 1986-08-02 Daiken Trade & Ind Co Ltd Wood-based foamed material and production thereof
JPS61215678A (en) * 1985-03-22 1986-09-25 Oji Paper Co Ltd Manufacture of lignin-epoxy resin adhesive
JP2595308B2 (en) * 1987-09-04 1997-04-02 王子製紙株式会社 Lignin-phenol resin composition
US5614564A (en) * 1993-07-28 1997-03-25 Samsung General Chemicals Co., Ltd. Degradable foam and the method for its production
JP3409092B2 (en) * 1993-11-29 2003-05-19 大倉工業株式会社 Thermosetting chemically modified wood material composition
JPH08104833A (en) * 1994-10-03 1996-04-23 Oobusu Kk Marine paint
DE4443431A1 (en) * 1994-12-06 1996-06-13 Elastogran Gmbh Pressurized, blowing agent-containing isocyanate semi-prepolymer mixtures based on lignin-polyether-polyols, their use for the production of polyurethane foams and a process therefor
AU4314896A (en) * 1994-12-22 1996-07-10 Tsuyoshi Kono Board produced from malvaceous bast plant and process for producing the same
SG47174A1 (en) * 1995-09-18 1998-03-20 Ibm Cross-linked biobased materials and fabricating methods thereof
MX9706348A (en) * 1995-12-29 1997-11-29 Kenneth R Kurple Lignin based polyols.
JPH09241615A (en) * 1996-03-11 1997-09-16 Rinyacho Shinrin Sogo Kenkyusho Composition having infrared light-absorbing property and its production
JP3103839B2 (en) * 1997-03-14 2000-10-30 トスコ株式会社 Water-absorbing polyurethane foam and method for producing the same
JPH10305409A (en) * 1997-04-30 1998-11-17 Takeshi Kono Board made of grass lignin and manufacture thereof
JPH11152410A (en) * 1997-11-21 1999-06-08 Asahi Chem Ind Co Ltd Resin composition including lignin
JPH11320516A (en) * 1998-03-17 1999-11-24 Bridgestone Corp Woody board
AU5229399A (en) * 1998-07-27 2000-02-21 Huntsman Ici Chemicals Llc Low diisocyanate content polymeric mdi-containing binders for fiberboard manufacture
JP2000102910A (en) * 1998-09-29 2000-04-11 Matsushita Electric Works Ltd Manufacture of fiber plate
JP2002114896A (en) * 2000-08-01 2002-04-16 Nippon Paper Industries Co Ltd Lignin-based resin composition
JP3960811B2 (en) * 2002-02-04 2007-08-15 機能性木質新素材技術研究組合 Wood paint
JP3936214B2 (en) * 2002-03-25 2007-06-27 株式会社東芝 Resin composition
JP2004107386A (en) * 2002-09-13 2004-04-08 Japan Science & Technology Corp Polyphenolic composition
JP2005041969A (en) * 2003-07-28 2005-02-17 Toyota Motor Corp Antioxidant for resin
JP2005111866A (en) * 2003-10-09 2005-04-28 Hiroshi Nakamura Method for producing decorative plate or decorative material having protrusion/recess pattern and decorative plate or decorative material
JP4339135B2 (en) * 2004-01-15 2009-10-07 Ykk株式会社 Injection casting equipment for forming amorphous alloys
JP2005279959A (en) * 2004-03-26 2005-10-13 Matsushita Electric Works Ltd Surface reinforced woody building material
JP4457195B2 (en) * 2004-06-24 2010-04-28 名古屋市 Method for producing cellulosic fiberboard
JP4561242B2 (en) * 2004-08-27 2010-10-13 株式会社明電舎 Insulating polymer material composition
JP2006150819A (en) * 2004-11-30 2006-06-15 Nichimen Kagaku Kogyo Kk Bamboo fiber reinforced plastic and its manufacturing process
JP3960996B2 (en) * 2005-01-17 2007-08-15 機能性木質新素材技術研究組合 Crude lignophenol derivative paint
JP2007169491A (en) * 2005-12-22 2007-07-05 Mitsubishi Chemicals Corp Method for producing phenol-based resin adhesive
JP2008006373A (en) * 2006-06-29 2008-01-17 Kinousei Mokushitsu Shinsozai Gijutsu Kenkyu Kumiai Coating method of japanese lacquer, and resin composition
JP5045030B2 (en) * 2006-08-23 2012-10-10 富士ゼロックス株式会社 RESIN COMPOSITION, RESIN MOLDED BODY AND CASE, AND METHOD FOR MANUFACTURING AND RECYCLING METHOD OF RESIN MOLDED BODY
JP5315606B2 (en) * 2006-12-01 2013-10-16 株式会社明電舎 Insulating polymer material composition
JP4998018B2 (en) * 2007-03-06 2012-08-15 トヨタ車体株式会社 Manufacturing method of fiber molded body
JP2008247963A (en) * 2007-03-29 2008-10-16 Mitsubishi Motors Corp Lignocellulose material molding and its molding method
JP2009057433A (en) * 2007-08-30 2009-03-19 Toshiba Corp Resin composition and method for producing the same
JP2009263549A (en) * 2008-04-28 2009-11-12 Hitachi Ltd Epoxy resin composition of vegetable origin, and various instruments using the same
JP5396747B2 (en) * 2008-06-02 2014-01-22 住友ベークライト株式会社 Prepreg and substrate using the same
JP2009292884A (en) * 2008-06-03 2009-12-17 Hitachi Ltd Lignophenol-based epoxy resin composition
JP2010254952A (en) * 2009-03-31 2010-11-11 Hishie Kagaku Kk Resin composition for foaming and lignin-containing polymer foam

Also Published As

Publication number Publication date
JP2011219728A (en) 2011-11-04
JP2011219716A (en) 2011-11-04
JP2011218777A (en) 2011-11-04
JP2011219715A (en) 2011-11-04
JP2011219734A (en) 2011-11-04
JP2011219717A (en) 2011-11-04
JP5618136B2 (en) 2014-11-05
JP2011219723A (en) 2011-11-04
JP5741904B2 (en) 2015-07-01
JP2011219725A (en) 2011-11-04
JP5641302B2 (en) 2014-12-17
JP2011219718A (en) 2011-11-04
JP5652646B2 (en) 2015-01-14
JP5720924B2 (en) 2015-05-20
JP2011219722A (en) 2011-11-04
JP5861856B2 (en) 2016-02-16
JP2011218775A (en) 2011-11-04

Similar Documents

Publication Publication Date Title
JP5582346B2 (en) Prepreg and method for producing molded body
Collins et al. Valorization of lignin in polymer and composite systems for advanced engineering applications–a review
Li et al. High modulus, strength, and toughness polyurethane elastomer based on unmodified lignin
WO2011099544A1 (en) Resin composition, molded body and composite molded body
Priya et al. Synthesis, characterization and antibacterial activity of biodegradable starch/PVA composite films reinforced with cellulosic fibre
Quirino et al. Matrices from vegetable oils, cashew nut shell liquid, and other relevant systems for biocomposite applications
Raquez et al. Thermosetting (bio) materials derived from renewable resources: A critical review
Khan et al. Lignin-based adhesives and coatings
Zhang et al. Starch-based rehealable and degradable bioplastic enabled by dynamic imine chemistry
WO2015046588A1 (en) Resin composition, molded body, and production method
Dai et al. Fabricating highly reactive bio-based compatibilizers of epoxidized citric acid to improve the flexural properties of polylactide/microcrystalline cellulose blends
Jadhav et al. Production of green composites from various sustainable raw materials
Aristri et al. Thermal and mechanical performance of ramie fibers modified with polyurethane resins derived from acacia mangium bark tannin
John et al. Lignin fractionation and conversion to bio-based functional products
Ramires et al. Composites based on renewable materials: Polyurethane‐type matrices from forest byproduct/vegetable oil and reinforced with lignocellulosic fibers
Padinjakkara et al. Biopolymers and Biomaterials
JP5618153B2 (en) Resin composition and molded body
JP5921339B2 (en) Fiber composite material and method for producing the same
JP2016069513A (en) Rubber composition and molded body
JP2014024933A (en) Self-curable resin using lignin
Sapuan et al. Development and properties of sugar palm fiber reinforced polymer composites
JP2014065779A (en) Thermosetting resin composition using lignin
Dotan Handbook of Thermoset Plastics: 15. Biobased Thermosets
Collins et al. VALORIZATION OF LIGNIN IN POLYMER AND COMPOSITE SYSTEMS FOR ADVANCED ENGINEERING APPLICATIONS–A
Park et al. PREPARATION AND PROPERTIES OF JUTE/POLY (LACTIC ACID)/ACETYLATED KRAFT LIGNIN BASED THERMOPLASTIC POLYURETHANE BIOCOMPOSITES

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140702

LAPS Cancellation because of no payment of annual fees