JP5562504B1 - 交流モータ駆動システム - Google Patents

交流モータ駆動システム Download PDF

Info

Publication number
JP5562504B1
JP5562504B1 JP2014509023A JP2014509023A JP5562504B1 JP 5562504 B1 JP5562504 B1 JP 5562504B1 JP 2014509023 A JP2014509023 A JP 2014509023A JP 2014509023 A JP2014509023 A JP 2014509023A JP 5562504 B1 JP5562504 B1 JP 5562504B1
Authority
JP
Japan
Prior art keywords
value
power
bus
voltage value
storage device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014509023A
Other languages
English (en)
Other versions
JPWO2015049746A1 (ja
Inventor
一喜 渡部
朗子 田渕
哲也 奥田
善則 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP5562504B1 publication Critical patent/JP5562504B1/ja
Publication of JPWO2015049746A1 publication Critical patent/JPWO2015049746A1/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Stopping Of Electric Motors (AREA)

Abstract

回生電力の大きさに応じ、急峻な回生電力発生に対応した、蓄電デバイスへの充電電流指令値を生成することが可能な交流モータ駆動システム1を得るために、直流母線電圧値と充放電電流値に基づいてインバータ14を制御するための制御信号を出力する充放電制御手段2が、交流モータ16からの回生電力のインバータ14を介した回生電力が予め定められた電力しきい値を越える場合には、直流母線電圧値を電力しきい値に応じた電圧しきい値になるように蓄電デバイス17を充電させ、且つ蓄電デバイス17への充電開始時における充電電流を、直流母線電圧値に基づく充電電流値から開始させる。

Description

本発明は、交流モータ駆動システムに関する。
従来、交流モータ駆動システムの一構成例として、系統電源からの交流電力を直流電力に変換するコンバータの出力側である直流母線に対して、平滑コンデンサを介して、交流モータを駆動するために直流電力を系統電源とは別の電圧値と周波数の交流電力に変換するインバータと、直流電力を蓄え、放出する蓄電デバイスに充放電するための充放電回路と、を並列に接続した交流モータ駆動システムが挙げられる。
このような交流モータ駆動システムの一例として、例えば、特許文献1には、交流モータからインバータを介して回生される回生電力が充放電回路を介して蓄電デバイスを充電する場合に、急峻な回生初期値を有する回生電力に対応するため、充放電回路内の充電電流指令値生成部の比例積分制御(PI制御)に予め定められた回生時電流指令値積分成分初期値を採用した交流モータ駆動システムの技術が開示されている。
特開2012−239252号公報
しかしながら、上記従来の技術によれば、回生時電流指令値積分成分初期値を充放電回路内のリアクトルの許容電流値に近い値としているため、回生開始時の充電電流指令値の初期値は、回生電力の大小(多寡)に拘らず、交流モータ駆動システムの最大量の充電電流で蓄電デバイスに充電を開始する。そのため、交流モータ駆動システムが予定している最大回生電力よりも実際の回生電力が小さい場合には、交流モータからの回生電力を補うために、系統電源からコンバータを介して供給される電力をも使用して蓄電デバイスに充電するので、回生動作時でもコンバータは力行時の動作を行い、電力を消費する、という問題があった。
また、上記従来の技術によれば、コンバータの出力側の電力が予め定められた回生時電力補償しきい値を越えるたびに、回生時電流指令値積分成分初期値を充電電流指令値生成部のPI制御部に設定する。そのため、充電電流指令値が不連続になり、蓄電デバイスが充放電回路のリアクトルを流れる電流が大きく変化し、蓄電デバイスや充放電回路の素子の寿命を短くする、という問題があった。
本発明は、上記に鑑みてなされたものであって、回生電力の大きさに応じ、急峻な回生電力発生に対応した、蓄電デバイスへの充電電流指令値を生成することが可能な交流モータ駆動システムを得ることを目的とする。
上述した課題を解決し、目的を達成するために、本発明は、直流電力を供給するコンバータと、前記直流電力を交流電力に変換するインバータと、前記コンバータと前記インバータを接続する直流母線と、前記交流電力により駆動される交流モータと、前記コンバータの出力側における直流母線電圧値を検出する直流電圧値検出手段と、前記直流電力を前記直流母線から充電し、且つ充電した前記直流電力を前記直流母線へ放電する蓄電デバイスと、前記直流母線に対して前記インバータと並列に接続され、且つ前記直流母線と前記蓄電デバイスの間に接続され、前記蓄電デバイスを充放電させる充放電回路と、前記蓄電デバイスの充放電電流値を検出する充放電電流値検出手段と、前記直流母線電圧値と前記充放電電流値に基づいて前記インバータを制御するための制御信号を出力する充放電制御手段と、を備え、前記充放電制御手段は、前記交流モータからの回生電力の前記インバータを介した回生電力が予め定められた電力しきい値を越える場合には、前記直流母線電圧値を前記電力しきい値に応じた電圧しきい値になるように前記蓄電デバイスを充電させ、且つ前記蓄電デバイスへの充電開始時における充電電流を、前記直流母線の直流母線電圧値に基づく充電電流値から開始させることを特徴とする。
本発明にかかる交流モータ駆動システムは、回生電力の大きさに応じ、急峻な回生電力発生に対応した、蓄電デバイスへの充電電流指令値を生成することが可能な交流モータ駆動システムを得ることができる、という効果を奏する。
図1は、実施の形態1にかかる交流モータ駆動システムの全体を示すブロック図である。 図2は、実施の形態1にかかる交流モータ駆動システム内の充放電制御部を示すブロック図である。 図3は、実施の形態1にかかる交流モータ駆動システム内の電力P、直流母線電圧値Vdc、回生時電力補償動作フラグFaの時間変化を示す図である。 図4は、実施の形態1にかかる交流モータ駆動システムにおいて、電力Pcnv(t)が負値の場合の直流母線の直流母線電圧値Vdc(t)の波形を模式的に示す図である。 図5は、実施の形態1にかかる交流モータ駆動システムにおいて、電力値|Pcnv(t)|と直流母線電圧値Vdcの関係を示す図である。 図6は、実施の形態1にかかる交流モータ駆動システムにおける回生時制御部内の充電電流指令値生成部を示すブロック図である。 図7は、実施の形態1にかかる交流モータ駆動システムにおける充電電流指令値生成部内の回生時電流指令値積分成分生成部を示すブロック図である。 図8は、実施の形態1にかかる交流モータ駆動システムにおける充電電流指令値生成部内の回生時電流指令値微分成分生成部を示すブロック図である。 図9は、実施の形態1にかかる交流モータ駆動システムにおける直流母線側充電電流指令値出力部を示すブロック図である。 図10は、実施の形態1にかかる交流モータ駆動システムにおける電力P、直流母線電圧Vdcの時間変化を表す図である。 図11は、実施の形態1にかかる交流モータ駆動システムにおける回生時電流指令値積分成分初期値生成部の構成例を示す図である。 図12は、実施の形態1にかかる交流モータ駆動システムにおける回生電力Pload(t)、直流母線側充電電流指令値I1i*、回生時電流指令値微分成分値I1d*の時間変化を示す図である。 図13は、実施の形態2にかかる交流モータ駆動システムの全体を示すブロック図である。 図14は、実施の形態2にかかる交流モータ駆動システムにおいて、平滑コンデンサの静電容量値が一定であり、交流モータが回生動作で交流電圧値Vacを変動させたときの、直流母線電圧値Vdcとコンバータの回生電力|Pcnv(t)|との関係を示す図である。 図15は、実施の形態2にかかる交流モータ駆動システム内の充放電制御部を示すブロック図である。
以下に、本発明にかかる交流モータ駆動システムの実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
なお、本明細書中では、物理量の単位を明示しているが、この単位に限定されるものではない。また、演算子|A|は、Aの絶対値(正数)を表すものとする。
実施の形態1.
図1は、本発明にかかる交流モータ駆動システムの実施の形態1の全体を示すブロック図である。
図1に示す交流モータ駆動システム1は、充放電制御部2と、コンバータ11と、平滑コンデンサ13と、インバータ14と、充放電回路15と、交流モータ16と、蓄電デバイス17と、直流電圧値検出部18と、充放電電流値検出部19と、を含む。
図1に示す交流モータ駆動システム1には、発電所や工場内の変電設備などの系統電源10から、配線R,S,Tを介して交流電力が供給される。
コンバータ11は、系統電源10からの交流電力を直流電力に変換する。変換された直流電力は、コンバータ11から直流母線12に出力される。なお、直流母線12は、高電位側直流母線12aと、低電位側直流母線12bと、を備える。
平滑コンデンサ13は、コンバータ11の出力部分、直流母線12中、後述するインバータ14の入力部分、後述する充放電回路15の直流母線12側の部分のうち1箇所または複数箇所に配される。平滑コンデンサ13は、高電位側直流母線12aと低電位側直流母線12bの間で、直流電力を平滑にする。平滑コンデンサ13の静電容量をC[F]とする。
平滑コンデンサ13で平滑にされた直流電力は、直流母線12を介して、インバータ14と充放電回路15に出力される。インバータ14と充放電回路15は、直流母線12に対して並列に接続されている。
インバータ14は、直流電力を交流電力に変換し、交流モータ16を駆動する。インバータ14が出力する交流電力の電圧値や周波数は、系統電源10から供給される交流電力の電圧値や周波数とは異なる。
充放電回路15は、直流母線12を流れる直流電力を蓄電デバイス17に蓄え、蓄電デバイス17に蓄えている電力を直流母線12へ放出する回路である。充放電回路15としては、電流可逆チョッパ回路を例示することができる。充放電回路15が電流可逆チョッパ回路である場合には、直流母線12を流れる電力は、蓄電デバイス17への充電電流により蓄えられ、逆に、蓄電デバイス17に蓄えられた電力は、直流母線12への放電電流により放出される。なお、以下の説明において、充電電流と放電電流を区別せずに蓄電デバイス17に流れる電流を表す場合には、充放電電流と記載する。
充放電回路15では、充放電制御部2からの制御信号により電流可逆チョッパ回路が制御され、充放電電流の電流量を制御する。充放電制御部2には、直流電圧値検出部18で検出する直流母線12の直流母線電圧値Vdc及び充放電電流値検出部19で検出する充放電電流値Icが観測値として入力され、充放電回路15に制御信号を出力する。
コンバータ11としては、三相全波整流回路に抵抗回生回路が付加された抵抗回生型コンバータ、または三相全波整流回路を構成するダイオードそれぞれに逆並列にスイッチング素子が接続されて且つ入力側に交流リアクトルを直列に挿入した電源回生型コンバータを例示することができる。
まず、コンバータ11が抵抗回生型コンバータである場合について説明する。抵抗回生型コンバータでは、交流モータ16が減速や停止して回生電力が発生した場合、回生電力はインバータ14を介して平滑コンデンサ13に蓄えられ、直流母線12の電圧値を上昇させる。直流母線12の電圧値が予め定められた短絡開始電圧値より高電圧になった場合には、抵抗回生型コンバータ内の抵抗器を介して該抵抗回生回路が高電位側直流母線12aと低電位側直流母線12bを短絡し、平滑コンデンサ13に蓄えられたエネルギーを該抵抗器で熱に変換する。その後、短絡の結果として平滑コンデンサ13に蓄えられた電荷が放電されるため、直流母線12の電圧値が予め定められた短絡終了電圧値より低電圧になった場合には、該抵抗回生回路により短絡させた高電位側直流母線12aと低電位側直流母線12bを遮断する。コンバータ11が抵抗回生型コンバータである場合には、このような動作を繰り返すことで、回生電力を消費する。
次に、コンバータ11が電源回生型コンバータである場合について説明する。電源回生型コンバータでは、回生電力により直流母線12の電圧値が予め定められた回生開始電圧値より高電圧になった場合には、電源回生型コンバータ内の制御回路により、系統電源10の波形の位相に応じて予め定められた期間だけ電源回生型コンバータ内のスイッチング素子が導通状態になり、電源回生型コンバータ内の交流リアクトルを介して、平滑コンデンサ13に蓄えられた電荷を系統電源10に回生する。系統電源10への回生動作は、直流母線12の電圧値が予め定められた回生終了電圧値より低電圧になるまで継続される。この回生動作により、交流モータ16で発生した回生電力を系統電源10に回生する。
図2は、交流モータ駆動システム1内の充放電制御部2を示すブロック図である。図2に示す充放電制御部2は、力行時制御部21と、回生時制御部3と、電流指令値統合部22と、制御信号生成部23と、を備える。
力行時制御部21は、交流モータ16の力行動作により電圧降下した直流母線12の直流母線電圧値Vdc(直流電圧値検出部18により検出)を入力とし、蓄電デバイス17から放電させるための放電電流を制御する指令値である蓄電デバイス側放電電流指令値Ib*と、蓄電デバイス17から放電させる期間を決定する力行時電力補償動作フラグFbと、を出力する。
回生時制御部3は、交流モータ16の回生動作により電圧上昇した直流母線12の直流母線電圧値Vdc(直流電圧値検出部18により検出)を入力とし、蓄電デバイス17に充電するための充電電流を制御する指令値である蓄電デバイス側充電電流指令値Ia*と、蓄電デバイス17に充電する期間を決定する回生時電力補償動作フラグFaと、を出力する。
電流指令値統合部22は、蓄電デバイス側充電電流指令値Ia*と、蓄電デバイス側放電電流指令値Ib*と、を用いて蓄電デバイス17の充放電電流の指令値である統合充放電電流指令値Ic*を生成する。
制御信号生成部23は、電流指令値統合部22からの統合充放電電流指令値Ic*と、充放電電流値検出部19からの蓄電デバイス17の充放電電流値Icと、により統合充放電電流指令値Ic*と充放電電流値Icの差異を最終的には差異がなくなるように小さくし、力行時制御部21からの力行時電力補償動作フラグFbまたは回生時制御部3からの回生時電力補償動作フラグFaの期間に充放電回路15を制御する制御信号を生成する。
図3(a)〜(c)は、電力P,直流母線電圧値Vdc,回生時電力補償動作フラグFaの時間変化を示す図である。図3(a)には、交流モータ16からインバータ14を介して回生される回生電力Pload(t)の時間変化が太線で示されている。図1に示す交流モータ駆動システム1の機能の1つは、回生電力Pload(t)に対して、図3(a)に格子縞で示す部分の縦軸に示される電力、すなわち、充電電力|Pc(t)|を蓄電デバイス17に充電することにより、コンバータ11で回生される電力が図3(a)に示す電力しきい値PthAを越えないように抑制することで、コンバータ11がこの電力を熱に変換して消費、または、系統電源10へ回生する電力のピークが制限されることである。
図3(a)に太線で示す回生電力Pload(t)は、交流モータ16が停止または急速な減速動作を行う場合に発生する波形の模式的な例である。図3(a)では、交流モータ16の力行電力を正数で表し、回生電力を負数で表す。また、蓄電デバイス17への充電電力及び充電電流は正数で表し、放電電力及び放電電流を負数で表す。
ここで、図3(a)に斜線で示す部分における電力Pcnv(t)を以下の式(1)で定義する。
Figure 0005562504
電力Pcnv(t)は、コンバータ11の直流母線12側の電力を表す。電力Pcnv(t)が正数値の場合には、コンバータ11は電力値|Pcnv(t)|だけ系統電源10から直流母線12に電力を変換して出力していることを表す。逆に、電力Pcnv(t)が負数値の場合には、コンバータ11は電力値|Pcnv(t)|だけ直流母線12から電力を熱に変換して消費、または、系統電源10に電力を回生していることを表す。
電力Pcnv(t)が負値でコンバータ11が抵抗回生型コンバータの場合には、前述したように、直流母線12の直流母線電圧値Vdc(t)が短絡開始電圧値と短絡終了電圧値との間で変動しつつ、電力Pcnv(t)がコンバータ11内の抵抗器で消費される。
電力Pcnv(t)が負値でコンバータ11が電源回生型コンバータの場合には、前述したように、直流母線12の直流母線電圧値Vdc(t)が回生開始電圧値と回生終了電圧値との間で変動しつつ、電力Pcnv(t)がコンバータ11内のACリアクトルを介して系統電源10に回生される。
図4は、電力Pcnv(t)が負値の場合の直流母線12の直流母線電圧値Vdc(t)の波形を模式的に示す図である。図4(a)は電力値|Pcnv(t)|が相対的に大きい場合の波形を示し、図4(b)は電力値|Pcnv(t)|が相対的に小さい場合の波形を示す。図4(a)及び図4(b)において、太い破線で表す直流母線電圧値Vdcは、直流母線電圧値Vdc(t)の時間平均値であり、例えば、直流母線電圧値Vdc(t)を低域通過フィルタ(LPF:Low Pass Filter)に通過させて得ることができる。直流母線電圧値Vdc(t)は、直流電圧値検出部18が検出する。
図4(a)と図4(b)を比較すると、電力値|Pcnv(t)|が相対的に大きい場合には時間平均値である直流母線電圧値Vdcが高くなり、電力値|Pcnv(t)|が相対的に小さい場合には時間平均値である直流母線電圧値Vdcが低くなる。また、直流母線電圧値Vdc(t)の波形は、電力Pcnv(t)の平滑コンデンサ13への充電と平滑コンデンサ13からコンバータ11への放電により形成されることから、直流母線電圧値Vdcは電力値|Pcnv(t)|のみならず平滑コンデンサ13の静電容量値Cにも依存する。
また、上記低域通過フィルタの伝達関数は、後述する充電電流指令値生成部4の伝達関数と合成されるため、合成後の特性において、交流モータ駆動システム1の安定性に留意しなければならない。一般に、上記低域通過フィルタの伝達関数は、充電電流指令値生成部4の伝達関数の自由度を確保するために、より低次の特性が好ましい。一次の低域通過フィルタで所望の直流母線電圧値Vdcを得ることができれば、一次の低域通過フィルタを採用することが好ましい。
なお、図4(a)及び図4(b)では、直流母線電圧値Vdc(t)が短絡開始電圧値(または回生開始電圧値)と短絡終了電圧値(または回生終了電圧値)の範囲内に収まっているが、実際の動作では、動作速度の制限や系統電源10の位相との時間的関係により、直流母線電圧値Vdc(t)がこの範囲外となる場合も存在することを注記する。
ここで、前述の図3および後述の図10において、回生動作時の直流母線電圧値Vdcは回生動作前の直流母線電圧値より上昇する様に図示しているが、回生動作時の直流母線電圧値Vdcは、ここまでの説明で明らかなように、短絡開始電圧値(または回生開始電圧値)と短絡終了電圧値(または回生終了電圧値)との相互関係で定まる。即ち、短絡開始電圧値(または回生開始電圧値)が回生動作前の直流母線電圧値より僅かに高く、一方、短絡終了電圧値(または回生終了電圧値)が回生動作前の直流母線電圧値より大幅に低い場合には、回生動作時の直流母線電圧値Vdcは回生動作前の直流母線電圧値より降下する。
図5は、電力値|Pcnv(t)|と直流母線電圧値Vdcの関係を示す図である。上記説明したように、平滑コンデンサ13の静電容量値がCの場合の電力値|Pcnv(t)|と直流母線電圧値Vdcの関係は、図5(a)の太い実線にて示される。同様に、平滑コンデンサ13の静電容量値がC1,C2の場合の関係は、図5(a)の破線にて示される。
一般には、図5(a)において、C1<C<C2の関係が成立するが、静電容量値C1とC2との差があまり大きくない場合や、直流電圧値検出部18の分解能や使用するLPFの特性により、平滑コンデンサ13の静電容量値の差を考慮せず、電力値|Pcnv(t)|と直流母線電圧値Vdcの関係を静電容量値Cの1種類で代表する場合もある。
図5(a)に示すように、平滑コンデンサ13の静電容量値がCである場合には、交流モータ16からの回生電力のうち、コンバータ11への電力を電力しきい値|PthA|以下に抑制しようとすると、直流母線12の電圧値は電圧しきい値VthA以下にすべきである。図3(a)及び図3(b)には、この回生動作における、交流モータ16からの回生電力Pload(t)、コンバータ11への電力Pcnv(t)及び直流母線12の直流母線電圧値Vdcの波形の時間変化が示されている。
コンバータ11への電力が電力しきい値PthAに抑制されている期間、すなわち、図3(a)に示す充電電力Pc(t)が蓄電デバイス17に充電されている期間(図3(a)にTaで示す期間)では、直流母線12の直流母線電圧値Vdcは電圧しきい値VthAになる(図3(b)を参照)。図5(b)は、図5(a)の横軸と縦軸を入れ換えた図である。図5(b)からも判るように、直流母線12の直流母線電圧値Vdcを電圧しきい値VthA以下に保つように蓄電デバイス17に電力を充電することにより、コンバータ11への電力値|Pcnv(t)|は電力しきい値|PthA|以下に抑制することが可能となる。
図2に示す回生時制御部3は、直流母線12の直流母線電圧値Vdcと回生時の電圧しきい値(電圧指令値)VthAから充電電力Pc(t)に対応する蓄電デバイス側充電電流指令値Ia*を生成する。直流電圧値検出部18から回生時制御部3に入力される直流母線12の直流母線電圧値Vdcは、回生時制御部3内の充電電流指令値生成部4と回生時電力補償動作制御部5に入力される。
一方、回生時電力/電圧換算部6は、回生時電圧しきい値生成変換部61と、静電容量値格納部62と、回生時電力しきい値格納部63と、を備える。
回生時電力しきい値格納部63は、コンバータ11に回生させようとする電力の上限値である回生時の電力しきい値PthAを格納する。
静電容量値格納部62は、平滑コンデンサ13の静電容量値Cを格納する。
回生時電圧しきい値生成変換部61は、回生時電力しきい値格納部63からの回生時の電力しきい値PthAと静電容量値格納部62からの静電容量値Cにより図5(a)に示す対応関係に基づいて回生時の電圧しきい値VthAを生成する。回生時電圧しきい値生成変換部61は、図5(a)に示す対応関係をルックアップテーブル(LUT:LookUp Table)の読み出しや近似式による計算などにより、回生時の電圧しきい値VthAを生成して出力する。回生時電力/電圧換算部6の出力、すなわち、回生時電圧しきい値生成変換部61の出力である回生時の電圧しきい値VthAは、充電電流指令値生成部4、回生時電力補償動作制御部5及び充電電流指令値換算部7に出力される。
なお、回生時の電力しきい値PthAと静電容量値Cは、交流モータ駆動システム1の作業負荷やインバータの構成に応じて、適宜設定すればよく、ユーザーにより回生時電力しきい値格納部63及び静電容量値格納部62にそれぞれの値を入力可能な構成を備えていればよい。
回生時電力補償動作制御部5は、直流電圧値検出部18からの直流母線電圧値Vdcに基づいて、蓄電デバイス17に充電を開始するタイミングを示す回生時電力補償動作開始信号Saを生成する。また、回生時電力補償動作制御部5は、直流母線電圧値Vdcと回生時の電圧しきい値VthAを用いて、蓄電デバイス17に充電する期間を示す回生時電力補償動作フラグFaを生成する。
回生時電力補償動作制御部5にて生成された回生時電力補償動作開始信号Saは、充電電流指令値生成部4に出力される。回生時電力補償動作フラグFaは、充電電流指令値生成部4と制御信号生成部23に出力される。回生時電力補償動作開始信号Saは、例えば、直流母線電圧値Vdcが回生時の電圧しきい値VthAになった時刻を示す信号であり、または、直流母線電圧値Vdcが無負荷時(交流モータ16が力行動作も回生動作も実施していないとき)の直流母線電圧値以上になった時刻を示す信号である。また、回生時電力補償動作フラグFaは、例えば、回生時電力補償動作開始信号Saが示す時刻から、直流母線電圧値Vdcが回生時の電圧しきい値VthA以下になるまでの時刻を示す信号である。
図3(c)は、回生時電力補償動作フラグFaの回生電力と直流母線電圧値Vdcとの関係を示す図である。
なお、ここで以下の説明を簡単にするために、下記の通り設定する。回生時電力補償動作開始信号Saは、有意な場合、蓄電デバイス17に充電を開始するタイミングで1の値となり、それ以外の期間では0の値となる2値の論理信号とする。回生時電力補償動作フラグFaは、有意な場合、蓄電デバイス17に充電する期間で1の値となり、それ以外の期間では0の値となる2値の論理信号とするものとする。なお、回生時電力補償動作開始信号Saが有意になる条件や、回生時電力補償動作フラグFaの有意となる開始条件や終了条件に関しては、直流母線電圧値Vdcに重畳する雑音の揺らぎの影響を排除するために、チャタリング防止や不感帯の設定などを行う場合もある。
図6は、回生時制御部3内の充電電流指令値生成部4を示すブロック図である。図6に示す充電電流指令値生成部4は、第1の減算器41と、回生時電流指令値積分成分初期値生成部42と、第1の乗算器43と、第1の切換部44と、第1のリミッタ45と、回生時電流指令値積分成分生成部46と、回生時電流指令値微分成分生成部47と、直流母線側充電電流指令値出力部48と、を備える。
直流電圧値検出部18で検出される直流母線12の直流母線電圧値Vdcは、第1の減算器41の被減数端と回生時電流指令値積分成分初期値生成部42に入力される。
第1の減算器41は、直流母線電圧値Vdcから回生時電力/電圧換算部6が生成する回生時の電圧しきい値VthAを減じた値、すなわち、下記の式(2)で示す回生時電圧差分値ErrAを第1の乗算器43に出力する。
Figure 0005562504
第1の乗算器43は、第1の減算器41から入力される回生時電圧差分値ErrAに、比例ゲインである予め定められた定数Kpを乗じた乗算値Kp・ErrAを生成し、第1の切換部44と回生時電流指令値微分成分生成部47に出力する。
第1の切換部44は、回生時電力補償動作制御部5の出力である回生時電力補償動作フラグFaを用いて、下記の式(3)で定義される出力値I1ppを生成して出力する。
Figure 0005562504
第1の切換部44は、回生時電力補償動作フラグFaが有意を示す期間は乗算値Kp・ErrAを出力し、それ以外の期間には0の値を出力する。第1の切換部44の出力値I1ppは、第1のリミッタ45と回生時電流指令値積分成分生成部46に出力される。
第1のリミッタ45は、回生時電流指令値比例成分値I1p*を出力する。回生時電流指令値比例成分値I1p*は、入力された出力値I1ppが負値の場合には0であり、入力された出力値I1ppが交流モータ駆動システム1における電流制限値Imaxを越える場合には電流制限値Imaxであり、入力された出力値I1ppが正値であって、電流制限値Imax以下である場合には入力値と同じ値である。なお、交流モータ駆動システム1における電流制限値Imaxは、例えば充放電回路15の充電電流の最大値、蓄電デバイス17の充電電流の最大値またはこれらの最大値に近い値などである。第1のリミッタ45が出力する回生時電流指令値比例成分値I1p*は、下記の式(4)で表すことができる。
Figure 0005562504
回生時電流指令値比例成分値I1p*は、直流母線側充電電流指令値出力部48に入力される。
図7は、充電電流指令値生成部4内の回生時電流指令値積分成分生成部46を示すブロック図である。図7に示す回生時電流指令値積分成分生成部46は、第2の乗算器461と、第1の2入力加算器462と、第2のリミッタ463と、第2の切換部464と、第1の遅延部465と、を備える。
回生時電流指令値積分成分生成部46には、第1の切換部44の出力値I1pp、回生時電流指令値積分成分初期値生成部429の出力値である回生時電流指令値積分成分初期値Iinit及び回生時電力補償動作開始信号Saが入力される。
第2の乗算器461は、出力値I1ppに積分ゲインである予め定められた定数Kiを乗じた乗算値Ki・I1ppを生成して、第1の2入力加算器462の一方の入力端に出力する。
第1の2入力加算器462は、第2の乗算器461の出力である乗算値Ki・I1ppと第1の遅延部465の出力値ZI1i*の和を計算して、加算値SumI1iを出力する。第1の2入力加算器462の処理は、下記の式(5)で表すことができる。
Figure 0005562504
第2のリミッタ463は、出力値LI1iを出力する。出力値LI1iは、入力された加算値SumI1iが負値の場合には0であり、入力された加算値SumI1iが交流モータ駆動システム1における電流制限値Imaxを越える場合には電流制限値Imaxであり、入力された加算値SumI1iが正値であって、電流制限値Imax以下である場合には入力値と同じ値である。
第2のリミッタ463が出力する出力値LI1iは、下記の式(6)で表すことができる。
Figure 0005562504
第2の切換部464は、第2のリミッタ463が出力する出力値LI1iと回生時電流指令値積分成分初期値生成部42が出力する回生時電流指令値積分成分初期値Iinitの入力に対し、回生時電力補償動作制御部5の出力である回生時電力補償動作開始信号Saを用いて、下記の式(7)で示す選択を実施した値である選択結果I1i*を出力する。
Figure 0005562504
この選択結果I1i*は、第1の遅延部465と直流母線側充電電流指令値出力部48に出力される。
第1の遅延部465は、入力値を制御時間間隔1単位分だけ遅延させて出力する。第1の遅延部465により、第2の切換部464の出力値である選択結果I1i*を制御時間間隔1単位分だけ遅延させた結果が出力値ZI1i*となる。そして、第1の2入力加算器462にて、上記の式(5)で表す処理が実行されることにより、第2の乗算器461が出力する乗算値Ki・I1ppに対する積分機能が実現する。すなわち、第2の切換部464が出力する選択結果I1i*が、回生時電流指令値積分成分値となる。
図7に示す回生時電流指令値積分成分生成部46が上記説明した構成を備えるので、回生時電流指令値積分成分値I1i*は、第1の切換部44により回生時電力補償動作開始時刻以前には0の値を保持し、第2の切換部464により回生時電力補償開始時には回生時電流指令値積分成分初期値Iinitから積分動作を開始することとなり、その最大値は第2のリミッタ463により電流制限値Imaxを越えることはない。なお、積分ゲインである定数Kiは、制御時間間隔による因子を含んだ値である。
図8は、充電電流指令値生成部4内の回生時電流指令値微分成分生成部47を示すブロック図である。図8に示す回生時電流指令値微分成分生成部47は、第2の遅延回路471と、第2の減算器472と、第3の乗算器473と、第3のリミッタ474と、を備える。回生時電流指令値微分成分生成部47に入力される第1の乗算器43が出力する乗算値Kp・ErrAは、第2の遅延部471と第2の減算器472の被減数端に入力される。
第2の遅延部471は、入力を制御時間間隔1単位分だけ遅延させて出力する。第2の遅延部471により、第1の乗算器43が出力する乗算値Kp・ErrAを制御時間間隔1単位分だけ遅延させた結果が出力値ZKpErとして出力される。第2の遅延部471の出力値ZKpErは、第2の減算器472の減数端に入力される。
第2の減算器472は、下記の式(8)で定義される減算値DifKpErを第3の乗算器473へ出力する。
Figure 0005562504
第3の乗算器473は、減算値DifKpErに微分ゲインである予め定められた定数Kdを乗じた乗算値I1dpを生成し、第3のリミッタ474に出力する。
第3のリミッタ474は、乗算値I1dpに対して値0と電流制限値Imaxに基づいて下記の式(9)で表す処理を施して、直流母線側充電電流指令値出力部48に出力する。
Figure 0005562504
第2の減算器472によって、式(8)にて表す処理が実施されることにより、第1の乗算器43が出力する乗算値Kp・ErrAに対する微分機能が実現する。よって、第3のリミッタ474の出力が回生時電流指令値微分成分値I1d*となる。
回生時電流指令値微分成分生成部47が上記説明した構成を備えるので、回生時電流指令値微分成分値I1d*の最大値は、第3のリミッタ474により電流制限値Imaxを越えることはない。なお、微分ゲインである定数Kdは、制御時間間隔による因子を含んだ値である。
図9は、直流母線側充電電流指令値出力部48を示すブロック図である。図9に示す直流母線側充電電流指令値出力部48は、3入力加算器481と、第4のリミッタ482と、第3の切換部483と、を備える。
3入力加算器481は、第1のリミッタ45から出力される回生時電流指令値比例成分値I1p*と、回生時電流指令値積分成分生成部46から出力される回生時電流指令値積分成分値I1i*と、回生時電流指令値微分成分生成部47から出力される回生時電流指令値微分成分値I1d*と、の総和I1c*を第4のリミッタ482へ出力する。
第4のリミッタ482は、出力値LI1c*を出力する。出力値LI1c*は、総和I1c*が負値の場合には0であり、総和I1c*が交流モータ駆動システム1における電流制限値Imaxを越える場合には電流制限値Imaxであり、総和I1c*が正値であって、電流制限値Imax以下である場合には入力値と同じ値である。第4のリミッタ482が出力する出力値LI1c*は、下記の式(10)で表すことができる。
Figure 0005562504
第3の切換部483は、回生時電力補償動作フラグFaを用いて、下記の式(11)で定義される直流母線側充電電流指令値I1*を生成して出力する。
Figure 0005562504
第3の切換部483は、回生時電力補償動作フラグFaが有意を示す期間には直流母線側充電電流指令値I1*に出力値LI1c*を出力し、それ以外の期間には0を出力する。第3の切換部483の直流母線側充電電流指令値I1*は、充電電流指令値換算部7に出力される。
図3(a)に示す回生動作初期時刻における最大回生電力Pmaxにより、同時刻での蓄電デバイス17への充電電流値Isは、下記の式(12−1)で表すことができる。
Figure 0005562504
前述のように、直流母線12の直流母線電圧値Vdcと回生電力の間には、図5(b)に示す関係が存在する。平滑コンデンサ13の静電容量値がCの場合、すなわち、図5(b)において太い実線で表される関係を関数fc(Vdc)で表すこととする。そして、関数fc(Vdc)において最大回生電力Pmaxとなると想定される直流母線電圧値を最大直流母線電圧値Vmaxと定義すると、下記の式(12−2)の関係が成立する。
Figure 0005562504
上記の式(12−2)より、式(12−1)は、下記の式(12−3)に変形することができる。
Figure 0005562504
ここで、1/VthAと−|PthA|/VthAは、それぞれ予め値が判明している定数であることから、これらの値それぞれを下記の式(12−4)及び(12−5)にて定義すると、上記の式(12−3)は下記の式(12−6)で表すことができる。
Figure 0005562504
Figure 0005562504
Figure 0005562504
しかし、交流モータ駆動システム1では、蓄電デバイス17への充電動作により回生電力のピークを抑制するため、直流電圧値検出部18の出力である直流母線電圧値Vdcを観測していても、最大直流母線電圧値Vmaxの値を得ることはできない。そこで、観測可能な直流母線電圧値Vdcから最大直流母線電圧値Vmaxを推定することとする。上記の式(12−2)より下記の式(12−7)及び式(12−8)の関係が成立するPmax1,Pmax2,Vmax1,Vmax2をそれぞれ定義する。但し、Pmax1とPmax2の間には、式(12−9)が成立するものとする。
Figure 0005562504
Figure 0005562504
Figure 0005562504
図10(a−1)〜(b−2)は、電力Pまたは直流母線電圧Vdcの時間変化を表す図である。図10(a)の破線で示すように、交流モータ16が急停止するような急峻な回生電力の回生動作開始時の変化であっても、インバータ14や直流母線12のインピーダンスまたはインダクタンスなどの要因により、図10(a)の太い実線で示すように実際の回生電力は遅れが生じる。回生動作開始直後における実際の回生電力の変化率は、最大回生電力Pmaxが大きいほど急峻になる。すなわち、図10(a−1)と図10(a−2)にΔt0で示す回生動作開始直後の制御時間間隔1単位分における回生電力の変化は、最大回生電力PmaxがPmax2である場合よりもPmax1である場合の方が大きく、図10(a−1)のΔPmax1は、図10(a−2)のΔPmax2よりも大きい。
これに伴い、図10(b−1),(b−2)にΔt0で示す回生動作開始直後の制御時間間隔1単位分における直流母線電圧値Vdcの変化も、最大回生電力PmaxがPmax2である場合よりもPmax1である場合の方が大きく、図10(b−1)のΔVdc1は、図10(b−2)のΔVdc2よりも大きい。
従って、最大直流母線電圧値Vmaxと制御時間間隔1単位分における直流母線電圧値Vdcの変化分ΔVdcとの間には一意の関係が存在し、この関係を下記の式(13)で示す関数g(ΔVdc)で定義する。
Figure 0005562504
上記の式(13)を式(12−6)に代入すると下記の式(14)が得られる。下記の式(14)で表す充電電流値Isを生成する機能が、回生時電流指令値積分成分初期値生成部42の機能である。
Figure 0005562504
しかし、回生時電流指令値積分成分初期値生成部42は、回生動作開始時のみならず、交流モータ駆動システム1の稼動時刻全てにおいて作動する。よって、上記の式(14)の左辺は、回生動作初期時刻における充電電流値Isではなく、下記の式(15)に示すように回生時電流指令値積分成分初期値の候補値である回生時電流指令値積分成分初期値Iinitとすることが好ましい。そして、回生時電流指令値積分成分初期値Iinitは、回生時電流指令値積分成分生成部46内の第2の切換部464において回生時電力補償開始信号Saが有意になった時刻をもって、回生時電流指令値積分成分初期値となる。
Figure 0005562504
図11(a)〜(c)は、回生時電流指令値積分成分初期値生成部42の構成例を示すブロック図である。図11(a)は、回生時電流指令値積分成分初期値生成部42aのブロック図を示す。回生時電流指令値積分成分初期値生成部42aは、第3の減算器421と、第3の遅延部422と、ΔVdc/Vmax換算部423と、Vmax/|Pmax|換算部424と、第4の乗算器425と、定数b格納部426と、第2の2入力加算器427と、を備える。直流電圧値検出部18の出力である直流母線電圧値Vdcは、第3の減算器421の被減数端と第3の遅延部422に入力される。
第3の遅延部422は、入力を制御時間間隔1単位分だけ遅延して出力する。第3の遅延部422により、直流母線電圧値Vdcを制御時間間隔1単位分だけ遅延した結果が出力値ZVdcとなる。第3の遅延部422の出力値ZVdcは、第3の減算器421の減数端に入力される。
第3の減算器421は、VdcからZVdcを減じた値ΔVdcを生成して出力する。ΔVdcは、ΔVdc/Vmax換算部423に入力される。ΔVdc/Vmax換算部423は、上記の式(13)に示す対応関係をLUTの読み出しや近似式による計算などにより実現し、最大直流母線電圧値Vmaxの推定値を出力する。ΔVdc/Vmax換算部423の出力である最大直流母線電圧値Vmaxは、Vmax/|Pmax|換算部424に入力される。
Vmax/|Pmax|換算部424は、上記の式(12−2)に示す対応関係をLUTの読み出しや近似式による計算などにより実現し、最大回生電力の絶対値|Pmax|を出力する。Vmax/|Pmax|換算部424の出力である最大回生電力の絶対値|Pmax|は、第4の乗算器425に入力される。
第4の乗算器425は、入力された最大回生電力の絶対値|Pmax|に上記の式(12−4)で示す定数aを乗じて出力する。出力された値は、第2の2入力加算器427の一方の入力端に入力される。第2の2入力加算器427の他方の入力端には、上記の式(12−5)に示す定数bを格納している定数b格納部426から定数bが入力される。
第2の2入力加算器427は、第4の乗算器425の出力と定数b格納部426の出力を加算して、回生時電流指令値積分成分生成部46内の第2の切換部464(図7)へ上記の式(15)に示す回生時電流指令値積分成分初期値Iinitを出力する。
図11(b)は、回生時電流指令値積分成分初期値生成部42bのブロック図を示す。回生時電流指令値積分成分初期値生成部42bは、図11(a)のΔVdc/Vmax換算部423とVmax/|Pmax|換算部424を一体として、複合関数fc(g(ΔVdc))であるΔVdcから|Pmax|への対応関係をLUTの読み出しや近似式による計算などにより実現し、最大回生電力Pmaxの絶対値である|Pmax|を出力するΔVdc/|Pmax|換算部428で実現する構成である。
図11(c)は、回生時電流指令値積分成分初期値生成部42cのブロック図を示す。回生時電流指令値積分成分初期値生成部42cは、図11(a)のΔVdc/Vmax換算部423と、図11(a)のVmax/|Pmax|換算部424と、図11(a),(b)の第4の乗算器425と、図11(a),(b)の定数b格納部426と、図11(a),(b)の第2の2入力加算器427と、を一体として、上記の式(15)の対応関係を一括してLUTの読み出しや近似式による計算などにより実現し、図11(a),(b)のΔVdcから回生時電流指令値積分成分初期値Iinitを出力するΔVdc/Iinit換算部429で実現する構成である。
充電電流指令値生成部4は、上記のように構成されているので、比例積分微分制御(PID制御)の積分成分初期値に、直流母線電圧値Vdcと回生動作開始時差分値に基づいた値を採用し、回生時の電圧しきい値VthAを指令値に観測値を直流母線電圧値Vdcとして、平滑コンデンサ13からの充電電流指令値、すなわち、直流母線側充電電流指令値である直流母線側充電電流指令値I1*を求めることができる。
そして、充電電流指令値生成部4をPID制御にし、且つ積分成分初期値を導入することにより、交流モータ16からの急峻な回生電力の発生に対して、その回生電力の大きさに応じ、且つ応答の良い直流母線側充電電流指令値を求めることができる。
充電電流指令値生成部4の出力である直流母線側充電電流指令値I1*は、直流母線12の直流母線電圧値Vdcと、直流母線12に対する指令値である電圧しきい値VthAと、により生成されているため、直流母線側充電電流指令値I1*は充放電回路15の直流母線12側の電流指令値である。一方、充放電制御部2の出力である制御信号の生成には充放電電流検出部19の出力である充放電電流値Icを観測値としているため、充放電電流値Icへの指令値は充放電回路15の蓄電デバイス17側の電流指令値である必要がある。
ここで、充放電回路15の損失は小さいものとして無視し、蓄電デバイス17の両端電圧値をVcapとすると、充放電回路15の直流母線側充電電流指令値I1*と蓄電デバイス側充電電流指令値Ia*の間には、下記の式(16−1)の関係が成立する。
Figure 0005562504
回生電力補償時においては、上記の式(16−1)の直流母線電圧値Vdcが回生時の電圧しきい値VthAに制御されていることから、上記の式(16−1)は下記の式(16−2)となる。
Figure 0005562504
上記の式(16−2)では、蓄電デバイス17の両端電圧値Vcapを常に観測し、且つ除算を実行する必要がある。蓄電デバイス17の両端電圧値Vcapの検出部を省き、且つ計算が煩雑な除算を省略するために、蓄電デバイス17の両端電圧値Vcapを予め定められた代用両端電圧値Vcfixで代用する。代用両端電圧値Vcfixを用いると、上記の式(16−2)は下記の式(16−3)となる。
Figure 0005562504
代用両端電圧値Vcfixには特に制限はないが、例えば、蓄電デバイス17の両端電圧値Vcapが採り得る最低値を用いればよい。代用両端電圧値Vcfixを両端電圧値Vcapの最低値とした場合には、蓄電デバイス側充電電流指令値Ia*は本来の値より大きい値となるが、充放電回路15の損失と充電電流指令値生成部4のPID制御のフィードバック機能により、蓄電デバイス側充電電流指令値として充分に機能する。
そこで、回生時制御部3内の充電電流指令値換算部7は、充電電流指令値換算部7内に予め定められた代用両端電圧値Vcfixの逆数1/Vcfixを格納する代用両端電圧値格納部を有し、該逆数と、充電電流指令値生成部4から入力される直流母線側充電電流指令値I1*と、回生時電力/電圧換算部6から入力される回生時電圧しきい値VthAと、の3つの値の積を計算し(上記の式(16−3))、蓄電デバイス側充電電流指令値Ia*を生成する。充電電流指令値換算部7の出力である蓄電デバイス側充電電流指令値Ia*は、電流指令値統合部22に出力される。
以上説明した本実施の形態の交流モータ駆動システムは、直流電力を供給するコンバータと、前記直流電力を交流電力に変換するインバータと、前記コンバータと前記インバータを接続する直流母線と、前記交流電力により駆動される交流モータと、前記コンバータの出力側における直流母線電圧値を検出する直流電圧値検出手段と、前記直流電力を前記直流母線から充電し、且つ充電した前記直流電力を前記直流母線へ放電する蓄電デバイスと、前記直流母線に対して前記インバータと並列に接続され、且つ前記直流母線と前記蓄電デバイスの間に接続され、前記蓄電デバイスを充放電させる充放電回路と、前記蓄電デバイスの充放電電流値を検出する充放電電流値検出手段と、前記直流母線電圧値と前記充放電電流値に基づいて前記インバータを制御するための制御信号を出力する充放電制御手段と、を備え、前記充放電制御手段は、前記交流モータからの回生電力の前記インバータを介した回生電力が予め定められた電力しきい値を越える場合には、前記直流母線電圧値を前記電力しきい値に応じた電圧しきい値になるように前記蓄電デバイスを充電させ、且つ前記蓄電デバイスへの充電開始時における充電電流を、前記直流母線の直流母線電圧値に基づく充電電流値から開始させることを特徴とする。
また、前記蓄電デバイスへの充電開始時における前記充電電流値は、前記直流母線電圧値の充電開始時における変化量に基づけばよい。
さらには、前記充放電制御手段は、前記直流母線電圧値と前記電圧しきい値に応じた積分制御手段、比例積分制御手段または比例積分微分制御手段を有し、前記積分制御手段、前記比例積分制御手段または前記比例積分微分制御手段内の積分成分に対し、前記蓄電デバイスへの充電開始時に、前記充電開始時の前記直流母線電圧値に応じた値を設定すればよい。
本実施の形態の交流モータ駆動システムは、下記の効果を奏する。なお、図12(a)〜(c)は、それぞれ回生電力Pload(t),直流母線側充電電流指令値I1i*,回生時電流指令値微分成分値I1d*の時間変化を示す図である。
第1に、回生時電流指令値積分成分初期値Iinitの導入により、急峻な回生電力の発生開始時において、従来の構成では図12(b)に破線で示すように応答の遅れた回生時電流指令値積分成分値I1i*を生成せざるをえなかったのに対して、本実施の形態の交流モータ駆動システムでは、図12(b)に実線で示すような応答の速い回生時電流指令値積分成分値I1i*を得ることが可能になり、応答性の良い制御信号を得ることができる。
第2に、回生時電流指令値積分成分初期値Iinitが回生動作開始時の直流母線側充電電流指令値I1*に応じた値に生成されることにより、不必要に大きな値の回生時電流指令値積分成分初期値を用いることが防げるため、回生動作開始時に系統電源からの不必要な電力供給を防止することができる。
第3に、回生時電流指令値積分成分初期値生成部42が常に作動していることにより、回生動作開始時直後以外の時刻において、回生時電力補償動作開始信号Saが有意となり、回生時電流指令値積分成分値I1i*に回生時電流指令値積分成分初期値Iinitが置換されても回生時電流指令値積分成分値I1i*に大きな変化が生じることを防止でき、連続性の良い制御信号を得ることができる。そのため、蓄電デバイス17や充放電回路15内のリアクトルの素子を長寿命化できる。
第4に、回生時電流指令値積分成分初期値生成部42の回生時電流指令値積分成分初期値Iinitの生成において、観測値として直流母線電圧値Vdcのみを使用しているため、大電流が流れる直流母線12の電流値検出部が不要となり、交流モータ駆動システムのコストを低廉化し、容積縮小や取り付け部材の廃止により省資源化し、また、電流値検出部の磁束飽和による制御不能となる危険性を回避することができる。
第5に、回生時電流指令値微分成分生成部47の入力を第1の切換部44を経ない構成としたことにより、回生時電流指令値微分成分値I1d*の生成に、回生時電力補償動作制御部5の回生時電力補償動作フラグFaの生成を待つ必要がないため、回生時電力の発生開始直後に回生時電流指令値微分成分値I1d*を生成することができ、回生補償動作開始直後から有効な制御信号を発生させることができる。
なお、回生時電流指令値微分成分値I1d*(図12(c))の直流母線側充電電流指令値I1*(図12(b)の太い実線)に対する寄与は、限定的であり、且つ小規模であるため、充電電流指令値生成部4から回生時電流指令値微分成分生成部47を除いた構成で、上記した第1から第4の効果を奏する交流モータ駆動システムを得ることができる。但し、この場合の直流母線側充電電流指令値出力部48内の3入力加算器481は、2入力加算器に置き換えられる。
さらに、定常誤差が許容される範囲であれば、充電電流指令値生成部4から第1のリミッタ45と回生時電流指令値微分成分生成部47の両方を省略することでも、上記した第1から第4までの効果を奏する交流モータ駆動システムを得ることができる。但し、この場合には、直流母線側充電電流指令値出力部48内の3入力加算器481も省略される。
なお、図1においては、充放電回路15が単相のチョッパの場合を想定した図であるため、充放電電流値検出部19が1つのみ存在する場合を示している。蓄電デバイス17の充放電電流のリプルを抑える目的で、充放電回路15を複数の相、すなわち、n相チョッパ(nは2以上の整数)で構成することも可能である。充放電回路15をn相チョッパで構成すると、蓄電デバイス17の充放電電流のリプルは1/nに低減することが可能になり、それに伴ない、蓄電デバイス17の発熱を抑えることができるため、蓄電デバイス17の寿命を延ばすことができる。充放電回路15をn相チョッパで構成する場合には、1以上n以下の整数であるm個の充放電電流検出部を搭載し、m個の充放電電流値を充放電制御部2内の制御信号生成部23に入力し、蓄電デバイス17の充放電電流Icを計算して使用することになる。
また、充放電回路15をn相チョッパで構成することで、1相当りの充放電電流を抑えることが可能になるため、充放電制御部2の出力である制御信号に対する充放電電流の応答が迅速になる。したがって、回生動作開始時の制御信号に対する充電電流の応答は、単相のチョッパの場合に比べて向上する。
なお、図1に示す構成に対して、交流モータ16が力行動作も回生動作も実施しない期間や交流モータ16の力行動作時の電力または回生動作時の電力が予め定められたしきい値未満の場合に、蓄電デバイス17に所望の電力を充放電させるために充放電回路15を動作させる制御信号を生成する補充電制御部をさらに備えていてもよい。反対に、力行時にコンバータ11からの供給電力を抑制する必要がない場合には、本実施の形態で説明した力行時制御部21と電流指令値統合部22が存在しない構成としてもよい。
なお、本実施の形態では、充放電制御部2が様々なハードウエアの組み合わせにより構成する形態について説明したが、本発明はこれに限定されるものではない。すなわち、充放電制御部2内の各構成の一部または全部は、置換可能なソフトウエアにより実現してもよい。
実施の形態2.
図13は、本発明にかかる交流モータ駆動システムの実施の形態2の全体を示すブロック図である。図13に示す交流モータ駆動システム1aは、充放電制御部2aと、コンバータ11と、平滑コンデンサ13と、インバータ14と、充放電回路15と、交流モータ16と、蓄電デバイス17と、直流電圧値検出部18と、充放電電流値検出部19と、交流電圧値検出部8と、を含む。すなわち、図13に示す交流モータ駆動システム1aと図1に示す交流モータ駆動システム1とは、交流電圧値検出部8を含む点が異なる。
交流電圧値検出部8は、コンバータ11の系統電源10側に接続される系統電源線間における電圧値である交流電圧値Vacを検出し、充放電制御部2aへ出力する。なお、本実施の形態では、実施の形態1と同一または同等の手段には、同一の名称と符号を用いて説明を省略する。
コンバータ11に入力される系統電源における交流電圧値Vacは、系統電源10からコンバータ11までの配線の長さにより異なる。また、同じ系統電源に複数の交流モータ駆動システムが接続される場合には、一の交流モータ駆動システムのコンバータ11に入力される交流電圧値Vacは、他の交流モータ駆動システムの稼動状態(繁閑)により変動する。そして、コンバータ11における交流電圧値Vacが変動すると、コンバータ11の出力である直流母線12の電圧値Vdcも変動する。
本実施の形態の交流モータ駆動システム1aは、コンバータ11の交流電圧値Vacが変動しても、コンバータ11を介して回生する回生電力を、予め定められた回生時電力しきい値PthAに抑制することができる。
図14は、平滑コンデンサ13の静電容量値がCで一定であり、交流電圧値Vacが変動したときの、交流モータ16の回生動作における直流母線電圧値Vdcとコンバータ11の回生電力|Pcnv(t)|との関係を示す図である。図14において、Vac1<Vac0<Vac2とし、直流母線電圧値VdcがVac0の場合の|Pcnv(t)|と電圧値Vdcの関係は、太い実線にて示される。同様に、直流母線電圧値VdcがVac1,Vac2の場合には、図14の破線にて示される。図14に示す太い実線と2本の破線は、概ね平行移動した関係にある。
図14からも判るように、コンバータ11が回生する電力をPthAに抑制しようとしても、Vac=Vac0の場合の回生時電圧しきい値VthAはVthA_0であるのに対して、Vac=Vac1の場合の回生電圧しきい値VthAはVthA_1に設定し、また、Vac=Vac2の場合の回生電圧しきい値VthAはVthA_2に設定する必要がある。
そこで、本実施の形態では、交流電圧値検出部8で検出した交流電圧値Vacを充放電制御部2a内の回生時制御部3内の回生時電力/電圧換算部6へ入力する。本実施の形態における回生時電力/電圧換算部6は、例えば、平滑コンデンサ13の静電容量値Cに応じて、図14に示すような、交流電圧値の違いに対応するLUTを備える。または、本実施の形態における回生時電力/電圧換算部6は、平滑コンデンサ13の静電容量値が同一値Cである場合の交流電圧値の違いによる電圧値Vdcと|Pcnv(t)|の関係がおよそ平行移動した関係にあることを利用する。すなわち、回生時電力/電圧換算部6が、Vac=Vac0場合の関係のみをLUTまたは近似式を格納しており、回生時電力/電圧換算部6内の変換部の出力は、図14におけるVthA_0となる。そして、このVthA_0に対して、下記の式(17)で示す演算、即ち、VthA_0に定数Ka/Vac0を乗じ、更に、交流電圧値検出部8からの交流電圧値Vacを乗じて、回生時電圧しきい値VthAを得る。
Figure 0005562504
但し、上記の式(17)に示す定数Kaは、交流電圧値Vacの基準となる電圧値Vac0に対する変化率、即ち、図14の曲線の平行移動の比率を表す定数である。
回生時電力/電圧換算部6の出力は、実施の形態1と同様に、充電電流指令値生成部4、回生時電力補償動作制御部5及び充電電流指令値換算部7に出力される。なお、VthA_0に定数Ka/Vac0を乗じたデータを本実施の形態の回生時電力/電圧換算部6内の変換手段に格納してもよい。
また、本実施の形態によると、実施の形態1の効果に加えて、コンバータ11の入力側の系統電源線間の電圧値である交流電圧値Vacが変動した場合においても、直流母線電流量検出手段を設けることなく、コンバータ11を介して回生する回生電力を、予め定められたしきい値PthAに抑制することが可能である。
図15は、本実施の形態における充放電制御部2aを示すブロック図である。図15に示すように、力行動作に関する電力ピーク抑制のために、系統電源10の交流電圧値Vacの変動に対応する目的で、交流電圧値Vacを力行時制御部21に入力してもよい。
以上説明した本実施の形態の交流モータ駆動システムは、交流電流を直流電力に変換するコンバータと、前記直流電力を前記コンバータの入力の交流電力とは異なる交流電力に変換するインバータと、前記コンバータと前記インバータを接続する直流母線と、前記インバータの出力である交流電力により駆動される交流モータと、前記コンバータの出力側における直流母線電圧値を検出する直流電圧値検出手段と、前記直流電力を前記直流母線から充電し、且つ充電した前記直流電力を前記直流母線へ放電する蓄電デバイスと、前記直流母線に対して前記インバータと並列に接続され、且つ前記直流母線と前記蓄電デバイスの間に接続され、前記蓄電デバイスを充放電させる充放電回路と、前記蓄電デバイスの充放電電流値を検出する充放電電流値検出手段と、前記コンバータの入力側における交流電圧値を検出する交流電圧値検出手段と、前記直流母線電圧値、前記充放電電流値及び前記交流電圧値に基づいて前記インバータを制御するための制御信号を出力する充放電制御手段と、を備え、前記充放電制御手段は、前記交流モータからの回生電力の前記インバータを介した回生電力が予め定められた電力しきい値を越える場合には、前記直流母線電圧値を前記電力しきい値と前記交流電圧値に応じた電圧しきい値になるように前記蓄電デバイスを充電させ、且つ前記蓄電デバイスへの充電開始時における充電電流を、前記直流母線電圧値と前記交流電圧値に基づく充電電流値から開始させることを特徴とする。
また、前記蓄電デバイスへの充電開始時における前記充電電流値は、前記直流母線電圧値の充電開始時における変化量と前記交流電圧値に基づけばよい。
さらには、前記充放電制御手段は、前記直流母線電圧値と前記電圧しきい値に応じた積分制御手段、比例積分制御手段または比例積分微分制御手段を有し、前記積分制御手段、前記比例積分制御手段または前記比例積分微分制御手段内の積分成分に対し、前記蓄電デバイスへの充電開始時に、前記充電開始時の前記直流母線電圧値に応じた値を設定すればよい。
なお、本実施の形態の充放電制御部2a内の各構成の一部または全部も、置換可能なソフトウエアにより実現してもよい。
以上のように、本発明にかかる交流モータ駆動システムは、系統電源に接続されて動作する交流モータを含む交流モータ駆動システムに有用である。
1 交流モータ駆動システム、2 充放電制御部、3 回生時制御部、4 充電電流指令値生成部、5 回生時電力補償動作制御部、6 回生時電力/電圧換算部、7 充電電流指令値換算部、10 系統電源、11 コンバータ、12 直流母線、12a 高電位側直流母線、12b 低電位側直流母線、13 平滑コンデンサ、14 インバータ、15 充放電回路、16 交流モータ、17 蓄電デバイス、18 直流電圧値検出部、19 充放電電流値検出部、21 力行時制御部、22 電流指令値統合部、23 制御信号生成部、41 第1の減算器、42,42a〜42c 回生時電流指令値積分成分初期値生成部、43 第1の乗算器、44 第1の切換部、45 第1のリミッタ、46 回生時電流指令値積分成分生成部、47 回生時電流指令値微分成分生成部、48 直流母線側充電電流指令値出力部、61 回生時電圧しきい値生成変換部、62 静電容量値格納部、63 回生時電力しきい値格納部、421 第3の減算器、422 第3の遅延部、423 ΔVdc/Vmax換算部、424 Vmax/|Pmax|換算部、425 第4の乗算器、426 定数b格納部、427 第2の2入力加算器、428 ΔVdc/|Pmax|換算部、429 ΔVdc/Iinit換算部、461 第2の乗算器、462 第1の2入力加算器、463 第2のリミッタ、464 第2の切換部、465 第1の遅延部、471 第2の遅延部、472 第2の減算器、473 第3の乗算器、474 第3のリミッタ、481 3入力加算器、482 第4のリミッタ、483 第3の切換部。

Claims (5)

  1. 直流電力を供給するコンバータと、
    前記直流電力を交流電力に変換するインバータと、
    前記コンバータと前記インバータを接続する直流母線と、
    前記交流電力により駆動される交流モータと、
    前記コンバータの出力側における直流母線電圧値を検出する直流電圧値検出手段と、
    前記直流電力を前記直流母線から充電し、且つ充電した前記直流電力を前記直流母線へ放電する蓄電デバイスと、
    前記直流母線に対して前記インバータと並列に接続され、且つ前記直流母線と前記蓄電デバイスの間に接続され、前記蓄電デバイスを充放電させる充放電回路と、
    前記蓄電デバイスの充放電電流値を検出する充放電電流値検出手段と、
    前記直流母線電圧値と前記充放電電流値に基づいて前記インバータを制御するための制御信号を出力する充放電制御手段と、を備え、
    前記充放電制御手段は、
    前記交流モータからの回生電力の前記インバータを介した回生電力が予め定められた電力しきい値を越える場合には、前記直流母線電圧値を前記電力しきい値に応じた電圧しきい値になるように前記蓄電デバイスを充電させ、且つ前記蓄電デバイスへの充電開始時における充電電流を、前記直流母線の直流母線電圧値に基づく充電電流値から開始させることを特徴とする交流モータ駆動システム。
  2. 前記蓄電デバイスへの充電開始時における前記充電電流値は、前記直流母線電圧値の充電開始時における変化量に基づくことを特徴とする請求項1に記載の交流モータ駆動システム。
  3. 交流電流を直流電力に変換するコンバータと、
    前記直流電力を前記コンバータの入力の交流電力とは異なる交流電力に変換するインバータと、
    前記コンバータと前記インバータを接続する直流母線と、
    前記インバータの出力である交流電力により駆動される交流モータと、
    前記コンバータの出力側における直流母線電圧値を検出する直流電圧値検出手段と、
    前記直流電力を前記直流母線から充電し、且つ充電した前記直流電力を前記直流母線へ放電する蓄電デバイスと、
    前記直流母線に対して前記インバータと並列に接続され、且つ前記直流母線と前記蓄電デバイスの間に接続され、前記蓄電デバイスを充放電させる充放電回路と、
    前記蓄電デバイスの充放電電流値を検出する充放電電流値検出手段と、
    前記コンバータの入力側における交流電圧値を検出する交流電圧値検出手段と、
    前記直流母線電圧値、前記充放電電流値及び前記交流電圧値に基づいて前記インバータを制御するための制御信号を出力する充放電制御手段と、を備え、
    前記充放電制御手段は、
    前記交流モータからの回生電力の前記インバータを介した回生電力が予め定められた電力しきい値を越える場合には、前記直流母線電圧値を前記電力しきい値と前記交流電圧値に応じた電圧しきい値になるように前記蓄電デバイスを充電させ、且つ前記蓄電デバイスへの充電開始時における充電電流を、前記直流母線電圧値と前記交流電圧値に基づく充電電流値から開始させることを特徴とする交流モータ駆動システム。
  4. 前記蓄電デバイスへの充電開始時における前記充電電流値は、前記直流母線電圧値の充電開始時における変化量と前記交流電圧値に基づくことを特徴とする請求項3に記載の交流モータ駆動システム。
  5. 前記充放電制御手段は、前記直流母線電圧値と前記電圧しきい値に応じた積分制御手段、比例積分制御手段または比例積分微分制御手段を有し、
    前記積分制御手段、前記比例積分制御手段または前記比例積分微分制御手段内の積分成分に対し、前記蓄電デバイスへの充電開始時に、前記充電開始時の前記直流母線電圧値に応じた値を設定することを特徴とする請求項1から請求項4のいずれか一項に記載の交流モータ駆動システム。
JP2014509023A 2013-10-02 2013-10-02 交流モータ駆動システム Expired - Fee Related JP5562504B1 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/076873 WO2015049746A1 (ja) 2013-10-02 2013-10-02 交流モータ駆動システム

Publications (2)

Publication Number Publication Date
JP5562504B1 true JP5562504B1 (ja) 2014-07-30
JPWO2015049746A1 JPWO2015049746A1 (ja) 2017-03-09

Family

ID=51417042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014509023A Expired - Fee Related JP5562504B1 (ja) 2013-10-02 2013-10-02 交流モータ駆動システム

Country Status (7)

Country Link
US (1) US9543882B2 (ja)
JP (1) JP5562504B1 (ja)
KR (1) KR101711799B1 (ja)
CN (1) CN105684298A (ja)
DE (1) DE112013007479T5 (ja)
TW (1) TWI535182B (ja)
WO (1) WO2015049746A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3100346B1 (en) * 2014-01-31 2021-11-03 Eaton Intelligent Power Limited Unidirectional matrix converter with regeneration system
JP5826440B1 (ja) 2014-06-19 2015-12-02 三菱電機株式会社 交流モータ駆動システム
JP6419025B2 (ja) * 2015-05-27 2018-11-07 キヤノン株式会社 電力供給装置、プリンタ及び制御方法
JP6654373B2 (ja) * 2015-08-04 2020-02-26 青島海爾洗衣机有限公司QingDao Haier Washing Machine Co.,Ltd. 洗濯機
JP6495783B2 (ja) * 2015-08-25 2019-04-03 太陽誘電株式会社 制御装置、蓄電装置及び移動体
CN107123995B (zh) * 2016-02-25 2020-03-31 台达电子企业管理(上海)有限公司 电力***及其控制方法
JP6503413B2 (ja) * 2017-05-31 2019-04-17 本田技研工業株式会社 Dc/dcコンバータおよび電気機器
CN111466076B (zh) * 2017-12-15 2021-10-29 三菱电机株式会社 电动机驱动***及逆变器装置
WO2019163110A1 (ja) * 2018-02-23 2019-08-29 三菱電機株式会社 モータ駆動装置
DE102020002352A1 (de) * 2019-04-25 2020-10-29 Fanuc Corporation Motorantriebsvorrichtung mit Energiespeicher

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009207305A (ja) * 2008-02-28 2009-09-10 Fanuc Ltd モータ駆動装置
JP2011126691A (ja) * 2009-12-21 2011-06-30 Hitachi Ltd エレベーターシステム
WO2012032589A1 (ja) * 2010-09-06 2012-03-15 三菱電機株式会社 交流モータ駆動装置
JP2012239252A (ja) * 2011-05-10 2012-12-06 Mitsubishi Electric Corp 交流モータ駆動装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08140394A (ja) 1994-11-07 1996-05-31 Hitachi Ltd サイリスタモータの制御装置
JP3533091B2 (ja) 1998-07-29 2004-05-31 トヨタ自動車株式会社 交流電動機の駆動制御装置
US6081104A (en) * 1998-11-20 2000-06-27 Applied Power Corporation Method and apparatus for providing energy to a lighting system
CA2320003C (en) * 1999-09-22 2006-03-21 Honda Giken Kogyo Kabushiki Kaisha Control apparatus for hybrid vehicles
JP4409692B2 (ja) * 1999-12-28 2010-02-03 三菱電機株式会社 エレベータの制御装置
JP4347982B2 (ja) * 2000-02-28 2009-10-21 三菱電機株式会社 エレベーターの制御装置
TW584688B (en) 2001-06-06 2004-04-21 Toshiba Corp Washing machine
JP4406185B2 (ja) 2001-06-06 2010-01-27 株式会社東芝 洗濯機
JP2002374700A (ja) 2001-06-15 2002-12-26 Hitachi Ltd 永久磁石同期モータ駆動装置及びそれを用いた洗濯機
US6917179B2 (en) * 2001-10-25 2005-07-12 Toyota Jidosha Kabushiki Kaisha Load driver and control method for safely driving DC load and computer-readable recording medium with program recorded thereon for allowing computer to execute the control
DE10346213A1 (de) * 2003-10-06 2005-04-21 Bosch Gmbh Robert Verfahren zur Regelung des Ladezustands eines Energiespeichers bei einem Fahrzeug mit Hybridantrieb
JP2005184902A (ja) 2003-12-17 2005-07-07 Hitachi Home & Life Solutions Inc モータ駆動装置
DE112005001561T5 (de) 2004-07-06 2007-05-24 Kabushiki Kaisha Yaskawa Denki, Kitakyushu Wechselvorrichtung und Verfahren zum Reduzieren der Geschwindigkeit eines Wechselstrommotors
JP5017911B2 (ja) 2006-04-07 2012-09-05 日産自動車株式会社 電力変換装置
JP4909857B2 (ja) 2007-09-28 2012-04-04 日立アプライアンス株式会社 コンバータ装置
JP5808199B2 (ja) 2011-08-30 2015-11-10 三菱重工業株式会社 モータ制御装置及びモータ駆動システム
JP5602890B2 (ja) * 2013-01-29 2014-10-08 ファナック株式会社 蓄電装置および抵抗放電装置を有するモータ制御装置
JP5826440B1 (ja) 2014-06-19 2015-12-02 三菱電機株式会社 交流モータ駆動システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009207305A (ja) * 2008-02-28 2009-09-10 Fanuc Ltd モータ駆動装置
JP2011126691A (ja) * 2009-12-21 2011-06-30 Hitachi Ltd エレベーターシステム
WO2012032589A1 (ja) * 2010-09-06 2012-03-15 三菱電機株式会社 交流モータ駆動装置
JP2012239252A (ja) * 2011-05-10 2012-12-06 Mitsubishi Electric Corp 交流モータ駆動装置

Also Published As

Publication number Publication date
WO2015049746A1 (ja) 2015-04-09
CN105684298A (zh) 2016-06-15
TWI535182B (zh) 2016-05-21
DE112013007479T5 (de) 2016-07-14
US9543882B2 (en) 2017-01-10
KR20160046890A (ko) 2016-04-29
TW201515379A (zh) 2015-04-16
US20160226423A1 (en) 2016-08-04
KR101711799B1 (ko) 2017-03-02
JPWO2015049746A1 (ja) 2017-03-09

Similar Documents

Publication Publication Date Title
JP5562504B1 (ja) 交流モータ駆動システム
JP5826440B1 (ja) 交流モータ駆動システム
JP5389302B1 (ja) 交流モータ駆動システム
JP5358990B2 (ja) 電力変換装置
JP2016059181A (ja) 静電容量計算部を有するpwm整流器
JP2002325461A (ja) 電圧形インバータ
JP5558172B2 (ja) 電力安定化システム
JP5631260B2 (ja) 交流モータ駆動装置
JP6778647B2 (ja) 電力平準化装置
JP2002354844A (ja) 回生電力貯蔵・放出機能と高調波抑制機能とを備えたインバータ装置
JP2005304248A (ja) モータ駆動用インバータ制御装置および電気機器
JP5523639B2 (ja) 電気車制御装置
JP2010124574A (ja) 直流電源のチョッパ制御方法および前記直流電源のチョッパ制御方法を用いた移動車両
JP3623766B2 (ja) 交流電源装置
KR101592454B1 (ko) 전지 전력 저장 시스템의 순환전류 저감형 droop 제어 시스템
Seok et al. An adaptive control of the bidirectional DC/DC converter with the capacitive energy storage in the more and all-electric aircraft systems
JP7279309B2 (ja) 電力変換装置
JP5262727B2 (ja) 直流電源の制御方法および前記直流電源の制御方法を用いた移動車両
JP6802734B2 (ja) フライホイール用のモータ制御装置
JP2009201208A (ja) 移動車用電源装置
JPWO2018127960A1 (ja) 電力変換装置
JP2014090622A (ja) 電気機器

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140610

R150 Certificate of patent or registration of utility model

Ref document number: 5562504

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees