JP5539191B2 - 磁気誘導子型回転機およびそれを用いた流体移送装置 - Google Patents

磁気誘導子型回転機およびそれを用いた流体移送装置 Download PDF

Info

Publication number
JP5539191B2
JP5539191B2 JP2010511938A JP2010511938A JP5539191B2 JP 5539191 B2 JP5539191 B2 JP 5539191B2 JP 2010511938 A JP2010511938 A JP 2010511938A JP 2010511938 A JP2010511938 A JP 2010511938A JP 5539191 B2 JP5539191 B2 JP 5539191B2
Authority
JP
Japan
Prior art keywords
core
stator
rotor
rotating machine
stator core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010511938A
Other languages
English (en)
Other versions
JPWO2009139278A1 (ja
Inventor
秀哲 有田
正哉 井上
雅宏 家澤
俊彦 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010511938A priority Critical patent/JP5539191B2/ja
Publication of JPWO2009139278A1 publication Critical patent/JPWO2009139278A1/ja
Application granted granted Critical
Publication of JP5539191B2 publication Critical patent/JP5539191B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/10Synchronous motors for multi-phase current
    • H02K19/103Motors having windings on the stator and a variable reluctance soft-iron rotor without windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/145Stator cores with salient poles having an annular coil, e.g. of the claw-pole type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/12Transversal flux machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems

Description

この発明は、鉄損成分がモータ損失のなかで支配的となるような高速回転域で駆動されるのに好適な磁気誘導子型回転機およびそれを用いた流体移送装置に関するものである。
従来の永久磁石式同期回転機では、界磁手段としての磁石が回転子に装着されている。しかし、自動車用過給器のタービンとコンプレッサとの間にモータを配置した、いわゆる電動アシストターボに用いられるモータには、10万回転/分を超える超高速回転が要求され、かつ高温環境下で使用されることから、そのモータに従来の永久磁石式同期回転機を用いた場合には、磁石保持強度や熱減磁の問題が発生してしまう。
このような状況を鑑み、永久磁石やコイルなどの界磁源を固定子に配置し、歯車状の磁気的な突極性を与えた鉄心を軸方向に2段に、かつ周方向に半極ピッチずらして連設して回転子を構成している従来の磁気誘導子型回転機が提案されている(例えば、特許文献1,2参照)。この回転子は、単純形状の鉄心のみで構成されており、高速回転させた場合、耐遠心力強度に優れている。そこで、従来の磁気誘導子型回転機は、この回転子の利点を活かして、電動アシストターボなどの高速モータに用いられることが考えられている。
従来の磁気誘導子型回転機における固定子コイルの巻線方式には、1相1コイルが複数のスロットを跨いで巻回され、各相のコイルおよびコイルエンドが周方向に関して交差した重なりを持っている分布巻き方式(例えば、特許文献1)と、1相1コイルがスロットを跨がないでティースに巻回され、各相のコイルおよびコイルエンドが周方向に関して交差した重なりを持たない集中巻き方式(例えば、特許文献2)とがあり、回転子の界磁方式には、コイル(例えば、特許文献2)と、永久磁石(例えば、特許文献1)とがある。固定子コイルの巻線方式の2方式と回転子の界磁方式の2方式との組み合わせは、原理上自由である。
従来の磁気誘導子型回転機では、回転子の回転軸が回転子の軸方向両側に配置された軸受に軸支されているので、回転軸が共振系を構成して撓み振動する、いわゆる軸共振の問題がある。この軸共振は、軸受間の間隔が長く、回転子の回転速度が高くなるほど発生しやすく、最悪の場合には、回転子が固定子に接触することになる。
ここで、超高速回転時における回転子と固定子との接触を回避する対策としては、軸受間の間隔を狭めて、軸共振の発生する回転数を高めることが有効となる。また、耐遠心力強度の制約から、回転子径が小さくなり、それに付随して固定子径が小さくなり、固定子コイルのコイルエンドの回転軸の軸心からの距離が短くなる。一方、軸受は、剛性の確保、および油冷却流路の確保の観点から、大径化が望まれる。従って、軸受を固定子コイルのコイルエンドの内径側に配置させる場合、軸受と固定子コイルのコイルエンドとの間の干渉の問題が発生する。そこで、軸受と固定子コイルのコイルエンドとの干渉を回避して、軸受間の距離を狭めるためには、固定子コイルのコイルエンドの軸方向長さを極力短くすることが有効となる。
このことから、磁気誘導子型回転機を超高速回転が要求される用途に適用するには、分布巻き方式に比べて固定子コイルのコイルエンドの軸方向長さを短くできる集中巻き方式を採用することが望ましい。
特開2004−8880号公報 特開平08−214519号公報
従来の磁気誘導子型回転機では、原理的に、界磁源で発生された磁束が、固定子の軸方向一側のティースから回転子の軸方向一側の突極に入り、回転子内を径方向内方に流れ、回転軸内を軸方向他側まで流れ、その後回転子内を径方向外方に流れ、回転子の軸方向他側の突極から固定子の軸方向他側のティースに入り、固定子内を径方向外方に流れ、固定子の外側フレーム内を軸方向一側に流れる磁気回路が構成される。そこで、回転子の突極と固定子のティースとの間の磁路結合状態が回転子の回転にともなって変化し、回転機内部を流れる軸方向磁束量が増減する。回転子および固定子を流れる軸方向磁束量が変動すると、積層鉄心の面内渦電流損が発生するとともに、外側フレームや回転軸などの塊状磁性体にも渦電流損を発生する。この渦電流損は周波数の2乗に比例して増大することから、従来の磁気誘導子型回転機において、特に基本周波数が1kHzを超えるような高周波駆動すると、この渦電流損は深刻な問題となる。
集中巻き方式の固定子コイルを備えた従来の磁気誘導子型回転機においては、スロット数は分布巻き方式に比べて少なく、スロットピッチが大きな設計となる。そのため、固定子のスロット開口の周方向幅が回転子の突極の周方向幅より大きく形成されているので、回転子の突極は、回転子の回転に伴い、固定子のティースと対向している状態から固定子のティースと全く対向していない状態を経て固定子のティースと対向している状態に移行する。その結果、回転子の突極と固定子のティースとの磁路結合状態の変化の幅が大きく、回転機内部を流れる軸方向磁束量の増減の幅も大きくなる。これにより、渦電流損が大きくなり、モータ効率が低下してしまう。
この軸方向磁束量の変動の問題は、集中巻き方式の固定子コイルを備えた磁気誘導子型回転機特有のものである。言い換えれば、分布巻き方式の固定子コイルを備えた磁気誘導子型回転機では、この軸方向磁束量の変動による鉄損は問題となるレベルにまではならない。つまり、分布巻き方式のものでは、構造上、スロットの開口幅が狭く、回転子の突極は常に固定子の複数のスロットと対向している。そこで、回転子の突極は対向するティースの一部を入れ替えつつ回転し、回転子と固定子との間の磁気抵抗は常に小さな状態に維持される。従って、分布巻き方式の固定子コイルを備えた磁気誘導子型回転機を検討する場合には、軸方向磁束量の変動は問題とならず、磁気解析などでの積層面方向の渦電流は通常無視して解析することが多く、この軸方向磁束量の変動による鉄損は見過ごされてきた損失因子であった。
本出願人は、集中巻き方式の固定子コイルを備えた磁気誘導子型回転機を超高速回転運転して、鉄損が予想以上に大きくなる現象を見出し、鉄損発生要因を注意深く精査検討した結果、軸方向磁束量の変動が鉄損を発生させる要因となるとの見知に基づいて、本発明を発明するに至ったものである。
この発明は、このような課題を解決するためになされたものであって、超高速回転で駆動されても、渦電流損が少なく、高効率の磁気誘導子型回転機およびそれを用いた流体移送装置を得ることを目的とする。
この発明に係る磁気誘導子型回転機は、内周側に開口するスロットを画成するティースが円筒状のコアバックの内周面から径方向内方に突設されて周方向に並べて複数配設されてなる同一形状に作製された第1固定子コアおよび第2固定子コアを、軸方向に所定距離離反して、かつ上記ティースの周方向位置を一致させて同軸に配置して構成された固定子コア、および上記固定子コアに集中巻きに巻装された固定子コイルを有する固定子と、突極が周方向に等角ピッチで配設されてなる同一形状に作製された第1回転子コアおよび第2回転子コアを、それぞれ上記第1固定子コアおよび上記第2固定子コアの内周側に位置させ、かつ互いに周方向に半突極ピッチずらして回転軸に同軸に固着された回転子と、を備えている。さらに、本磁気誘導子型回転機は、上記固定子に配設され、上記第1回転子コアの突極と上記第2回転子コアの突極とが異なる極性となるように界磁磁束を発生する界磁手段と、上記第1固定子コアのコアバック外周面と上記第2固定子コアのコアバック外周面とを連結するように軸方向に延設された軸方向磁路形成部材と、を備えている。そして、上記界磁手段が発生した上記界磁磁束が、上記第1固定子コアから上記第1回転子コアの突極に入り、該第1回転子コアおよび上記回転軸を軸方向に流れて上記第2回転子コアに入り、該第2回転子コアの突極から上記第2固定子コアに入り、上記軸方向磁路形成部材を軸方向に流れて該第1固定子コアに戻る磁路が構成され、上記第1回転子コアおよび上記第2回転子コアの突極の突極幅βrが、上記固定子の上記スロットの開口幅θsより大きく構成されている。
この発明によれば、第1回転子コアおよび第2回転子コアの突極の突極幅βrが、固定子のスロットの開口幅θsより大きく構成されているので、回転子は、常に突極が固定子のティースと対向する状態で回転する。そこで、回転子と固定子との間の磁気抵抗を小さく保つことができ、磁束量の変動が最小限に制限される。これにより、回転機を軸方向に流れる磁束量の変動が抑制され、渦電流の発生に起因する鉄損が少なくなり、高効率の回転機を実現できる。
この発明の実施の形態1に係る回転機の構成を示す一部破断斜視図である。 この発明の実施の形態1に係る回転機に適用される回転子の構成を示す斜視図である。 この発明の実施の形態1に係る回転機における磁束の流れを説明するための一部破断斜視図である。 この発明の実施の形態1に係る回転機の動作を説明する正面図である。 比較例としての回転機の動作を説明する正面図である。 突極幅βrを100°とした回転子の構造を説明する図である。 突極幅βrを60°とした回転子の構造を説明する図である。 この発明の実施の形態2に係る回転機を示す一部破断斜視図である。 この発明の実施の形態3に係る回転機を示す一部破断斜視図である。 この発明の実施の形態4に係る自動車用過給器を有するシステム構成図である。
以下、本発明の磁気誘導子型回転機およびそれを用いた流体移送装置の好適な実施の形態につき図面を用いて説明する。
実施の形態1.
図1はこの発明の実施の形態1に係る回転機の構成を示す一部破断斜視図、図2はこの発明の実施の形態1に係る回転機に適用される回転子の構成を示す斜視図である。
図1および図2において、回転機1は、磁気誘導子型同期回転機であり、鉄などの塊状磁性体で作製された回転軸2に同軸に固着された回転子3と、回転子3を囲繞するように配設された固定子コア8にトルク発生用駆動コイルとしての固定子コイル11を巻装してなる固定子7と、界磁手段としての界磁コイル12と、回転子3、固定子7および界磁コイル12を収納するハウジング13と、を備えている。
回転子3は、例えば所定形状に成形された多数枚の磁性鋼板を積層一体化して作製された第1および第2回転子コア4,5と、所定枚の磁性鋼板を積層一体化して作製され、軸心位置に回転時挿入孔(図示せず)が穿設された円盤状の隔壁6と、を備える。第1および第2回転子コア4,5は、同一形状に作製され、軸心位置に回転軸挿入孔(図示せず)が穿設された円筒状の基部4a,5aと、基部4a,5aの外周面から径方向外方に突設され、かつ軸方向に延設されて、周方向に等角ピッチで2つ設けられた突極4b,5bと、から構成されている。第1および第2回転子コア4,5は、周方向に半突極ピッチずらして、隔壁6を介して相対して互いに密接して配置され、それらの回転軸挿入孔に挿通された回転軸2に固着されて構成されている。そして、回転子3は、回転軸2の両端を軸受(図示せず)に支持されてハウジング13内に回転自在に配設されている。
固定子コア8は、所定形状に成形された多数枚の磁性鋼板を積層一体化して作製された第1および第2固定子コア9,10を備える。第1固定子コア9は、円筒状のコアバック9aと、コアバック9aの内周面から径方向内方に突設されて周方向に等角ピッチで6つ設けられたティース9bと、を備える。内周側に開口するスロット9cが、コアバック9aと隣り合うティース9bとにより画成されている。第2固定子コア10は、第1固定子コア9と同一形状に作製され、円筒状のコアバック10aと、コアバック10aの内周面から径方向内方に突設されて周方向に等角ピッチで6つ設けられたティース10bと、を備える。内周側に開口するスロット10cが、コアバック10aと隣り合うティース10bとにより画成されている。第1および第2固定子コア9,10は、ティース9b,10bの周方向位置を一致させて、かつ隔壁6の軸方向厚み分離間して、それぞれ第1および第2回転子コア4,5を囲繞するように、ハウジング13内に配設されている。
固定子コイル11は、導体線をスロット9c,10cを跨がないで軸方向に相対して対をなすティース9b,10bに巻回した、いわゆる集中巻き方式に巻回された3相の相コイルを有する。つまり、固定子コイル11は、軸方向に相対する6対のティース9b、10bに対して順次U,V,Wの3相を2回繰り返して集中巻きに巻回して構成されている。そして、各相の相コイルのコイルエンドは、互いに、周方向に関して交差した重なりを持っていない。
界磁コイル12は、導体線を円筒状に巻回した円筒状コイルであり、第1および第2固定子コア9,10のコアバック9a,10a間に介装されている。
ハウジング13は、鉄などの塊状磁性体で作製され、第1固定子コア9のコアバック9aの外周面と第2固定子コア10のコアバック外周面とに密接するように配設され、軸方向磁路形成部材を構成している。
ついで、このように構成された回転機1の動作について図3を参照しつつ説明する。図3はこの発明の実施の形態1に係る回転機における磁束の流れを説明するための一部破断斜視図である。
界磁コイル12に通電されると、図3に矢印で示されるように、磁束が第1固定子コア9のティース9bから第1回転子コア4の突極4bに入り、第1回転子コア4内を径方向内方に流れ、その後磁束の一部が基部4a及び隔壁6内を軸方向に流れ、磁束の残部が回転軸2内を軸方向に流れる。そして、磁束は、第2回転子コア5に入り、第2回転子コア5内を径方向外方に流れ、第2回転子コア5の突極5bから第2固定子コア10のティース10bに入り、第2固定子コア10内を径方向外方に流れ、ハウジング13内を軸方向に流れ、第1固定子コア9に戻る。この時、第1および第2回転子コア4,5の突極4b,5bが周方向に半突極ピッチずれているので、磁束は、軸方向から見ると、N極とS極とが周方向に交互に配置されたように作用する。これにより、回転機1は、軸方向に連設した2極のN極と2極のS極とからなる4極の回転子3に対して6スロットの集中巻き方式の固定子コイル11を有する磁気誘導子型同期回転機として動作する。
つぎに、この実施の形態1による鉄損低減効果について図4および図5を参照しつつ説明する。図4はこの発明の実施の形態1に係る回転機の動作を説明する正面図、図5は比較例としての回転機の動作を説明する正面図である。ここで、固定子のスロット開口幅θsは、回転軸の軸心と直交する平面上で、スロット開口の周方向両端と回転軸の軸心とを結ぶ線分のなす角度(中心角)で表される。また、回転子の突極幅βrは、回転軸の軸心と直交する平面上で、突極の外周面の周方向両端と回転軸の軸心とを結ぶ線分のなす角度(中心角)で表される。そして、比較例の回転機100では、固定子7のスロット開口幅θsが回転子3Aの突極幅βrより大きく形成されている。なお、図5では、説明の便宜上、図4で示した回転機と同一または相当部分には同一符号を付している。また、図4および図5では、磁束量の大小関係を矢印の太さで表している。
まず、図5に示される比較例としての回転機100について説明する。
回転子3Aの回転に伴い、突極4bは、図5の(a)に示されるティース9bと対向する状態から、図5の(b)に示されるスロット9cの開口と対向する状態を経て、図5の(c)に示される隣のティース9bに対向する状態に移行する。
図5の(a)に示される状態では、突極4bがティース9bと対向しているので、固定子7と回転子3Aとの間の磁気抵抗は小さい。そこで、界磁コイル12が作る磁束は、ハウジング13から第1固定子コア9に入り、第1固定子コア9内を径方向内方に流れ、突極4bとティース9bとの間の空隙を介して突極4bに入る。ついで、磁束は、第1回転子コア4内を径方向内方に流れ、その磁束の一部が基部4aおよび隔壁6を軸方向に流れ、磁束の残部が回転軸2内を軸方向に流れる。ついで、磁束は、図示していないが、第2回転子コア5に入り、径方向外方に流れ、突極5bから第2固定子コア10に入り、第2固定子コア10内を径方向外方に流れ、ハウジング13を軸方向に流れて、第1固定子コア9に戻る。このように、界磁コイル12を周回する磁路が形成される。このとき、図5の(a)に太い矢印で示されるように、第1および第2固定子コア9,10および第1および第2回転子コア4、5内を径方向に流れる磁束量、および回転軸2およびハウジング13内を軸方向に流れる磁束量は多い。
そして、回転子3Aが回転し、突極4bがスロット9cの開口と対向する位置となると、磁束はティース9bの内周端の周方向端部から突極4bに入ることになり、固定子7と回転子3Aとの間の磁気抵抗が著しく大きくなる。これにより、界磁コイル12が作る磁束量が急激に減少し、図5の(b)に細い矢印で示されるように、第1および第2固定子コア9,10および第1および第2回転子コア4,5内を径方向に流れる磁束量、および回転軸2およびハウジング13内を軸方向に流れる磁束量は少なくなる。
さらに、回転子3Aが回転し、突極4bがティース9bと対向する位置となると、固定子7と回転子3Aとの間の磁気抵抗が小さくなる。そこで、図5の(c)に太い矢印で示されるように、第1および第2固定子コア9,10および第1および第2回転子コア4,5内を径方向に流れる磁束量、および回転軸2およびハウジング13内を軸方向に流れる磁束量が多くなる。
このように、比較例の回転機100においては、第1および第2固定子コア9,10および第1および第2回転子コア4,5内を径方向に流れる磁束成分、および回転軸2およびハウジング13内を軸方向に流れる磁束成分が大きく変動する。
ここで、第1および第2固定子コア9,10が磁性鋼板の積層体で構成されているので、第1および第2固定子コア9,10を径方向に流れる磁束成分の変動による渦電流の発生が抑制され、鉄損として大きな問題とはならない。同様に、第1および第2回転子コア4,5を径方向に流れる磁束成分の変動も、鉄損として大きな問題とはならない。
しかし、磁性鋼板の積層体は、回転軸2およびハウジング13を軸方向に流れる磁束成分の増減(変動)によりその積層面内に渦電流を発生し、大きな鉄損となる。また、磁性鋼板の積層体に代えて、樹脂コーティングされた鉄粉を圧縮成型した圧粉鉄心を用いた場合でも、導電率があるので、磁束変動に起因して渦電流損やヒステリシス損などの鉄損が生じてしまう。
この実施の形態1による回転機1では、図4に示されるように、回転子3の突極幅βrが固定子7のスロット開口幅θsより大きく形成されている。
そこで、回転子3の回転に伴い、突極4bは、図4の(a)に示されるティース9bと対向する状態から、図4の(b)に示される隣り合う2つのティース9bと対向する状態を経て、図4の(c)に示される隣のティース9bに対向する状態に移行する。
このように、回転子3が回転しても、突極4bは常にティース9bと対向する状態となっているので、回転子3と固定子7との間の磁気抵抗を小さく保つことができ、磁束量の変動が最小限に制限される。
従って、この実施の形態1によれば、渦電流の要因となる軸方向に流れる磁束量の変動が少なくなり、渦電流の発生が抑制され、高効率の回転機を実現できる。
また、回転子3での発熱は、回転軸2を介して軸受に伝達され、軸受での潤滑油やグリースの熱劣化をもたらし、軸受寿命の短縮をもたらす。そして、高周波駆動される超高速回転運転では、回転子3での発熱が顕著となる。しかし、この実施の形態1によれば、渦電流の発生が抑制され、回転子3での発熱が少なくなる。
そこで、本回転機1を超高速回転が要求される電動アシストターボなどのモータに適用すれば、超高速回転における軸共振の問題もなく、かつ軸受の長寿命化が図られる。
つぎに、回転子の突極幅βrの制約について図6および図7を参照しつつ説明する。図6は突極幅βrを100°とした回転子の構造を説明する図であり、図6の(a)はその正面図、図6の(b)は回転子を周方向に展開した展開平面図である。図7は突極幅βrを60°とした回転子の構造を説明する図であり、図7の(a)はその正面図、図7の(b)は回転子を周方向に展開した展開平面図である。なお、図6の(a)および図7の(a)では、隔壁6が省略されている。
図6に示される回転子3Bは、突極数Nrが2であり、突極幅βrが100°である。図6(a),(b)に重なり部δで示されるように、第1回転子コア4の突極4b(N極)の一部と第2回転子コア5の突極5b(S極)の一部とが軸方向に重なっている。この重なり部δは軸方向に積分すると、有効な磁極として作用せず、トルクに寄与しない無効な軸方向成分の漏れ磁束40を発生する。この漏れ磁束40は、トルクに寄与しないだけでなく、回転機の各磁路を磁気飽和せしめてトルクに寄与する有効磁束を減じて、出力を低下させる。また、この無効な漏れ磁束40の量が、回転子3Bの位置により変化するため、鉄損の要因となり、問題となる。
この損失発生メカニズムを以下に説明する。
重なり部δが第1固定子コア9のティース9bと対向する位置にくると、第1固定子コア9のティース9bから第1回転子コア4の突極4bおよび第2回転子コア5の突極5bを経て第2固定子コア10のティース10bに至る経路で軸方向の漏れ磁束40が流れる。この経路の磁気抵抗は小さいので、この漏れ磁束40の磁束量は大きく、しかもその磁束の成分は軸方向成分が主となる。そして、重なり部δが第1固定子コア9のスロット9cと対向する位置にくると、突極4bとティース9bとの間の磁気抵抗が大きくなるので、この漏れ磁束40の磁束量は小さく、かつその磁束の成分は周方向成分と径方向成分とが主となる。したがって、漏れ磁束40は回転子位置が変化すると、磁束量の大きさが3次元ベクトル的に変動する。
その結果、特に、軸方向磁束成分が変動することが問題である。なぜならば、この漏れ磁束40の変動は回転子および固定子の積層体部位のうち、特に空隙近傍において生じるが、軸方向磁束成分の増減に起因して発生する渦電流は、積層鉄心の面内を流れるため、回転子および固定子を積層体で構成することによる効果が得られない。また、本回転機のように集中巻き方式磁気誘導子型回転機において、重なり部δで発生する磁束は、主磁束の一部であるため、磁束量が大きく、かつ高周波数で変動する。その結果、軸方向磁束成分の変動が大きな鉄損となる。
図7に示される回転子3は、突極数Nrが2であり、突極幅βrが60°である。図7(a),(b)からわかるように、この回転子構造では、第1回転子コア4の突極4b(N極)と第2回転子コア5の突極5b(S極)との軸方向の重なり部δがなくなっている。そこで、この回転子3では、第1回転子コア4の突極4bと第2回転子コア5の突極5bとの軸方向の重なり部δが形成されていないので、上述の漏れ磁束40が発生せず、鉄損を低減することができる。
これらのことから、集中巻き方式の固定子コイルを備えた磁気誘導子型回転機を超高速回転運転させる場合には、180/Nr>βr>θsを満足するように回転子を構成することが望ましい。但し、回転子の突極数Nrは、回転子の極数(総突極数)の半分の値に相当する。つまり、回転子の突極数Nrは第1回転子コア4(第2回転子コア5)の突極数である。
なお、上記実施の形態1では、回転子の突極数が2(回転子の極数が4)、固定子のスロット数が6の回転機について説明しているが、回転子の突極数および固定子のスロット数はこれに限定されるものではない。
例えば、3相の集中巻き方式の固定子コイルを備えた回転機では、3の倍数のスロット数を選択できる。しかし、回転子の突極数と固定子のスロット数との最大公約数が1であると、径方向磁気吸引力が大きくなり、振動騒音が発生する。また、回転子の突極数と固定子のスロット数とが等しい場合には、3相モータとして成立しない。また、固定子のスロット数が少ないほど、固定子コイルのコイル数が減り、固定子の高量産性、低コスト化を期待できる。これらのことから、固定子のスロット数を、6,9,12の中から選択することが現実的である。これに対応した回転子の突極数としては、重量的なアンバランスが生じることが自明である1を除くと、2若しくは4、3若しくは6、4若しくは8などが考えられる。
従って、固定子のティース数をNs、回転子の突極数をNr、回転子の突極幅をβr、固定子のスロットの開口幅をθsとしたときに、
Ns=3×(N+1)
Nr=M×(N+1)
180/Nr>βr>θs
を満足するように、回転機を設計することが望ましい。但し、M=1,2、N=1,2,3である。
なお、上記実施の形態1では、ハウジング13を塊状磁性体で作製して軸方向磁路形成部材として用いるものとしているが、鉄などの塊状磁性体で作製された円筒形や断面円弧形の部材をコアバック9a,10aの外周面同士を連結するように架設して軸方向磁路形成部材を構成するようにしてもよい。この場合、ハウジングは磁性体で作製する必要はなく、ステンレスなどの金属や樹脂で作製すればよい。
実施の形態2.
図8はこの発明の実施の形態2に係る回転機を示す一部破断斜視図である。なお、図8において、固定子コイルは省略されている。
図8において、第1固定子コア9Aは、円筒状のコアバック9aと、コアバック9aの内周面から径方向内方に突設されて周方向に等角ピッチで6つ設けられたティース9bと、を備える。そして、鍔部9dが各ティース9bの内周端部から周方向の両側に延設され、スロット9cの開口幅を縮小している。第2固定子コア10Aは、第1固定子コア9Aと同一形状に作製され、鍔部10dが各ティース10bの内周端部から周方向の両側に延設され、スロット10cの開口幅を縮小している。
なお、他の構成は上記実施の形態1と同様に構成されている。
このように構成された回転機1Aは、上記実施の形態1の回転機1と同様に、固定子7Aのティース数Nsが6、回転子3の突極数Nrが2であり、180/Nr>βr>θsを満足している。
従って、この実施の形態2においても、上記実施の形態1と同様の効果が得られる。
また、この実施の形態2では、鍔部9d、10dをティース9b,10bの内周端部から周方向の両側に延設しているので、突極幅βrを大きくできないような場合でも、βr>θsを満足する固定子の設計が容易となる。
実施の形態3.
図9はこの発明の実施の形態3に係る回転機を示す一部破断斜視図である。なお、図9において、固定子コイルは省略されている。
図9において、界磁手段としての第1永久磁石41が第1固定子コア9Aのコアバック9aの外周面とハウジング13との間に密接状態に介装され、着磁方向43が径方向内方に向くように着磁配向されている。また、界磁手段としての第2永久磁石42が第2固定子コア10Aのコアバック10aの外周面とハウジング13との間に密接状態に介装され、着磁方向43が径方向外方に向くように着磁配向されている。
なお、他の構成は上記実施の形態2と同様に構成されている。
このように構成された回転機1Bは、界磁コイル12に代えて、第1および第2永久磁石41,42を用いており、上記実施の形態1の回転機1と同様に動作する。
従って、この実施の形態3においても、上記実施の形態1と同様の効果が得られる。
ここで、第1および第2永久磁石41,42には、例えば、磁束密度の高いネオジウム・鉄・ボロン磁石やサマリウムコバルト磁石などの焼結された希土類磁石が用いられる。そして、第1および第2永久磁石41,42として希土類磁石を使用した場合、磁石自身も導電性をもっているので、回転子3の突極と固定子7Aのティースとの相対位置の変化により回転子3と固定子7Aとの間の磁気抵抗が変動することにより、即ち第1および第2永久磁石41,42の動作点が変わり、磁石自身を貫き磁石磁束量が変動することにより、磁石内部に渦電流を発生することになる。磁石部が損失による温度上昇すると、熱減磁の問題が懸念される。この観点から、界磁手段として永久磁石を用いる場合には、損失面のみならず、磁石信頼性を確保する上でも、180/Nr>βr>θsを満足するように設計することが望ましい。

なお、上記実施の形態3では、第1および第2固定子コアの両コアバックの外周に永久磁石を配設するものとしているが、永久磁石は第1および第2固定子コアの少なくとも一方のコアバックの外周に配設すればよい。
また、上記実施の形態1〜3では、一対の第1および第2固定子コアにより固定子コアを構成するものとして説明しているが、固定子コアは複数対の第1および第2固定子コアをティースの周方向位置を一致させて軸方向に同軸に配列して構成してもよい。この場合、回転子も、複数対の第1および第2回転子コアを、第1回転子コア同士の突極の周方向位置を一致させて、かつ第2回転子コア同士の突極の周方向位置を一致させて同軸に配列して構成することになる。
実施の形態4.
図10はこの発明の実施の形態4に係る自動車用過給器を有するシステム構成図である。
図10において、本システムでは、エンジン21の回転トルクにより駆動される発電電動機25と、エンジン21の排気システムに接続された自動車用過給器としての電動アシストターボ30と、を備える。
発電電動機25は、プーリ26をエンジン21のクランクシャフト22に固着されたプーリ23にベルト24を介して連結されている。発電電動機25は、ベルト24を介して伝達されたエンジン21の駆動力を交流電力に変換する。この交流電力は、発電電動機25のプーリ26と反対側に一体に取り付けられたインバータ27により直流電力に変換され、バッテリ29を充電するとともに、車載負荷(図示せず)に供給される。
電動アシストターボ30は、エンジン21の排気系統36に配設されたタービン31と、タービン31の回転軸32に固着され、エンジン21の吸気系統35に配設されたコンプレッサ33と、回転軸32に同軸に取り付けられた超高速回転機34と、を有する。超高速回転機34は、発電機能と電動機能とを備え、発電電動機25のインバータ27と大電流配線28を介して電気的に接続されている。
このように構成された電動アシストターボ30の動作について説明する。
まず、通常状態では、吸気ガスAが、吸気系統35を介してエンジン21に供給され、エンジン21の内部で燃焼される。燃焼後の排気ガスBが、排気系統36を介して外部に排気される。タービン31は、排気系統36を流通する排気ガスBにより駆動される。これにより、タービン31の回転軸32に固着されたコンプレッサ33が回転駆動され、吸気ガスAが大気圧以上に過給される。
そして、例えば、車両の運転者がアクセル操作によって加速しようとした場合、エンジン21が所定の回転数以上となり、かつ排気ガスBが十分な流体パワーを得るまでの間の1〜2秒程度は、十分な動力をタービン31に与えることができず、コンプレッサ33の反応が遅れ、いわゆるターボラグという現象を生じる。そこで、バッテリ29の直流電力がインバータ27により交流電力に変換されて、大電流配線28を介して超高速回転機34に供給され、超高速回転機34が駆動される。これにより、ターボラグが生じる低速で、排気ガスBの流体パワーが十分に得られない場合でも、駆動力が回転軸32に印加され、コンプレッサ33を迅速に駆動でき、ターボラグの発生が抑制される。
また、車両の高速走行、或いは高負荷走行時には、排気ガスBは電動アシストターボ30に対して必要な動力以上の流体エネルギーを有する。その場合、超高速回転機34を発電機として動作させ、インバータ27を回生モードで動作させることにより、バッテリ29および車載負荷に電力を供給することができる。
このように、電動アシストターボ30では、超高速回転機34を追加することで、ターボの性能を飛躍的に向上させることができるが、従来の永久磁石式同期回転機を超高速回転機34に適用すると、界磁手段としての磁石の保持の問題が発生する。この磁石の保持の問題を回避するために、分布巻き方式の固定子コイルを備えた従来の磁気誘導子型回転機を超高速回転機34に適用すると、固定子コイルのコイルエンドの軸方向長さが長くなり、回転軸を軸支する軸受間距離が長くなり、軸共振の問題が発生する。
この軸共振の問題を回避するために、集中巻き方式の固定子コイルを備えた従来の磁気誘導子型回転機を超高速回転機34に適用すると、軸方向磁束量の変動による鉄損が発生し、超高速回転機34の各部が発熱する。そして、電動アシストターボ30のように高温環境下で動作する場合には、高温の環境温度に加え、超高速回転機34自身が発熱し、超高速回転機34の温度が一層高温となる。この超高速回転機34の熱が回転軸32を介して軸受に伝達され、軸受での潤滑油やグリースの熱劣化をもたらし、軸受寿命の短縮をもたらす。このように、集中巻き方式の固定子コイルを備えた従来の磁気誘導子型回転機を超高速回転機34に適用する場合には、大規模な冷却機構を設けるなどしないと成立せず、現実的ではなかった。
本回転機1は、集中巻き方式の固定子コイルを備えているので、軸受間距離を短くでき、軸剛性を高めて、超高速回転動作時における軸共振の問題を回避することができる。また、本回転機1は、軸方向磁束量の変動を極めて小さくできるので、鉄損が小さくなり、回転機1自身の発熱を抑えることができる。従って、本回転機1を超高速回転機34に適用することにより、軸共振の問題がなく、大規模な冷却機構を設ける必要のない、高性能、かつ小型の電動アシストターボ30を安価に実現することができる。
なお、上記実施の形態4では、本回転機を流体移送装置としての電動アシストターボの超高速回転機に適用するものとして説明しているが、本回転機は、電動アシストターボに限らず、超高速回転運転される流体移送装置、例えば、遠心ファンを高速に回転させる掃除機やジェットタオル(乾燥機)などのモータに適用することができる。
また、上記各実施の形態では、固定子鉄心のティースが周方向に等角ピッチで配列されており、スロット開口の周方向中心の配列ピッチが等角ピッチとなっている。しかし、スロット開口の周方向中心の配列ピッチは必ずしも等角ピッチである必要はなく、不等ピッチであってもよい。この場合、例えば、ティースの配列ピッチやティースの周方向幅を変えることで、スロット開口の周方向中心の配列ピッチを不等ピッチとすることができる。さらには、ティースの先端に周方向に延出する鍔部を設け、その鍔部の周方向の延出長さを変えることで、スロット開口の周方向中心の配列ピッチを不等ピッチにすることができる。
また、上記各実施の形態では、全てのスロットの開口幅が等しく形成されているものとして説明されているが、各スロットの開口幅が第1および第2回転子コアの突極幅より小さく形成されていれば、全てのスロットの開口幅は必ずしも等しくする必要はない。

Claims (7)

  1. 内周側に開口するスロットを画成するティースが円筒状のコアバックの内周面から径方向内方に突設されて周方向に並べて複数配設されてなる同一形状に作製された第1固定子コアおよび第2固定子コアを、軸方向に所定距離離反して、かつ上記ティースの周方向位置を一致させて同軸に配置して構成された固定子コア、および上記固定子コアに集中巻きに巻装された固定子コイルを有する固定子と、
    突極が周方向に等角ピッチで配設されてなる同一形状に作製された第1回転子コアおよび第2回転子コアを、それぞれ上記第1固定子コアおよび上記第2固定子コアの内周側に位置させ、かつ互いに周方向に半突極ピッチずらして回転軸に同軸に固着された回転子と、
    上記固定子に配設され、上記第1回転子コアの突極と上記第2回転子コアの突極とが異なる極性となるように界磁磁束を発生する界磁手段と、
    上記第1固定子コアのコアバック外周面と上記第2固定子コアのコアバック外周面とを連結するように軸方向に延設された軸方向磁路形成部材と、を備え、
    上記界磁手段が発生した上記界磁磁束が、上記第1固定子コアから上記第1回転子コアの突極に入り、該第1回転子コアおよび上記回転軸を軸方向に流れて上記第2回転子コアに入り、該第2回転子コアの突極から上記第2固定子コアに入り、上記軸方向磁路形成部材を軸方向に流れて該第1固定子コアに戻る磁路が構成され、
    上記第1回転子コアおよび上記第2回転子コアの突極の突極幅βrが、上記固定子の上記スロットの開口幅θsより大きく構成されていることを特徴とする磁気誘導子型回転機。
  2. 上記第1回転子コアおよび上記第2回転子コアの突極の突極幅βrが、(180/Nr)°(但し、Nrは上記第1回転子コアおよび上記第2回転子コアの各突極数である)より小さく構成されていることを特徴とする請求項1記載の磁気誘導子型回転機。
  3. 上記界磁手段は上記第1固定子コアおよび上記第2固定子コアの少なくとも一方のコアバックと上記軸方向磁路形成部材との間に配設された永久磁石であることを特徴とする請求項1又は請求項2記載の磁気誘導子型回転機。
  4. 上記界磁手段は上記第1固定子コアと上記第2固定子コアのコアバック間に介装された円筒状コイルであることを特徴とする請求項1又は請求項2記載の磁気誘導子型回転機。
  5. 上記第1固定子コア、上記第2固定子コア、上記第1回転子コア、および上記第2回転子コアが磁性鋼板を積層して作製され、上記回転軸、および上記軸方向磁路形成部材が塊状磁性体で作製されていることを特徴とする請求項1乃至請求項4のいずれか1項に記載の磁気誘導子型回転機。
  6. 上記第1固定子コアおよび上記第2固定子コアの各ティース数Nsが、Ns=3×(N+1)を満足し、上記第1回転子コアおよび上記第2回転子コアの各突極数Nrが、Nr=M×(N+1)を満足するように構成されている(但し、Mは1,2、Nは1,2,3である)ことを特徴とする請求項1乃至請求項5のいずれか1項に記載の磁気誘導子型回転機。
  7. 請求項1乃至請求項6のいずれか1項に記載の上記磁気誘導子型回転機をモータとして用いた流体移送装置。
JP2010511938A 2008-05-14 2009-04-22 磁気誘導子型回転機およびそれを用いた流体移送装置 Expired - Fee Related JP5539191B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010511938A JP5539191B2 (ja) 2008-05-14 2009-04-22 磁気誘導子型回転機およびそれを用いた流体移送装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008127194 2008-05-14
JP2008127194 2008-05-14
PCT/JP2009/057972 WO2009139278A1 (ja) 2008-05-14 2009-04-22 磁気誘導子型回転機およびそれを用いた流体移送装置
JP2010511938A JP5539191B2 (ja) 2008-05-14 2009-04-22 磁気誘導子型回転機およびそれを用いた流体移送装置

Publications (2)

Publication Number Publication Date
JPWO2009139278A1 JPWO2009139278A1 (ja) 2011-09-15
JP5539191B2 true JP5539191B2 (ja) 2014-07-02

Family

ID=41318650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010511938A Expired - Fee Related JP5539191B2 (ja) 2008-05-14 2009-04-22 磁気誘導子型回転機およびそれを用いた流体移送装置

Country Status (5)

Country Link
US (1) US8749105B2 (ja)
JP (1) JP5539191B2 (ja)
CN (1) CN102027658B (ja)
DE (1) DE112009001165A5 (ja)
WO (1) WO2009139278A1 (ja)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8232695B2 (en) 2007-07-09 2012-07-31 Clearwater Holdings, Ltd Electromagnetic machine with independent removable coils, modular parts and self sustained passive magnetic bearing
US10230292B2 (en) 2008-09-26 2019-03-12 Clearwater Holdings, Ltd Permanent magnet operating machine
JP5388919B2 (ja) * 2010-03-23 2014-01-15 三菱電機株式会社 高速回転電動機およびそれに用いられる回転子
CN101951077A (zh) * 2010-09-29 2011-01-19 沁阳市电业综合公司 一种电动装置
JP5167330B2 (ja) * 2010-12-01 2013-03-21 株式会社神戸製鋼所 Dcブラシレスモータおよびその制御方法
CN102655363B (zh) * 2011-03-02 2014-11-26 株式会社丰田自动织机 旋转电机
WO2012131775A1 (ja) * 2011-03-30 2012-10-04 三菱電機株式会社 電動機
JP5269270B2 (ja) * 2011-03-30 2013-08-21 三菱電機株式会社 電動機および電動機の製造方法
JP5789145B2 (ja) * 2011-07-13 2015-10-07 オークマ株式会社 同期電動機
GB2493976B (en) 2011-08-26 2014-08-13 Dyson Technology Ltd Turbomachine
WO2014030251A1 (ja) * 2012-08-24 2014-02-27 三菱電機株式会社 回転電動機および内燃機関用過給機
US10505412B2 (en) 2013-01-24 2019-12-10 Clearwater Holdings, Ltd. Flux machine
US10641273B2 (en) 2013-06-28 2020-05-05 Borgwarner Inc. Charging apparatus for a combustion engine
JP5855320B2 (ja) * 2013-08-26 2016-02-09 三菱電機株式会社 電動機
KR20230048164A (ko) * 2013-11-13 2023-04-10 브룩스 오토메이션 인코퍼레이티드 밀봉된 스위치드 릴럭턴스 모터
WO2015073647A1 (en) 2013-11-13 2015-05-21 Brooks Automation, Inc. Sealed robot drive
TWI695447B (zh) 2013-11-13 2020-06-01 布魯克斯自動機械公司 運送設備
KR102383699B1 (ko) 2013-11-13 2022-04-06 브룩스 오토메이션 인코퍼레이티드 브러쉬리스 전기 기계 제어 방법 및 장치
TWI742414B (zh) * 2013-11-13 2021-10-11 美商布魯克斯自動機械公司 密封切換的磁阻馬達
WO2015098159A1 (ja) * 2013-12-25 2015-07-02 三菱電機株式会社 磁気誘導子型電動機およびその製造方法
RU2720491C2 (ru) * 2014-01-23 2020-04-30 Клируотер Холдингз, Лтд. Электрическая машина с магнитным потоком
AU2015292613A1 (en) 2014-07-23 2017-01-19 Clearwater Holdings, Ltd. Flux machine
JP2017169343A (ja) * 2016-03-16 2017-09-21 株式会社東芝 回転電機、巻上機、およびエレベータ
CN107294323A (zh) * 2017-07-19 2017-10-24 沈阳工业大学 一种轴向永磁辅助磁阻电机及其控制方法
JP7052017B2 (ja) 2017-09-08 2022-04-11 クリアウォーター ホールディングス,リミテッド 蓄電を改善するシステム及び方法
JP7433223B2 (ja) 2017-10-29 2024-02-19 クリアウォーター ホールディングス,リミテッド モジュール化された電磁機械及び製造方法
CN107872104B (zh) * 2017-11-16 2020-03-31 北京航空航天大学 一种电励磁同极型旋转电机
CN117650648B (zh) * 2024-01-30 2024-05-07 江西红声技术有限公司 一种磁阻式电机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843111A (ja) * 1971-10-06 1973-06-22
JPS60195330A (ja) * 1984-03-17 1985-10-03 Isuzu Motors Ltd 内燃機関のタ−ボチヤ−ジヤ
JPH08214519A (ja) * 1995-02-06 1996-08-20 Akira Chiba 永久磁石を用いた両突極性電動発電機
JP2003079117A (ja) * 2001-09-03 2003-03-14 Toyota Motor Corp 発電機
JP2003180059A (ja) * 2001-12-10 2003-06-27 Denso Corp 車両用交流回転電機
JP2007143286A (ja) * 2005-11-17 2007-06-07 Mitsuba Corp スイッチドリラクタンスモータ

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3293459A (en) * 1964-04-30 1966-12-20 Robertshaw Controls Co Stepping motors and control means
JPS5367819A (en) * 1976-11-29 1978-06-16 Fujitsu Ltd Poled motor
US4385251A (en) * 1981-09-28 1983-05-24 General Electric Company Flux shield for an inductor-alternator machine
JPS609353A (ja) 1983-06-21 1985-01-18 ウセソユズニ・ナウチノ・イスレドヴアテルスキ・インスチテユ−ト・エレクトロマシノストロエニア 電気機械
AU583262B2 (en) 1984-03-17 1989-04-27 Isuzu Motors Limited Turbocharger for internal combustion E
JPH0685118B2 (ja) * 1985-01-31 1994-10-26 キヤノン株式会社 文書処理装置
WO1988002194A1 (en) * 1986-09-20 1988-03-24 Nippon Telegraph And Telephone Corporation Pulse motor
WO1991003858A1 (en) * 1989-08-28 1991-03-21 Kabushikigaisya Sekogiken Reactance type motor
IN186007B (ja) * 1991-12-10 2001-06-02 British Tech Group
US5304882A (en) * 1992-05-11 1994-04-19 Electric Power Research Institute, Inc. Variable reluctance motors with permanent magnet excitation
JPH06351206A (ja) * 1993-04-14 1994-12-22 Meidensha Corp ハイブリッド励磁形永久磁石同期回転機
CA2151532C (en) * 1994-07-25 1998-12-22 Emerson Electric Co. Auxiliary starting switched reluctance motor
US5889347A (en) * 1996-07-09 1999-03-30 Emerson Electric Co. Reluctance machine with fractional pitch winding and drive therefore
US6008561A (en) * 1996-10-31 1999-12-28 Emerson Electric Co. Switched reluctance motor with damping windings
US5811905A (en) * 1997-01-07 1998-09-22 Emerson Electric Co. Doubly-fed switched reluctance machine
JP3428871B2 (ja) * 1997-09-02 2003-07-22 オークマ株式会社 モータ
US6075302A (en) * 1997-10-20 2000-06-13 Mccleer; Patrick J. Brushless heteropolar inductor machine
JP3450710B2 (ja) * 1997-10-24 2003-09-29 オークマ株式会社 スウィッチトリラクタンスモータ
US6897591B2 (en) * 2001-03-26 2005-05-24 Emerson Electric Co. Sensorless switched reluctance electric machine with segmented stator
EP2061140A3 (en) * 2001-07-09 2011-08-10 Harmonic Drive Systems Inc. Synchronous hybrid electric machine
JP3826785B2 (ja) * 2001-12-25 2006-09-27 株式会社デンソー 回転電機
US7034422B2 (en) * 2002-05-24 2006-04-25 Virginia Tech Intellectual Properties, Inc. Radial-axial electromagnetic flux electric motor, coaxial electromagnetic flux electric motor, and rotor for same
JP2004088880A (ja) 2002-08-26 2004-03-18 Denso Corp 背面界磁型誘導子回転機
CN100386954C (zh) * 2005-01-19 2008-05-07 南京航空航天大学 低转矩脉动双凸极电机
JP2006271187A (ja) * 2005-02-22 2006-10-05 Mitsubishi Electric Corp 回転電機
JP2007174805A (ja) * 2005-12-22 2007-07-05 Hitachi Ltd 整磁材回転機
EP2677134B1 (en) * 2006-11-15 2016-03-23 Mitsubishi Electric Corporation Automotive hybrid engine assist system
JP4843111B1 (ja) 2011-05-18 2011-12-21 住友精化株式会社 自動開閉弁の保守管理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843111A (ja) * 1971-10-06 1973-06-22
JPS60195330A (ja) * 1984-03-17 1985-10-03 Isuzu Motors Ltd 内燃機関のタ−ボチヤ−ジヤ
JPH08214519A (ja) * 1995-02-06 1996-08-20 Akira Chiba 永久磁石を用いた両突極性電動発電機
JP2003079117A (ja) * 2001-09-03 2003-03-14 Toyota Motor Corp 発電機
JP2003180059A (ja) * 2001-12-10 2003-06-27 Denso Corp 車両用交流回転電機
JP2007143286A (ja) * 2005-11-17 2007-06-07 Mitsuba Corp スイッチドリラクタンスモータ

Also Published As

Publication number Publication date
US20110058967A1 (en) 2011-03-10
CN102027658B (zh) 2014-11-12
JPWO2009139278A1 (ja) 2011-09-15
CN102027658A (zh) 2011-04-20
US8749105B2 (en) 2014-06-10
DE112009001165A5 (de) 2012-04-19
DE112009001165T5 (de) 2012-01-12
WO2009139278A1 (ja) 2009-11-19

Similar Documents

Publication Publication Date Title
JP5539191B2 (ja) 磁気誘導子型回転機およびそれを用いた流体移送装置
US7781931B2 (en) Switched reluctance motor
JP4709775B2 (ja) 電磁カプラー
JP5159228B2 (ja) 磁気誘導子形同期回転機およびそれを用いた自動車用過給機
US7595575B2 (en) Motor/generator to reduce cogging torque
JP4999990B2 (ja) 回転電動機およびそれを用いた送風機
CN101779366B (zh) 轴向间隙型电动机
Rasmussen et al. Motor integrated permanent magnet gear with a wide torque-speed range
EP1612912A1 (en) Permanent magnet electric machine
JP5653569B2 (ja) 回転電動機および内燃機関用過給機
JP6048191B2 (ja) マルチギャップ型回転電機
US20130257188A1 (en) Flux-switching electric machine
JP6025998B2 (ja) 磁気誘導子型電動機
US20140145525A1 (en) Reduced cogging torque permanent magnet machine
JP6592525B2 (ja) 磁石式回転子、磁石式回転子を備える回転電機及び回転電機を備える電気自動車
JP2004015998A (ja) 軸方向に分割された三相固定子巻線を有する永久磁石型回転機
JP2010516224A (ja) 多相の駆動もしくは発電電気マシン
US20180054099A1 (en) Rotor of an electrical rotating machine with permanent magnets
JP2003333811A (ja) 軸方向に分割された複数の固定子巻線を有する誘導電動機
JP2006174552A (ja) アキシャルギャップ型回転電機のロータ構造
JP6591268B2 (ja) 永久磁石回転電機、及び永久磁石回転電機の固定子
JP3679294B2 (ja) 環状コイル式回転電機
WO2023042587A1 (ja) 磁気ギアード回転機械、発電システム、および、駆動システム
JP6088465B2 (ja) 駆動ユニット
JP6723478B1 (ja) 回転電機

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

R150 Certificate of patent or registration of utility model

Ref document number: 5539191

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140430

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees