JP5516768B2 - プリプレグおよび炭素繊維強化複合材料 - Google Patents

プリプレグおよび炭素繊維強化複合材料 Download PDF

Info

Publication number
JP5516768B2
JP5516768B2 JP2013013585A JP2013013585A JP5516768B2 JP 5516768 B2 JP5516768 B2 JP 5516768B2 JP 2013013585 A JP2013013585 A JP 2013013585A JP 2013013585 A JP2013013585 A JP 2013013585A JP 5516768 B2 JP5516768 B2 JP 5516768B2
Authority
JP
Japan
Prior art keywords
sizing agent
carbon fiber
epoxy
prepreg
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013013585A
Other languages
English (en)
Other versions
JP2014040566A (ja
Inventor
信之 荒井
智子 市川
大皷  寛
真 遠藤
正信 小林
潤 三角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2013013585A priority Critical patent/JP5516768B2/ja
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to US14/417,044 priority patent/US9765194B2/en
Priority to PCT/JP2013/069325 priority patent/WO2014017340A1/ja
Priority to KR1020157001725A priority patent/KR101532195B1/ko
Priority to CN201380038917.4A priority patent/CN104487495B/zh
Priority to EP13822493.6A priority patent/EP2878617B1/en
Publication of JP2014040566A publication Critical patent/JP2014040566A/ja
Application granted granted Critical
Publication of JP5516768B2 publication Critical patent/JP5516768B2/ja
Priority to US15/669,794 priority patent/US11111345B2/en
Priority to US16/533,517 priority patent/US11286359B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Description

本発明は、航空機部材、宇宙機部材、自動車部材および船舶部材をはじめとして、ゴルフシャフトや釣竿等のスポーツ用途およびその他一般産業用途に好適に用いられるプリプレグおよび炭素繊維強化複合材料に関するものである。より詳しくは、本発明は、低温下等の厳しい環境下での力学特性に優れ、構造材料として好適なエポキシ樹脂をマトリックス樹脂として使用した場合、該マトリックス樹脂と炭素繊維との接着性に優れ、長期保管における力学特性低下を抑制しうるプリプレグならびに炭素繊維強化複合材料に関する。
近年、炭素繊維やアラミド繊維などを強化繊維として用いた繊維強化複合材料は、その高い比強度と比弾性率を利用して、航空機や自動車などの構造材料、テニスラケット、ゴルフシャフトおよび釣竿などのスポーツ、および一般産業などに使用されてきた。
このような繊維強化複合材料は、炭素繊維に未硬化のマトリックス樹脂を含浸させたシート状中間材料であるプリプレグを形成し、硬化させる方法や、モールド中に配置した炭素繊維に、液状のマトリックス樹脂を流し込んで中間体を得、それを硬化させるレジン・トランスファー・モールディング法により製造されている。これらの製造方法のうち、プリプレグを用いる方法では、通常、プリプレグを複数枚積層した後、加熱加圧することによって炭素繊維強化複合材料成形物を得ている。このプリプレグに用いられるマトリックス樹脂としては、プロセス性などの生産性の面から、熱硬化性樹脂、特にエポキシ樹脂が用いられることが多い。
中でも航空機や自動車などの構造材用途では、近年の需要拡大に伴いさらなる軽量化や材料強度向上が強く要求されている。そのため、マトリックス樹脂となるエポキシ樹脂には高い耐熱性が要求される。
一般に高いガラス転移温度Tgを有するエポキシ樹脂組成物は硬化温度が高く、このような樹脂組成物は、高温に曝される硬化時や成形時の揮発成分が多い傾向にある。硬化時に揮発分が多いと、例えば、ハニカム材では表面形成時にハニカムの中にガス化した揮発分が密封され、それが出口のないハニカム中で膨張し、表面材とハニカム芯材との接着を阻害する要因となる。また、プリプレグ積層体のオートクレープ成形においても揮発分が成形時にボイドの原因となることがあり、炭素繊維強化複合材料の強度を損ねる場合がある。
揮発分が少ない高耐熱なエポキシ樹脂組成物については、多官能エポキシ樹脂とポリイソシアネート等を組み合わせる手法が提案されている(特許文献1参照)。しかしながらこの提案では、プリプレグを積層し硬化させた炭素繊維強化複合材料の強度への言及がない。
また、炭素繊維強化複合材料の高強度化には、炭素繊維の高強度化や高体積炭素繊維含有率(高Vf化)が必要であり、高強度の炭素繊維を得る方法が提案されている(特許文献2参照)。しかしながら、この提案では、炭素繊維強化複合材料としたときに発現する強度への言及がない。一般に、炭素繊維を高強度化するほど、炭素繊維本来の強度を利用することが難しくなる傾向がある。例えば、炭素繊維のストランド強度が向上しても、引張強度を十分に利用することができず、引張強度利用率(炭素繊維強化複合材料の引張強度/(炭素繊維のストランド強度×体積炭素繊維含有率)×100)は、低下していく傾向にある。そのため、このような高強度の炭素繊維を得ることができても、炭素繊維強化複合材料としての強度を発現させるためには、さらに技術的な課題をクリアする必要がある。
さらに、同じ強度の炭素繊維でも、組み合わせるマトリックス樹脂やその成形条件により、その引張強度利用率が大きく変動していくことが知られている。特に、硬化の温度条件が180℃以上になると、その硬化の際に炭素繊維強化複合材料に残留する熱応力から高強度が発現しにくいという問題がある。そのため、これまでにも、180℃の温度での硬化でも十分な引張強度を出すためのマトリックス樹脂の改質の検討が行われてきている。
マトリックス樹脂の引張破断伸度を上げると、炭素繊維強化複合材料の引張強度利用率は向上することが知られている。マトリックス樹脂の引張破断伸度の向上には、マトリックス樹脂の架橋密度を下げることが有効であるが、架橋密度の低下により炭素繊維強化複合材料の耐熱性が低下することがあり、有効な配合が限られるという問題がある。それを解決するために、引張破断伸度と破壊靱性KIcが特定の関係を満たせば高い引張強度利用率が得られることが提案されている(特許文献3参照)。しかしながら、破壊靱性KIcの向上のために、マトリックス樹脂に熱可塑性樹脂やゴム成分を多量に配合すると、一般的に粘度が上昇し、プリプレグ製造のプロセス性や取り扱いを損ねることがある。
一方、炭素繊維の接着性や集束性の向上を目的として、炭素繊維用のサイジング剤が種々提案されている。サイジング剤として、脂肪族タイプの複数のエポキシ基を有する化合物や、ポリアルキレングリコールのエポキシ付加物、ビスフェノールAのジグリシジルエーテル、ビスフェノールAのポリアルキレンオキサイド付加物、ビスフェノールAのポリアルキレンオキサイド付加物にエポキシ基を付加させたもの等が提案されているが、1種類のエポキシ化合物からなるサイジング剤では、接着性や集束性が十分とは言えず、求める機能により2種類以上のエポキシ化合物を併用する手法が、近年提案されている。
例えば、表面エネルギーを規定した2種以上のエポキシ化合物を組み合わせたサイジング剤が提案されている(特許文献4〜7参照)。特許文献4では、脂肪族エポキシ化合物と芳香族エポキシ化合物の組み合わせが開示されている。該特許文献4では、外層に多くあるサイジング剤が、内層に多くあるサイジング剤成分に対し、大気との遮断効果をもたらし、エポキシ基が大気中の水分により開環するのを抑止するとされている。また、該文献では、サイジング剤の好ましい範囲について、脂肪族エポキシ化合物と芳香族エポキシ化合物との比率は10/90〜40/60と規定され、芳香族エポキシ化合物の量が多いほうが好適とされている。
また、特許文献6および7では、表面エネルギーの異なる2種以上のエポキシ化合物を使用したサイジング剤が開示されている。該特許文献6および7は、マトリックス樹脂との接着性の向上を目的としているため、2種以上のエポキシ化合物の組み合わせとして芳香族エポキシ化合物と脂肪族エポキシ化合物の併用は限定されてなく、接着性の観点から選択される脂肪族エポキシ化合物の一般的例示がないものである。
さらに、ビスフェノールA型エポキシ化合物と脂肪族ポリエポキシ樹脂を質量比50/50〜90/10で配合するサイジング剤が開示されている(特許文献8参照)。しかしながら、この特許文献8も、芳香族エポキシ化合物であるビスフェノールA型エポキシ化合物の配合量が多いものである。
また、芳香族エポキシ化合物および脂肪族エポキシ化合物の組み合わせを規定したサイジング剤として、炭素繊維束の表面に多官能の脂肪族化合物、上面にエポキシ樹脂、アルキレンオキシド付加物と不飽和二塩基酸との縮合物、フェノール類のアルキレンオキシド付加物を組み合わせたものが開示されている(特許文献9参照)。
さらに、2種以上のエポキシ化合物の組み合わせとして、脂肪族エポキシ化合物と芳香族エポキシ化合物であるビスフェノールA型エポキシ化合物の組み合わせが開示されている。脂肪族エポキシ化合物は環状脂肪族エポキシ化合物および/または長鎖脂肪族エポキシ化合物である(特許文献10参照)。
また、性状の異なるエポキシ化合物の組み合わせが開示されている。25℃で液体と固体の2種のエポキシ化合物の組み合わせが開示されている(特許文献11参照)。さらに、分子量の異なるエポキシ樹脂の組み合わせ、単官能脂肪族エポキシ化合物とエポキシ樹脂の組み合わせが提案されている(特許文献12および13参照)。
しかしながら、炭素繊維とマトリックス樹脂との接着性とプリプレグでの長期保管時の安定性は、前述の2種類以上を混合したサイジング剤(例えば、特許文献10〜13など)においても同時に満たすものとは言えないのが実情であった。その理由は、高い接着性とプリプレグでの長期保管時の力学特性低下の抑制を同時に満たすには、以下の3つの要件を満たすことが必要と考えられるが、従来の任意のエポキシ樹脂の組み合わせではそれらの要件を満たしていなかったからであるといえる。前記3つの要件の一つ目は、サイジング層内側(炭素繊維側)に接着性の高いエポキシ成分が存在し、炭素繊維とサイジング中のエポキシ化合物が強固に相互作用を行うこと、二つ目が、サイジング層表層(マトリックス樹脂側)には、内層にある炭素繊維との接着性の高いエポキシ化合物とマトリックス樹脂との反応を阻害する機能を有していること、そして三つ目が、マトリックス樹脂との接着性を向上させるため、サイジング剤表層(マトリックス樹脂側)にはマトリックス樹脂と強い相互作用が可能な化学組成が必要であることである。
例えば、特許文献4には、炭素繊維とサイジング剤との接着性を高めるため、サイジング剤に傾斜構造を持たせることは開示されているが、特許文献4およびその他いずれの文献(特許文献5〜8など)においても、サイジング層表面は炭素繊維と接着性の高いエポキシ化合物とマトリックス中の成分との反応を抑制し、かつマトリックス樹脂との高接着を実現することを同時に満たす思想は皆無と言える。
また、特許文献9には、サイジング剤内層に多官能脂肪族化合物が存在し、外層に反応性の低い芳香族エポキシ樹脂および芳香族系反応物が存在するものが開示されており、長期間保持した場合にはプリプレグの経時変化の抑制を期待できるが、サイジング剤表層に接着性の高い多官能脂肪族化合物が存在しないため、マトリックス樹脂との高い接着性を実現することは困難である。
特開2001−31838号公報 特開平11−241230号公報 特開平9−235397号公報 特開2005−179826号公報 特開2005−256226号公報 国際公開第03/010383号公報 特開2008−280624号公報 特開2005−213687号公報 特開2002−309487号公報 特開平02−307979号公報 特開2002−173873号公報 特開昭59−71479号公報 特開昭58−41973号公報
本発明は、上記に鑑みてなされたものであって、マトリックス樹脂と炭素繊維との接着性および長期保管安定性に優れるとともに、硬化時の揮発分が少なく、優れた耐熱性と低温下等の厳しい使用環境での力学特性に優れた炭素繊維強化複合材料を得ることができるプリプレグを提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明は、サイジング剤を塗布したサイジング剤塗布炭素繊維に熱硬化性樹脂組成物を含浸させてなるプリプレグであって、前記サイジング剤は、脂肪族エポキシ化合物(A)および芳香族化合物(B)として少なくとも芳香族エポキシ化合物(B1)を含み、前記サイジング剤塗布炭素繊維は、炭素繊維に塗布したサイジング剤表面を、X線源としてAlKα1,2を用いたX線光電子分光法によって光電子脱出角度15°で測定されるC1s内殻スペクトルの(a)CHx、C−C、C=Cに帰属される結合エネルギー(284.6eV)の成分の高さ(cps)と、(b)C−Oに帰属される結合エネルギー(286.1eV)の成分の高さ(cps)との比率(a)/(b)が0.50〜0.90であり、前記熱硬化性樹脂組成物は、少なくとも次の構成要素(D):4員環以上の環構造を2つ以上有し、かつ、環構造に直結したアミン型グリシジル基またはエーテル型グリシジル基を1つまたは2つ有するエポキシ樹脂、(E):3つ以上の官能基を有するエポキシ樹脂、(F):潜在性硬化剤を含んでなるエポキシ樹脂組成物であり、該エポキシ樹脂組成物は、配合したエポキシ樹脂総量100質量%に対して、前記エポキシ樹脂(D)を5〜60質量%、前記エポキシ樹脂(E)を40〜80質量%含むことを特徴とする。
また、本発明のプリプレグは、上記発明において、前記エポキシ樹脂組成物は、配合したエポキシ樹脂総量100質量%に対して、環構造に直結したアミン型グリシジル基またはエーテル型グリシジル基を1つ有するエポキシ樹脂(D)を10〜40質量%含むことを特徴とする。
また、本発明のプリプレグは、上記発明において、前記エポキシ樹脂(D)は、下記一般式(1)
Figure 0005516768
(式(1)中、RとRは、それぞれ炭素数1〜4の脂肪族炭化水素基、炭素数3〜6の脂環式炭化水素基、炭素数6〜10の芳香族炭化水素基、ハロゲン原子、アシル基、トリフルオロメチル基およびニトロ基からなる群から選ばれた少なくとも一つを表す。nは0〜4の整数、mは0〜5の整数である。RとRが複数存在する場合、それぞれ同じであっても異なっていてもよい。Xは、−O−、−S−、−CO−、−C(=O)O−、−SO−、−C(=O)NH−から選ばれる1つを表す。)で示される構造を有し、前記エポキシ樹脂組成物は、配合したエポキシ樹脂総量100質量%に対して、該エポキシ樹脂(D)を25〜50質量%含むことを特徴とする。
また、本発明のプリプレグは、上記発明において、一般式(1)中、Xは−O−であることを特徴とする。
また、本発明のプリプレグは、上記発明において、前記エポキシ樹脂(E)は、下記一般式(2)
Figure 0005516768
(式(2)中、R〜Rは、水素原子、炭素数1〜4の脂肪族炭化水素基、炭素数4以下の脂環式炭化水素基、ハロゲン原子からなる群から選ばれた少なくとも一つを表す。Yは、−CH−、−O−、−S−、−CO−、−C(=O)O−、−SO−、−C(=O)NH−から選ばれる1つを表す。)で示される構造を有することを特徴とする。
また、本発明のプリプレグは、上記発明において、一般式(2)中、Yは−CH−であることを特徴とする。
また、本発明のプリプレグは、上記発明において、前記エポキシ樹脂(E)は、Yが−CH−である一般式(2)で示される構造を有し、かつ、エポキシ当量が100〜115g/eq.であることを特徴とする。
また、本発明のプリプレグは、上記発明において、前記潜在性硬化剤(F)は、芳香族アミン硬化剤(F1)であることを特徴とする。
また、本発明のプリプレグは、上記発明において、前記芳香族アミン硬化剤(F1)は、ジフェニルスルフォン骨格を含有することを特徴とする。
また、本発明のプリプレグは、上記発明において、前記熱硬化性樹脂は、熱可塑性樹脂粒子(G)を含むことを特徴とする。
また、本発明のプリプレグは、上記発明において、前記熱可塑性樹脂粒子(G)は、その90〜100質量%が、前記プリプレグの厚さ方向において、両面から20%の深さの範囲内に局在していることを特徴とする。
また、本発明のプリプレグは、上記発明において、前記熱硬化性樹脂組成物は、前記エポキシ樹脂(D)または前記エポキシ樹脂(E)に溶解する熱可塑性樹脂(H)を含むことを特徴とする。
また、本発明のプリプレグは、上記発明において、前記熱可塑性樹脂(H)は、ポリエーテルスルホンであることを特徴とする。
また、本発明のプリプレグは、上記発明において、前記ポリエーテルスルホンの平均分子量は、15000〜30000g/molであることを特徴とする。
また、本発明のプリプレグは、上記発明において、前記サイジング剤のエポキシ当量が350〜550g/eq.であることを特徴とする、請求項1〜9のいずれか一つに記載のプリプレグ。
また、本発明のプリプレグは、上記発明において、前記サイジング剤は、溶媒を除いたサイジング剤全量に対して、少なくとも脂肪族エポキシ化合物(A)を35〜65質量%、芳香族化合物(B)を35〜60質量%含むことを特徴とする。
また、本発明のプリプレグは、上記発明において、前記脂肪族エポキシ化合物(A)と前記芳香族エポキシ化合物(B1)との質量比は、52/48〜80/20であることを特徴とする。
また、本発明のプリプレグは、上記発明において、前記脂肪族エポキシ化合物(A)は、分子内にエポキシ基を2つ以上有するポリエーテル型ポリエポキシ化合物および/またはポリオール型ポリエポキシ化合物であることを特徴とする。
また、本発明のプリプレグは、上記発明において、前記脂肪族エポキシ化合物(A)は、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、テトラプロピレングリコール、ポリプロピレングリコール、トリメチレングリコール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、2,3−ブタンジオール、ポリブチレングリコール、1,5−ペンタンジオール、ネオペンチルグリコール、1,6−ヘキサンジオール、1,4−シクロヘキサンジメタノール、グリセロール、ジグリセロール、ポリグリセロール、トリメチロールプロパン、ペンタエリスリトール、ソルビトール、およびアラビトールから選択される化合物と、エピクロロヒドリンとの反応により得られるグリシジルエーテル型エポキシ化合物であることを特徴とする。
また、本発明のプリプレグは、上記発明において、前記芳香族エポキシ化合物(B1)は、ビスフェノールA型エポキシ化合物あるいはビスフェノールF型エポキシ化合物であることを特徴とする。
また、本発明のプリプレグは、上記発明において、前記サイジング剤は、溶媒を除いたサイジング剤全量に対して、分子内にエポキシ基を持たないエステル化合物(C)を2〜35質量%含有することを特徴とする。
また、本発明のプリプレグは、上記発明において、前記サイジング剤塗布炭素繊維は、該サイジング剤塗布炭素繊維を、400eVのX線を用いたX線光電子分光法によって光電子脱出角度55°で測定されるC1s内殻スペクトルの(a)CHx、C−C、C=Cに帰属される結合エネルギー(284.6eV)の成分の高さ(cps)と、(b)C−Oに帰属される結合エネルギー(286.1eV)の成分の高さ(cps)との比率(a)/(b)より求められる(I)および(II)の値が、(III)の関係を満たすものであることを特徴とする。
(I)超音波処理前の前記サイジング剤塗布炭素繊維の表面の(a)/(b)の値
(II)前記サイジング剤塗布炭素繊維をアセトン溶媒中で超音波処理することで、サイジング剤付着量を0.09〜0.20質量%まで洗浄したサイジング剤塗布炭素繊維の表面の(a)/(b)の値
(III)0.50≦(I)≦0.90かつ0.60<(II)/(I)<1.0
また、本発明のプリプレグは、上記発明において、前記サイジング剤は、芳香族エポキシ化合物(B1)を少なくとも含む水エマルジョン液と、脂肪族エポキシ化合物(A)を少なくとも含む組成物を混合したものであることを特徴とする。
また、本発明のプリプレグは、上記発明において、前記サイジング剤および前記芳香族アミン硬化剤(E1)は、前記サイジング剤と前記芳香族アミン硬化剤(F1)とを、アミン当量/エポキシ当量が0.9の割合で混合後、25℃、60%RHの雰囲気下で20日保管した場合のガラス転移点の上昇が25℃以下となる組み合わせで使用することを特徴とする。
また、本発明の炭素繊維強化複合材料は、上記のいずれか一つに記載のプリプレグを成形してなることを特徴とする。
本発明によれば、マトリックス樹脂と炭素繊維との接着性が優れるとともに、長期保管時の経時変化および硬化時の揮発量が少なく、耐熱性および強度特性に優れた炭素繊維強化複合材料を得ることができる。
以下、更に詳しく、本発明の実施の形態にかかるプリプレグおよび炭素繊維強化複合材料について説明をする。
本発明は、サイジング剤を塗布したサイジング剤塗布炭素繊維に熱硬化性樹脂組成物を含浸させてなるプリプレグであって、前記サイジング剤は、脂肪族エポキシ化合物(A)および芳香族化合物(B)として芳香族エポキシ化合物(B1)を少なくとも含み、前記サイジング剤塗布炭素繊維は、炭素繊維に塗布したサイジング剤表面を、X線光電子分光法によって光電子脱出角度15°で測定されるC1s内殻スペクトルの(a)CHx、C−C、C=Cに帰属される結合エネルギー(284.6eV)の成分の高さ(cps)と、(b)C−Oに帰属される結合エネルギー(286.1eV)の成分の高さ(cps)との比率(a)/(b)が0.50〜0.90であり、前記熱硬化性樹脂組成物は、少なくとも次の構成要素(D):4員環以上の環構造を2つ以上有し、かつ、環構造に直結したアミン型グリシジル基またはエーテル型グリシジル基を1つまたは2つ有するエポキシ樹脂、(E):3つ以上の官能基を有するエポキシ樹脂、(F):潜在性硬化剤を含んでなるエポキシ樹脂組成物であり、該エポキシ樹脂組成物は、配合したエポキシ樹脂総量100質量%に対して、前記エポキシ樹脂(D)を5〜60質量%、前記エポキシ樹脂(E)を40〜80質量%含むことを特徴とする。
まず、本発明のプリプレグで使用するサイジング剤について説明する。本発明にかかるサイジング剤は、脂肪族エポキシ化合物(A)および芳香族化合物(B)として芳香族エポキシ化合物(B1)を少なくとも含む。
本発明者らの知見によれば、かかる範囲のものは、炭素繊維とマトリックスの界面接着性に優れるとともに、そのサイジング剤塗布炭素繊維をプリプレグに用いた場合にもプリプレグを長期保管した場合の経時変化が小さく、炭素繊維強化複合材料用の炭素繊維に好適なものである。
本発明にかかるサイジング剤は、炭素繊維に塗布した際、サイジング層内側(炭素繊維側)に脂肪族エポキシ化合物(A)が多く存在することで、炭素繊維と脂肪族エポキシ化合物(A)とが強固に相互作用を行い、接着性を高めるとともに、サイジング層表層(マトリックス樹脂側)には芳香族エポキシ化合物(B1)を含む芳香族化合物(B)を多く存在させることで、内層にある脂肪族エポキシ化合物(A)とマトリックス樹脂との反応を阻害しながら、サイジング層表層(マトリックス樹脂側)にはマトリックス樹脂と強い相互作用が可能な化学組成として、所定割合のエポキシ基を含む芳香族エポキシ化合物(B1)および脂肪族エポキシ化合物(A)が所定の割合で存在するため、マトリックス樹脂との接着性も向上するものである。
サイジング剤が、芳香族エポキシ化合物(B1)のみからなり、脂肪族エポキシ化合物(A)を含まない場合、サイジング剤とマトリックス樹脂との反応性が低く、プリプレグを長期保管した場合の力学特性の変化が小さいという利点がある。また、剛直な界面層を形成することができるという利点もある。しかしながら、芳香族エポキシ化合物(B1)はその化合物の剛直さに由来して、脂肪族エポキシ化合物(A)と比較して、炭素繊維とマトリックス樹脂との接着性が若干劣ることが確認されている。
また、サイジング剤が、脂肪族エポキシ化合物(A)のみからなる場合、該サイジング剤を塗布した炭素繊維はマトリックス樹脂との接着性が高いことが確認されている。そのメカニズムは確かではないが、脂肪族エポキシ化合物(A)は柔軟な骨格および自由度が高い構造に由来して、炭素繊維表面のカルボキシル基および水酸基との官能基と脂肪族エポキシ化合物(A)が強い相互作用を形成することが可能であると考えられる。しかしながら、脂肪族エポキシ化合物(A)は、炭素繊維表面との相互作用により高い接着性を発現する一方、マトリックス樹脂中の硬化剤に代表される官能基を有する化合物との反応性が高く、プリプレグの状態で長期間保管すると、マトリックス樹脂とサイジング剤の相互作用により界面層の構造が変化し、そのプリプレグから得られる炭素繊維強化複合材料の力学特性が低下する課題があることが確認されている。
本発明において、脂肪族エポキシ化合物(A)と芳香族化合物(B)を混合した場合、より極性の高い脂肪族エポキシ化合物(A)が炭素繊維側に多く偏在し、炭素繊維と逆側のサイジング層の最外層に極性の低い芳香族化合物(B)が偏在しやすいという現象が見られる。このサイジング層の傾斜構造の結果として、脂肪族エポキシ化合物(A)は炭素繊維近傍で炭素繊維と強い相互作用を有することで炭素繊維とマトリックス樹脂の接着性を高めることができる。また、サイジング剤塗布炭素繊維をプリプレグにした場合には、外層に多く存在する芳香族化合物(B)は、脂肪族エポキシ化合物(A)をマトリックス樹脂から遮断する役割を果たす。このことにより、脂肪族エポキシ化合物(A)とマトリックス樹脂中の反応性の高い成分との反応が抑制されるため、長期保管時の安定性が発現される。なお、脂肪族エポキシ化合物(A)を芳香族化合物(B)でほぼ完全に覆う場合には、サイジング剤とマトリックス樹脂との相互作用が小さくなり接着性が低下してしまうため、サイジング剤表面の脂肪族エポキシ化合物(A)と芳香族化合物(B)の存在比率が重要である。
本発明に係るサイジング剤は、溶媒を除いたサイジング剤全量に対して、脂肪族エポキシ化合物(A)を35〜65質量%、芳香族化合物(B)を35〜60質量%少なくとも含むことが好ましい。脂肪族エポキシ化合物(A)を、溶媒を除いたサイジング剤全量に対して、35質量%以上配合することにより、炭素繊維とマトリックス樹脂との接着性が向上する。また、65質量%以下とすることで、プリプレグを長期保管した場合にも、その後炭素繊維強化複合材料に成形した際の力学特性が良好になる。脂肪族エポキシ化合物(A)の配合量は、38質量%以上がより好ましく、40質量%以上がさらに好ましい。また、脂肪族エポキシ化合物(A)の配合量は、60質量%以下がより好ましく、55質量%以下がさらに好ましい。
本発明のサイジング剤において、芳香族化合物(B)を、溶媒を除いたサイジング剤全量に対して、35質量%以上配合することで、サイジング剤の外層中の芳香族化合物(B)の組成を高く維持することができるため、プリプレグの長期保管時に反応性の高い脂肪族エポキシ化合物(A)とマトリックス樹脂中の反応性化合物との反応による力学特性低下が抑制される。また、60質量%以下とすることで、サイジング剤中の傾斜構造を発現することができ、炭素繊維とマトリックス樹脂との接着性を維持することができる。芳香族化合物(B)の配合量は、37質量%以上がより好ましく、39質量%以上がさらに好ましい。また、芳香族化合物(B)の配合量は、55質量%以下がより好ましく、45質量%以下がさらに好ましい。
本発明におけるサイジング剤には、エポキシ成分として、脂肪族エポキシ化合物(A)に加えて、芳香族化合物(B)である芳香族エポキシ化合物(B1)が含まれる。脂肪族エポキシ化合物(A)と芳香族エポキシ化合物(B1)の質量比(A)/(B1)は、52/48〜80/20であることが好ましい。(A)/(B1)を52/48以上とすることにより、炭素繊維表面に存在する脂肪族エポキシ化合物(A)の比率が大きくなり、炭素繊維とマトリックス樹脂の接着性が向上する。その結果、得られた炭素繊維強化複合材料の引張強度などの力学特性が高くなる。また、(A)/(B1)を80/20以下とすることにより、反応性の高い脂肪族エポキシ化合物(B)が炭素繊維表面に存在する量が少なくなり、マトリックス樹脂との反応性が抑制できるため好ましい。(A)/(B1)の質量比は55/45以上がより好ましく、60/40以上がさらに好ましい。また、(A)/(B1)の質量比は75/35以下がより好ましく、73/37以下がさらに好ましい。
本発明における脂肪族エポキシ化合物(A)は、芳香環を含まないエポキシ化合物である。自由度の高い柔軟な骨格を有していることから、炭素繊維と強い相互作用を有することが可能である。その結果、サイジング剤を塗布した炭素繊維とマトリックス樹脂との接着性が向上する。
本発明において、脂肪族エポキシ化合物(A)は分子内に1個以上のエポキシ基を有する。そのことにより、炭素繊維とサイジング剤中のエポキシ基の強固な結合を形成することができる。分子内のエポキシ基は、2個以上であることが好ましく、3個以上であることがより好ましい。脂肪族エポキシ化合物(A)が、分子内に2個以上のエポキシ基を有するエポキシ化合物であると、1個のエポキシ基が炭素繊維表面の酸素含有官能基と共有結合を形成した場合でも、残りのエポキシ基がマトリックス樹脂と共有結合または水素結合を形成することができ、炭素繊維とマトリックス樹脂との接着性をさらに向上することができる。エポキシ基の数の上限は特にないが、接着性の観点からは10個で十分である。
本発明において、脂肪族エポキシ化合物(A)は、2種以上の官能基を3個以上有するエポキシ化合物であることが好ましく、2種以上の官能基を4個以上有するエポキシ化合物であることがより好ましい。エポキシ化合物が有する官能基は、エポキシ基以外に、水酸基、アミド基、イミド基、ウレタン基、ウレア基、スルホニル基、またはスルホ基から選択されるものが好ましい。脂肪族エポキシ化合物(A)が、分子内に3個以上のエポキシ基または他の官能基を有するエポキシ化合物であると、1個のエポキシ基が炭素繊維表面の酸素含有官能基と共有結合を形成した場合でも、残りの2個以上のエポキシ基または他の官能基がマトリックス樹脂と共有結合または水素結合を形成することができ、炭素繊維とマトリックス樹脂との接着性がさらに向上する。エポキシ基を含む官能基の数の上限は特にないが、接着性の観点から10個で十分である。
本発明において、脂肪族エポキシ化合物(A)のエポキシ当量は、360g/eq.未満であることが好ましく、より好ましくは270g/eq.未満であり、さらに好ましくは180g/eq.未満である。脂肪族エポキシ化合物(A)のエポキシ当量が360g/eq.未満であると、高密度で炭素繊維との相互作用が形成され、炭素繊維とマトリックス樹脂との接着性がさらに向上する。エポキシ当量の下限は特にないが、90g/eq.以上であれば接着性の観点から十分である。
本発明において、脂肪族エポキシ化合物(A)の具体例としては、例えば、ポリオールから誘導されるグリシジルエーテル型エポキシ化合物、複数活性水素を有するアミンから誘導されるグリシジルアミン型エポキシ化合物、ポリカルボン酸から誘導されるグリシジルエステル型エポキシ化合物、および分子内に複数の2重結合を有する化合物を酸化して得られるエポキシ化合物が挙げられる。
グリシジルエーテル型エポキシ化合物としては、ポリオールとエピクロロヒドリンとの反応により得られるグリシジルエーテル型エポキシ化合物が挙げられる。たとえば、グリシジルエーテル型エポキシ化合物として、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、テトラプロピレングリコール、ポリプロピレングリコール、トリメチレングリコール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、2,3−ブタンジオール、ポリブチレングリコール、1,5−ペンタンジオール、ネオペンチルグリコール、1,6−ヘキサンジオール、1,4−シクロヘキサンジメタノール、水添ビスフェノールA、水添ビスフェノールF、グリセロール、ジグリセロール、ポリグリセロール、トリメチロールプロパン、ペンタエリスリトール、ソルビトール、およびアラビトールから選択される1種と、エピクロロヒドリンとの反応により得られるグリシジルエーテル型エポキシ化合物である。また、このグリシジルエーテル型エポキシ化合物として、ジシクロペンタジエン骨格を有するグリシジルエーテル型エポキシ化合物も例示される。
グリシジルアミン型エポキシ化合物としては、例えば、1,3−ビス(アミノメチル)シクロヘキサンが挙げられる。
グリシジルエステル型エポキシ化合物としては、例えば、ダイマー酸を、エピクロロヒドリンと反応させて得られるグリシジルエステル型エポキシ化合物が挙げられる。
分子内に複数の2重結合を有する化合物を酸化させて得られるエポキシ化合物としては、例えば、分子内にエポキシシクロヘキサン環を有するエポキシ化合物が挙げられる。さらに、このエポキシ化合物としては、エポキシ化大豆油が挙げられる。
本発明に使用する脂肪族エポキシ化合物(A)として、これらのエポキシ化合物以外にも、トリグリシジルイソシアヌレートのようなエポキシ化合物が挙げられる。
本発明にかかる脂肪族エポキシ化合物(A)は、1個以上のエポキシ基と、水酸基、アミド基、イミド基、ウレタン基、ウレア基、スルホニル基、カルボキシル基、エステル基およびスルホ基から選ばれる、少なくとも1個以上の官能基とを有することが好ましい。脂肪族エポキシ化合物(A)が有する官能基の具体例として、例えば、エポキシ基と水酸基を有する化合物、エポキシ基とアミド基を有する化合物、エポキシ基とイミド基を有する化合物、エポキシ基とウレタン基を有する化合物、エポキシ基とウレア基を有する化合物、エポキシ基とスルホニル基を有する化合物、エポキシ基とスルホ基を有する化合物が挙げられる。
エポキシ基に加えて水酸基を有する脂肪族エポキシ化合物(A)としては、例えば、ソルビトール型ポリグリシジルエーテルおよびグリセロール型ポリグリシジルエーテル等が挙げられ、具体的にはデナコール(商標登録)EX−611、EX−612、EX−614、EX−614B、EX−622、EX−512、EX−521、EX−421、EX−313、EX−314およびEX−321(ナガセケムテックス(株)製)等が挙げられる。
エポキシ基に加えてアミド基を有する脂肪族エポキシ化合物(A)としては、例えば、アミド変性エポキシ化合物等が挙げられる。アミド変性エポキシは脂肪族ジカルボン酸アミドのカルボキシル基に2個以上のエポキシ基を有するエポキシ化合物のエポキシ基を反応させることによって得ることができる。
エポキシ基に加えてウレタン基を有する脂肪族エポキシ化合物(A)としては、例えば、ウレタン変性エポキシ化合物が挙げられ、具体的にはアデカレジン(商標登録)EPU−78−13S、EPU−6、EPU−11、EPU−15、EPU−16A、EPU−16N、EPU−17T−6、EPU−1348およびEPU−1395(株式会社ADEKA製)等が挙げられる。または、ポリエチレンオキサイドモノアルキルエーテルの末端水酸基に、その水酸基量に対する反応当量の多価イソシアネートを反応させ、次いで得られた反応生成物のイソシアネート残基に多価エポキシ化合物内の水酸基と反応させることによって得ることができる。ここで、用いられる多価イソシアネートとしては、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ノルボルナンジイソシアネートなどが挙げられる。
エポキシ基に加えてウレア基を有する脂肪族エポキシ化合物(A)としては、例えば、ウレア変性エポキシ化合物等が挙げられる。ウレア変性エポキシ化合物は脂肪族ジカルボン酸ウレアのカルボキシル基に2個以上のエポキシ基を有するエポキシ化合物のエポキシ基を反応させることによって得ることができる。
本発明で用いる脂肪族エポキシ化合物(A)は、上述した中でも高い接着性の観点から、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、テトラプロピレングリコール、ポリプロピレングリコール、トリメチレングリコール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、2,3−ブタンジオール、ポリブチレングリコール、1,5−ペンタンジオール、ネオペンチルグリコール、1,6−ヘキサンジオール、グリセロール、ジグリセロール、ポリグリセロール、トリメチロールプロパン、ペンタエリスリトール、ソルビトール、およびアラビトールから選択される1種と、エピクロロヒドリンとの反応により得られるグリシジルエーテル型エポキシ化合物がより好ましい。
上記の中でも本発明における脂肪族エポキシ化合物(A)は、高い接着性の観点から、分子内にエポキシ基を2以上有するポリエーテル型ポリエポキシ化合物および/またはポリオール型ポリエポキシ化合物が好ましい。
本発明において、脂肪族エポキシ化合物(A)は、ポリグリセロールポリグリシジルエーテルがさらに好ましい。
本発明において、芳香族化合物(B)は、分子内に芳香環を1個以上有する。芳香環とは、炭素のみからなる芳香環炭化水素でも良いし、窒素あるいは酸素などのヘテロ原子を含むフラン、チオフェン、ピロール、イミダゾールなどの複素芳香環でも構わない。また、芳香環はナフタレン、アントラセンなどの多環式芳香環でも構わない。サイジング剤を塗布した炭素繊維とマトリックス樹脂とからなる炭素繊維強化複合材料において、炭素繊維近傍のいわゆる界面層は、炭素繊維あるいはサイジング剤の影響を受け、マトリックス樹脂とは異なる特性を有する場合がある。サイジング剤が芳香環を1個以上有する芳香族化合物(B)を含むと、剛直な界面層が形成され、炭素繊維とマトリックス樹脂との間の応力伝達能力が向上し、炭素繊維強化複合材料の0°引張強度等の力学特性が向上する。また、芳香環の疎水性により、脂肪族エポキシ化合物(A)に比べて炭素繊維との相互作用が弱くなるため、炭素繊維との相互作用により炭素繊維側に肪族エポキシ化合物(A)が多く存在し、サイジング層外層に芳香族化合物(B)が多く存在する結果となる。これにより、芳香族化合物(B)が脂肪族エポキシ化合物(A)とマトリックス樹脂との反応を抑制するため、本発明にかかるサイジング剤を塗布した炭素繊維をプリプレグに用いた場合、長期間保管した場合の経時変化を抑制することができ好ましい。芳香族化合物(B)として、芳香環を2個以上有するものを選択することで、プリプレグとした際の長期保管安定性をより向上することができる。芳香環の数の上限は特にないが、10個あれば力学特性およびマトリックス樹脂との反応の抑制の観点から十分である。
本発明において、芳香族化合物(B)は分子内に1種以上の官能基を有することができる。また、芳香族化合物(B)は、1種類であっても良いし、複数の化合物を組み合わせて用いても良い。芳香族化合物(B)は、分子内に1個以上のエポキシ基と1個以上の芳香環を有する芳香族エポキシ化合物(B1)を少なくとも含むものである。エポキシ基以外の官能基は水酸基、アミド基、イミド基、ウレタン基、ウレア基、スルホニル基、カルボキシル基、エステル基またはスルホ基から選択されるものが好ましく、1分子内に2種以上の官能基を含んでいても良い。芳香族化合物(B)は、芳香族エポキシ化合物(B1)以外には、化合物の安定性、高次加工性を良好にすることから、芳香族エステル化合物、芳香族ウレタン化合物が好ましく用いられる。
本発明において、芳香族エポキシ化合物(B1)のエポキシ基は、2個以上であることが好ましく、3個以上であることがより好ましい。また、10個以下であることが好ましい。
本発明において、芳香族エポキシ化合物(B1)は、2種以上の官能基を3個以上有するエポキシ化合物であることが好ましく、2種以上の官能基を4個以上有するエポキシ化合物であることがより好ましい。芳香族エポキシ化合物(B1)が有する官能基は、エポキシ基以外に、水酸基、アミド基、イミド基、ウレタン基、ウレア基、スルホニル基、またはスルホ基から選択されるものが好ましい。芳香族エポキシ化合物(B1)が、分子内に3個以上のエポキシ基または1個のエポキシ基と他の官能基を2個以上有するエポキシ化合物であると、1個のエポキシ基が炭素繊維表面の酸素含有官能基と共有結合を形成した場合でも、残りの2個以上のエポキシ基または他の官能基がマトリックス樹脂と共有結合または水素結合を形成することができ、炭素繊維とマトリックス樹脂との接着性がさらに向上する。エポキシ基を含む官能基の数の上限は特にないが、接着性の観点から10個で十分である。
本発明において、芳香族エポキシ化合物(B1)のエポキシ当量は、360g/eq.未満であることが好ましく、より好ましくは270g/eq.未満であり、さらに好ましくは180g/eq.未満である。芳香族エポキシ化合物(B1)のエポキシ当量が360g/eq.未満であると、高密度で共有結合が形成され、炭素繊維とマトリックス樹脂との接着性がさらに向上する。エポキシ当量の下限は特にないが、90g/eq.以上であれば接着性の観点から十分である。
本発明において、芳香族エポキシ化合物(B1)の具体例としては、例えば、芳香族ポリオールから誘導されるグリシジルエーテル型エポキシ化合物、複数活性水素を有する芳香族アミンから誘導されるグリシジルアミン型エポキシ化合物、芳香族ポリカルボン酸から誘導されるグリシジルエステル型エポキシ化合物、および分子内に複数の2重結合を有する芳香族化合物を酸化して得られるエポキシ化合物が挙げられる。
グリシジルエーテル型エポキシ化合物としては、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールAD、ビスフェノールS、テトラブロモビスフェノールA、フェノールノボラック、クレゾールノボラック、ヒドロキノン、レゾルシノール、4,4’−ジヒドロキシ−3,3’,5,5’−テトラメチルビフェニル、1,6−ジヒドロキシナフタレン、9,9−ビス(4−ヒドロキシフェニル)フルオレン、トリス(p−ヒドロキシフェニル)メタン、およびテトラキス(p−ヒドロキシフェニル)エタンから選択される1種と、エピクロロヒドリンとの反応により得られるグリシジルエーテル型エポキシ化合物が挙げられる。また、グリシジルエーテル型エポキシ化合物として、ビフェニルアラルキル骨格を有するグリシジルエーテル型エポキシ化合物も例示される。
グリシジルアミン型エポキシ化合物としては、例えば、N,N−ジグリシジルアニリン、N,N−ジグリシジル−o−トルイジンのほか、m−キシリレンジアミン、m−フェニレンジアミン、4,4’−ジアミノジフェニルメタンおよび9,9−ビス(4−アミノフェニル)フルオレンから選択される1種と、エピクロロヒドリンとの反応により得られるグリシジルエーテル型エポキシ化合物が挙げられる。
さらに、例えば、グリシジルアミン型エポキシ化合物として、m−アミノフェノール、p−アミノフェノール、および4−アミノ−3−メチルフェノールのアミノフェノール類の水酸基とアミノ基の両方を、エピクロロヒドリンと反応させて得られるエポキシ化合物が挙げられる。
グリシジルエステル型エポキシ化合物としては、例えば、フタル酸、テレフタル酸、ヘキサヒドロフタル酸を、エピクロロヒドリンと反応させて得られるグリシジルエステル型エポキシ化合物が挙げられる。
本発明に使用する芳香族エポキシ化合物(B1)として、これらのエポキシ化合物以外にも、上に挙げたエポキシ化合物を原料として合成されるエポキシ化合物、例えば、ビスフェノールAジグリシジルエーテルとトリレンジイソシアネートからオキサゾリドン環生成反応により合成されるエポキシ化合物が挙げられる。
本発明において、芳香族エポキシ化合物(B1)は、1個以上のエポキシ基以外に、水酸基、アミド基、イミド基、ウレタン基、ウレア基、スルホニル基、カルボキシル基、エステル基およびスルホ基から選ばれる、少なくとも1個以上の官能基を好ましく用いられる。例えば、エポキシ基と水酸基を有する化合物、エポキシ基とアミド基を有する化合物、エポキシ基とイミド基を有する化合物、エポキシ基とウレタン基を有する化合物、エポキシ基とウレア基を有する化合物、エポキシ基とスルホニル基を有する化合物、エポキシ基とスルホ基を有する化合物が挙げられる。
エポキシ基に加えてアミド基を有する芳香族エポキシ化合物(B1)としては、例えば、グリシジルベンズアミド、アミド変性エポキシ化合物等が挙げられる。アミド変性エポキシは芳香環を含有するジカルボン酸アミドのカルボキシル基に2個以上のエポキシ基を有するエポキシ化合物のエポキシ基を反応させることによって得ることができる。
エポキシ基に加えてイミド基を有する芳香族エポキシ化合物(B1)としては、例えば、グリシジルフタルイミド等が挙げられる。具体的にはデナコール(商標登録)EX−731(ナガセケムテックス(株)製)等が挙げられる。
エポキシ基に加えてウレタン基を有する芳香族エポキシ化合物(B1)としては、ポリエチレンオキサイドモノアルキルエーテルの末端水酸基に、その水酸基量に対する反応当量の芳香環を含有する多価イソシアネートを反応させ、次いで得られた反応生成物のイソシアネート残基に多価エポキシ化合物内の水酸基と反応させることによって得ることができる。ここで、用いられる多価イソシアネートとしては、2,4−トリレンジイソシアネート、メタフェニレンジイソシアネート、パラフェニレンジイソシアネート、ジフェニルメタンジイソシアネート、トリフェニルメタントリイソシアネートおよびビフェニル−2,4,4’−トリイソシアネートなどが挙げられる。
エポキシ基に加えてウレア基を有する芳香族エポキシ化合物(B1)としては、例えば、ウレア変性エポキシ化合物等が挙げられる。ウレア変性エポキシはジカルボン酸ウレアのカルボキシル基に2個以上のエポキシ基を有する芳香環を含有するエポキシ化合物のエポキシ基を反応させることによって得ることができる。
エポキシ基に加えてスルホニル基を有する芳香族エポキシ化合物(B1)としては、例えば、ビスフェノールS型エポキシ等が挙げられる。
エポキシ基に加えてスルホ基を有する芳香族エポキシ化合物(B1)としては、例えば、p−トルエンスルホン酸グリシジルおよび3−ニトロベンゼンスルホン酸グリシジル等が挙げられる。
本発明において、芳香族エポキシ化合物(B1)は、フェノールノボラック型エポキシ化合物、クレゾールノボラック型エポキシ化合物、またはテトラグリシジルジアミノジフェニルメタンのいずれかであることが好ましい。これらのエポキシ化合物は、エポキシ基数が多く、エポキシ当量が小さく、かつ、2個以上の芳香環を有しており、炭素繊維とマトリックス樹脂との接着性を向上させることに加え、炭素繊維強化複合材料の0°引張強度等の力学特性を向上させる。芳香族エポキシ化合物(B1)は、より好ましくは、フェノールノボラック型エポキシ化合物およびクレゾールノボラック型エポキシ化合物である。
本発明において、芳香族エポキシ化合物(B1)がフェノールノボラック型エポキシ化合物、クレゾールノボラック型エポキシ化合物、テトラグリシジルジアミノジフェニルメタン、ビスフェノールA型エポキシ化合物あるいはビスフェノールF型エポキシ化合物であることがプリプレグを長期保管した場合の安定性、炭素繊維とマトリックス樹脂との接着性の観点から好ましく、ビスフェノールA型エポキシ化合物あるいはビスフェノールF型エポキシ化合物であることがより好ましい。
さらに、本発明で用いられるサイジング剤には、脂肪族エポキシ化合物(A)と芳香族化合物(B)である芳香族エポキシ化合物(B1)以外の成分を1種類以上含んでも良い。炭素繊維とサイジング剤との接着性を高める接着性促進成分、サイジング剤塗布炭素繊維に収束性あるいは柔軟性を付与する材料を配合することで取り扱い性、耐擦過性および耐毛羽性を高め、マトリックス樹脂の含浸性を向上させることができる。本発明において、プリプレグでの長期保管安定性を向上させる目的で、(A)および(B1)以外の化合物を含有することができる。また、サイジング剤の長期保管安定性を目的として、分散剤および界面活性剤等の補助成分を添加しても良い。
本発明で用いられるサイジング剤には、脂肪族エポキシ化合物(A)と芳香族エポキシ化合物(B1)以外に、分子内にエポキシ基を持たないエステル化合物(C)を配合することができる。本発明にかかるサイジング剤は、エステル化合物(C)を、溶媒を除いたサイジング剤全量に対して、2〜35質量%配合することができる。15〜30質量%であることがより好ましい。エステル化合物(C)を配合することで、収束性が向上し、取り扱い性が向上すると同時に、マトリックス樹脂とサイジング剤との反応によるプリプレグを長期保管したときの力学特性の低下を抑制することができる。
エステル化合物(C)は、芳香環を持たない脂肪族エステル化合物でも良いし、芳香環を分子内に1個以上有する芳香族エステル化合物でも良い。なお、エステル化合物(C)として芳香族エステル化合物(C1)を用いた場合には、芳香族エステル化合物(C1)は、分子内にエポキシ化合物を持たないエステル化合物(C)に含まれるのと同時に、本発明において芳香族化合物(B)に含まれる。かかる場合、芳香族化合物(B)の全てが、芳香族エステル化合物(C1)となることはなく、芳香族化合物(B)は、芳香族エポキシ化合物(B1)と芳香族エステル化合物(C1)とにより構成される。エステル化合物(C)として芳香族エステル化合物(C1)を用いると、サイジング剤塗布炭素繊維の取り扱い性が向上すると同時に、芳香族エステル化合物(C1)は、炭素繊維との相互作用が弱いため、マトリックス樹脂の外層に存在することとなり、プリプレグの長期保管時の力学特性低下の抑制効果が高くなる。また、芳香族エステル化合物(C1)は、エステル基以外にも、エポキシ基以外の官能基、たとえば、水酸基、アミド基、イミド基、ウレタン基、ウレア基、スルホニル基、カルボキシル基、およびスルホ基を有していてもよい。芳香族エステル化合物(C1)として、具体的にはビスフェノール類のアルキレンオキシド付加物と不飽和二塩基酸との縮合物からなるエステル化合物を用いるのが好ましい。不飽和二塩基酸としては、酸無水物低級アルキルエステルを含み、フマル酸、マレイン酸、シトラコン酸、イタコン酸などが好ましく使用される。ビスフェノール類のアルキレンオキシド付加物としてはビスフェノールのエチレンオキシド付加物、プロピレンオキシド付加物、ブチレンオキシド付加物などが好ましく使用される。上記縮合物のうち、好ましくはフマル酸またはマレイン酸とビスフェノールAのエチレンオキシドまたは/およびプロピレンオキシド付加物との縮合物が使用される。
ビスフェノール類へのアルキレンオキシドの付加方法は限定されず、公知の方法を用いることができる。上記の不飽和二塩基酸には、必要により、その一部に飽和二塩基酸や少量の一塩基酸を接着性等の特性が損なわれない範囲で加えることができる。また、ビスフェノール類のアルキレンオキシド付加物には、通常のグリコール、ポリエーテルグリコールおよび少量の多価アルコール、一価アルコールなどを、接着性等の特性が損なわれない範囲で加えることもできる。ビスフェノール類のアルキレンオキシド付加物と不飽和二塩基酸との縮合法は、公知の方法を用いることができる。
また、本発明にかかるサイジング剤は、炭素繊維とサイジング剤成分中のエポキシ化合物との接着性を高める目的で、接着性を促進する成分である3級アミン化合物および/または3級アミン塩、カチオン部位を有する4級アンモニウム塩、4級ホスホニウム塩および/またはホスフィン化合物から選択される少なくとも1種の化合物を配合することができる。発明にかかるサイジング剤は、該化合物を、溶媒を除いたサイジング剤全量に対して、0.1〜25質量%配合することが好ましい。2〜8質量%がより好ましい。
脂肪族エポキシ化合物(A)および芳香族エポキシ化合物(B1)に、接着性促進成分として3級アミン化合物および/または3級アミン塩、カチオン部位を有する4級アンモニウム塩、4級ホスホニウム塩および/またはホスフィン化合物から選択される少なくとも1種の化合物を併用したサイジング剤は、該サイジング剤を炭素繊維に塗布し、特定の条件で熱処理した場合、炭素繊維との接着性がさらに向上する。そのメカニズムは確かではないが、まず、該化合物が本発明で用いられる炭素繊維のカルボキシル基および水酸基等の酸素含有官能基に作用し、これらの官能基に含まれる水素イオンを引き抜きアニオン化した後、このアニオン化した官能基と脂肪族エポキシ化合物(A)または芳香族エポキシ化合物(B1)成分に含まれるエポキシ基が求核反応するものと考えられる。これにより、本発明で用いられる炭素繊維とサイジング剤中のエポキシ基の強固な結合が形成され、接着性が向上するものと推定される。
接着性促進成分の具体的な例としては、N−ベンジルイミダゾール、1,8−ジアザビシクロ[5,4,0]−7−ウンデセン(DBU)およびその塩、または、1,5−ジアザビシクロ[4,3,0]−5−ノネン(DBN)およびその塩であることが好ましく、特に1,8−ジアザビシクロ[5,4,0]−7−ウンデセン(DBU)およびその塩、または、1,5−ジアザビシクロ[4,3,0]−5−ノネン(DBN)およびその塩が好適である。
上記のDBU塩としては、具体的には、DBUのフェノール塩(U−CAT SA1、サンアプロ(株)製)、DBUのオクチル酸塩(U−CAT SA102、サンアプロ(株)製)、DBUのp−トルエンスルホン酸塩(U−CAT SA506、サンアプロ(株)製)、DBUのギ酸塩(U−CAT SA603、サンアプロ(株)製)、DBUのオルソフタル酸塩(U−CAT SA810)、およびDBUのフェノールノボラック樹脂塩(U−CAT SA810、SA831、SA841、SA851、881、サンアプロ(株)製)などが挙げられる。
本発明において、サイジング剤に配合する接着性促進成分としては、トリブチルアミンまたはN,N−ジメチルベンジルアミン、ジイソプロピルエチルアミン、トリイソプロピルアミン、ジブチルエタノールアミン、ジエチルエタノールアミン、トリイソプロパノールアミン、トリエタノールアミン、N,N−ジイソプロピルエチルアミンであることが好ましく、特にトリイソプロピルアミン、ジブチルエタノールアミン、ジエチルエタノールアミン、トリイソプロパノールアミン、ジイソプロピルエチルアミンが好適である。
上記以外にも、界面活性剤などの添加剤として例えば、ポリエチレンオキサイドやポリプロピレンオキサイド等のポリアルキレンオキサイド、高級アルコール、多価アルコール、アルキルフェノール、およびスチレン化フェノール等にポリエチレンオキサイドやポリプロピレンオキサイド等のポリアルキレンオキサイドが付加した化合物、およびエチレンオキサイドとプロピレンオキサイドとのブロック共重合体等のノニオン系界面活性剤が好ましく用いられる。また、本発明の効果に影響しない範囲で、適宜、ポリエステル樹脂、および不飽和ポリエステル化合物等を添加してもよい。
次に、本発明で使用する炭素繊維について説明する。本発明において使用する炭素繊維としては、例えば、ポリアクリロニトリル(PAN)系、レーヨン系およびピッチ系の炭素繊維が挙げられる。なかでも、強度と弾性率のバランスに優れたPAN系炭素繊維が好ましく用いられる。
本発明にかかる炭素繊維は、得られた炭素繊維束のストランド強度が、3.5GPa以上であることが好ましく、より好ましくは4GPa以上であり、さらに好ましくは5GPa以上である。また、得られた炭素繊維束のストランド弾性率が、220GPa以上であることが好ましく、より好ましくは240GPa以上であり、さらに好ましくは280GPa以上である。
本発明において、上記の炭素繊維束のストランド引張強度と弾性率は、JIS−R−7608(2004)の樹脂含浸ストランド試験法に準拠し、次の手順に従い求めることができる。樹脂処方としては、“セロキサイド(登録商標)”2021P(ダイセル化学工業(株)製)/3フッ化ホウ素モノエチルアミン(東京化成工業(株)製)/アセトン=100/3/4(質量部)を用い、硬化条件としては、常圧、130℃、30分を用いる。炭素繊維束のストランド10本を測定し、その平均値をストランド引張強度およびストランド弾性率とした。
本発明において用いられる炭素繊維は、表面粗さ(Ra)が6.0〜100nmであることが好ましい。より好ましくは15〜80nmであり、30〜60nmが好適である。表面粗さ(Ra)が6.0〜60nmである炭素繊維は、表面に高活性なエッジ部分を有するため、前述したサイジング剤のエポキシ基等との反応性が向上し、界面接着性を向上することができ好ましい。また、表面粗さ(Ra)が6.0〜100nmである炭素繊維は、表面に凹凸を有しているため、サイジング剤のアンカー効果によって界面接着性を向上することができ好ましい。
炭素繊維の表面粗さ(Ra)を前述の範囲に制御するためには、後述する紡糸方法として湿式紡糸方法が好ましく用いられる。また、炭素繊維の表面粗さ(Ra)は、紡糸工程での凝固液の種類(例えば、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミドなどの有機溶剤の水溶液、塩化亜鉛、チオシアン酸ナトリウムなどの無機化合物の水溶液)及び濃度および凝固液温度、凝固糸の引取速度および延伸比、さらに耐炎化、前炭化、炭化それぞれの工程での延伸比を組み合わせることによって制御することもできる。さらに電解処理を組み合わせることにより、所定の炭素繊維の表面粗さ(Ra)に制御することもできる。
炭素繊維の表面粗さ(Ra)は、原子間力顕微鏡(AFM)を用いることにより測定することができる。例えば、炭素繊維を長さ数mm程度にカットしたものを用意し、銀ペーストを用いて基板(シリコンウエハ)上に固定し、原子間力顕微鏡(AFM)によって各単繊維の中央部において、3次元表面形状の像を観測すればよい。原子間力顕微鏡としてはDigital Instuments社製 NanoScope IIIaにおいてDimension 3000ステージシステムなどが使用可能であり、以下の観測条件で観測することができる。
・走査モード:タッピングモード
・探針:シリコンカンチレバー
・走査範囲:0.6μm×0.6μm
・走査速度:0.3Hz
・ピクセル数:512×512
・測定環境:室温、大気中
また、各試料について、単繊維1本から1箇所ずつ観察して得られた像について、繊維断面の丸みを3次曲面で近似し、得られた像全体を対象として、平均粗さ(Ra)を算出し、単繊維5本について、平均粗さ(Ra)を求め、平均値を評価することが好ましい。
本発明において炭素繊維の総繊度は、400〜3000テックスであることが好ましい。また、炭素繊維のフィラメント数は好ましくは1000〜100000本であり、さらに好ましくは3000〜50000本である。
本発明において、炭素繊維の単繊維径は4.5〜7.5μmが好ましい。7.5μm以下であることで、強度と弾性率の高い炭素繊維を得られるため、好ましく用いられる。6μm以下であることがより好ましく、さらには5.5μm以下であることが好ましい。4.5μm以上で工程における単繊維切断が起きにくくなり生産性が低下しにくく好ましい。
本発明において、炭素繊維としては、X線光電子分光法により測定されるその繊維表面の酸素(O)と炭素(C)の原子数の比である表面酸素濃度(O/C)が、0.05〜0.50の範囲内であるものが好ましく、より好ましくは0.06〜0.30の範囲内のものであり、さらに好ましくは0.07〜0.25の範囲内ものである。表面酸素濃度(O/C)が0.05以上であることにより、炭素繊維表面の酸素含有官能基を確保し、マトリックス樹脂との強固な接着を得ることができる。また、表面酸素濃度(O/C)が0.50以下であることにより、酸化による炭素繊維自体の強度の低下を抑えることができる。
炭素繊維の表面酸素濃度は、X線光電子分光法により、次の手順に従って求めたものである。まず、溶剤で炭素繊維表面に付着している汚れなどを除去した炭素繊維を20mmにカットして、銅製の試料支持台に拡げて並べた後、X線源としてAlKα1、2を用い、試料チャンバー中を1×10−8Torrに保ち、光電子脱出角度90°で測定した。測定時の帯電に伴うピークの補正値としてC1sのメインピーク(ピークトップ)の結合エネルギー値を284.6eVに合わせる。C1sピーク面積は、282〜296eVの範囲で直線のベースラインを引くことにより求め、O1sピーク面積は、528〜540eVの範囲で直線のベースラインを引くことにより求められる。表面酸素濃度(O/C)は、上記O1sピーク面積の比を装置固有の感度補正値で割ることにより算出した原子数比で表す。X線光電子分光法装置として、アルバック・ファイ(株)製ESCA−1600を用いる場合、上記装置固有の感度補正値は2.33である。
本発明に用いる炭素繊維は、化学修飾X線光電子分光法により測定される炭素繊維表面のカルボキシル基(COOH)と炭素(C)の原子数の比で表される表面カルボキシル基濃度(COOH/C)が、0.003〜0.015の範囲内であることが好ましい。炭素繊維表面のカルボキシル基濃度(COOH/C)の、より好ましい範囲は、0.004〜0.010である。また、本発明に用いる炭素繊維は、化学修飾X線光電子分光法により測定される炭素繊維表面の水酸基(OH)と炭素(C)の原子数の比で表される表面水酸基濃度(COH/C)が、0.001〜0.050の範囲内であることが好ましい。炭素繊維表面の表面水酸基濃度(COH/C)は、より好ましくは0.010〜0.040の範囲である。
炭素繊維の表面カルボキシル基濃度(COOH/C)、水酸基濃度(COH/C)は、X線光電子分光法により、次の手順に従って求められるものである。
表面水酸基濃度(COH/C)は、次の手順に従って化学修飾X線光電子分光法により求められる。先ず、溶媒でサイジング剤などを除去した炭素繊維束をカットして白金製の試料支持台上に拡げて並べ、0.04mol/Lの無水3弗化酢酸気体を含んだ乾燥窒素ガス中に室温で10分間さらし、化学修飾処理した後、X線光電子分光装置に光電子脱出角度を35゜としてマウントし、X線源としてAlKα1,2を用い、試料チャンバー内を1×10−8Torrの真空度に保つ。測定時の帯電に伴うピークの補正として、まずC1sの主ピークの結合エネルギー値を284.6eVに合わせる。C1sピーク面積[C1s]は、282〜296eVの範囲で直線のベースラインを引くことにより求め、F1sピーク面積[F1s]は、682〜695eVの範囲で直線のベースラインを引くことにより求められる。また、同時に化学修飾処理したポリビニルアルコールのC1sピーク分割から反応率rが求められる。
表面水酸基濃度(COH/C)は、下式により算出した値で表される。
COH/C={[F1s]/(3k[C1s] −2[F1s])r}×100(%)
なお、kは装置固有のC1sピーク面積に対するF1sピーク面積の感度補正値であり、米国SSI社製モデルSSX−100−206を用いる場合、上記装置固有の感度補正値は3.919である。
表面カルボキシル基濃度(COOH/C)は、次の手順に従って化学修飾X線光電子分光法により求められる。先ず、溶媒でサイジング剤などを除去した炭素繊維束をカットして白金製の試料支持台上に拡げて並べ、0.02mol/Lの3弗化エタノール気体、0.001mol/Lのジシクロヘキシルカルボジイミド気体及び0.04mol/Lのピリジン気体を含む空気中に60℃で8時間さらし、化学修飾処理した後、X線光電子分光装置に光電子脱出角度を35゜としてマウントし、X線源としてAlKα1,2を用い、試料チャンバー内を1×10−8Torrの真空度に保つ。測定時の帯電に伴うピークの補正として、まずC1sの主ピークの結合エネルギー値を284.6eVに合わせる。C1sピーク面積[C1s]は、282〜296eVの範囲で直線のベースラインを引くことにより求め、F1sピーク面積[F1s]は、682〜695eVの範囲で直線のベースラインを引くことにより求められる。また、同時に化学修飾処理したポリアクリル酸のC1sピーク分割から反応率rを、O1sピーク分割からジシクロヘキシルカルボジイミド誘導体の残存率mが求められる。
表面カルボキシル基濃度COOH/Cは、下式により算出した値で表した。
COOH/C={[F1s]/(3k[C1s]−(2+13m)[F1s])r}×100(%)
なお、kは装置固有のC1sピーク面積に対するF1sピーク面積の感度補正値であり、米国SSI社製モデルSSX−100−206を用いる場合の、上記装置固有の感度補正値は3.919である。
本発明に用いられる炭素繊維としては、表面自由エネルギーの極性成分が8mJ/m以上50mJ/m以下のものであることが好ましい。表面自由エネルギーの極性成分が8mJ/m以上であることで、脂肪族エポキシ化合物(A)がより炭素繊維表面に近づくことで接着性が向上し、サイジング層が偏在化した構造を有するため好ましい。表面自由エネルギーの極性成分が50mJ/m以下であることで、炭素繊維間の収束性が大きくなるためにマトリックス樹脂との含浸性が良好になるため、炭素繊維強化複合材料として用いた場合に用途展開が広がり好ましい。
該炭素繊維表面の表面自由エネルギーの極性成分は、より好ましくは15mJ/m以上45mJ/m以下であり、最も好ましくは25mJ/m以上40mJ/m以下である。炭素繊維の表面自由エネルギーの極性成分は、炭素繊維を水、エチレングリコール、燐酸トリクレゾールの各液体において、ウィルヘルミ法によって測定される各接触角をもとに、オーエンスの近似式を用いて算出した表面自由エネルギーの極性成分である。
本発明に用いられる脂肪族エポキシ化合物(A)は表面自由エネルギーの極性成分が9mJ/m以上、50mJ/m以下のものであれば良い。また、芳香族エポキシ化合物(B1)は表面自由エネルギーの極性成分が0mJ/m以上、9mJ/m未満のものであれば良い。
脂肪族エポキシ化合物(A)および芳香族エポキシ化合物(B1)の表面自由エネルギーの極性成分は、脂肪族エポキシ化合物(A)または芳香族エポキシ化合物(B1)のみからなる溶液中に炭素繊維束を浸漬して引き上げた後、120〜150℃で10分間乾燥後、上述の通り、水、エチレングリコール、燐酸トリクレゾールの各液体において、ウィルヘルミ法によって測定される各接触角をもとに、オーエンスの近似式を用いて算出した表面自由エネルギーの極性成分である。
本発明において、炭素繊維の表面自由エネルギーの極性成分ECFと脂肪族エポキシ化合物(A)、芳香族エポキシ化合物(B1)の表面自由エネルギーの極性成分E、EB1がECF≧E>EB1を満たすことが好ましい。
次に、PAN系炭素繊維の製造方法について説明する。
炭素繊維の前駆体繊維を得るための紡糸方法としては、湿式、乾式および乾湿式等の紡糸方法を用いることができる。高強度の炭素繊維が得られやすいという観点から、湿式あるいは乾湿式紡糸方法を用いることが好ましい。
炭素繊維とマトリックス樹脂との接着性をさらに向上するために、表面粗さ(Ra)が6.0〜100nmの炭素繊維が好ましく、該表面粗さの炭素繊維を得るためには、湿式紡糸方法により前駆体繊維を紡糸することが好ましい。
紡糸原液には、ポリアクリロニトリルのホモポリマーあるいは共重合体を溶剤に溶解した溶液を用いることができる。溶剤としてはジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミドなどの有機溶剤や、硝酸、ロダン酸ソーダ、塩化亜鉛、チオシアン酸ナトリウムなどの無機化合物の水溶液を使用する。ジメチルスルホキシド、ジメチルアセトアミドが溶剤として好適である。
上記の紡糸原液を口金に通して紡糸し、紡糸浴中、あるいは空気中に吐出した後、紡糸浴中で凝固させる。紡糸浴としては、紡糸原液の溶剤として使用した溶剤の水溶液を用いることができる。紡糸原液の溶剤と同じ溶剤を含む紡糸液とすることが好ましく、ジメチルスルホキシド水溶液、ジメチルアセトアミド水溶液が好適である。紡糸浴中で凝固した繊維を、水洗、延伸して前駆体繊維とする。得られた前駆体繊維を耐炎化処理ならびに炭化処理し、必要によってはさらに黒鉛化処理をすることにより炭素繊維を得る。炭化処理と黒鉛化処理の条件としては、最高熱処理温度が1100℃以上であることが好ましく、より好ましくは1400〜3000℃である。
得られた炭素繊維は、マトリックス樹脂との接着性を向上させるために、通常、酸化処理が施され、これにより、酸素含有官能基が導入される。酸化処理方法としては、気相酸化、液相酸化および液相電解酸化が用いられるが、生産性が高く、均一処理ができるという観点から、液相電解酸化が好ましく用いられる。
本発明において、液相電解酸化で用いられる電解液としては、酸性電解液およびアルカリ性電解液が挙げられるが、炭素繊維とマトリックス樹脂との接着性の観点からアルカリ性電解液中で液相電解酸化した後、サイジング剤を塗布することがより好ましい。
酸性電解液としては、例えば、硫酸、硝酸、塩酸、燐酸、ホウ酸、および炭酸等の無機酸、酢酸、酪酸、シュウ酸、アクリル酸、およびマレイン酸等の有機酸、または硫酸アンモニウムや硫酸水素アンモニウム等の塩が挙げられる。なかでも、強酸性を示す硫酸と硝酸が好ましく用いられる。
アルカリ性電解液としては、具体的には、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウムおよび水酸化バリウム等の水酸化物の水溶液、炭酸ナトリウム、炭酸カリウム、炭酸マグネシウム、炭酸カルシウム、炭酸バリウムおよび炭酸アンモニウム等の炭酸塩の水溶液、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素マグネシウム、炭酸水素カルシウム、炭酸水素バリウムおよび炭酸水素アンモニウム等の炭酸水素塩の水溶液、アンモニア、水酸化テトラアルキルアンモニウムおよびヒドラジンの水溶液等が挙げられる。なかでも、マトリックス樹脂の硬化阻害を引き起こすアルカリ金属を含まないという観点から、炭酸アンモニウムおよび炭酸水素アンモニウムの水溶液、あるいは、強アルカリ性を示す水酸化テトラアルキルアンモニウムの水溶液が好ましく用いられる。
本発明において用いられる電解液の濃度は、0.01〜5mol/Lの範囲内であることが好ましく、より好ましくは0.1〜1mol/Lの範囲内である。電解液の濃度が0.01mol/L以上であると、電解処理電圧が下げられ、運転コスト的に有利になる。一方、電解液の濃度が5mol/L以下であると、安全性の観点から有利になる。
本発明において用いられる電解液の温度は、10〜100℃の範囲内であることが好ましく、より好ましくは10〜40℃の範囲内である。電解液の温度が10℃以上であると、電解処理の効率が向上し、運転コスト的に有利になる。一方、電解液の温度が100℃未満であると、安全性の観点から有利になる。
本発明において、液相電解酸化における電気量は、炭素繊維の炭化度に合わせて最適化することが好ましく、高弾性率の炭素繊維に処理を施す場合、より大きな電気量が必要である。
本発明において、液相電解酸化における電流密度は、電解処理液中の炭素繊維の表面積1m当たり1.5〜1000アンペア/mの範囲内であることが好ましく、より好ましくは3〜500アンペア/mの範囲内である。電流密度が1.5アンペア/m以上であると、電解処理の効率が向上し、運転コスト的に有利になる。一方、電流密度が1000アンペア/m以下であると、安全性の観点から有利になる。
本発明において、電解処理の後、炭素繊維を水洗および乾燥することが好ましい。洗浄する方法としては、例えば、ディップ法またはスプレー法を用いることができる。なかでも、洗浄が容易であるという観点から、ディップ法を用いることが好ましく、さらには、炭素繊維を超音波で加振させながらディップ法を用いることが好ましい態様である。また、乾燥温度が高すぎると炭素繊維の最表面に存在する官能基は熱分解により消失し易いため、できる限り低い温度で乾燥することが望ましく、具体的には乾燥温度が好ましくは260℃以下、さらに好ましくは250℃以下、より好ましくは240℃以下で乾燥することが好ましい。
次に、上述した炭素繊維にサイジング剤を塗布したサイジング剤塗布炭素繊維について説明する。本発明にかかるサイジング剤は、脂肪族エポキシ化合物(A)および芳香族化合物(B)である芳香族エポキシ化合物(B1)を少なくとも含み、それ以外の成分を含んでも良い。
本発明において、炭素繊維へのサイジング剤の塗布方法としては、溶媒に、脂肪族エポキシ化合物(A)および芳香族エポキシ化合物(B1)を少なくとも含む芳香族化合物(B)、ならびにその他の成分を同時に溶解または分散したサイジング液を用いて、1回で塗布する方法や、各化合物(A)、(B1)、(B)やその他の成分を任意に選択し個別に溶媒に溶解または分散したサイジング液を用い、複数回において炭素繊維に塗布する方法が好ましく用いられる。本発明においては、サイジング剤の構成成分をすべて含むサイジング液を、炭素繊維に1回で塗布する1段付与を採用することが効果および処理のしやすさからより好ましく用いられる。
本発明にかかるサイジング剤は、サイジング剤成分を溶媒で希釈したサイジング液として用いることができる。このような溶媒としては、例えば、水、メタノール、エタノール、イソプロパノール、アセトン、メチルエチルケトン、ジメチルホルムアミド、およびジメチルアセトアミドが挙げられるが、なかでも、取り扱いが容易であり、安全性の観点から有利であることから、界面活性剤で乳化させた水分散液あるいは水溶液が好ましく用いられる。
サイジング液は、芳香族化合物(B)を少なくとも含む成分を界面活性剤で乳化させることで水エマルジョン液を作成し、脂肪族エポキシ化合物(A)を少なくとも含む溶液を混合して調整することが好ましい。この時に、脂肪族エポキシ化合物(A)が水溶性の場合には、あらかじめ水に溶解して水溶液にしておき、芳香族化合物(B)を少なくとも含む水エマルジョン液と混合する方法が、乳化安定性の点から好ましく用いられる。また、脂肪族エポキシ化合物(A)と芳香族化合物(B)およびその他の成分を界面活性剤で乳化させた水分散剤を用いることが、サイジング剤の長期保管安定性の点から好ましく用いることができる。
サイジング液におけるサイジング剤の濃度は、通常は0.2質量%〜20質量%の範囲が好ましい。
サイジング剤の炭素繊維への付与(塗布)手段としては、例えば、ローラを介してサイジング液に炭素繊維を浸漬する方法、サイジング液の付着したローラに炭素繊維を接する方法、サイジング液を霧状にして炭素繊維に吹き付ける方法などがある。また、サイジング剤の付与手段は、バッチ式と連続式いずれでもよいが、生産性がよくバラツキが小さくできる連続式が好ましく用いられる。この際、炭素繊維に対するサイジング剤有効成分の付着量が適正範囲内で均一に付着するように、サイジング液濃度、温度および糸条張力などをコントロールすることが好ましい。また、サイジング剤付与時に、炭素繊維を超音波で加振させることも好ましい態様である。
サイジング液を炭素繊維に塗布する際のサイジング液の液温は、溶媒蒸発によるサイジング剤の濃度変動を抑えるため、10〜50℃の範囲であることが好ましい。また、サイジング液を付与した後に、余剰のサイジング液を絞り取る絞り量を調整することにより、サイジング剤の付着量の調整および炭素繊維内への均一付与ができる。
炭素繊維にサイジング剤を塗布した後、160〜260℃の温度範囲で30〜600秒間熱処理することが好ましい。熱処理条件は、好ましくは170〜250℃の温度範囲で30〜500秒間であり、より好ましくは180〜240℃の温度範囲で30〜300秒間である。熱処理条件が、160℃未満および/または30秒未満であると、サイジング剤の脂肪族エポキシ化合物(A)と炭素繊維表面の酸素含有官能基との間の相互作用が促進されず、炭素繊維とマトリックス樹脂との接着性が不十分となったり、溶媒を十分に乾燥除去できない場合がある。一方、熱処理条件が、260℃を超えるおよび/または600秒を超える場合、サイジング剤の分解および揮発が起きて、炭素繊維との相互作用が促進されず、炭素繊維とマトリックス樹脂との接着性が不十分となる場合がある。
また、前記熱処理は、マイクロ波照射および/または赤外線照射で行うことも可能である。マイクロ波照射および/または赤外線照射によりサイジング剤塗布炭素繊維を加熱処理した場合、マイクロ波が炭素繊維内部に侵入し、吸収されることにより、短時間に被加熱物である炭素繊維を所望の温度に加熱できる。また、マイクロ波照射および/または赤外線照射により、炭素繊維内部の加熱も速やかに行うことができるため、炭素繊維束の内側と外側の温度差を小さくすることができ、サイジング剤の接着ムラを小さくすることが可能となる。
上記のようにして製造した、本発明にかかるサイジング剤塗布炭素繊維は、サイジング剤を塗布した炭素繊維のサイジング剤表面をX線源としてAlKα1,2を用い、光電子脱出角度15°でX線光電子分光法によって測定されるC1s内殻スペクトルの(a)CHx、C−C、C=Cに帰属される結合エネルギー(284.6eV)の成分の高さ(cps)と(b)C−Oに帰属される結合エネルギー(286.1eV)の成分の高さ(cps)の比率(a)/(b)が0.50〜0.90であることを特徴とする。本発明にかかるサイジング剤塗布炭素繊維は、この(a)/(b)が、特定の範囲、すなわち、0.50〜0.90である場合に、マトリックス樹脂との接着性に優れ、かつプリプレグの状態で長期保管したときも力学特性低下が少ないことを見出してなされたものである。
本発明にかかるサイジング剤塗布炭素繊維は、サイジング剤表面を光電子脱出角度15°でX線光電子分光法によって測定されるC1s内殻スペクトルの(a)CHx、C−C、C=Cに帰属される結合エネルギー(284.6eV)の成分の高さ(cps)と(b)C−Oに帰属される結合エネルギー(286.1eV)の成分の高さ(cps)の比率(a)/(b)が、好ましくは、0.55以上、さらに好ましくは0.57以上である。また、比率(a)/(b)が、好ましくは0.80以下、より好ましくは0.74以下である。(a)/(b)が大きいということは、表面に芳香族由来の化合物が多く、脂肪族由来の化合物が少ないことを示す。
X線光電子分光の測定法とは、超高真空中で試料の炭素繊維にX線を照射し、炭素繊維の表面から放出される光電子の運動エネルギーをエネルギーアナライザーとよばれる装置で測定する分析手法のことである。この試料の炭素繊維表面から放出される光電子の運動エネルギーを調べることにより、試料の炭素繊維に入射したX線のエネルギー値から換算される結合エネルギーが一意的に求まり、その結合エネルギーと光電子強度から、試料の最表面(〜nm)に存在する元素の種類と濃度、その化学状態を解析することができる。
本発明において、サイジング剤塗布炭素繊維のサイジング剤表面の(a)、(b)のピーク比は、X線光電子分光法により、次の手順に従って求められるものである。サイジング剤塗布炭素繊維を20mmにカットして、銅製の試料支持台に拡げて並べた後、X線源としてAlKα1,2を用い、試料チャンバー中を1×10−8Torrに保ち測定が行われる。測定時の帯電に伴うピークの補正として、まずC1sの主ピークの結合エネルギー値を286.1eVに合わせる。このときに、C1sのピーク面積は282〜296eVの範囲で直線ベースラインを引くことにより求められる。また、C1sピークにて面積を求めた282〜296eVの直線ベースラインを光電子強度の原点(零点)と定義して、(b)C−O成分に帰属される結合エネルギー286.1eVのピークの高さ(cps:単位時間あたりの光電子強度)と(a)CHx、C−C、C=Cに帰属される結合エネルギー284.6eVのピークの高さ(cps)を求め、(a)/(b)が算出される。
本発明に用いられるサイジング剤塗布炭素繊維は、炭素繊維に塗布したサイジング剤表面を400eVのX線を用いたX線光電子分光法によって光電子脱出角度55°で測定されるC1s内殻スペクトルの(a)CHx、C−C、C=Cに帰属される結合エネルギー(284.6eV)の成分の高さ(cps)と、(b)C−Oに帰属される結合エネルギー(286.1eV)の成分の高さ(cps)との比率(a)/(b)より求められる(I)および(II)の値が、(III)の関係を満たすものであることが好ましい。
(I)超音波処理前のサイジング剤塗布炭素繊維の表面の(a)/(b)の値
(II)サイジング剤塗布炭素繊維をアセトン溶媒中で超音波処理することで、サイジング剤付着量を0.09〜0.20質量%まで洗浄したサイジング剤塗布炭素繊維の表面の(a)/(b)の値
(III)0.50≦(I)≦0.90かつ0.60<(II)/(I)<1.0
超音波処理前のサイジング剤塗布炭素繊維表面の(a)/(b)値である(I)が上記範囲に入ることは、サイジング剤の表面に芳香族由来の化合物が多く、脂肪族由来の化合物が少ないことを示す。超音波処理前の(a)/(b)値である(I)は好ましくは、0.55以上、さらに好ましくは0.57以上である。また、超音波処理前の(a)/(b)値である(I)が、好ましくは0.80以下、より好ましくは0.74以下である。
超音波処理前後のサイジング剤塗布炭素繊維表面の(a)/(b)値の比である(II)/(I)が上記範囲に入ることは、サイジング剤表面に比べて、サイジング剤の内層に脂肪族由来の化合物の割合が多いことを示す。(II)/(I)は好ましくは0.65以上である。また、(II)/(I)は0.85以下であることが好ましい。
(I)および(II)の値が、(III)の関係を満たすことで、マトリックス樹脂との接着性に優れ、かつプリプレグの状態で長期保管したときも力学特性低下が少ないため好ましい。
本発明において、炭素繊維に塗布されたサイジング剤のエポキシ当量は350〜550g/eq.であることが好ましい。エポキシ当量が550g/eq.以下であることで、サイジング剤を塗布した炭素繊維とマトリックス樹脂の接着性が向上する。また、炭素繊維に塗布されたエポキシ当量が350g/eq.以上であることで、プリプレグに該サイジング剤塗布炭素繊維を用いた場合に、プリプレグに用いているマトリックス樹脂成分とサイジング剤との反応を抑制することができるため、プリプレグを長期保管した場合にも得られた炭素繊維強化複合材料の力学特性が良好になるため好ましい。塗布されたサイジング剤のエポキシ当量は360g/eq.以上が好ましく、380g/eq.以上がより好ましい。また、塗布されたサイジング剤のエポキシ当量は、530g/eq.以下が好ましく、500g/eq.以下がより好ましい。塗布されたサイジング剤のエポキシ当量を上記範囲とするためには、エポキシ当量180〜470g/eq.のサイジング剤を塗布することが好ましい。313g/eq.以下であることで、サイジング剤を塗布した炭素繊維とマトリックス樹脂の接着性が向上する。また、222g/eq.以上であることで、プリプレグに該サイジング剤塗布炭素繊維を用いた場合に、プリプレグに用いている樹脂成分とサイジング剤との反応を抑制することができるため、プリプレグを長期保管した場合にも得られた炭素繊維強化複合材料の力学特性が良好になる。
本発明におけるサイジング剤のエポキシ当量は、溶媒を除去したサイジング剤をN,N−ジメチルホルムアミドに代表される溶媒中に溶解し、塩酸でエポキシ基を開環させ、酸塩基滴定で求めることができる。エポキシ当量は220g/eq.以上が好ましく、240g/eq.以上がより好ましい。また、310g/eq.以下が好ましく、280g/eq.以下がより好ましい。また、本発明における炭素繊維に塗布されたサイジング剤のエポキシ当量は、サイジング剤塗布炭素繊維をN,N−ジメチルホルムアミドに代表される溶媒中に浸漬し、超音波洗浄を行うことで繊維から溶出させたのち、塩酸でエポキシ基を開環させ、酸塩基滴定で求めることができる。なお、炭素繊維に塗布されたサイジング剤のエポキシ当量は、塗布に用いるサイジング剤のエポキシ当量および塗布後の乾燥での熱履歴などにより、制御することができる。
本発明において、サイジング剤の炭素繊維への付着量は、炭素繊維100質量部に対して、0.1〜10.0質量部の範囲であることが好ましく、より好ましくは0.2〜3.0質量部の範囲である。サイジング剤の付着量が0.1質量部以上であると、サイジング剤塗布炭素繊維をプリプレグ化および製織する際に、通過する金属ガイド等による摩擦に耐えることができ、毛羽発生が抑えられ、炭素繊維シートの平滑性などの品位が優れる。一方、サイジング剤の付着量が10.0質量部以下であると、サイジング剤塗布炭素繊維の周囲のサイジング剤膜に阻害されることなくマトリックス樹脂が炭素繊維内部に含浸され、得られる炭素繊維強化複合材料においてボイド生成が抑えられ、炭素繊維強化複合材料の品位が優れ、同時に力学特性が優れる。
サイジング剤の付着量は、サイジング剤塗布炭素繊維を約2±0.5g採取し、窒素雰囲気中450℃にて加熱処理を15分間行ったときの該加熱処理前後の質量の変化を測定し、質量変化量を加熱処理前の質量で除した値(質量%)とする。
本発明において、炭素繊維に塗布され乾燥されたサイジング剤層の厚さは、2.0〜20nmの範囲内で、かつ、厚さの最大値が最小値の2倍を超えないことが好ましい。このような厚さの均一なサイジング剤層により、安定して大きな接着性向上効果が得られ、さらには、安定した高次加工性が得られる。
本発明において、脂肪族エポキシ化合物(A)の付着量は、炭素繊維100質量部に対して、0.05〜5.0質量部の範囲であることが好ましく、より好ましくは0.2〜2.0質量部の範囲である。さらに好ましくは0.3〜1.0質量部である。脂肪族エポキシ化合物(A)の付着量が0.05質量部以上であると、炭素繊維表面に脂肪族エポキシ化合物(A)でサイジング剤塗布炭素繊維とマトリックス樹脂の接着性が向上するため好ましい。
本発明のサイジング剤塗布炭素繊維の製造方法では、表面自由エネルギーの極性成分が8mJ/m以上50mJ/m以下の炭素繊維にサイジング剤を塗布することが好ましい。表面自由エネルギーの極性成分が8mJ/m以上であることで脂肪族エポキシ化合物(A)がより炭素繊維表面に近づくことで接着性が向上し、サイジング層が偏在化した構造を有するため好ましい。50mJ/m以下で、炭素繊維間の収束性が大きくなるためにマトリックス樹脂との含浸性が良好になるため、炭素繊維強化複合材料として用いた場合に用途展開が広がり好ましい。該炭素繊維表面の表面自由エネルギーの極性成分は、より好ましくは15mJ/m以上45mJ/m以下であり、最も好ましくは25mJ/m以上40mJ/m以下である。
本発明のサイジング剤塗布炭素繊維は、例えば、トウ、織物、編物、組み紐、ウェブ、マットおよびチョップド等の形態で用いられる。特に、比強度と比弾性率が高いことを要求される用途には、炭素繊維が一方向に引き揃えたトウが最も適しており、さらに、マトリックス樹脂を含浸したプリプレグが好ましく用いられる。
次に本発明におけるプリプレグおよび炭素繊維強化複合材料について詳細を説明する。
本発明において、プリプレグは、前述したサイジング剤塗布炭素繊維とマトリックス樹脂としての熱硬化性樹脂を含む。
本発明で使用する熱硬化性樹脂は、少なくとも次の構成要素、(D)、(E)および(F)を含むエポキシ樹脂組成物である。エポキシ樹脂(D)は、4員環以上の環構造を2つ以上有し、かつ、環構造に直結したアミン型グリシジル基またはエーテル型グリシジル基を1個または2個有する。エポキシ樹脂(E)は、3つ以上の官能基を有するエポキシ樹脂であり、(F)は潜在性硬化剤である。本発明にかかるエポキシ樹脂組成物は、配合したエポキシ樹脂総量100質量%に対して、エポキシ樹脂(D)を5〜60質量%、エポキシ樹脂(E)を40〜80質量%含むことを特徴とする。
本発明において、エポキシ樹脂組成物に含まれるエポキシ樹脂(D)の、4員環以上の環構造を2つ以上有する、とは、シクロヘキサンやベンゼン、ピリジンなど4員環以上の単環構造を2つ以上有するか、フタルイミドやナフタレン、カルバゾールなどの各々4員環以上の環からなる縮合環構造を少なくとも1つ以上有することを示す。
エポキシ樹脂(D)の環構造に直結したアミン型グリシジル基またはエーテル型グリシジル基とは、ベンゼンやフタルイミドなどの環構造にアミン型ならばN原子、エーテル型ならばO原子が結合した構造を有することを示し、アミン型の場合は1個または2個のエポキシ基、エーテル型の場合は1個のエポキシ基を有する(以降、1個のエポキシ基を有するエポキシ樹脂(D)を(D1)、2個のエポキシ基を有するエポキシ樹脂(D)を(D2)と言うこともある。本発明では、後述のとおりエポキシ樹脂(D)として(D2)を用いる)。マトリックス樹脂中に、エポキシ樹脂(D)の配合量が少ないと、炭素繊維強化複合材料の力学特性向上の効果がほとんどなく、配合量が多すぎると、耐熱性を著しく損ねてしまう。したがって、エポキシ樹脂(D)の配合量は配合されたエポキシ樹脂総量に対して5〜60質量%であることを必要とする。また、エポキシ樹脂(D)において、1個のエポキシ基を有するエポキシ樹脂(D1)はより力学特性発現の効果に優れ、1個のエポキシ基を有するエポキシ樹脂(D2)はより耐熱性に優れる。ゆえにエポキシ樹脂(D)の配合量は、エポキシ樹脂(D1)が用いられる場合には、配合されたエポキシ樹脂総量に対して10〜40質量%が好ましく、より好ましくは15〜30質量部である。そして、エポキシ樹脂(D2)が用いられる場合には、配合されたエポキシ樹脂総量に対して25〜60質量%が好ましく、より好ましくは30〜50質量部である。
上記エポキシ樹脂(D1)としては、例えば、グリシジルフタルイミド、グリシジル−1,8−ナフタルイミド、グリシジルカルバゾール、グリシジル−3,6−ジブロモカルバゾール、グリシジルインドール、グリシジル−4−アセトキシインドール、グリシジル−3−メチルインドール、グリシジル−3−アセチルインドール、グリシジル−5−メトキシ−2−メチルインドール、o−フェニルフェニルグリシジルエーテル、p−フェニルフェニルグリシジルエーテル、p−(3−メチルフェニル)フェニルグリシジルエーテル、2,6−ジベンジルフェニルグリシジルエーテル、2−ベンジルフェニルグリシジルエーテル、2,6−ジフェニルフェニルグリシジルエーテル、4−α−クミルフェニルグリシジルエーテル、o−フェノキシフェニルグリシジルエーテル、p−フェノキシフェニルグリシジルエーテルなどが挙げられる。
また、2個のエポキシ基を有するエポキシ樹脂(D2)は、下記一般式(1)
Figure 0005516768
(式(1)中、RとRは、それぞれ炭素数1〜4の脂肪族炭化水素基、炭素数3〜6の脂環式炭化水素基、炭素数6〜10の芳香族炭化水素基、ハロゲン原子、アシル基、トリフルオロメチル基およびニトロ基からなる群から選ばれた少なくとも一つを表す。nは0〜4の整数、mは0〜5の整数である。RとRが複数存在する場合、それぞれ同じであっても異なっていてもよい。Xは、−O−、−S−、−CO−、−C(=O)O−、−SO−、−C(=O)NH−から選ばれる1つを表す。)で示される構造を有し、エポキシ樹脂組成物は、配合したエポキシ樹脂総量100質量%に対して、エポキシ樹脂(D2)を25〜50質量%含むことが好ましい。
本発明で用いられるエポキシ樹脂(D2)としては、N,N−ジグリシジル−4−フェノキシアニリン、N,N−ジグリシジル−4−(4−メチルフェノキシ)アニリン、N,N−ジグリシジル−4−(4−tert−ブチルフェノキシ)アニリンおよびN,N−ジグリシジル−4−(4‐フェノキシフェノキシ)アニリン等挙げられる。これらの樹脂は、多くの場合、フェノキシアニリン誘導体にエピクロロヒドリンを付加し、アルカリ化合物により環化して得られる。分子量の増加に伴い粘度が増加していくため、取り扱い性の点から、エポキシ樹脂(D2)のRとRがともに水素であるN,N−ジグリシジル−4−フェノキシアニリンが特に好ましく用いられる。
フェノキシアニリン誘導体としては、具体的には、4−フェノキシアニリン、4−(4−メチルフェノキシ)アニリン、4−(3−メチルフェノキシ)アニリン、4−(2−メチルフェノキシ)アニリン、4−(4−エチルフェノキシ)アニリン、4−(3−エチルフェノキシ)アニリン、4−(2−エチルフェノキシ)アニリン、4−(4−プロピルフェノキシ)アニリン、4−(4−tert−ブチルフェノキシ)アニリン、4−(4−シクロヘキシルフェノキシ)アニリン、4−(3−シクロヘキシルフェノキシ)アニリン、4−(2−シクロヘキシルフェノキシ)アニリン、4−(4−メトキシフェノキシ)アニリン、4−(3−メトキシフェノキシ)アニリン、4−(2−メトキシフェノキシ)アニリン、4−(3−フェノキシフェノキシ)アニリン、4−(4−フェノキシフェノキシ)アニリン、4−[4−(トリフルオロメチル)フェノキシ]アニリン、4−[3−(トリフルオロメチル)フェノキシ]アニリン、4−[2−(トリフルオロメチル)フェノキシ]アニリン、4−(2−ナフチルオキシフェノキシ)アニリン、4−(1−ナフチルオキシフェノキシ)アニリン、4−[(1,1′−ビフェニル−4−イル)オキシ]アニリン、4−(4−ニトロフェノキシ)アニリン、4−(3−ニトロフェノキシ)アニリン、4−(2−ニトロフェノキシ)アニリン、3−ニトロ−4−アミノフェニルフェニルエーテル、2−ニトロ−4−(4−ニトロフェノキシ)アニリン、4−(2,4−ジニトロフェノキシ)アニリン、3−ニトロ−4−フェノキシアニリン、4−(2−クロロフェノキシ)アニリン、4−(3−クロロフェノキシ)アニリン、4−(4−クロロフェノキシ)アニリン、4−(2,4−ジクロロフェノキシ)アニリン、3−クロロ−4−(4−クロロフェノキシ)アニリン、および4−(4−クロロ−3−トリルオキシ)アニリンなどが挙げられる。
次に、本発明で用いられるエポキシ樹脂(D2)の製造方法について例示説明する。
本発明で用いられるエポキシ樹脂(D2)は、下記一般式(3)
Figure 0005516768
(式(3)中、RとRは、それぞれ炭素数1〜4の脂肪族炭化水素基、炭素数3〜6の脂環式炭化水素基、炭素数6〜10の芳香族炭化水素基、ハロゲン原子、アシル基、トリフルオロメチル基およびニトロ基からなる群から選ばれた少なくとも一つを表す。nは0〜4の整数、mは0〜5の整数である。RとRが複数存在する場合、それぞれ同じであっても異なっていてもよい。Xは、−O−、−S−、−CO−、−C(=O)O−、−SO−、−C(=O)NH−から選ばれる1つを表す)で示されるフェノキシアニリン誘導体と、エピクロロヒドリンを反応させることにより製造することができる。
すなわち、一般的なエポキシ樹脂の製造方法と同じく、エポキシ樹脂(D2)の製造方法は、フェノキシアニリン誘導体1分子にエピクロロヒドリン2分子が付加し、下記一般式(4)
Figure 0005516768
(式(4)中、RとRは、それぞれ炭素数1〜4の脂肪族炭化水素基、炭素数3〜6の脂環式炭化水素基、炭素数6〜10の芳香族炭化水素基、ハロゲン原子、アシル基、トリフルオロメチル基およびニトロ基からなる群から選ばれた少なくとも一つを表す。nは0〜4の整数、mは0〜5の整数である。RとRが複数存在する場合、それぞれ同じであっても異なっていてもよい。Xは、−O−、−S−、−CO−、−C(=O)O−、−SO−、−C(=O)NH−から選ばれる1つを表す)で示されるジクロロヒドリン体が生成する付加工程と続くジクロロヒドリン体をアルカリ化合物により脱塩化水素し、2個のエポキシ基を有する下記一般式(1)
Figure 0005516768
(式(1)中、RとRは、それぞれ炭素数1〜4の脂肪族炭化水素基、炭素数3〜6の脂環式炭化水素基、炭素数6〜10の芳香族炭化水素基、ハロゲン原子、アシル基、トリフルオロメチル基およびニトロ基からなる群から選ばれた少なくとも一つを表す。nは0〜4の整数、mは0〜5の整数である。RとRが複数存在する場合、それぞれ同じであっても異なっていてもよい。Xは、−O−、−S−、−CO−、−C(=O)O−、−SO−、−C(=O)NH−から選ばれる1つを表す)で示されるエポキシ化合物が生成する環化工程からなる。
エポキシ樹脂(D1)の市販品としては、“デナコール(登録商標)”Ex−731(グリシジルフタルイミド、ナガセケムテックス(株)製)、OPP−G(o−フェニルフェニルグリシジルエーテル、三光(株)製)が例示され、エポキシ樹脂(D2)の市販品としては、PxGAN(ジグリシジル−p−フェノキシアニリン、東レ・ファインケミカル(株)製)などが挙げられる。
本発明で用いられる3個以上の官能基を有するエポキシ樹脂(E)とは、1分子中に3個以上のエポキシ基を有する化合物、または少なくとも1個のエポキシ基とエポキシ基以外の官能基とを合計で3個以上有する化合物である。3個以上の官能基を有するエポキシ樹脂(E)としては、1分子中に3個以上のエポキシ基を有する化合物が好ましい。3個以上の官能基を有するエポキシ樹脂(E)としては、例えば、グリシジルアミン型エポキシ樹脂およびグリシジルエーテル型エポキシ樹脂が挙げられる。
3個以上の官能基を有するエポキシ樹脂(E)において、官能基数は好ましくは3〜7であり、より好ましくは3〜4である。官能基数が多すぎると硬化後のマトリックス樹脂が脆くなってしまい、耐衝撃性を損ねる場合がある。
本発明で使用するエポキシ樹脂(E)、下記一般式(2)
Figure 0005516768
(式(2)中、R〜Rは、水素原子、炭素数1〜4の脂肪族炭化水素基、炭素数4以下の脂環式炭化水素基、ハロゲン原子からなる群から選ばれた少なくとも一つを表す。Yは、−CH−、−O−、−S−、−CO−、−C(=O)O−、−SO−、−C(=O)NH−から選ばれる1つを表す。)で示される構造を有するものであることが好ましい。
式(2)において、R、R、R、Rの構造が大きすぎるとエポキシ樹脂組成物の粘度が高くなりすぎて取り扱い性を損ねる、あるいはエポキシ樹脂組成物中の他の成分との相溶性が損なわれ、力学特性向上効果が得られないことがあるため、R、R、R、Rは、水素原子、炭素数1〜4の脂肪族炭化水素基、炭素数4以下の脂環式炭化水素基、ハロゲン原子からなる群から選ばれた少なくとも一つであることが好ましい。
エポキシ樹脂(E)としては、例えば、テトラグリシジル−3,4’−ジアミノジフェニルエーテル、テトラグリシジル−3,3’−ジアミノジフェニルエーテル、テトラグリシジル−3,4’−ジアミノ−2,2’−ジメチルジフェニルエーテル、テトラグリシジル−3,4’−ジアミノ−2,2’−ジブロモジフェニルエーテル、テトラグリシジル−3,4’−ジアミノ−5−メチルジフェニルエーテル、テトラグリシジル−3,4’−ジアミノ−2’−メチルジフェニルエーテル、テトラグリシジル−3,4’−ジアミノ−3’−メチルジフェニルエーテル、テトラグリシジル−3,4’−ジアミノ−5,2’−ジメチルジフェニルエーテル、テトラグリシジル−3,4’−ジアミノ−5,3’−ジメチルジフェニルエーテル、テトラグリシジル−3,3’−ジアミノ−5−メチルジフェニルエーテル、テトラグリシジル−3,3’−ジアミノ−5,5’−ジメチルジフェニルエーテル、テトラグリシジル−3,3’−ジアミノ−5,5’−ジブロモジフェニルエーテル、テトラグリシジル−4,4’−ジアミノジフェニルエーテル、テトラグリシジル−4,4’−ジアミノ−2,2’−ジメチルジフェニルエーテル、テトラグリシジル−4,4’−ジアミノ−2,2’−ジブロモジフェニルエーテル、テトラグリシジル−4,4’−ジアミノ−5−メチルジフェニルエーテル、テトラグリシジル−4,4’−ジアミノ−2’−メチルジフェニルエーテル、テトラグリシジル−4,4’−ジアミノ−3’−メチルジフェニルエーテル、テトラグリシジル−4,4’−ジアミノ−5,2’−ジメチルジフェニルエーテル、テトラグリシジル−4,4’−ジアミノ−5,3’−ジメチルジフェニルエーテル、テトラグリシジル−4,4’−ジアミノ−5,5’−ジメチルジフェニルエーテル、テトラグリシジル−4,4’−ジアミノ−5,5’−ジブロモジフェニルエーテル、テトラグリシジル−3,4’−ジアミノジフェニルメタン、テトラグリシジル−3,3’−ジアミノジフェニルメタン、テトラグリシジル−3,4’−ジアミノ−2,2’−ジメチルジフェニルメタン、テトラグリシジル−3,4’−ジアミノ−2,2’−ジブロモジフェニルメタン、テトラグリシジル−3,4’−ジアミノ−5−メチルジフェニルメタン、テトラグリシジル−3,4’−ジアミノ−2’−メチルジフェニルメタン、テトラグリシジル−3,4’−ジアミノ−3’−メチルジフェニルメタン、テトラグリシジル−3,4’−ジアミノ−5,2’−ジメチルジフェニルメタン、テトラグリシジル−3,4’−ジアミノ−5,3’−ジメチルジフェニルメタン、テトラグリシジル−3,3’−ジアミノ−5−メチルジフェニルメタン、テトラグリシジル−3,3’−ジアミノ−5,5’−ジメチルジフェニルメタン、テトラグリシジル−3,3’−ジアミノ−5,5’−ジブロモジフェニルメタン、テトラグリシジル−4,4’−ジアミノジフェニルメタン、テトラグリシジル−4,4’−ジアミノ−2,2’−ジメチルジフェニルメタン、テトラグリシジル−4,4’−ジアミノ−2,2’−ジブロモジフェニルメタン、テトラグリシジル−4,4’−ジアミノ−5−メチルジフェニルメタン、テトラグリシジル−4,4’−ジアミノ−2’−メチルジフェニルメタン、テトラグリシジル−4,4’−ジアミノ−3’−メチルジフェニルメタン、テトラグリシジル−4,4’−ジアミノ−5,2’−ジメチルジフェニルメタン、テトラグリシジル−4,4’−ジアミノ−5,3’−ジメチルジフェニルメタン、テトラグリシジル−4,4’−ジアミノ−5,5’−ジメチルジフェニルメタン、テトラグリシジル−4,4’−ジアミノ−5,5’−ジブロモジフェニルメタン、テトラグリシジル−3,4’−ジアミノジフェニルスルホン、テトラグリシジル−3,3’−ジアミノジフェニルスルホン、テトラグリシジル−3,4’−ジアミノ−2,2’−ジメチルジフェニルスルホン、テトラグリシジル−3,4’−ジアミノ−2,2’−ジブロモジフェニルスルホン、テトラグリシジル−3,4’−ジアミノ−5−メチルジフェニルスルホン、テトラグリシジル−3,4’−ジアミノ−2’−メチルジフェニルスルホン、テトラグリシジル−3,4’−ジアミノ−3’−メチルジフェニルスルホン、テトラグリシジル−3,4’−ジアミノ−5,2’−ジメチルジフェニルスルホン、テトラグリシジル−3,4’−ジアミノ−5,3’−ジメチルジフェニルスルホン、テトラグリシジル−3,3’−ジアミノ−5−メチルジフェニルスルホン、テトラグリシジル−3,3’−ジアミノ−5,5’−ジメチルジフェニルスルホン、テトラグリシジル−3,3’−ジアミノ−5,5’−ジブロモジフェニルスルホン、テトラグリシジル−4,4’−ジアミノジフェニルスルホン、テトラグリシジル−4,4’−ジアミノ−2,2’−ジメチルジフェニルスルホン、テトラグリシジル−4,4’−ジアミノ−2,2’−ジブロモジフェニルスルホン、テトラグリシジル−4,4’−ジアミノ−5−メチルジフェニルスルホン、テトラグリシジル−4,4’−ジアミノ−2’−メチルジフェニルスルホン、テトラグリシジル−4,4’−ジアミノ−3’−メチルジフェニルスルホン、テトラグリシジル−4,4’−ジアミノ−5,2’−ジメチルジフェニルスルホン、テトラグリシジル−4,4’−ジアミノ−5,3’−ジメチルジフェニルスルホン、テトラグリシジル−4,4’−ジアミノ−5,5’−ジメチルジフェニルスルホン、テトラグリシジル−4,4’−ジアミノ−5,5’−ジブロモジフェニルスルホン、テトラグリシジル−4,4’−ジアミノジフェニルチオエーテル、テトラグリシジル−4,4’−ジアミノベンズアニリド、テトラグリシジル−3,3’−ジアミノベンズアニリド、テトラグリシジル−3,4’−ジアミノベンズアニリドなどが挙げられる。
なかでも、R、R、R、Rは、他のエポキシ樹脂への相溶性の点からは水素原子が好ましく、耐熱性の点から、テトラグリシジル−3,4’−ジアミノジフェニルエーテル、テトラグリシジル−3,3’−ジアミノジフェニルエーテル、テトラグリシジル−4,4’−ジアミノジフェニルメタン、テトラグリシジル−4,4’−ジアミノジフェニルスルホン、テトラグリシジル−3,3’−ジアミノジフェニルスルホンがより好ましい。また、難燃性の点からは、これがClやBrといったハロゲン原子で置換されているものも好ましい形態である。
次に、本発明で用いられるエポキシ樹脂(E)の製造方法について例示説明する。
本発明で用いられるエポキシ樹脂(E)は、下記一般式(5)
Figure 0005516768
(式(5)中、R〜Rは、水素原子、炭素数1〜4の脂肪族炭化水素基、炭素数4以下の脂環式炭化水素基、ハロゲン原子からなる群から選ばれた少なくとも一つを表す。Yは、―CH―、−O−、−S−、−CO−、−C(=O)O−、−SO−、−C(=O)NH−から選ばれる1つを表す)で示されるジアミノジフェニル誘導体と、エピクロロヒドリンを反応させることにより製造することができる。
すなわち、一般的なエポキシ樹脂の製造方法と同じく、エポキシ樹脂(E)の製造方法は、ジアミノジフェニル誘導体1分子にエピクロロヒドリン4分子が付加し、下記一般式(6)
Figure 0005516768
(式(6)中、R〜Rは、水素原子、炭素数1〜4の脂肪族炭化水素基、炭素数4以下の脂環式炭化水素基、ハロゲン原子からなる群から選ばれた少なくとも一つを表す。Yは、―CH―、−O−、−S−、−CO−、−C(=O)O−、−SO−、−C(=O)NH−から選ばれる1つを表す)で示されるジクロロヒドリン体が生成する付加工程と続くジクロロヒドリン体をアルカリ化合物により脱塩化水素し、4官能エポキシ体である下記一般式(2)
Figure 0005516768
(式(2)中、R〜Rは、水素原子、炭素数1〜4の脂肪族炭化水素基、炭素数4以下の脂環式炭化水素基、ハロゲン原子からなる群から選ばれた少なくとも一つを表す。Yは、−CH−、−O−、−S−、−CO−、−C(=O)O−、−SO−、−C(=O)NH−から選ばれる1つを表す)で示されるエポキシ化合物が生成する環化工程からなる。
本発明のマトリックス樹脂において、エポキシ樹脂(E)の配合量が少なすぎると耐熱性を損ねてしまい、多すぎると架橋密度が高くなるため脆い材料となることがあり、炭素繊維強化複合材料の耐衝撃性と引張強度を損ねてしまうことがある。エポキシ樹脂(E)の配合量は、エポキシ樹脂(D)とエポキシ樹脂(E)とを合わせ配合されたエポキシ樹脂量(エポキシ樹脂総量)100質量%に対して、好ましくは40〜80質量%であり、より好ましくは50〜70質量%である。
本発明においては、エポキシ樹脂(D)およびエポキシ樹脂(E)以外の他のエポキシ樹脂や、エポキシ樹脂と熱硬化性樹脂の共重合体等を含んでも良い。エポキシ樹脂と共重合させて用いられる上記の熱硬化性樹脂としては、例えば、不飽和ポリエステル樹脂、ビニルエステル樹脂、エポキシ樹脂、ベンゾオキサジン樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂およびポリイミド樹脂等が挙げられる。これらの樹脂組成物や化合物は、単独で用いてもよいし適宜配合して用いてもよい。少なくともエポキシ樹脂(D)およびエポキシ樹脂(E)以外の他のエポキシ樹脂を配合することは、マトリックス樹脂の流動性と硬化後の耐熱性を兼ね備えるものとする。樹脂の流動性を良くするため、室温(25℃)で液状なエポキシ樹脂が好適に用いられる。ここでいう液状とは、測定される熱硬化性樹脂と同じ温度状態にある比重7以上の金属片を、該熱硬化性樹脂の上に置き、重力で瞬時に埋没するとき、その熱硬化性樹脂は液状であると定義する。比重7以上の金属片としては、例えば、鉄(鋼)、鋳鉄、銅などが挙げられる。また、液状のエポキシ樹脂を少なくとも1種と、固形状のエポキシ樹脂を少なくとも1種を配合することは、プリプレグのタック性とドレープ性を適切なものとする。タック性とドレープ性の観点から、本発明に係るエポキシ樹脂組成物は、配合したエポキシ樹脂総量100質量%に対して、エポキシ樹脂(D)とエポキシ樹脂(E)も含めて液状のエポキシ樹脂を、合計で20質量%以上含むことが好ましい。
エポキシ樹脂(E)であるジアミノジフェニルメタン型のエポキシ樹脂の市販品としては、“スミエポキシ(登録商標)”ELM434、ELM100、ELM120(住友化学(株)製)、YH434L(新日鐵化学(株)製)、“jER(登録商標)”604、630(三菱化学(株)製)、“アラルダイド(登録商標)”MY720、MY721、MY725、MY9512、MY9663(以上、ハンツマン・アドバンズド・マテリアルズ(株)製)などが挙げられる。ジアミノジフェニルスルホン型のエポキシ樹脂の市販品としては、TG4DAS、TG3DAS(三井化学ファイン(株)製)などが挙げられる。
エポキシ樹脂(E)として、ジアミノジフェニルメタン型のエポキシ樹脂を用いる場合、特にエポキシ当量が100〜134g/eq.であるテトラグリシジルジアミノジフェニルメタンが好ましく用いられ、より好ましくはエポキシ当量が100〜120g/eq.であり、さらに好ましくは、エポキシ当量が100〜115g/eq.である。かかるエポキシ当量が100g/eq.を満たない場合、テトラグリシジルジアミノジフェニルメタンの製造が困難となり、製造収率が低い場合があり、エポキシ当量が134g/eq.を超えると、得られるテトラグリシジルジアミノジフェニルメタンの粘度が高すぎるため、熱硬化性樹脂に靱性を付与するため熱可塑性樹脂を溶解する際、少量しか溶解することができず、高い靱性を有する熱硬化性樹脂が得られない場合がある。中でも、エポキシ当量が100〜120g/eq.のテトラグリシジルジアミノジフェニルメタンに熱可塑性樹脂を溶解させる場合、プリプレグ化のプロセスに問題の無い範囲で、大量の熱可塑性樹脂を溶解させることができ、耐熱性を損なうこと無く高い靱性を硬化物に付与することができ、その結果、炭素繊維強化複合材料に引張強度を発現することができる。
メタキシレンジアミン型のエポキシ樹脂(E)の市販品としては、TETRAD−X、TETRAD−C(三菱ガス化学(株)製)が挙げられる。
1,3−ビスアミノメチルシクロヘキサン型のエポキシ樹脂(E)の市販品としては、TETRAD−C(三菱ガス化学(株)製)が挙げられる。
イソシアヌレート型のエポキシ樹脂(E)の市販品としては、TEPIC−P(日産化学(株)製)が挙げられる。
トリスヒドロキシフェニルメタン型のエポキシ樹脂(E)の市販品としては、Tactix742(ハンツマン・アドバンスト・マテリアルズ(株)製)が挙げられる。
テトラフェニロールエタン型のエポキシ樹脂(E)の市販品としては、“jER(登録商標)”1031S(ジャパンエポキシレジン(株)製)が挙げられる。
アミノフェノール型のエポキシ樹脂(E)の市販品としては、ELM120やELM100(以上、住友化学(株)製)、“jER(登録商標)”630(ジャパンエポキシレジン(株)製)、および“アラルダイト(登録商標)”MY0500、MY0510、MY0600、MY0610(ハンツマン・アドバンズド・マテリアルズ(株)製)、などが挙げられる。
フェノールノボラック型エポキシ樹脂(E)の市販品としては、DEN431やDEN438(以上、ダウケミカル日本(株)製)および“jER(登録商標)”152、154(ジャパンエポキシレジン(株)製)、“エピクロン(登録商標)”N−740、N−770、N−775(以上、DIC(株)製)などが挙げられる。
オルソクレゾールノボラック型のエポキシ樹脂(E)の市販品としては、“エピクロン(登録商標)”N−660、N−665、N−670、N−673、N−695(以上、DIC(株)製)、EOCN−1020、EOCN−102S、EOCN−104S(以上、日本化薬(株)製)などが挙げられる(E)。
ジシクロペンタジエン型エポキシ樹脂(E)の市販品としては、“エピクロン(登録商標)”HP7200、HP7200L、HP7200H、HP7200HH(DIC(株)製)などが挙げられる。
エポキシ樹脂(D)およびエポキシ樹脂(E)以外の、本発明で用いられるエポキシ樹脂のうち、2個以上の官能基を有するエポキシ樹脂としては、フェノールを前駆体とするグリシジルエーテル型エポキシ樹脂が好ましく用いられる。このようなエポキシ樹脂として、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ウレタン変性エポキシ樹脂、ヒダントイン型およびレゾルシノール型エポキシ樹脂等が挙げられる。
液状のビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂およびレゾルシノール型エポキシ樹脂は、低粘度であるために、他のエポキシ樹脂と組み合わせて使うことが好ましい。
また、固形のビスフェノールA型エポキシ樹脂は、液状ビスフェノールA型エポキシ樹脂に比較し架橋密度の低い構造を与えるため耐熱性は低くなるが、より靭性の高い構造が得られるため、グリシジルアミン型エポキシ樹脂や液状のビスフェノールA型エポキシ樹脂やビスフェノールF型エポキシ樹脂と組み合わせて用いられる。
ナフタレン骨格を有するエポキシ樹脂は、低吸水率かつ高耐熱性の硬化樹脂を与える。また、ビフェニル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂およびジフェニルフルオレン型エポキシ樹脂も、低吸水率の硬化樹脂を与えるため好適に用いられる。ウレタン変性エポキシ樹脂およびイソシアネート変性エポキシ樹脂は、破壊靱性と伸度の高い硬化樹脂を与える。
2個以上の官能基を有するエポキシ樹脂の一例であるビスフェノールA型エポキシ樹脂の市販品としては、“EPON(登録商標)”825(ジャパンエポキシレジン(株)製)、“エピクロン(登録商標)”850(DIC(株)製)、“エポトート(登録商標)”YD―128(東都化成(株)製)、およびDER―331やDER−332(以上、ダウケミカル日本(株)製)などが挙げられる。
2個以上の官能基を有するエポキシ樹脂の一例であるビスフェノールF型エポキシ樹脂の市販品としては、“jER(登録商標)”806、“jER(登録商標)”807および“jER(登録商標)”1750(以上、ジャパンエポキシレジン(株)製)、“エピクロン(登録商標)”830(DIC(株)製)および“エポトート(登録商標)”YD―170(東都化成(株)製)などが挙げられる。
2個以上の官能基を有するエポキシ樹脂の一例であるレゾルシノール型エポキシ樹脂の市販品としては、“デコナール(登録商標)”EX−201(ナガセケムテックス(株)製)などが挙げられる。
2個以上の官能基を有するエポキシ樹脂の一例であるグリシジルアニリン型のエポキシ樹脂市販品としては、GANやGOT(以上、日本化薬(株)製)などが挙げられる。
2個以上の官能基を有するエポキシ樹脂の一例であるビフェニル型エポキシ樹脂の市販品としては、“jER(登録商標)”YX4000H、YX4000、YL6616(以上、三菱化学(株)製)、NC−3000(日本化薬(株)製)などが挙げられる。
2個以上の官能基を有するエポキシ樹脂の一例であるウレタン変性エポキシ樹脂の市販品としては、AER4152(旭化成エポキシ(株)製)などが挙げられる。
2個以上の官能基を有するエポキシ樹脂の一例であるヒダントイン型のエポキシ樹脂市販品としては、AY238(ハンツマン・アドバンスト・マテリアルズ(株)製)が挙げられる。
炭素繊維との接着性と力学特性のバランスから、全エポキシ樹脂組成物中にグリシジルアミン型エポキシ樹脂が30〜70質量部配合されることが好ましく、より好ましい配合量は40〜60質量部である。
本発明にかかるエポキシ樹脂組成物は、潜在性硬化剤(F)を配合して用いると良い。ここで説明される潜在性硬化剤は、本発明のエポキシ樹脂組成物に含まれるエポキシ樹脂の硬化剤であって、温度をかけることで活性化してエポキシ基と反応する硬化剤であり、70℃以上で反応が活性化することが好ましい。ここで、70℃で活性化するとは、反応開始温度が70℃の範囲にあることをいう。かかる反応開始温度(以下、活性化温度という)は例えば、示差走査熱量分析(DSC)により求めることができる。具体的には、エポキシ当量184〜194g/eq.程度のビスフェノールA型エポキシ化合物100質量部に評価対象の硬化剤10質量部を加えたエポキシ樹脂組成物について、示差走査熱量分析により得られる発熱曲線の変曲点の接線とベースラインの接線の交点から求められる。
潜在性硬化剤(F)は、芳香族アミン硬化剤(F1)、ジシアンジアミドまたはその誘導体であることが好ましい。芳香族アミン硬化剤としては、エポキシ樹脂硬化剤として用いられる芳香族アミン類であれば特に限定されるものではないが、具体的には、3,3’−ジアミノジフェニルスルホン(3,3’−DDS)、4,4’−ジアミノジフェニルスルホン(4,4’−DDS)、ジアミノジフェニルメタン(DDM)、3,3’−ジイソプロピル−4,4’−ジアミノジフェニルメタン、3,3’−ジ−t−ブチル−4,4’−ジアミノジフェニルメタン、3,3’−ジエチル−5,5’−ジメチル−4,4’−ジアミノジフェニルメタン、3,3’−ジイソプロピル−5,5’−ジメチル−4,4’−ジアミノジフェニルメタン、3,3’−ジ−t−ブチル−5,5’−ジメチル−4,4’−ジアミノジフェニルメタン、3,3’,5,5’−テトラエチル−4,4’−ジアミノジフェニルメタン、3,3’−ジイソプロピル−5,5’−ジエチル−4,4’−ジアミノジフェニルメタン、3,3’−ジ−t−ブチル−5,5’−ジエチル−4,4’−ジアミノジフェニルメタン、3,3’,5,5’−テトライソプロピル−4,4’−ジアミノジフェニルメタン、3,3’−ジ−t−ブチル−5,5’−ジイソプロピル−4,4’−ジアミノジフェニルメタン、3,3’,5,5’−テトラ−t−ブチル−4,4’−ジアミノジフェニルメタン、ジアミノジフェニルエーテル(DADPE)、ビスアニリン、ベンジルジメチルアニリン、2−(ジメチルアミノメチル)フェノール(DMP−10)、2,4,6−トリス(ジメチルアミノメチル)フェノール(DMP−30)、2,4,6−トリス(ジメチルアミノメチル)フェノールの2−エチルヘキサン酸エステル、4,4’−ジアミノベンズアニリド、3,4’−ジアミノベンズアニリド、3,3’−ジアミノベンズアニリド等を使用することができる。これらは、単独で用いても、2種以上を混合して用いてもよい。
芳香族アミン硬化剤の市販品としては、セイカキュアS(和歌山精化工業(株)製)、MDA−220(三井化学(株)製)、“jERキュア(登録商標)”W(ジャパンエポキシレジン(株)製)、および3,3’−DAS(三井化学(株)製)、“Lonzacure(登録商標)”M−DEA、M−DIPA、M−MIPA(Lonza(株)製)、DETDA 80(以上、Lonza(株)製)などが挙げられる。
ジシアンジアミド誘導体またはその誘導体とは、アミノ基、イミノ基およびシアノ基の少なくとも一つを用いて反応させた化合物であり、例えば、o−トリルビグアニド、ジフェニルビグアニドや、ジシアンジアミドのアミノ基、イミノ基またはシアノ基にエポキシ樹脂組成物に用いるエポキシ化合物のエポキシ基を予備反応させたものである。ジシアンジアミドの市販品としては、DICY−7、DICY−15(以上、ジャパンエポキシレジン(株)製)などが挙げられる。
芳香族アミン硬化剤(F1)以外の硬化剤としては、脂環式アミンなどのアミン、フェノール化合物、酸無水物、ポリアミノアミド、有機酸ヒドラジド、イソシアネートを芳香族アミン硬化剤に併用して用いてもよい。
本発明にかかるサイジング剤と、潜在性硬化剤(F)との組み合わせとしては、次に示す組み合わせが好ましい。塗布されるサイジング剤と潜在性硬化剤(F)のアミン当量とエポキシ当量の比率であるアミン当量/エポキシ当量が、0.9でサイジング剤と潜在性硬化剤(F)とを混合し、混合直後と、温度25℃、60%RHの環境下で20日保管した場合のガラス転移点を測定する。20日経時後のガラス転移点の上昇が25℃以下であるサイジング剤と、潜在性硬化剤(F)との組み合わせが好ましい。ガラス転移点の上昇が25℃以下であることで、プリプレグにしたときに、サイジング剤外層とマトリックス樹脂中の反応が抑制され、プリプレグを長期間保管した後の炭素繊維強化複合材料の引張強度等の力学特性低下が抑制されるため好ましい。またガラス転移点の上昇が15℃以下であることがより好ましい。10℃以下であることがさらに好ましい。なお、ガラス転移点は、示差走査熱量分析(DSC)により求めることができる。
また、硬化剤の総量は、全エポキシ樹脂成分のエポキシ基1当量に対し、活性水素基が0.6〜1.2当量の範囲となる量を含むことが好ましく、より好ましくは0.7〜0.9当量の範囲となる量を含むことである。ここで、活性水素基とは、硬化剤成分のエポキシ基と反応しうる官能基を意味し、活性水素基が0.6当量に満たない場合は、硬化物の反応率、耐熱性、弾性率が不足し、また、炭素繊維強化複合材料のガラス転移温度や引張強度が不足する場合がある。また、活性水素基が1.2当量を超える場合は、硬化物の反応率、ガラス転移温度、弾性率は十分であるが、塑性変形能力が不足するため、炭素繊維強化複合材料の耐衝撃性が不足する場合がある。
また、硬化を促進させることを目的に、硬化促進剤を配合することもできる。
硬化促進剤としては、ウレア化合物、第三級アミンとその塩、イミダゾールとその塩、トリフェニルホスフィンまたはその誘導体、カルボン酸金属塩や、ルイス酸類やブレンステッド酸類とその塩類などが挙げられる。中でも、長期保管安定性と触媒能力のバランスから、ウレア化合物が好適に用いられる。特に、ウレア化合物と潜在性硬化剤(F)のジシアンジアミドとの組合せが好適に用いられる。
ウレア化合物としては、例えば、N,N‐ジメチル‐N’‐(3,4‐ジクロロフェニル)ウレア、トルエンビス(ジメチルウレア)、4,4’‐メチレンビス(フェニルジメチルウレア)、3‐フェニル‐1,1‐ジメチルウレアなどを使用することができる。かかるウレア化合物の市販品としては、DCMU99(保土谷化学(株)製)、“Omicure(登録商標)”24、52、94(以上、Emerald Performance Materials,LLC製)などが挙げられる。
ウレア化合物の配合量は、全エポキシ樹脂成分100質量部に対して1〜4質量部とすることが好ましい。かかるウレア化合物の配合量が1質量部に満たない場合は、反応が十分に進行せず、硬化物の弾性率と耐熱性が不足することがある。また、かかるウレア化合物の配合量が4質量部を超える場合は、エポキシ化合物の自己重合反応が、エポキシ化合物と硬化剤との反応を阻害するため、硬化物の靭性が不足することや、弾性率が低下することがある。
また、これらエポキシ樹脂と硬化剤、あるいはそれらの一部を予備反応させた物を組成物中に配合することもできる。この方法は、粘度調節や長期保管安定性向上に有効な場合がある。
本発明においては、上記のエポキシ樹脂組成物に、熱可塑性樹脂(H)を溶解させて用いることも好適な態様である。このような熱可塑性樹脂(H)としては、一般に、主鎖に、炭素−炭素結合、アミド結合、イミド結合、エステル結合、エーテル結合、カーボネート結合、ウレタン結合、チオエーテル結合、スルホン結合およびカルボニル結合からなる群から選ばれた結合を有する熱可塑性樹脂であることが好ましい。また、この熱可塑性樹脂(H)は、部分的に架橋構造を有していても差し支えなく、結晶性を有していても非晶性であってもよい。特に、ポリアミド、ポリカーボナート、ポリアセタール、ポリフェニレンオキシド、ポリフェニレンスルフィド、ポリアリレート、ポリエステル、ポリアミドイミド、ポリイミド、ポリエーテルイミド、フェニルトリメチルインダン構造を有するポリイミド、ポリスルホン、ポリエーテルスルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリアラミド、ポリエーテルニトリルおよびポリベンズイミダゾールからなる群から選ばれた少なくとも1種の樹脂が、エポキシ樹脂(D)またはエポキシ樹脂(E)に溶解していることが好適である。
なかでも、良好な耐熱性を得るためには、熱可塑性樹脂(H)のガラス転移温度(Tg)が少なくとも150℃以上であり、170℃以上であることが好ましい。配合する熱可塑性樹脂(H)のガラス転移温度が、150℃未満であると、成形体として用いた時に熱による変形を起こしやすくなる場合がある。さらに、この熱可塑性樹脂(H)の末端官能基としては、水酸基、カルボキシル基、チオール基、酸無水物などのものがカチオン重合性化合物と反応することができ、好ましく用いられる。水酸基を有する熱可塑性樹脂としては、ポリビニルホルマールやポリビニルブチラールなどのポリビニルアセタール樹脂、ポリビニルアルコール、フェノキシ樹脂を挙げることができ、また、スルホニル基を有する熱可塑性樹脂としては、ポリエーテルスルホンを挙げることができる。
中でも平均分子量が10000〜60000g/molであるポリエーテルスルホンが好ましく用いられ、より好ましくは平均分子量が12000〜50000g/molであり、さらに好ましくは平均分子量が15000〜30000g/molである。かかる平均分子量が低すぎると、プリプレグのタックが過剰となり取り扱いが低下したり、硬化物の靱性が低くなる場合がある。かかる平均分子量が高すぎると、プリプレグのタックが低下し取り扱いが低下したり、熱硬化性樹脂に溶解した際、樹脂の粘度が高くなりプリプレグ化できない場合がある。中でも、平均分子量が15000〜30000g/molの高い耐熱性を持つポリエーテルスルホンを熱硬化性樹脂に溶解させる場合、プリプレグ化のプロセスに問題の無い範囲で、大量の熱可塑性樹脂を熱硬化性樹脂に溶解させることができ、高い靱性を硬化物に付与することができ、耐熱性と耐衝撃性を維持しながら炭素繊維強化複合材料に高い引張強度を付与することができる。
具体的には、ポリエーテルスルホンの市販品である“スミカエクセル(登録商標)”PES3600P、PES5003P、PES5200P、PES7600P、”PES7200P(以上、住友化学工業(株)製)、“Ultrason(登録商標)”E2020P SR、E2021SR(以上、BASF(株)製)、“GAFONE(登録商標)”3600RP、3000RP(以上、ソルベイアドバンスポリマーズ(株)製)、“Virantage(登録商標)”PESU VW−10200、PESU VW−10700(登録商標、以上、ソルベイアドバンスポリマーズ(株)製)などを使用することができ、また、特表2004-506789号公報に記載されるようなポリエーテルスルホンとポリエーテルエーテルスルホンの共重合体オリゴマー、さらにポリエーテルイミドの市販品である“ウルテム(登録商標)”1000、1010、1040(以上、SABICイノベーティブプラスチックスジャパン合同会社製)などが挙げられる。オリゴマーとは10個から100個程度の有限個のモノマーが結合した比較的分子量が低い重合体を指す。
エポキシ樹脂に熱可塑性樹脂(H)を溶解させて用いる場合は、それらを単独で用いた場合より良好な結果を与えることが多い。エポキシ樹脂の脆さを熱可塑性樹脂(H)の強靱さでカバーし、かつ熱可塑性樹脂(H)の成形困難性をエポキシ樹脂でカバーし、バランスのとれたベース樹脂となる。エポキシ樹脂と熱可塑性樹脂(H)と使用割合(質量%)は、バランスの点で、好ましくは熱硬化性樹脂組成物100質量%のうち、好ましくは熱可塑性樹脂(H)の配合割合が1〜40質量%であり、より好ましくは5〜30質量%であり、さらに好ましくは8〜20質量%の範囲である。熱可塑性樹脂の配合量が多すぎると、熱硬化性樹脂組成物の粘度が上昇し、熱硬化性樹脂組成物およびプリプレグの製造プロセス性や取り扱いを損ねる場合がある。熱可塑性樹脂の配合量が少なすぎると、熱硬化性樹脂組成物の硬化物の靱性が不足し、得られる炭素繊維強化複合材料の耐衝撃性や引張強度が不足する場合がある。
本発明のエポキシ樹脂(E)と熱可塑性樹脂(H)との組合せとして、耐熱性と炭素繊維との接着性に優れているテトラグリシジルジアミノジフェニルメタンと耐熱性や靱性が優れているポリエーテルスルホンとの組合せは、得られる硬化物が高い耐熱性と靱性とを持つことから好ましく用いられる。特に平均エポキシ当量100〜115g/eq.のテトラグリシジルジアミノジフェニルメタンと平均分子量15000〜30000g/molのポリエーテルスルホンとの組合せは、テトラグリシジルジアミノジフェニルメタンに高い耐熱性を持つポリエーテルスルホンを多量に溶解させることができるので、耐熱性を低下させること無く得られる硬化物に高い靱性を付与することができ、耐熱性と耐衝撃性を維持しながら炭素繊維強化複合材料に高い引張強度を付与することができる。
本発明で使用するエポキシ樹脂組成物においては、エポキシ樹脂(D)およびエポキシ樹脂(E)等の、潜在性硬化剤(F)以外の構成要素(成分)を、まず150〜170℃程度の温度で均一に加熱混練し、次いで60℃程度の温度まで冷却した後に、潜在性硬化剤(F)を加えて混練することが好ましいが、各成分の配合方法は特にこの方法に限定されるものではない。
また、本発明で使用するエポキシ樹脂組成物に、熱可塑性樹脂粒子(G)を配合することも好適である。熱可塑性樹脂粒子(G)を配合することにより、炭素繊維強化複合材料としたときに、マトリックス樹脂の靱性が向上し耐衝撃性が向上する。
本発明で使用する熱可塑性樹脂粒子(G)の素材としては、先に例示した各種の熱可塑性樹脂(H)と同様のものであって、エポキシ樹脂組成物に混合して用い得る熱可塑性樹脂を用いることができる。中でも、ポリアミドは最も好ましく、ポリアミドの中でも、ナイロン12、ナイロン6、ナイロン11、ナイロン6/12共重合体や特開平01−104624号公報の実施例1記載のエポキシ化合物にてセミIPN(高分子相互侵入網目構造)化されたナイロン(セミIPNナイロン)は、特に良好なエポキシ樹脂(D)およびエポキシ樹脂(E)との接着強度を与える。この熱可塑性樹脂粒子(G)の形状としては、球状粒子でも非球状粒子でも、また多孔質粒子でもよいが、球状の方が樹脂の流動特性を低下させないため粘弾性に優れ、また応力集中の起点がなく、高い耐衝撃性を与えるという点で好ましい態様である。ポリアミド粒子の市販品としては、SP−500、SP−10、TR−1、TR−2、842P−48、842P−80(以上東レ(株)製)、“トレパール(登録商標)”TN(東レ(株)製)、“オルガソール(登録商標)”1002D、2001UD,2001EXD、2002D、3202D,3501D,3502D、(以上、アルケマ(株)製)等を使用することができる。
本発明で使用するエポキシ樹脂組成物は、本発明の効果を妨げない範囲で、カップリング剤や、カーボン粒子や金属めっき有機粒子等の導電性粒子、熱硬化性樹脂粒子、あるいはシリカゲル、クレー等の無機フィラーや、導電性フィラーを配合することができる。導電性粒子や導電性フィラーを用いることは、得られる樹脂硬化物や炭素繊維強化複合材料の導電性を向上することが出来るので、好ましく用いられる。
導電性フィラーとしては、カーボンブラック、カーボンナノチューブ、気相成長法炭素繊維(VGCF)、フラーレン、金属ナノ粒子などが挙げられ、単独で使用しても併用してもよい。なかでも安価で効果の高いカーボンブラックが好ましく用いられ、かかるカーボンブラックとしては、例えば、ファーネスブラック、アセチレンブラック、サーマルブラック、チャンネルブラック、ケッチェンブラックなどを使用することができ、これらを2種類以上ブレンドしたカーボンブラックも好適に用いられる。
本発明で使用するエポキシ樹脂組成物は、上記のような材料を所定の割合で配合することにより、硬化時の揮発分が少なく、優れた耐熱性と、低温下等の厳しい環境下での力学特性に優れるプリプレグを提供することが可能となる。本発明で使用するエポキシ樹脂組成物は、プリプレグとした際、該プリプレグを熱風乾燥機内に20分間静置したときの揮発量が、0.2〜5質量%以下であることが好ましく、より好ましくは0.02〜3質量%以下である。揮発量を制御することにより、高い耐熱性を有し、かつ炭素繊維強化複合材料の成形時のボイド発生を抑制することが可能となる。
なお、エポキシ樹脂組成物の揮発量は、暴露温度の上昇に比例して増加する傾向があるが、高温になるほどエポキシ樹脂組成物は短時間でゲル化して揮発分を生じなくなるため、硬化温度以下の温度において揮発量は頭打ちとなる場合が多い。例えば、硬化に高温条件が必要となる芳香族アミン類では、昇温速度によるが、150〜180℃の温度で揮発量は頭打ちとなる。例えば、180℃で硬化する場合では、昇温速度の影響が小さい160℃の温度で揮発量を測定することが好ましい。
次に、本発明のプリプレグの製造方法について説明する。
本発明のプリプレグは、マトリックス樹脂であるエポキシ樹脂組成物をサイジング剤塗布炭素繊維束に含浸せしめたものである。プリプレグは、例えば、マトリックス樹脂をメチルエチルケトンやメタノールなどの溶媒に溶解して低粘度化し、含浸させるウェット法あるいは加熱により低粘度化し、含浸させるホットメルト法などの方法により製造することができる。
ウェット法では、サイジング剤塗布炭素繊維束をマトリックス樹脂が含まれる液体に浸漬した後、引き上げ、オーブンなどを用いて溶媒を蒸発させてプリプレグを得ることができる。
また、ホットメルト法では、加熱により低粘度化したマトリックス樹脂を直接サイジング剤塗布炭素繊維束に含浸させる方法、あるいは一旦マトリックス樹脂組成物を離型紙などの上にコーティングしたフィルムをまず作成し、ついでサイジング剤塗布炭素繊維束の両側あるいは片側から該フィルムを重ね、加熱加圧してマトリックス樹脂をサイジング剤塗布炭素繊維束に含浸させる方法により、プリプレグを製造することができる。ホットメルト法は、プリプレグ中に残留する溶媒がないため好ましい手段である。
本発明のプリプレグを用いて炭素繊維強化複合材料を成形するには、プリプレグを積層後、積層物に圧力を付与しながらマトリックス樹脂を加熱硬化させる方法などを用いることができる。
熱および圧力を付与する方法には、プレス成形法、オートクレーブ成形法、バッギング成形法、ラッピングテープ法および内圧成形法などがあり、特にスポーツ用品に関しては、ラッピングテープ法と内圧成形法が好ましく採用される。より高品質で高性能の積層複合材料が要求される航空機用途においては、オートクレーブ成形法が好ましく採用される。各種車輌外装にはプレス成形法が好ましく用いられる。
本発明のプリプレグの炭素繊維質量分率は、好ましくは40〜90質量%であり、より好ましくは50〜80質量%である。炭素繊維質量分率が低すぎると、得られる炭素繊維強化複合材料の質量が過大となり、比強度および比弾性率に優れる炭素繊維強化複合材料の利点が損なわれることがあり、また、炭素繊維質量分率が高すぎると、マトリックス樹脂組成物の含浸不良が生じ、得られる炭素繊維強化複合材料がボイドの多いものとなり易く、その力学特性が大きく低下することがある。
本発明のプリプレグは、熱可塑性樹脂粒子(G)に富む層、すなわち、その断面を観察したときに、熱可塑性樹脂粒子(G)が局在して存在している状態が明瞭に確認しうる層(以下、粒子層と略記することがある。)が、プリプレグの表面付近部分に形成されている構造であることが好ましい。
このような構造をとることにより、プリプレグを積層してエポキシ樹脂を硬化させて炭素繊維強化複合材料とした場合は、プリプレグ層、即ち炭素繊維強化複合材料層の間で樹脂層が形成され易く、それにより、炭素繊維強化複合材料層相互の接着性や密着性が高められ、得られる炭素繊維強化複合材料に高度の耐衝撃性が発現されるようになる。
このような観点から、前記の粒子層は、プリプレグの厚さ100%に対して、プリプレグの表面から、表面を起点として厚さ方向に好ましくは20%の深さ、より好ましくは10%の深さの範囲内に存在していることが好ましい。また、粒子層は、片面のみに存在させても良いが、プリプレグに表裏ができるため、注意が必要となる。プリプレグの積層を間違えて、粒子のある層間とない層間が存在すると、衝撃に対して弱い炭素繊維強化複合材料となる。表裏の区別をなくし、積層を容易にするため、粒子層はプリプレグの表裏両面に存在する方がよい。
さらに、粒子層内に存在する熱可塑性樹脂粒子(G)の存在割合は、プリプレグ中、熱可塑性樹脂粒子(G)の全量100質量%に対して好ましくは90〜100質量%であり、より好ましくは95〜100質量%である。
熱可塑性樹脂粒子(G)の存在率は、例えば、下記の方法で評価することができる。すなわち、プリプレグを2枚の表面の平滑なポリ四フッ化エチレン樹脂板の間に挟持して密着させ、7日間かけて徐々に硬化温度まで温度を上昇させてゲル化、硬化させて板状のプリプレグ硬化物を作製する。このプリプレグ硬化物の両面に、プリプレグ硬化物の表面から、厚さの20%深さ位置にプリプレグの表面と平行な線を2本引く。次に、プリプレグの表面と上記線との間に存在する熱可塑性樹脂粒子(G)の合計面積と、プリプレグの厚みに渡って存在する熱可塑性樹脂粒子(G)の合計面積を求め、プリプレグの厚さ100%に対して、プリプレグの表面から20%の深さの範囲に存在する熱可塑性樹脂粒子(G)の存在率を計算する。ここで、熱可塑性樹脂粒子(G)の合計面積は、断面写真から熱可塑性樹脂粒子(G)部分を刳り抜き、その質量から換算して求める。樹脂中に分散する熱可塑性樹脂粒子(G)の写真撮影後の判別が困難な場合は、熱可塑性樹脂粒子(G)を染色する手段も採用できる。
また、本発明において炭素繊維強化複合材料を得る方法としては、プリプレグを用いて得る方法の他に、ハンドレイアップ、RTM、“SCRIMP(登録商標)”、フィラメントワインディング、プルトルージョンおよびレジンフィルムインフュージョンなどの成形法を目的に応じて選択し適用することができる。これらのいずれかの成形法を適用することにより、前述のサイジング剤塗布炭素繊維と熱硬化性樹脂組成物の硬化物を含む炭素繊維強化複合材料が得られる。
本発明の炭素繊維強化複合材料は、航空機構造部材、風車の羽根、自動車外板およびICトレイやノートパソコンの筐体(ハウジング)などのコンピュータ用途、さらにはゴルフシャフト、バット、バトミントンやテニスラケットなどスポーツ用途に好ましく用いられる。
次に、実施例により本発明を具体的に説明するが、本発明はこれらの実施例により制限されるものではない。次に示す実施例のプリプレグの作製環境および評価は、特に断りのない限り、温度25℃±2℃、50%RH(相対湿度)の雰囲気で行ったものである。
(1)サイジング剤塗布炭素繊維のサイジング剤表面のX線光電子分光法
本発明において、サイジング剤塗布炭素繊維のサイジング剤表面の(a)、(b)のピーク比は、X線光電子分光法により、次の手順に従って求めた。サイジング剤塗布炭素繊維を20mmにカットして、銅製の試料支持台に拡げて並べた後、X線源としてAlKα1,2を用い、試料チャンバー中を1×10−8Torrに保ち、光電子脱出角度15°で測定を行った。測定時の帯電に伴うピークの補正として、まずC1sの主ピークの結合エネルギー値を286.1eVに合わせた。この時に、C1sのピーク面積は282〜296eVの範囲で直線ベースラインを引くことにより求めた。また、C1sピークにて面積を求めた282〜296eVの直線ベースラインを光電子強度の原点(零点)と定義して、(b)C−O成分に帰属される結合エネルギー286.1eVのピークの高さ(cps:単位時間あたりの光電子強度)と(a)CHx、C−C、C=Cに帰属される結合エネルギー284.6eVの成分の高さ(cps)を求め、(a)/(b)を算出した。
なお、(b)より(a)のピークが大きい場合には、C1sの主ピークの結合エネルギー値を286.1に合わせた場合、C1sのピークが282〜296eVの範囲に入らない。その場合には、C1sの主ピークの結合エネルギー値を284.6eVに合わせた後、上記手法にて(a)/(b)を算出した。
(2)サイジング剤塗布炭素繊維のサイジング剤の洗浄
サイジング剤塗布炭素繊維を2gをアセトン50ml中に浸漬させて超音波洗浄30分間を3回実施した。続いてメタノール50mlに浸漬させて超音波洗浄30分を1回行い、乾燥した。
(3)サイジング剤塗布炭素繊維の400eVでのX線光電子分光法
本発明において、サイジング剤塗布炭素繊維のサイジング剤表面の(a)、(b)のピーク比は、X線光電子分光法により、次の手順に従って求めた。サイジング剤塗布炭素繊維およびサイジング剤を洗浄したサイジング剤塗布炭素繊維を20mmにカットして、銅製の試料支持台に拡げて並べた後、X線源として佐賀シンクトロトン放射光を用い、励起エネルギーは400eVで実施した。試料チャンバー中を1×10−8Torrに保ち測定を行った。なお、光電子脱出角度55°で実施した。測定時の帯電に伴うピークの補正として、まずC1sの主ピークの結合エネルギー値を286.1eVに合わせた。この時に、C1sのピーク面積は282〜296eVの範囲で直線ベースラインを引くことにより求めた。また、C1sピークにて面積を求めた282〜296eVの直線ベースラインを光電子強度の原点(零点)と定義して、(b)C−O成分に帰属される結合エネルギー286.1eVのピークの高さ(cps:単位時間あたりの光電子強度)と、(a)CHx、C−C、C=Cに帰属される結合エネルギー284.6eVの成分の高さ(cps)を求め、(a)/(b)を算出した。
なお、(b)より(a)のピークが大きい場合には、C1sの主ピークの結合エネルギー値を286.1に合わせた場合、C1sのピークが282〜296eVの範囲に入らない。その場合には、C1sの主ピークの結合エネルギー値を284.6eVに合わせた後、上記手法にて(a)/(b)を算出した。
(4)炭素繊維束のストランド引張強度と弾性率
炭素繊維束のストランド引張強度とストランド弾性率は、JIS−R−7608(2004)の樹脂含浸ストランド試験法に準拠し、次の手順に従い求めた。樹脂処方としては、“セロキサイド(登録商標)”2021P(ダイセル化学工業(株)製)/3フッ化ホウ素モノエチルアミン(東京化成工業(株)製)/アセトン=100/3/4(質量部)を用い、硬化条件としては、常圧、温度125℃、時間30分を用いた。炭素繊維束のストランド10本を測定し、その平均値をストランド引張強度およびストランド弾性率とした。
(5)炭素繊維の表面酸素濃度(O/C)
炭素繊維の表面酸素濃度(O/C)は、次の手順に従いX線光電子分光法により求めた。まず、溶媒で表面に付着している汚れを除去した炭素繊維を、約20mmにカットし、銅製の試料支持台に拡げる。次に、試料支持台を試料チャンバー内にセットし、試料チャンバー中を1×10−8Torrに保った。続いて、X線源としてAlKα1,2を用い、光電子脱出角度を90°として測定を行った。なお、測定時の帯電に伴うピークの補正値としてC1sのメインピーク(ピークトップ)の結合エネルギー値を284.6eVに合わせた。C1sメイン面積は、282〜296eVの範囲で直線のベースラインを引くことにより求めた。また、O1sピーク面積は、528〜540eVの範囲で直線のベースラインを引くことにより求めた。ここで、表面酸素濃度とは、上記のO1sピーク面積とC1sピーク面積の比から装置固有の感度補正値を用いて原子数比として算出したものである。X線光電子分光法装置として、アルバック・ファイ(株)製ESCA−1600を用い、上記装置固有の感度補正値は2.33であった。
(6)炭素繊維の表面カルボキシル基濃度(COOH/C)、表面水酸基濃度(COH/C)
表面水酸基濃度(COH/C)は、次の手順に従って化学修飾X線光電子分光法により求めた。
溶媒でサイジング剤などを除去した炭素繊維束をカットして白金製の試料支持台上に拡げて並べ、0.04mol/Lの無水3弗化酢酸気体を含んだ乾燥窒素ガス中に室温で10分間さらし、化学修飾処理した後、X線光電子分光装置に光電子脱出角度を35゜としてマウントし、X線源としてAlKα1,2を用い、試料チャンバー内を1×10−8Torrの真空度に保つ。測定時の帯電に伴うピークの補正として、まずC1sの主ピークの結合エネルギー値を284.6eVに合わせる。C1sピーク面積[C1s]は、282〜296eVの範囲で直線のベースラインを引くことにより求め、F1sピーク面積[F1s]は、 682〜695eVの範囲で直線のベースラインを引くことにより求めた。また、同時に化学修飾処理したポリビニルアルコールのC1sピーク分割から反応率rを求めた。
表面水酸基濃度(COH/C)は、下式により算出した値で表した。
COH/C={[F1s]/(3k[C1s] −2[F1s])r}×100(%)
なお、kは装置固有のC1sピーク面積に対するF1sピーク面積の感度補正値であり、米国SSI社製モデルSSX−100−206での、上記装置固有の感度補正値は3.919であった。
表面カルボキシル基濃度(COOH/C)は、次の手順に従って化学修飾X線光電子分光法により求めた。先ず、溶媒でサイジング剤などを除去した炭素繊維束をカットして白金製の試料支持台上に拡げて並べ、0.02mol/Lの3弗化エタノール気体、0.001mol/Lのジシクロヘキシルカルボジイミド気体及び0.04mol/Lのピリジン気体を含む空気中に60℃で8時間さらし、化学修飾処理した後、X線光電子分光装置に光電子脱出角度を35゜としてマウントし、X線源としてAlKα1,2を用い、試料チャンバー内を1×10−8Torrの真空度に保つ。測定時の帯電に伴うピークの補正として、まずC1sの主ピークの結合エネルギー値を284.6eVに合わせる。C1sピーク面積[C1s]は、282〜296eVの範囲で直線のベースラインを引くことにより求め、F1sピーク面積[F1s]は、682〜695eVの範囲で直線のベースラインを引くことにより求めた。また、同時に化学修飾処理したポリアクリル酸のC1sピーク分割から反応率rを、O1sピーク分割からジシクロヘキシルカルボジイミド誘導体の残存率mを求めた。
表面カルボキシル基濃度COOH/Cは、下式により算出した値で表した。
COOH/C={[F1s]/(3k[C1s]−(2+13m)[F1s])r}×100(%)
なお、kは装置固有のC1sピーク面積に対するF1sピーク面積の感度補正値であり、米国SSI社製モデルSSX−100−206を用いた場合の、上記装置固有の感度補正値は3.919であった。
(7)サイジング剤のエポキシ当量、炭素繊維に塗布されたサイジング剤のエポキシ当量
サイジング剤のエポキシ当量は、溶媒を除去したサイジング剤をN,N−ジメチルホルムアミドに代表される溶媒中に溶解し、塩酸でエポキシ基を開環させ、酸塩基滴定で求めた。炭素繊維に塗布されたサイジング剤のエポキシ当量は、サイジング剤塗布炭素繊維をN,N−ジメチルホルムアミド中に浸漬し、超音波洗浄を行うことで繊維から溶出させたのち、塩酸でエポキシ基を開環させ、酸塩基滴定で求めた。
(8)ガラス転移点の上昇温度
アミン当量とエポキシ当量の比率であるアミン当量/エポキシ当量が0.9になるようにサイジング剤と潜在性硬化剤(F)とを混合し、JIS K7121(1987)に従い、示差走査熱量計(DSC)により調整した混合物のガラス転移温度の測定を行った。容量50μlの密閉型サンプル容器に、3〜10mgの試料(試験片)を詰め、昇温速度10℃/分で30〜350℃まで昇温し、ガラス転移温度を測定した。ここでは、測定装置として、TA Instruments社製の示差走査型熱量計(DSC)を使用した。
具体的には、得られたDSC曲線の階段状変化を示す部分において、各ベースラインの延長した直線から縦軸方向に等距離にある直線と、ガラス転移の階段状変化部分の曲線とが交わる点の温度をガラス転移温度とした。
続いて、調整した混合物を温度25℃、60%RHの環境下で20日保管した後、上記の方法でガラス転移温度を測定し、初期からの上昇温度をガラス転移点の上昇温度とした(表中の「硬化剤とのΔTg」がそれに該当する)。
(9)サイジング付着量の測定方法
約2gのサイジング付着炭素繊維束を秤量(W1)(少数第4位まで読み取り)した後、50mL/minの窒素気流中、450℃の温度に設定した電気炉(容量120cm)に15分間放置し、サイジング剤を完全に熱分解させる。そして、20L/minの乾燥窒素気流中の容器に移し、15分間冷却した後の炭素繊維束を秤量(W2)(少数第4位まで読み取り)して、W1−W2によりサイジング付着量を求める。このサイジング付着量を炭素繊維束100質量部に対する量に換算した値(小数点第3位を四捨五入)を、付着したサイジング剤の質量部とした。測定は2回行い、その平均値をサイジング剤の質量部とした。
(10)界面剪断強度(IFSS)の測定
界面剪断強度(IFSS)の測定は、次の(イ)〜(ニ)の手順で行った。
(イ)樹脂の調整
ビスフェノールA型エポキシ化合物“jER(登録商標)”828(三菱化学(株)製)100質量部とメタフェニレンジアミン(シグマアルドリッチジャパン(株)製)14.5質量部を、それぞれ容器に入れた。その後、上記のjER828の粘度低下とメタフェニレンジアミンの溶解のため、75℃の温度で15分間加熱した。その後、両者をよく混合し、80℃の温度で約15分間真空脱泡を行った。
(ロ)炭素繊維単糸を専用モールドに固定
炭素繊維束から単繊維を抜き取り、ダンベル型モールドの長手方向に単繊維に一定張力を与えた状態で両端を接着剤で固定した。その後、炭素繊維およびモールドに付着した水分を除去するため、80℃の温度で30分間以上真空乾燥を行った。ダンベル型モールドはシリコーンゴム製で、注型部分の形状は、中央部分巾5mm、長さ25mm、両端部分巾10mm、全体長さ150mmだった。
(ハ)樹脂注型から硬化まで
上記(ロ)の手順の真空乾燥後のモールド内に、上記(イ)の手順で調整した樹脂を流し込み、オーブンを用いて、昇温速度1.5℃/分で75℃の温度まで上昇し2時間保持後、昇温速度1.5℃/分で125℃の温度まで上昇し2時間保持後、降温速度2.5℃/分で30℃の温度まで降温した。その後、脱型して試験片を得た。
(ニ)界面剪断強度(IFSS)の測定
上記(ハ)の手順で得られた試験片に繊維軸方向(長手方向)に引張力を与え、歪みを12%生じさせた後、偏光顕微鏡により試験片中心部22mmの範囲における繊維破断数N(個)を測定した。次に、平均破断繊維長laを、la(μm)=22×1000(μm)/N(個)の式により計算した。次に、平均破断繊維長laから臨界繊維長lcを、lc(μm)=(4/3)×la(μm)の式により計算した。ストランド引張強度σと炭素繊維単糸の直径dを測定し、炭素繊維と樹脂界面の接着強度の指標である界面剪断強度IFSSを、次式で算出した。実施例では、測定数n=5の平均を試験結果とした。
・界面剪断強度IFSS(MPa)=σ(MPa)×d(μm)/(2×lc)(μm)
(11)炭素繊維強化複合材料の0°の定義
JIS K7017(1999)に記載されているとおり、一方向炭素繊維強化複合材料の繊維方向を軸方向とし、その軸方向を0°軸と定義し軸直交方向を90°と定義した。
(12)炭素繊維強化複合材料の0°引張強度測定
作製後24時間以内の一方向プリプレグを所定の大きさにカットし、これを一方向に6枚積層した後、真空バッグを行い、オートクレーブを用いて、温度180℃、圧力6kg/cm、2時間で硬化させ、一方向強化材(炭素繊維強化複合材料)を得た。この一方向強化材を幅12.7mm、長さ230mmにカットし、両端に1.2mm、長さ50mmのガラス繊維強化プラスチック製のタブを接着し試験片を得た。このようにして得られた試験片について、インストロン社製万能試験機を用いてクロスヘッドスピード1.27mm/minで引張試験を行った。
本発明において、0°引張強度の値を(B)で求めたストランド強度の値で割り返したものを強度利用率(%)として、次式で求めた。
強度利用率=引張強度/((CF目付/190)×Vf/100×ストランド強度)×100
CF(炭素繊維)目付=190g/m
Vf(体積炭素繊維含有率)=56%
(13)プリプレグ保管後の0°引張強度利用率
プリプレグを温度25℃、60%RHで20日保管後、(12)と同様に0°引張強度測定を行い、強度利用率を算出した。
(14)ガラス転移温度の測定
前記(12)項の試験片を用いて、JIS K7121(1987)に従い、示差走査熱量計(DSC)により炭素繊維強化複合材料のガラス転移温度の測定を行った。容量50μlの密閉型サンプル容器に、8〜20mgの試料(試験片)を詰め、昇温速度10℃/分で30〜350℃まで昇温し、ガラス転移温度を測定した。ここでは、測定装置として、TA Instruments社製の示差走査型熱量計(DSC)を使用した。具体的には、得られたDSC曲線の階段状変化を示す部分において、各ベースラインの延長した直線から縦軸方向に等距離にある直線と、ガラス転移の階段状変化部分の曲線とが交わる点の温度をガラス転移温度とした。
(15)プリプレグ揮発分測定
プリプレグを50×50mmに裁断し、試験片とする。該試験片を秤量後(W1)、160℃の温度に設定した熱風乾燥機内にアルミニウム板にのせたプリプレグを静置した状態で20分間維持し、デシケーター中で25℃まで放冷し、試験片を秤量した(W2)。次式より、プリプレグ揮発分(質量%)を計算した。
・PVC=(W1−W2)/W1×100
PVC:プリプレグ揮発分(質量%)
揮発分(質量%)=PVC×100/RC
RC:プリプレグの樹脂含有率(質量%)
(16)プリプレグの厚み20%の深さの範囲に存在する粒子の存在率
プリプレグを、2枚の表面の平滑なポリ四フッ化エチレン樹脂板間に挟持して密着させ、7日間かけて徐々に150℃迄温度を上昇させてゲル化、硬化させて板状の樹脂硬化物を作製する。硬化後、密着面と垂直な方向から切断し、その断面を研磨後、光学顕微鏡で200倍以上に拡大しプリプレグの上下面が視野内に納まるようにして写真撮影した。同様な操作により、断面写真の横方向の5ヵ所でポリ四フッ化エチレン樹脂板間の間隔を測定し、その平均値(n=5)をプリプレグの厚さとした。プリプレグの両面について、プリプレグの表面から、厚さの20%深さ位置にプリプレグの表面と平行な線を2本引く。次に、プリプレグの表面と上記線との間に存在する粒子の合計面積と、プリプレグの厚みに渡って存在する粒子の合計面積を求め、プリプレグの厚さ100%に対して、プリプレグの表面から20%の深さの範囲に存在する粒子の存在率を計算した。ここで、微粒子の合計面積は、断面写真から粒子部分を刳り抜き、その質量から換算して求めた。
(17)熱可塑性樹脂粒子(G)の平均粒径の測定
粒子の平均粒径については、走査型電子顕微鏡などの顕微鏡にて粒子を1000倍以上に拡大し写真撮影し、無作為に粒子を選び、その粒子の外接する円の直径を粒径とし、その粒径の平均値(n=50)として求めた。
(18)炭素繊維強化複合材料の衝撃後圧縮強度測定
一方向プリプレグを、[+45°/0°/−45°/90°]3s構成で、擬似等方的に24プライ積層し、オートクレーブにて、180℃の温度で2時間、圧力6kg/cm、昇温速度1.5℃/分で成形して擬似等方材(炭素繊維強化複合材料)を作製した。この擬似等方材から、縦150mm×横100mm(厚み4.5mm)のサンプルを切り出し、SACMA SRM 2R−94に従い、サンプルの中心部に6.7J/mmの落錘衝撃を与え、衝撃後圧縮強度を求めた。
各実施例および各比較例で用いた材料と成分は下記の通りである。
・(A)成分:A−1〜A−3
A−1:“デナコール(登録商標)”EX−810(ナガセケムテックス(株)製)
エチレングリコールのジグリシジルエーテル
エポキシ当量:113g/eq.、エポキシ基数:2
A−2:“デナコール(登録商標)”EX−611(ナガセケムテックス(株)製)
ソルビトールポリグリシジルエーテル
エポキシ当量:167g/eq.、エポキシ基数:4
水酸基数:2
A−3:“デナコール(登録商標)”EX−521(ナガセケムテックス(株)製)
ポリグリセリンポリグリシジルエーテル
エポキシ当量:183g/eq.、エポキシ基数:3以上
・(B1)成分:B−1〜B−4
B−1:“jER(登録商標)”152(三菱化学(株)製)
フェノールノボラックのグリシジルエーテル
エポキシ当量:175g/eq.、エポキシ基数:3
B−2:“jER(登録商標)”828(三菱化学(株)製)
ビスフェノールAのジグリシジルエーテル
エポキシ当量:189g/eq.、エポキシ基数:2
B−3:“jER(登録商標)”1001(三菱化学(株)製)
ビスフェノールAのジグリシジルエーテル
エポキシ当量:475g/eq.、エポキシ基数:2
B−4:“jER(登録商標)”807(三菱化学(株)製)
ビスフェノールFのジグリシジルエーテル
エポキシ当量:167g/eq.、エポキシ基数:2
・エポキシ樹脂(D)成分:D−1〜D−4
D−1:下記方法で合成したN,N−ジグリシジル−4−フェノキシアニリン
温度計、滴下漏斗、冷却管および攪拌機を取り付けた四つ口フラスコに、エピクロロヒドリン610.6g(6.6eq.)を仕込み、窒素パージを行いながら温度を70℃まで上げて、これにエタノール1020gに溶解させたp−フェノキシアニリン203.7g(1.1eq.)を4時間かけて滴下した。さらに6時間撹拌し、付加反応を完結させ、4−フェノキシ−N,N−ビス(2−ヒドロキシ−3−クロロプロピル)アニリンを得た。続いて、フラスコ内温度を25℃に下げてから、これに48%NaOH水溶液229g(2.75eq.)を2時間で滴下してさらに1時間撹拌した。環化反応が終わってからエタノールを留去して、408gのトルエンで抽出を行い5%食塩水で2回洗浄を行った。有機層からトルエンとエピクロロヒドリンを減圧下で除くと、褐色の粘性液体が308.5g(収率94.5%)得られた。主生成物であるN,N−ジグリシジル−4−フェノキシアニリンの純度は、91%(GCarea%)であった。
D−2:下記方法で合成したN,N−ジグリシジル−4−(4−ニトロフェノキシ)アニリン
合成したエポキシ樹脂の前駆体となるアミン化合物を4−(4−ニトロフェノキシ)アニリンに変更したこと以外は、上記したN,N−ジグリシジル−4−フェノキシアニリンと同様の反応条件と手順によりグリシジル化反応を行いN,N−ジグリシジル−4−(4−ニトロフェノキシ)アニリンを得た。
D−3:“デナコール(登録商標)”Ex−731(N-グリシジルフタルイミド、ナガセケムテックス(株)製)
D−4:OPP−G(o−フェニルフェニルグリシジルエーテル、三光(株)製)
・エポキシ樹脂(E)成分:E−1〜E−7
E−1:ELM434(テトラグリシジルジアミノジフェニルメタン、住友化学(株)製、エポキシ当量:125g/eq.)
E−2:“jER(登録商標)”630(トリグリシジル−p−アミノフェノール、ジャパンエポキシレジン(株)製)
E−3:下記方法で合成した34TGDDE(テトラグリシジル−3,4’−ジアミノジフェニルエーテル)
温度計、滴下漏斗、冷却管および攪拌機を取り付けた四つ口フラスコに、エピクロロヒドリン610.6g(6.6mol)を仕込み、窒素パージを行いながら温度を70℃まで上げて、これにエタノール1020gに溶解させた3,4’−ジアミノジフェニルエーテル22.2g(1.1mol)を4時間かけて滴下した。さらに6時間撹拌し、付加反応を完結させ、N,N,N’,N’−テトラキス(2−ヒドロキシ−3−クロロプロピル)3,4’−ジアミノジフェニルエーテルを得た。続いて、フラスコ内温度を25℃に下げてから、これに48%NaOH水溶液229g(2.75mol)を2時間で滴下してさらに1時間撹拌した。環化反応が終わってからエタノールを留去して、408gのトルエンで抽出を行い5%食塩水で2回洗浄を行った。有機層からトルエンとエピクロロヒドリンを減圧下で除くと、褐色の粘性液体が416g(収率89%)得られた。主生成物であるテトラグリシジル−3,4’−ジアミノジフェニルエーテルの純度は、87%(GCarea%)であった。
E−4:下記方法で合成した33TGDDE(テトラグリシジル−3,3’−ジアミノジフェニルエーテル)
合成したエポキシ樹脂の前駆体となるアミン化合物を3,3’−ジアミノジフェニルエーテルに変更したこと以外は、上記したテトラグリシジル−3,4’−ジアミノジフェニルエーテルと同様の反応条件と手順によりグリシジル化反応を行いテトラグリシジル−3,3’−ジアミノジフェニルエーテルを得た。
E−5:下記方法で合成した44TGDDE(テトラグリシジル−4,4’−ジアミノジフェニルエーテル)
合成したエポキシ樹脂の前駆体となるアミン化合物を4,4’−ジアミノジフェニルエーテルに変更したこと以外は、上記したテトラグリシジル−3,4’−ジアミノジフェニルエーテルと同様の反応条件と手順によりグリシジル化反応を行いテトラグリシジル−4,4’−ジアミノジフェニルエーテルを得た。
E−6:TG3DAS(テトラグリシジル−3,3’−ジアミノジフェニルスルホン、三井化学ファイン(株))
E−7:“アラルダイド(登録商標)”MY721(テトラグリシジルジアミノジフェニルメタン、ハンツマン・アドバンズド・マテリアルズ(株)製、エポキシ当量:112g/eq.)
エポキシ樹脂(D)、(E)以外の2官能エポキシ樹脂
・“EPON(登録商標) ”825(ビスフェノールA型エポキシ樹脂、ジャパンエポキシレジン(株)
GAN(N−ジグリシジルアニリン、日本化薬(株)製)
・潜在性硬化剤(F)成分:F−1、F−2
F−1:“セイカキュア(登録商標)”S(4,4’−ジアミノジフェニルスルホン、和歌山精化(株)製)
F−2:3,3’−DAS(3,3’−ジアミノジフェニルスルホン、三井化学ファイン(株)製)
・熱可塑性樹脂粒子(G):G−1、G−2
G−1:“トレパール(登録商標)”TN(東レ(株)製、平均粒子径:13.0μm)
G−2:“オルガソール(登録商標)”1002D(ATOCHEM(株)、平均粒子径:21.0μm)
・熱可塑性樹脂(H):H−1、H−2
H−1:“スミカエクセル(登録商標)”PES5003P(ポリエーテルスルホン、住友化学(株)製、平均分子量:47000g/mol)
H−2:“Virantage(登録商標)” VW−10700RP(ポリエーテルスルホン、Solvay Advanced Polymers(株)製、平均分子量:21000g/mol)
(実施例1)
本実施例は、次の第Iの工程、第IIの工程および第IIIの工程からなる。
・第Iの工程:原料となる炭素繊維を製造する工程
アクリロニトリル99mol%とイタコン酸1mol%からなる共重合体を紡糸し、焼成し、総フィラメント数24,000本、総繊度1,000テックス、比重1.8、ストランド引張強度5.9GPa、ストランド引張弾性率295GPaの炭素繊維を得た。次いで、その炭素繊維を、濃度0.1mol/Lの炭酸水素アンモニウム水溶液を電解液として、電気量を炭素繊維1g当たり80クーロンで電解表面処理した。この電解表面処理を施された炭素繊維を続いて水洗し、150℃の温度の加熱空気中で乾燥し、原料となる炭素繊維を得た。このときの表面酸素濃度O/Cは、0.15、表面カルボン酸濃度COOH/Cは0.005、表面水酸基濃度COH/Cは0.018であった。これを炭素繊維Aとした。
・第IIの工程:サイジング剤を炭素繊維に付着させる工程
(B1)成分として(B−1)を20質量部、(C)成分20質量部および乳化剤10質量部からなる水分散エマルジョンを調合した後、(A)成分として(A−3)を50質量部混合してサイジング液を調合した。なお、(C)成分として、ビスフェノールAのEO2mol付加物2molとマレイン酸1.5mol、セバチン酸0.5molの縮合物、乳化剤としてポリオキシエチレン(70mol)スチレン化(5mol)クミルフェノールを用いた。なお(C)成分、乳化剤はいずれも芳香族化合物であり、(B)成分に該当することにもなる。サイジング液中の溶液を除いたサイジング剤のエポキシ当量は表1の通りである。このサイジング剤を浸漬法により表面処理された炭素繊維に塗布した後、210℃の温度で75秒間熱処理をして、サイジング剤塗布炭素繊維束を得た。サイジング剤の付着量は、表面処理された炭素繊維100質量部に対して1.0質量部となるように調整した。続いて、サイジング剤のエポキシ当量、サイジング剤表面のX線光電子分光法測定、サイジング剤塗布炭素繊維の界面剪断強度(IFSS)、サイジング剤と潜在性硬化剤(F)との混合物のガラス転移点の上昇温度(△Tg)を測定した。結果を表1にまとめた。この結果、サイジング剤のエポキシ当量、サイジング剤表面の化学組成、△Tgともに期待通りであることが確認できた。また、IFSSで測定した接着性も十分に高いことがわかった。
・第IIIの工程:一方向プリプレグの作製、成形、評価
混練装置で、エポキシ樹脂(D)成分として(D−1)を40質量部と、エポキシ樹脂(E)成分として(E−1)を60質量部に、熱可塑性樹脂(H)成分として(H−1)を10質量部配合して溶解した後、潜在性硬化剤(F)成分として、(F−1)4,4’−ジアミノジフェニルスルホンを45質量部混練して、熱可塑性樹脂粒子(G)を除く1次樹脂組成物を作製した。得られた1次樹脂組成物を、ナイフコーターを用いて樹脂目付32g/mで離型紙上にコーティングし、1次樹脂フィルムを作製した。この1次樹脂フィルムを一方向に引き揃えたサイジング剤塗布炭素繊維(目付190g/m)の両側に重ね合せてヒートロールを用い、100℃、1気圧で加熱加圧しながら炭素繊維強化複合材料用エポキシ樹脂組成物を含浸させ、一次プリプレグを得た。次に、最終的な炭素繊維強化複合材料用プリプレグのエポキシ樹脂組成が表1の配合量になるように、熱可塑性樹脂粒子(G)として(G−1)を加えて調整した2次エポキシ樹脂組成物で、ナイフコーターを用いて樹脂目付20g/mで離型紙上にコーティングし、2次樹脂フィルムを作製した。この2次樹脂フィルムを、一次プリプレグの両側に重ね合せてヒートロールを用い、100℃、1気圧で加熱加圧しながら炭素繊維強化複合材料用エポキシ樹脂組成物を含浸させ、目的のプリプレグを得た。得られたプリプレグについて、プリプレグ揮発分を測定した。また、得られたプリプレグを用い、炭素繊維強化複合材料の0°引張強度測定および長期保管後の0°引張試験、ガラス転移温度の測定、および炭素繊維強化複合材料の衝撃後圧縮強度測定を実施した。その結果を表1に示す。初期の0°引張強度利用率および衝撃後圧縮強度は十分高く、20日後の引張強度利用率の低下も小さいことが確認できた。また、硬化時の揮発分も十分に小さいことが確認された。
(実施例2〜8)
・第Iの工程:原料となる炭素繊維を製造する工程
実施例1と同様にした。
・第IIの工程:サイジング剤を炭素繊維に付着させる工程
サイジング剤として表1に示す(A)成分、および(B1)成分を用いた以外は、実施例1と同様の方法でサイジング剤塗布炭素繊維を得た。続いて、サイジング剤のエポキシ当量、サイジング剤表面のX線光電子分光法測定、サイジング剤塗布炭素繊維の界面剪断強度(IFSS)および△Tgを測定した。サイジング剤のエポキシ当量、サイジング剤表面の化学組成、△Tgともに期待通りであり、IFSSで測定した接着性も十分に高いことがわかった。結果を表1に示す。
・第IIIの工程:一方向プリプレグの作製、成形、評価
実施例1と同様にプリプレグを作製、成形、評価を実施した。初期の0°引張強度利用率および衝撃後圧縮強度は十分高く、20日後の引張強度利用率の低下も小さいことが確認できた。また、硬化時の揮発分も十分に小さいことが確認された。結果を表1に示す。
Figure 0005516768
(実施例9〜13)
・第Iの工程:原料となる炭素繊維を製造する工程
実施例1と同様にした。
・第IIの工程:サイジング剤を炭素繊維に付着させる工程
サイジング剤として表2に示す質量比にした以外は、実施例2と同様の方法でサイジング剤塗布炭素繊維を得た。続いて、サイジング剤のエポキシ当量、サイジング剤表面のX線光電子分光法測定、サイジング剤塗布炭素繊維の界面剪断強度(IFSS)、△Tgを測定した。サイジング剤のエポキシ当量、サイジング剤表面の化学組成、△Tgともに期待通りであり、IFSSで測定した接着性も十分に高いことがわかった。結果を表2に示す。
・第IIIの工程:一方向プリプレグの作製、成形、評価
実施例1と同様にプリプレグを作製、成形、評価を実施した。初期の0°引張強度利用率および衝撃後圧縮強度は十分高く、20日後の引張強度利用率の低下も小さいことが確認できた。また、硬化時の揮発分も十分に小さいことが確認された。結果を表2に示す。
(実施例14)
・第Iの工程:原料となる炭素繊維を製造する工程
実施例1と同様にした。
・第IIの工程:サイジング剤を炭素繊維に付着させる工程
(A)成分として(A−3)を55質量部、(B1)成分として(B−2)を22.5質量部、(C)成分を22.5質量部をDMFに溶解してサイジング液を調合した。なお、(C)成分として、ビスフェノールAのEO2mol付加物2molとマレイン酸1.5mol、セバチン酸0.5molの縮合物を用いた。サイジング液中の溶液を除いたサイジング剤のエポキシ当量は表2の通りである。実施例1と同様に、このサイジング剤を浸漬法により表面処理された炭素繊維に塗布した後、210℃の温度で75秒間熱処理をして、サイジング剤塗布炭素繊維束を得た。サイジング剤の付着量は、表面処理された炭素繊維100質量部に対して1.0質量部となるように調整した。続いて、サイジング剤のエポキシ当量、サイジング剤表面のX線光電子分光法測定、サイジング剤塗布炭素繊維の界面剪断強度(IFSS)および△Tgを測定した。この結果、表2に示す通り、サイジング剤のエポキシ当量、サイジング剤表面の化学組成、△Tgともに期待通りであることが確認できた。また、IFSSで測定した接着性も十分に高いことがわかった。
・第IIIの工程:一方向プリプレグの作製、成形、評価
実施例1と同様にプリプレグを作製、成形、評価を実施した。初期の0°引張強度利用率および衝撃後圧縮強度は十分高く、20日後の引張強度利用率の低下も小さいことが確認できた。また、硬化時の揮発分も十分に小さいことが確認された。結果を表2に示す。
(実施例15)
・第Iの工程:原料となる炭素繊維を製造する工程
実施例1と同様にした。
・第IIの工程:サイジング剤を炭素繊維に付着させる工程
(A)成分として(A−3)を60質量部、(B1)成分として(B−2)を40質量部をDMFに溶解してサイジング液を調合した。サイジング液中の溶液を除いたサイジング剤のエポキシ当量は表2の通りである。実施例1と同様に、このサイジング剤を浸漬法により表面処理された炭素繊維に塗布した後、210℃の温度で75秒間熱処理をして、サイジング剤塗布炭素繊維束を得た。サイジング剤の付着量は、表面処理された炭素繊維100質量部に対して1.0質量部となるように調整した。続いて、サイジング剤のエポキシ当量、サイジング剤表面のX線光電子分光法測定、サイジング剤塗布炭素繊維の界面剪断強度(IFSS)および△Tgを測定した。この結果、表2に示す通り、サイジング剤のエポキシ当量、サイジング剤表面の化学組成、△Tgともに期待通りであることが確認できた。また、IFSSで測定した接着性も十分に高いことがわかった。
・第IIIの工程:一方向プリプレグの作製、成形、評価
実施例1と同様にプリプレグを作製、成形、評価を実施した。初期の0°引張強度利用率および衝撃後圧縮強度は十分高く、20日後の引張強度利用率の低下も小さいことが確認できた。また、硬化時の揮発分も十分に小さいことが確認された。結果を表2に示す。
Figure 0005516768
(実施例16〜27)
・第Iの工程:原料となる炭素繊維を製造する工程
実施例1と同様にした。
・第IIの工程:サイジング剤を炭素繊維に付着させる工程
実施例2と同様の方法でサイジング剤塗布炭素繊維を得た。続いて、サイジング剤のエポキシ当量、サイジング剤表面のX線光電子分光法測定、サイジング剤塗布炭素繊維の界面剪断強度(IFSS)および△Tgを測定した。サイジング剤のエポキシ当量、サイジング剤表面の化学組成、△Tgともに期待通りであり、IFSSで測定した接着性も問題ないレベルであった。結果を表3に示す。
・第IIIの工程:一方向プリプレグの作製、成形、評価
熱硬化性樹脂組成物として、表3に示すエポキシ樹脂(D)、エポキシ樹脂(E)、熱可塑性樹脂(H)、および熱可塑性樹脂粒子(G)(ならびに、配合される場合はエポキシ樹脂(D)、(E)以外のエポキシ樹脂)を表3に示す割合で配合し、溶解した後、表3に示す潜在性硬化剤(F)を配合混練して、炭素繊維強化複合材料用のエポキシ樹脂組成物を作製した。
得られたエポキシ樹脂組成物を、ナイフコーターを用いて樹脂目付52g/mで離型紙上にコーティングし、樹脂フィルムを作製した。この樹脂フィルムを、一方向に引き揃えたサイジング剤塗布炭素繊維(目付190g/m)の両側に重ね合せてヒートロールを用い、温度100℃、気圧1気圧で加熱加圧しながらエポキシ樹脂組成物をサイジング剤塗布炭素繊維に含浸させプリプレグを得た。得られたプリプレグについて、プリプレグ揮発分を測定した。また、得られたプリプレグを用い、炭素繊維強化複合材料の0°引張強度測定および長期保管後の0°引張試験、ガラス転移温度の測定、および炭素繊維強化複合材料の衝撃後圧縮強度測定を実施した。その結果を表3に示す。初期の0°引張強度利用率および衝撃後圧縮強度は十分高く、20日後の引張強度利用率の低下も小さいことが確認できた。また、硬化時の揮発分も十分に小さいことが確認された。
Figure 0005516768
(実施例28〜39)
・第Iの工程:原料となる炭素繊維を製造する工程
実施例1と同様にした。
・第IIの工程:サイジング剤を炭素繊維に付着させる工程
実施例2と同様の方法でサイジング剤塗布炭素繊維を得た。続いて、サイジング剤のエポキシ当量、サイジング剤表面のX線光電子分光法測定、サイジング剤塗布炭素繊維の界面剪断強度(IFSS)および△Tgを測定した。サイジング剤のエポキシ当量、サイジング剤表面の化学組成、△Tgともに期待通りであり、IFSSで測定した接着性も問題ないレベルであった。結果を表4に示す。
・第IIIの工程:一方向プリプレグの作製、成形、評価
表4に示すエポキシ樹脂(D)、(E)、熱可塑性樹脂粒子(G)、熱可塑性樹脂(H)を、表4の質量比で用いた以外は実施例1と同様にプリプレグを作製、成形、評価を実施した。その結果を表4に示す。初期の0°引張強度利用率および衝撃後圧縮強度は十分高く、20日後の引張強度利用率の低下も小さいことが確認できた。また、硬化時の揮発分も十分に小さいことが確認された。
Figure 0005516768
(比較例1〜3)
・第Iの工程:原料となる炭素繊維を製造する工程
実施例1と同様にした。
・第IIの工程:サイジング剤を炭素繊維に付着させる工程
サイジング剤として表5に示す質量比にした以外は、実施例2と同様の方法でサイジング剤塗布炭素繊維を得た。続いて、サイジング剤のエポキシ当量、サイジング剤表面のX線光電子分光法測定、サイジング剤塗布炭素繊維の界面剪断強度(IFSS)および△Tgを測定した。サイジング剤表面を光電子脱出角度15°でX線光電子分光法によって測定されるC1s内殻スペクトルの(a)CHx、C−C、C=Cに帰属される結合エネルギー(284.6eV)の成分の高さ(cps)と(b)C−Oに帰属される結合エネルギー(286.1eV)の成分の高さ(cps)の比率(a)/(b)が0.90より大きく、本発明の範囲から外れていた。また、IFSSで測定した接着性が低いことが分かった。
・第IIIの工程:一方向プリプレグの作製、成形、評価
実施例1と同様にプリプレグを作製、成形、評価を実施した。20日後の引張強度の低下率は小さいものの、初期の0°引張強度利用率および衝撃後圧縮強度が低いことがわかった。
(比較例4)
・第Iの工程:原料となる炭素繊維を製造する工程
実施例1と同様にした。
・第IIの工程:サイジング剤を炭素繊維に付着させる工程
サイジング剤として表5に示す質量比にした以外は、実施例2と同様の方法でサイジング剤塗布炭素繊維を得た。続いて、サイジング剤のエポキシ当量、サイジング剤表面のX線光電子分光法測定、サイジング剤塗布炭素繊維の界面剪断強度(IFSS)および△Tgを測定した。サイジング剤表面を光電子脱出角度15°でX線光電子分光法によって測定されるC1s内殻スペクトルの(a)CHx、C−C、C=Cに帰属される結合エネルギー(284.6eV)の成分の高さ(cps)と(b)C−Oに帰属される結合エネルギー(286.1eV)の成分の高さ(cps)の比率(a)/(b)が0.50より小さく、本発明の範囲から外れていた。IFSSで測定した接着性は十分高いことが分かった。
・第IIIの工程:一方向プリプレグの作製、成形、評価
実施例1と同様にプリプレグを作製、成形、評価を実施した。初期の0°引張強度利用率および衝撃後圧縮強度は良好だったが、20日後の0°引張強度の低下率が大きいことが分かった。
(比較例5、6)
・第Iの工程:原料となる炭素繊維を製造する工程
実施例1と同様にした。
・第IIの工程:サイジング剤を炭素繊維に付着させる工程
サイジング剤のエポキシ化合物として、芳香族エポキシ化合物(B1)を用いず、脂肪族エポキシ化合物(A)のみを用いて、実施例2と同様の方法でサイジング剤塗布炭素繊維を得た。続いて、サイジング剤のエポキシ当量、サイジング剤表面のX線光電子分光法測定、サイジング剤塗布炭素繊維の界面剪断強度(IFSS)および△Tgを測定した。サイジング剤表面を光電子脱出角度15°でX線光電子分光法によって測定されるC1s内殻スペクトルの(a)CHx、C−C、C=Cに帰属される結合エネルギー(284.6eV)の成分の高さ(cps)と(b)C−Oに帰属される結合エネルギー(286.1eV)の成分の高さ(cps)の比率(a)/(b)が0.50より小さく、本発明の範囲から外れていた。また、IFSSで測定した接着性は十分高いことが分かった。
・第IIIの工程:一方向プリプレグの作製、成形、評価
実施例1と同様にプリプレグを作製、成形、評価を実施した。初期の0°引張強度利用率および衝撃後圧縮強度は高かったが、20日後の引張強度の低下率が大きいことが分かった。
(比較例7)
・第Iの工程:原料となる炭素繊維を製造する工程
実施例1と同様にした。
・第IIの工程:サイジング剤を炭素繊維に付着させる工程
サイジング剤のエポキシ化合物として、脂肪族エポキシ化合物(A)を用いず、芳香族エポキシ化合物(B1)のみを用いて、実施例2と同様の方法でサイジング剤塗布炭素繊維を得た。続いて、サイジング剤のエポキシ当量、サイジング剤表面のX線光電子分光法測定、サイジング剤塗布炭素繊維の界面剪断強度(IFSS)および△Tgを測定した。サイジング剤表面を光電子脱出角度15°でX線光電子分光法によって測定されるC1s内殻スペクトルの(a)CHx、C−C、C=Cに帰属される結合エネルギー(284.6eV)の成分の高さ(cps)と(b)C−Oに帰属される結合エネルギー(286.1eV)の成分の高さ(cps)の比率(a)/(b)が0.90より大きく、本発明の範囲から外れていた。また、IFSSで測定した接着性が低いことが分かった。
・第IIIの工程:一方向プリプレグの作製、成形、評価
実施例1と同様にプリプレグを作製、成形、評価を実施した。20日後の引張強度の低下率は小さいものの、初期の引張強度利用率および衝撃後圧縮強度が十分な値ではなかった。
(比較例8)
・第Iの工程:原料となる炭素繊維を製造する工程
実施例1と同様にした。
・第IIの工程:サイジング剤を炭素繊維に付着させる工程
実施例2と同様の方法でサイジング剤塗布炭素繊維を得た。続いて、サイジング剤のエポキシ当量、サイジング剤表面のX線光電子分光法測定、サイジング剤塗布炭素繊維の界面剪断強度(IFSS)および△Tgを測定した。サイジング剤のエポキシ当量、サイジング剤表面の化学組成および△Tgともに期待通りであり、IFSSで測定した接着性も問題ないレベルであった。結果を表5に示す。
・第IIIの工程:一方向プリプレグの作製、成形、評価
熱硬化性樹脂組成物として、エポキシ樹脂(E)を用いず、エポキシ樹脂(D)等を用いて、実施例1と同様の方法でプリプレグを作製、成形し、評価を実施しようとしたところ、炭素繊維強化複合材料表面にひびわれが生じた。
(比較例9)
・第Iの工程:原料となる炭素繊維を製造する工程
実施例1と同様にした。
・第IIの工程:サイジング剤を炭素繊維に付着させる工程
実施例2と同様の方法でサイジング剤塗布炭素繊維を得た。続いて、サイジング剤のエポキシ当量、サイジング剤表面のX線光電子分光法測定、サイジング剤塗布炭素繊維の界面剪断強度(IFSS)および△Tgを測定した。サイジング剤のエポキシ当量、サイジング剤表面の化学組成とおよび△Tgもに期待通りであり、IFSSで測定した接着性も問題ないレベルであった。結果を表5に示す。
・第IIIの工程:一方向プリプレグの作製、成形、評価
熱硬化性樹脂組成物として、エポキシ樹脂(D)を用いず、エポキシ樹脂(E)等を用いて、実施例1と同様の方法でプリプレグを作製、成形、評価を実施した。衝撃後圧縮強度が良好であり、かつ、20日後の引張強度の低下率は小さいものの、初期の引張強度利用率が十分な値ではなかった。
(比較例10〜12)
・第Iの工程:原料となる炭素繊維を製造する工程
実施例1と同様にした。
・第IIの工程:サイジング剤を炭素繊維に付着させる工程
実施例2と同様の方法でサイジング剤塗布炭素繊維を得た。続いて、サイジング剤のエポキシ当量、サイジング剤表面のX線光電子分光法測定、サイジング剤塗布炭素繊維の界面剪断強度(IFSS)および△Tgを測定した。サイジング剤のエポキシ当量、サイジング剤表面の化学組成および△Tgともに期待通りであり、IFSSで測定した接着性も問題ないレベルであった。結果を表5に示す。
・第IIIの工程:一方向プリプレグの作製、成形、評価
熱硬化性樹脂組成物として、表5に示すエポキシ樹脂(D)および(E)を、表5に示す質量比で配合した以外は、実施例1と同様の方法でプリプレグを作製、成形、評価を実施した。比較例10および11は、20日後の引張強度の低下率は小さいものの、初期の引張強度利用率および衝撃後圧縮強度が十分な値ではなかった。比較例12は、初期の0°引張強度利用率および衝撃後圧縮強度は高く、20日後の引張強度利用率の低下も大きくないが、揮発分が非常に大きいことが確認された。
Figure 0005516768
(実施例40)
実施例1で得られたサイジング剤塗布炭素繊維を2gをアセトン50ml中に浸漬させて超音波洗浄30分間を3回実施した。続いてメタノール50mlに浸漬させて超音波洗浄30分を1回行い、乾燥した。洗浄後に残っているサイジング剤付着量を測定したところ、表6の通りだった。
続いて、洗浄前のサイジング剤塗布炭素繊維のサイジング剤表面、および洗浄により得られたサイジング剤塗布炭素繊維のサイジング剤表面の400eVでのX線光電子分光法で(b)C−O成分に帰属される結合エネルギー286.1eVのピークの高さと(a)CHx、C−C、C=Cに帰属される結合エネルギー284.6eVの成分の高さ(cps)を求め、(I)洗浄前のサイジング剤塗布炭素繊維のサイジング剤表面の(a)/(b)、(II)洗浄後のサイジング剤塗布炭素繊維のサイジング剤表面の(a)/(b)を算出した。(I)および(II)/(I)は表6に示す通りだった。
(実施例41〜44)
実施例40と同様に実施例2、実施例6、実施例10、実施例13で得られたサイジング剤塗布炭素繊維を用いて洗浄前後の400eVのX線を用いたX線光電子分光法によってC1s内殻スペクトルの(a)CHx、C−C、C=Cに帰属される結合エネルギー(284.6eV)の成分の高さ(cps)と、(b)C−Oに帰属される結合エネルギー(286.1eV)の成分の高さ(cps)との比率(a)/(b)を求めた。結果を表6に示す。
(比較例13)
実施例40と同様に比較例5で得られたサイジング剤塗布炭素繊維を用いて洗浄前後の400eVのX線を用いたX線光電子分光法によってC1s内殻スペクトルの(a)CHx、C−C、C=Cに帰属される結合エネルギー(284.6eV)の成分の高さ(cps)と、(b)C−Oに帰属される結合エネルギー(286.1eV)の成分の高さ(cps)との比率(a)/(b)を求めた。結果を表6に示すが、(II/I)が大きく、サイジング剤に傾斜構造が得られていないことが分かった。
(比較例14)
実施例40と同様に比較例7で得られたサイジング剤塗布炭素繊維を用いて洗浄前後の400eVのX線を用いたX線光電子分光法によってC1s内殻スペクトルの(a)CHx、C−C、C=Cに帰属される結合エネルギー(284.6eV)の成分の高さ(cps)と、(b)C−Oに帰属される結合エネルギー(286.1eV)の成分の高さ(cps)との比率(a)/(b)を求めた。結果を表6に示すが、(II/I)が大きく、サイジング剤に傾斜構造が得られていないことが分かった。
Figure 0005516768
本発明のプリプレグは、炭素繊維とマトリックス樹脂との優れた接着性を有し、長期保管安定性および高次加工性を有することから、織物やプリプレグへの加工に適する。また、本発明にかかる炭素繊維とマトリックス樹脂から得られる炭素繊維強化複合材料は、軽量でありながら強度、弾性率が優れるため、航空機部材、宇宙機部材、自動車部材、船舶部材、土木建築材およびスポーツ用品等の多くの分野に好適に用いることができる。

Claims (25)

  1. サイジング剤を塗布したサイジング剤塗布炭素繊維に熱硬化性樹脂組成物を含浸させてなるプリプレグであって、
    前記サイジング剤は、脂肪族エポキシ化合物(A)および芳香族化合物(B)として少なくとも芳香族エポキシ化合物(B1)を含み、
    前記サイジング剤塗布炭素繊維は、炭素繊維に塗布したサイジング剤表面を、X線源としてAlKα1,2を用いたX線光電子分光法によって光電子脱出角度15°で測定されるC1s内殻スペクトルの(a)CHx、C−C、C=Cに帰属される結合エネルギー(284.6eV)の成分の高さ(cps)と、(b)C−Oに帰属される結合エネルギー(286.1eV)の成分の高さ(cps)との比率(a)/(b)が0.50〜0.90であり、
    前記熱硬化性樹脂組成物は、少なくとも次の構成要素
    (D):4員環以上の環構造を2つ以上有し、かつ、環構造に直結したアミン型グリシジル基またはエーテル型グリシジル基を1個または2個有するエポキシ樹脂、
    (E):3個以上の官能基を有するエポキシ樹脂、
    (F):潜在性硬化剤、
    を含んでなるエポキシ樹脂組成物であり、該エポキシ樹脂組成物は、配合したエポキシ樹脂総量100質量%に対して、前記エポキシ樹脂(D)を5〜60質量%、前記エポキシ樹脂(E)を40〜80質量%含むことを特徴とするプリプレグ。
  2. 前記エポキシ樹脂組成物は、配合したエポキシ樹脂総量100質量%に対して、環構造に直結したアミン型グリシジル基またはエーテル型グリシジル基を1つ有するエポキシ樹脂(D)を10〜40質量%含むことを特徴とする請求項1に記載のプリプレグ。
  3. 前記エポキシ樹脂(D)は、下記一般式(1)
    Figure 0005516768
    (式(1)中、RとRは、それぞれ炭素数1〜4の脂肪族炭化水素基、炭素数3〜6の脂環式炭化水素基、炭素数6〜10の芳香族炭化水素基、ハロゲン原子、アシル基、トリフルオロメチル基およびニトロ基からなる群から選ばれた少なくとも一つを表す。nは0〜4の整数、mは0〜5の整数である。RとRが複数存在する場合、それぞれ同じであっても異なっていてもよい。Xは、−O−、−S−、−CO−、−C(=O)O−、−SO−、−C(=O)NH−から選ばれる1つを表す。)で示される構造を有し、前記エポキシ樹脂組成物は、配合したエポキシ樹脂総量100質量%に対して、該エポキシ樹脂(D)を25〜50質量%含むことを特徴とする請求項1に記載のプリプレグ。
  4. 一般式(1)中、Xは−O−であることを特徴とする請求項3に記載のプリプレグ。
  5. 前記エポキシ樹脂(E)は、下記一般式(2)
    Figure 0005516768
    (式(2)中、R〜Rは、水素原子、炭素数1〜4の脂肪族炭化水素基、炭素数4以下の脂環式炭化水素基、ハロゲン原子からなる群から選ばれた少なくとも一つを表す。Yは、−CH−、−O−、−S−、−CO−、−C(=O)O−、−SO−、−C(=O)NH−から選ばれる1つを表す。)で示される構造を有することを特徴とする、請求項1〜4のいずれか一つに記載のプリプレグ。
  6. 一般式(2)中、Yは−CH−であることを特徴とする請求項5に記載のプリプレグ。
  7. 前記エポキシ樹脂(E)は、Yが−CH−である一般式(2)で示される構造を有し、かつ、エポキシ当量が100〜115g/eq.であることを特徴とする請求項6に記載のプリプレグ。
  8. 前記潜在性硬化剤(F)は、芳香族アミン硬化剤(F1)であることを特徴とする請求項1〜7のいずれか一つに記載のプリプレグ。
  9. 前記芳香族アミン硬化剤(F1)は、ジフェニルスルフォン骨格を含有することを特徴とする、請求項8に記載のプリプレグ。
  10. 前記熱硬化性樹脂組成物は、熱可塑性樹脂粒子(G)を含むことを特徴とする請求項1〜8のいずれか一つに記載のプリプレグ。
  11. 前記熱可塑性樹脂粒子(G)は、その90〜100質量%が、前記プリプレグの厚さ方向において、両面から20%の深さの範囲内に局在していることを特徴とする請求項10に記載のプリプレグ。
  12. 前記熱硬化性樹脂組成物は、前記エポキシ樹脂(D)または前記エポキシ樹脂(E)に溶解する熱可塑性樹脂(H)を含むことを特徴とする請求項1〜11のいずれか一つに記載のプリプレグ。
  13. 前記熱可塑性樹脂(H)は、ポリエーテルスルホンであることを特徴とする請求項12に記載のプリプレグ。
  14. 前記ポリエーテルスルホンの平均分子量は、15000〜30000g/molであることを特徴とする請求項13に記載のプリプレグ。
  15. 塗布されたサイジング剤のエポキシ当量が350〜550g/eq.であることを特徴とする、請求項1〜14のいずれか一つに記載のプリプレグ。
  16. 前記サイジング剤は、溶媒を除いたサイジング剤全量に対して、少なくとも脂肪族エポキシ化合物(A)を35〜65質量%、芳香族化合物(B)を35〜60質量%含むことを特徴とする、請求項1〜15のいずれか一つに記載のプリプレグ。
  17. 前記脂肪族エポキシ化合物(A)と前記芳香族エポキシ化合物(B1)との質量比は、52/48〜80/20であることを特徴とする、請求項1〜16のいずれか一つに記載のプリプレグ。
  18. 前記脂肪族エポキシ化合物(A)は、分子内にエポキシ基を2つ以上有するポリエーテル型ポリエポキシ化合物および/またはポリオール型ポリエポキシ化合物であることを特徴とする、請求項1〜17のいずれか一つに記載のプリプレグ。
  19. 前記脂肪族エポキシ化合物(A)は、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、テトラプロピレングリコール、ポリプロピレングリコール、トリメチレングリコール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、2,3−ブタンジオール、ポリブチレングリコール、1,5−ペンタンジオール、ネオペンチルグリコール、1,6−ヘキサンジオール、1,4−シクロヘキサンジメタノール、グリセロール、ジグリセロール、ポリグリセロール、トリメチロールプロパン、ペンタエリスリトール、ソルビトール、およびアラビトールから選択される化合物と、エピクロロヒドリンとの反応により得られるグリシジルエーテル型エポキシ化合物であることを特徴とする、請求項18に記載のプリプレグ。
  20. 前記芳香族エポキシ化合物(B1)は、ビスフェノールA型エポキシ化合物あるいはビスフェノールF型エポキシ化合物であることを特徴とする、請求項1〜19のいずれか一つに記載のプリプレグ。
  21. 前記サイジング剤は、溶媒を除いたサイジング剤全量に対して、分子内にエポキシ基を持たないエステル化合物(C)を2〜35質量%含有することを特徴とする、請求項1〜20のいずれか一つに記載のプリプレグ。
  22. 前記サイジング剤塗布炭素繊維は、該サイジング剤塗布炭素繊維を、400eVのX線を用いたX線光電子分光法によって光電子脱出角度55°で測定されるC1s内殻スペクトルの(a)CHx、C−C、C=Cに帰属される結合エネルギー(284.6eV)の成分の高さ(cps)と、(b)C−Oに帰属される結合エネルギー(286.1eV)の成分の高さ(cps)との比率(a)/(b)より求められる(I)および(II)の値が、(III)の関係を満たすものであることを特徴とする、請求項1〜21のいずれか一つに記載のプリプレグ。
    (I)超音波処理前の前記サイジング剤塗布炭素繊維の表面の(a)/(b)の値
    (II)前記サイジング剤塗布炭素繊維をアセトン溶媒中で超音波処理することで、サイジング剤付着量を0.09〜0.20質量%まで洗浄したサイジング剤塗布炭素繊維の表面の(a)/(b)の値
    (III)0.50≦(I)≦0.90かつ0.60<(II)/(I)<1.0
  23. 前記サイジング剤は、芳香族エポキシ化合物(B1)を少なくとも含む水エマルジョン液と、脂肪族エポキシ化合物(A)を少なくとも含む組成物を混合したものであることを特徴とする、請求項1〜22のいずれか一つに記載のプリプレグ。
  24. 前記サイジング剤および前記芳香族アミン硬化剤(F1)は、前記サイジング剤と前記芳香族アミン硬化剤(F1)とを、アミン当量/エポキシ当量が0.9の割合で混合後、25℃、60%RHの雰囲気下で20日保管した場合のガラス転移点の上昇が25℃以下となる組み合わせで使用することを特徴とする、請求項8または9に記載のプリプレグ。
  25. 請求項1〜24のいずれか一つに記載のプリプレグを成形してなることを特徴とする炭素繊維強化複合材料。
JP2013013585A 2012-07-25 2013-01-28 プリプレグおよび炭素繊維強化複合材料 Active JP5516768B2 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2013013585A JP5516768B2 (ja) 2012-07-25 2013-01-28 プリプレグおよび炭素繊維強化複合材料
PCT/JP2013/069325 WO2014017340A1 (ja) 2012-07-25 2013-07-16 プリプレグおよび炭素繊維強化複合材料
KR1020157001725A KR101532195B1 (ko) 2012-07-25 2013-07-16 프리프레그 및 탄소 섬유 강화 복합 재료
CN201380038917.4A CN104487495B (zh) 2012-07-25 2013-07-16 预浸料坯及碳纤维增强复合材料
US14/417,044 US9765194B2 (en) 2012-07-25 2013-07-16 Prepreg and carbon fiber-reinforced composite material
EP13822493.6A EP2878617B1 (en) 2012-07-25 2013-07-16 Prepreg and carbon-fiber-reinforced composite material
US15/669,794 US11111345B2 (en) 2012-07-25 2017-08-04 Prepreg and carbon fiber-reinforced composite material
US16/533,517 US11286359B2 (en) 2012-07-25 2019-08-06 Prepreg and carbon fiber-reinforced composite material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012165168 2012-07-25
JP2012165168 2012-07-25
JP2013013585A JP5516768B2 (ja) 2012-07-25 2013-01-28 プリプレグおよび炭素繊維強化複合材料

Publications (2)

Publication Number Publication Date
JP2014040566A JP2014040566A (ja) 2014-03-06
JP5516768B2 true JP5516768B2 (ja) 2014-06-11

Family

ID=50393076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013013585A Active JP5516768B2 (ja) 2012-07-25 2013-01-28 プリプレグおよび炭素繊維強化複合材料

Country Status (1)

Country Link
JP (1) JP5516768B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6716872B2 (ja) 2015-08-04 2020-07-01 富士ゼロックス株式会社 樹脂成形体用中間体及び樹脂成形体
CN105821655B (zh) * 2016-05-16 2017-11-07 四川大学 一种高复合性能的芳香族聚合物纤维及其制备方法
JP7060939B2 (ja) * 2017-10-25 2022-04-27 株式会社Adeka 一液型樹脂組成物、その硬化物およびそれを用いた接着剤
JP7481160B2 (ja) 2020-05-12 2024-05-10 帝人株式会社 プリプレグ
KR20230036060A (ko) 2020-07-09 2023-03-14 에이지씨 가부시키가이샤 사이징제, 사이징 처리된 섬유, 프리프레그 및 분산액
CN113502111B (zh) * 2021-08-31 2022-08-26 吉林大学 一种环保型聚芳醚砜高性能防腐蚀涂料及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3003513B2 (ja) * 1993-08-25 2000-01-31 東レ株式会社 炭素繊維およびその製造方法
JP4349118B2 (ja) * 2003-12-19 2009-10-21 東レ株式会社 サイジング被覆炭素繊維の製造方法
JP2005213687A (ja) * 2004-01-30 2005-08-11 Toray Ind Inc 炭素繊維束の製造方法
JP2005280124A (ja) * 2004-03-30 2005-10-13 Toray Ind Inc 炭素繊維強化シート状物および炭素繊維強化複合材料
RU2014131002A (ru) * 2011-12-27 2016-02-20 Торэй Индастриз, Инк. Углеродные волокна, покрытые проклеивающим веществом, способ получения углеродных волокон, покрытых проклеивающим веществом, препрег и композитный материал, армированный углеродными волокнами

Also Published As

Publication number Publication date
JP2014040566A (ja) 2014-03-06

Similar Documents

Publication Publication Date Title
US11286359B2 (en) Prepreg and carbon fiber-reinforced composite material
JP5565529B1 (ja) プリプレグおよび炭素繊維強化複合材料
JP6011345B2 (ja) サイジング剤塗布炭素繊維、サイジング剤塗布炭素繊維の製造方法、プリプレグおよび炭素繊維強化複合材料
JP5516828B1 (ja) プリプレグおよび炭素繊維強化複合材料
JP5561350B2 (ja) プリプレグおよび炭素繊維強化複合材料
JP5565480B2 (ja) プリプレグおよび炭素繊維強化複合材料
JP5516768B2 (ja) プリプレグおよび炭素繊維強化複合材料
JP7206910B2 (ja) プリプレグおよび炭素繊維強化複合材料
JP6051987B2 (ja) サイジング剤塗布炭素繊維の製造方法
JP6056517B2 (ja) サイジング剤塗布炭素繊維、サイジング剤塗布炭素繊維の製造方法、およびプリプレグならびに炭素繊維強化熱可塑性樹脂組成物
JP6115461B2 (ja) サイジング剤塗布炭素繊維およびその製造方法、炭素繊維強化熱可塑性樹脂組成物
JP5561349B2 (ja) プリプレグおよび炭素繊維強化複合材料
JP6394085B2 (ja) サイジング剤塗布炭素繊維およびその製造方法、プリプレグおよび炭素繊維強化複合材料
JP6070218B2 (ja) サイジング剤塗布炭素繊維、サイジング剤塗布炭素繊維の製造方法、プリプレグおよび炭素繊維強化複合材料
JP5561390B2 (ja) プリプレグおよび炭素繊維強化複合材料

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131219

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20131219

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140317

R151 Written notification of patent or utility model registration

Ref document number: 5516768

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151